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ABSTRACT

AATOM, the Agent-based Airport Terminal Operations Model simulator is open-source, agent-based at its

core, and contains several calibrated presets and templates of basic airport terminal components that can

readily be used. Agents in this simulator follow the AATOM architecture, an activity-based architecture

for human airport agents. This allows analysis based on agent activities, such as shopping and check-

in, which is of vital interest for airports. The combination of agent-based modeling and the presence of

basic airport terminal components makes AATOM a unique simulator, allowing the modeler to only focus

on implementation of important features of their model. The usefulness of AATOM is demonstrated by

presenting case studies in the areas of airport security, gate assignment and resilience.
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1 INTRODUCTION

Airports are vital components of the global aviation system and are of large value to national infrastructures

and economies of countries. They form a complex system in which different stakeholders are involved, and

a large number of interactions between actors are observed. With more passengers than ever, it is important

that these airports are operated in the best possible way. Simulation of airport processes to analyze and

improve them has shown to be a valuable tool to achieve this goal.

It is more and more recognized that human behavior plays an essential role in modern airport operations.

Researchers found that human factors are important in the boarding process (Kierzkowski and Kisiel 2017),

airport retail revenue (Wu and Chen 2019), airport security (Kirschenbaum 2015), airport signage (Shimada,

Yamane, Ohori, Yamada, and Takahashi 2018) and check-in (Lu, Chou, and Ling 2009).

A large set of simulators can be found in literature, but no simulator exists that allows for an easy imple-

mentation of both human behavior and airport-specific elements. Agent-based modeling and simulation is

a natural approach towards understanding human behavior. General agent-based simulation platforms, such

as Netlogo (Tisue and Wilensky 2004), RePast (North, Collier, Ozik, Tatara, Macal, Bragen, and Sydelko

2013), and Gama (Taillandier, Vo, Amouroux, and Drogoul 2010) enable the implementation of any kind of

agent-based model. They generally contain a large number of tools to develop agent behavior, visualize sim-

ulation traces, and analyze simulation outcomes. As these platforms are general, they do not contain specific
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elements for airport terminals, such as a security checkpoint and default behavior for passengers. Imple-

menting airport-specific elements in these simulators may lead to a complicated coding structure, which is

harder to extend than a dedicated airport simulator.

More specific pedestrian-oriented simulators exist as well. Menge (Curtis, Best, and Manocha 2016) and

PedSim (Gloor 2018) are examples of these simulators. These simulators contain several algorithms to

specify pedestrian or passenger behavior, and were shown to be useful to analyze collective walking behavior

in practice. As with the general agent-based simulators, these simulators do not contain default airport-

specific elements that can readily be utilized.

Furthermore, many airport terminal simulators exist and are in use by airports. For instance, the Pedestrian

Dynamics simulation software (InControl 2018), the Pax2Sim simulator (Hub Performance 2012) and the

CAST simulator (Airport Research Center 2018) are examples of commercial simulators. They have proven

very useful in capacity planning for airports, and provide valuable insights to airport managers. However,

all of these simulators are commercial, and therefore not open source. These simulators are also not agent-

based, so human behavior and complex interactions between cognitive agents cannot be modeled well.

The AATOM simulator, an Agent-based Airport Terminal Operations Model simulator was developed to

fill this gap. The simulator is open-source and contains several basic airport terminal components that can

readily be used. AATOM is agent-based at its core, allowing simple implementation of cognitive human

behavior. It also contains the AATOM architecture, an activity-based architecture for cognitive airport

agents. This paper introduces the AATOM simulator, and discusses its core features in Section 2. Several

case studies were previously performed with this simulator, and are outlined in Section 3. Using these case

studies, we show the advantages of using AATOM, and how its features were used in practice. Finally, some

conclusions and recommendations are provided in Section 4.

2 AATOM SIMULATOR

The AATOM simulator is implemented in Java and includes explicit representations of space and time,

allowing the user to model spatial elements of airport terminals. This for instance enables users to analyze

the movement of passengers through the airport terminal. As AATOM is an agent-based simulator, human

behavior and complex interactions between cognitive agents can naturally be implemented. A visualization

of the simulator for a given airport layout is provided in Figure 1.

The AATOM simulator is published on Github (Janssen 2019), and we introduce it in this section. We first

provide an overview of its class structure in Section 2.1. The AATOM agent architecture is discussed in

Section 2.2, and AATOMs main features are shown in Section 2.3.

2.1 AATOM Class Structure

Following the model-view-controller design pattern (Gamma 1995), the AATOM simulator is split up into

four main packages: agent, environment (model), simulation (controller) and GUI (view). Every package of

the AATOM simulator can be extended, but the design allows users to focus on their model only. The envi-

ronment package contains a basic implementations of airport terminal components, and the agent package

has a cognitive agent architecture that can be used to easily model human behavior.

An overview of the main classes in the AATOM simulator is provided in Figure 7, shown at the end of this

paper. There are several other classes in the simulator, but for clarity only the main structure is provided

in this diagram. It is important to note that some classes and packages are combined for simplicity in this

diagram, and that the full set of classes is documented in the Javadoc of the simulator.
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The central class in the model part of AATOM is MapComponent. MapComponent is the superclass of

every model component of AATOM. A MapComponent has a Position, an indication if it is destroyed and

ensures access to the Map. The Map class is a container for all MapComponents, which can both be added

and removed from it. The Map also keeps track of time. All classes and methods in the subsequent text are

printed in italics. The four packages are discussed in more detail in the subsequent Sections.

2.1.1 Agent Package

The agent package, as shown in Figure 7, forms the basis of the agent-based simulator, as it encodes the

behavior of agents in the simulator. An Agent, in its most basic form, inherits all properties of MapCompo-

nent.

Following standard agent definitions, an Agent can perform observations, actions and maintain an internal

state. Observations are made through the getObservation(type) method. This method allows the agent to

observe MapComponents of a specific type on the Map. An agent can also update() itself. Through this

method, actions can be performed and internal states can be altered. Everything an agent does is encoded in

child classes of the abstract class Agent. Finally, agents can determine if they want to be destroyed through

the wantsToBeDestroyed() method.

A single type of agent is defined in AATOM: the HumanAgent. This agent has both a mass and color.

The mass is used for the movement of the HumanAgent (see Section 2.2), while the color is used for vi-

sualization. The HumanAgent has a single added functionality as compared to the Agent: it can receive

communications through the communicate(type,comm) method. This method is called by other Agents that

want to communicate information of a certain type to the HumanAgent.

A HumanAgent following the AATOM architecture is defined as an AatomHumanAgent. This agent type,

and its airport-specific children types Operator and Passenger are discussed in more detail in Section 2.2.

We will first discuss the remaining packages and classes of the AATOM simulator to provide the reader with

an overview of the different elements of the simulator.

Other types of Agents can easily be introduced by extending the right class. For instance, airport visitors

who are not Passengers can be added by extending the HumanAgent or AatomHumanAgent class.

2.1.2 Environment Package

The environment package contains the elements that form the static components of the modeled airport.

Combined with the agent package, this environment package forms the model part of AATOM. Several

types of environment objects exist: Flights, Areas and PhysicalObjects are three main examples of these

objects.

The Flight class forms a central element of the environment. It is of a specific FlightType (either departing

or arriving) and has an associated flightTime. This time refers to, depending on the FlightType, either the

departure time or arrival time of the Flight. It also contains a collection of checkedIn Passengers, and has a

flightSize. This flightSize specifies the expected number of Passengers on the Flight. A Flight can determine

if a Passenger is alreadyCheckedIn(passenger), and can checkIn(passenger) a Passenger. Furthermore, it

can determine if the timeToFlightExceeded() already.

Another important environment object is that of Area. An Area specifies the function of a part of the

airport terminal. While not shown in the class diagram, several types of Areas are defined. Examples
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include GateArea, QueuingArea, and EntranceArea. These Area types are used by agents to perform certain

activities in.

Several types of PhysicalObjects exist. Luggage, Chair, Sensor and Desk are the four types that are dis-

cussed here. Luggage has an owner, which is a Passenger and is of a specific type (carry-on or checked). It

automatically has the same position as its owner, unless checked at check-in or when scanned by an XRay-

Sensor. A Chair has a specific entryPosition, which is the position where a HumanAgent has to be in before

it can sit down. It has an agentSitting field that specifies what agent is sitting there. A Desk has a specific

servingPosition, in which agents are served by some Operator. Furthermore, a Desk can be open or closed,

specified by the isOpen field.

Finally, a Sensor is used to observe specific elements that cannot be observed directly by Operators. A

Sensor has a SensorState, which is either active or idle. Furthermore, the getObservation() method is used

to perform observations. Two specific Sensors are defined: WalkThroughMetalDetector and XRaySensor.

Both of these Sensors are used at the security checkpoint of the airport terminal.

2.1.3 Simulator Package

The simulator package contains the core elements to perform simulations with the above described model

implementation, and forms the controller in the design pattern. The main class in the package is the Simula-

tor class, which handles the progression of time and calls the agents’ update(timeStep) method. Four classes

are associated with the Simulator class: Map, AgentGenerator, EndingConditions and Logger.

The AgentGenerator is used to generate Agents in the simulator. It is generally used for arrival of Passengers,

but can be used for any kind of Agent generation. Some example implementations of AgentGenerators are

the BaseAgentGenerator, which generates Agents following a Poisson distribution, and the FlightSpecificA-

gentGenerator, which generates Agents based on the defined Flights. The EndingConditions class defines

when the Simulator should stop simulating. This can be based on any condition, but some default implemen-

tations exist. For instance the NoPassengerEndingConditions class stops the simulation when Passengers

are no longer present, while the BaseEndingConditions class stops the simulation after a predefined number

of seconds. EndingConditions also specify the return values for the simulation. Finally, the Logger logs

different elements of the simulation, such as return values (ReturnValueLogger class), agent logs (Agent-

Logger class) and Analyzer data (AnalyticsLogger class). Analyzers (not visualized in the diagram), collect

temporal data from the simulation. This data for instance includes queue lengths or mean distance cov-

ered by passengers, and can later be analyzed. This can either be performed by using the included Matlab

implementation, or any other analytic tool.

2.1.4 GUI Package

The GUI package is used to visualize the simulation in real-time. It contains the main GUI class, which

visualizes the MapComponents on the Map. Each MapComponent has an associated MapComponentView

that paints the MapComponent on the MapPanel. Custom MapComponentViews can be added when the user

defines a custom MapComponent as well. When no MapComponentView for a specific MapComponent was

found, the MapComponentView of the superclass of the MapComponent is used. For instance, there is no

specific WallView class, but the more generic PhysicalObjectView ensures that all Walls are visualized.

The GraphCollectionPanel visualizes the temporal information that is collected by Analyzers. This infor-

mation is used to form graphs that are visualized in real-time and can for instance be used to track queue
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lengths and the number of passengers that missed their flight. Finally, the ControlPanel is used to interact

with the running simulation, by changing the simulation speed or pausing it.

2.2 Agent Architecture

The AATOM agent architecture conceptualizes different functional modules in human agents. Three layers

are distinguished: the operational layer, the tactical layer and the strategical layer. Each of these layers

has a set of modules that execute specific tasks. The operational layer handles observations (perception

module) and performs actions in the action module. The action module also handles communication with

other agents. The belief module (in the tactical layer) maintains a belief based on historical observations,

actions and internal states. The tactical layer is also responsible for activity execution (activity module) and

navigation (navigation module) based on a plan. Finally, the strategic layer maintains goals (goal module)

and generates a plan (planning module) to achieve these goals. An overview of these modules and their

relations with each other is shown in Figure 2. More details about the AATOM architecture are provided in

a technical report (Janssen, Blok, and Knol 2018).

D

E

C F

E

G
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H

Figure 1: A visualization of the AATOM GUI,

showing the outline of an airport, with indicators

for different areas. A, B and C are facility areas.

D is the check-in area and E are queuing areas.

F is the checkpoint area, G is the gate area and

H is the entrance area.
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Figure 2: The AATOM architecture and its different

modules (Janssen, Blok, and Knol 2018).

The conceptual architecture as provided in Figure 2 is translated to a Java implementation, of which the

class diagram is shown in Figure 3.

The MovementModule handles the walking of AatomHumanAgents, and some basic implementations of the

MovementModule are provided. The HelbingMovementModule is an implementation of the Social Force

Model as proposed by Helbing et al. (2000), while the BasicMovementModule ignores the environment and

moves the agent in the direction of its goal position. The CommunicationModule handles the incoming

communication, while the ObservationModule handles observation of the environment and other agents.

Basic implementations for Passengers and Operators are provided as well. The CommunicationModule and

the MovementModule together form the actuation module as shown in Figure 2.

The NavigationModule is used to determine collision-free paths between locations in the airport terminal.

Collision-free paths are determined by the PathFinder class. Several implementations of the PathFinder
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class are provided: JumpPointSearchPathFinder, which is based on the Jump Point Search algorithm (Hara-

bor and Grastien 2011), and the AStarPathFinder, based on the A* algorithm are two examples. The Navi-

gationModule additionally detects and handles situations in which the agent is stuck using the StuckDetector

class. This class observes the previous Positions of the AatomHumanAgent, and acts if this Position was the

same for too long.

The ActivityModule holds a set of Activities that the agent can execute. An Activity is an executable set of

actions and is a central concept in the AatomHumanAgent. Example activities include LuggageCheckActiv-

ity, CheckpointActivity and PassengerCheckInActivity. The ActivityModule is furthermore responsible for

a special activity: the QueueingActivity. This Activity ensures that AatomHumanAgents queue when other

AatomHumanAgents are queuing in front of them. The actions of the Activity are executed by the modules

in the operational layer, as described above.

<<abstract>>

AatomHumanAgent

strategicModel : StrategicModel

tacticalModel : TacticalModel

operationalModel : OperationalModel

getActiveActivity() : Activity

getGoalPosition() : Position

getReachedGoal() : Boolean

<<abstract>>

StrategicModel

planningModule : PlanningModule

goalModule : GoalModule

beliefModule : BeliefModule

wantsToBeDestroyed() : Boolean

update(timeStep) <<abstract>>

TacticalModel

activityModule : ActivityModule

navigationModule : NavigationModule

getActiveActivity() : Activity

getActivities() : Collection<Activity>

getReachedGoal() : Boolean

setGoal(position)

setShortTermGoal(position)

<<abstract>>

OperationalModel

movementModule : MovementModule

observationModule : ObservationModule

communicationModule : CommunicationModule

getMove() : Vector

getCurrentVelocity() : Vector

getObservation(type) : Collection<Type>

communicate(type, comm)

setSitDown(chair)

isSitting() : Boolean

<<abstract>>

CommunicationModule

movementModule : MovementModule

activityModule : ActivityModule

navigationModule : NavigationModule

communicate(type, comm)

<<abstract>>

MovementModule

observationModule : ObservationModule

currentVelocity : Vector

desiredSpeed : double

chair : Chair

stopMovingTime : double

getMove() : Vector

getCurrentVelocity() : Vector

setSitDown(chair)

isSitting() : Boolean

setStopOrder(time)

getStopOrder() : Boolean

<<abstract>>

ObservationModule

map : Map

getObservation(type) : Collection<Type>

<<abstract>>

NavigationModule

pathFinder : PathFinder

stuckDetector : StuckDetector

observationModule : ObservationModule

getReachedGoal() : Boolean

setGoal(position)

setShortTermGoal(position)

<<abstract>>

PathFinder

map : Map

precision : double

discretizedMap : Boolean[][]

getPath(start, end) : List<Position>

<<abstract>>

ActivityModule

activities : Collection<Activity>

queueActivity : QueueActivity

planningModule : PlanningModule

getActiveActivity() : Activity

getActivities() : Collection<Activity>

isQueuing() : Boolean

update(timeStep)

<<abstract>>

Activity

movementModule : MovementModule

observationModule : ObservationModule

navigationModule : NavigationModule

activityState : ActivityState

canStart() : Boolean

startActivity()

endActivity()

getActivityState() : ActivityState

<<abstract>>

PlanningModule

goalModule : GoalModule

planning : List<Activity>

getNextActivity() : Activity

getPlanning() : List<Activity>

<<abstract>>

GoalModule

goals : Collection<Goal>

getGoals() : Collection<Goal>

getGoalActivities() : Collection<Activity>

<<abstract>>

BeliefModule

beliefs : List<Belief>

observationModule : ObservationModule

activityModule : ActivityModule

update(timeStep)

getCurrentBelief() : Belief

Figure 3: The UML class diagram of the AATOM agent architecture. For brevity, the association labels are

omitted in this class diagram, and the intermodule associations are omitted as well. They can be obtained

by observing the attributes of each of the modules.



Janssen, Sharpanskykh, Curran, and Langendoen

The implementation of the interpretation module and the belief module of the tactical layer fall within the

BeliefModule. This BeliefModule processes and saves information that is relevant for the agent. This for

instance includes the current and past locations and the activity that were executed. The GoalModule is

responsible for maintaining Goals of agents. Goals are always related to Activities and can be described in

two forms. The first form states that an Activity should be finished before a certain time, while the second

form indicates that the Activity should be finished before another Activity. Based on the defined Goals, the

PlanningModule generates plans for the AatomHumanAgent. A plan is a sequence of Activities that are

executed by the agent. This plan is subsequently used by the ActivityModule.

2.3 AATOM Features

One of the key advantages of AATOM over other simulators (see Section 1) is the availability of airport-

specific components. The ModelComponentBuilder class is essential in this respect. This class allows the

user to add a set of MapComponents to the Map. These sets for instance represent a check-in area (using the

checkInArea(. . .) method), a checkpoint area (using the checkpoint(. . .) method) and a gate area (using the

gate(. . .) method). Using these model components, an airport can readily be built in just a few lines of code.

Many important airport terminal processes were calibrated using manually collected airport data. For in-

stance, the check-in times of passengers was calibrated observing 250 passengers checking in at a regional

airport. Different processing times for checkpoint subprocesses, such as luggage drop, were also calibrated

using manually collected airport data. These are implemented in the specific Activity classes that agents

execute. Users can specify their own distributions in these classes as well.

Experiments can be conducted using the Experimenter class. The Experimenter constructor takes two inputs:

List<String[]> and Class<?>. The first input is used to specify the set of input arguments to be used in the

experiment, while the second argument is the Main class that handles these inputs. The Experimenter class

automatically runs n simulation configurations in parallel, where n is the number of available cores for the

system. This makes AATOM also suitable for performing experiments in computational clusters.

Output, generated by the Logger class, can be analyzed using any data analysis toolbox, as output is gener-

ated in plain text files. Basic analysis and plotting functionality is implemented in Matlab and is provided

in the AATOM distribution. To facilitate new users of AATOM, a comprehensive tutorial is provided. This

tutorial explains the basics of coding in AATOM, and gives detailed explanations about the underlying

structure of the code. This tutorial can be used to explore the most important features of AATOM as well.

3 CASE STUDIES

The authors used AATOM to analyze different performance aspects of airport terminals. Security-related

work is discussed in Section 3.1. A case study on gate assignment is discussed in Section 3.2 and a case

study on resilience is introduced in Section 3.3. For each of the case studies, the usefulness of AATOM is

discussed as well.

3.1 Airport Security

The AATOM simulator has been used to estimate security checkpoint performance at a regional air-

port (Knol, Sharpanskykh, and Janssen 2019). Security checkpoint performance was analyzed in two di-

mensions: proportion of missed illegal items and queuing time. Security operators were modeled using

cognitive agent models, in which decision making and fatigue were represented. Decision making was

modeled following the Ratcliff diffusion model (Ratcliff and McKoon 1998) and fatigue was modeled fol-
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lowing McCauley’s fatigue model (McCauley 2013). Results showed a security checkpoint performance

curve with three different regions. The first region indicates low security performance and the second region

shows an improvement in both the proportion of missed illegal items and queuing time. Finally, the third

region shows a trade-off between the two dimensions.

In another security-related effort we modeled an Improvised Explosive Device (IED) attack in the open areas

of the airport terminal (Janssen, Sharpanskykh, and Curran 2019). Behavior Detection Employees (BDEs)

were modeled and their effectiveness with respect to preventing an IED attack was analyzed. Results show

that airports should attempt to spread passengers across the available space as much as possible to reduce

the impact of an IED attack (Figure 4).

The AATOM simulator was especially useful in analyzing security, as an architecture for cognitive agents

was already present in the simulator. This allowed for a simple implementation of the Ratcliff diffusion

model and McCauley’s fatigue model. Furthermore, airport-specific elements, such as the security check-

point and check-in desks, were implemented and calibrated in the simulator already.

3.2 Gate Assignment

A prominent problem that is well studied in airport literature is that of gate assignment (Deng, Zhao, Yang,

Xiong, Sun, and Li 2017). Passengers are often only considered for their static walking distances, but

congestion at for instance the security checkpoint is also of major influence on the best gate assignment.

Using AATOM, different gate assignments of a local airport were evaluated, while explicitly taking into

account the queuing time of passengers (Spans 2018). The layout of the airport, as implemented in AATOM,

is shown in Figure 5. Using a differential evolution algorithm the best gate assignment was finally obtained.

Furthermore, to improve the speed of the gate assignment, meta-models using regression and a Gaussian

radial basis function were used. These models improve the speed of the optimization, but do not always find

the same optimal solutions of the differential evolution algorithm.

The AATOM simulator was found to be useful in this project, as it can be used for a holistic simulation of

the entire airport. Furthermore, integration with other methods, such as the differential evolution algorithm,

was made more simple due to the open-source character of AATOM.

3.3 Resilience

Large disruptions in the aviation sector, such as volcano eruptions or software malfunctions, happen fre-

quently and their impact is generally very costly (Kurtz 2016). To address this problem, airports recently

started to improve the resilience of their operations, where resilience is understood as ‘the intrinsic ability of

a system to adjust its functioning prior to, during, or following changes and disturbances’ (Hollnagel 2011).

To aid this development, we proposed a formalization of the adaptive capacity of resilience of the air trans-

port system, while specifically focusing on its ability to anticipate (Blok, Sharpanskykh, and Vert 2018). In

that work, the effects of anticipation and the corresponding adaptive actions in the context of security op-

erations was analyzed. It was found that proper anticipation of security agents significantly reduce the risk

of system saturation, where the saturation was defined as the queue length exceeding a specific threshold.

Figure 6 shows the probability that the security checkpoint queue reaches a saturated state for different times

and checkpoint configurations.

The AATOM simulator proved useful in this work, as the entire anticipation framework could be imple-

mented in the simulator in fewer than 200 lines of code. In addition, the security checkpoint was already

implemented, and flights could be delayed to analyze the effect of an anticipating security agent. Finally,
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the performance of the system could easily be analyzed as all relevant variables, such as the number of

passengers that miss their flight, were logged automatically.
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Figure 5: The layout of the airport as used in the work of

Spans (2018).
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4 CONCLUSION & FUTURE WORK

AATOM is an open source Java-based Agent-based Airport Terminal Operations Model simulator. It allows

the modeler to focus on the implementation of important features of this model, as calibrated presets and

templates for most airport elements are already present. Furthermore, a basic cognitive agent architecture,

called the AATOM architecture, was implemented and described. This architecture is activity-based, and

contains three layers: operational, tactical and strategical. This allows analysis based on agent activities,

such as shopping and check-in, which is of vital interest for airports.

The simulator was used for experimentation in a variety of case studies, ranging from security to efficiency

and resilience. The above-described combination of features made AATOM a valuable tool to investigate

the properties of airport terminals in these areas.

AATOM can be extended in several directions. First, its stability can be improved by extending its active

user base. This leads to a timely identification and resolution of bugs and lacking features. In addition,

more different airport-specific features can be implemented. This can for instance be specific sensor types,

employee types, disruption scenarios, and complete airport configurations.
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Simulation package

Agent package

Environment package

GUI package

Map

mapComponents : List<MapComponent>

time : double

width : float

height : float

add(MapComponent)

remove(MapComponent)

<<abstract>>

MapComponent

position : Position

destroyed : Boolean

map : Map

destroy()

isDestroyed() : Boolean

<<abstract>>

AgentGenerator

generateAgents(numberOfSteps, timeStep, forced) : Collection<Agent>

<<abstract>>

Logger

writer : PrintWriter

closeLog()

printLine(line)

update(time, ended)

<<abstract>>

EndingConditions

hasEnded : Boolean

forceEnd()

hasEnded(numberOfSteps) : Boolean

getReturnValues() : Object[]

Simulator

agentGenerator : AgentGenerator

logger : Logger

endingConditions : EndingConditions

map : Map

gui : GUI

run()

step() : long

endSimulation()

<<abstract>>

Agent

getObservation(type) : Collection<type>

wantsToBeDestroyed() : Boolean

update()

init()

<<abstract>>

HumanAgent

color : Color

mass : float

getColor() : Color

getMass() : float

communicate(type, communication)

<<abstract>>

AatomHumanAgent

strategicModel : StrategicModel

tacticalModel : TacticalModel

operationalModel : OperationalModel

getActiveActivity() : Activity

getGoalPosition() : Position

getReachedGoal() : Boolean

Operator

assignment : Activity

getAssignment : Activity

Passenger

flight : Flight

luggage : Luggage

checkedIn : Boolean

getFlight() : Flight

getLuggage() : Luggage

isCheckedIn() : Boolean

<<abstract>>

Area

shape : PathShape

getShape() : PathShape

Flight

flightType : FlightType

flightTime : float

checkedIn : Collection<Passenger>

gateArea : GateArea

flightSize : Integer

alreadyCheckedIn(passenger) : Boolean

checkIn(passenger)

update(timeStep)

timeToFlightExceeded() : Boolean

<<abstract>>

PhysicalObject

shape : PathShape

getShape() : PathShape

Luggage

owner : Passenger

type : LuggageType

getOwner() : Passenger

getType() : LuggageType

Chair

entryPosition : Position

agentSitting : HumanAgent

getEntryPosition() : Position

isOccupied() : Boolean

setOccupied(agent)

Desk

servingPosition : Position

agentAtDesk : HumanAgent

isOpen : Boolean

isOpen() : Boolean

setOpen(open)

getAgentAtDesk() : HumanAgent

isOccupied() : Boolean

reserveDesk(agent)

<<abstract>>

Sensor

sensorState : SensorState

getObservation() : Observation

<<abstract>>

XRaySensor

lastObservedLuggage : Luggage

getLastObservedLuggage() : Luggage

<<abstract>>

WalkThroughMetalDetector

checkPosition : Position

passengerUnderConsideration : Passenger

checkPosition : Position

setPassengerUnderConsideration(passenger)

getCheckPosition() : Position

GUI

mapPanel : MapPanel

graphCollectionPanel : GraphCollectionPanel

controlPanel : ControlPanel

setSizeAndRatio()

update()
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MapComponentView
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mapComponents : ConcurrentHashMap<MapComponent,

MapComponentView>

drawingOrder : List<MapComponent>

map : Map
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Figure 7: The UML class diagram of AATOM.
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