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A novel method is proposed to infer Bayesian predictions of computationally expensive 
models. The method is based on the construction of quadrature rules, which are well-suited 
for approximating the weighted integrals occurring in Bayesian prediction. The novel idea 
is to construct a sequence of nested quadrature rules with positive weights that converge 
to a quadrature rule that is weighted with respect to the posterior. The quadrature rules 
are constructed using a proposal distribution that is determined by means of nearest 
neighbor interpolation of all available evaluations of the posterior. It is demonstrated both 
theoretically and numerically that this approach yields accurate estimates of the integrals 
involved in Bayesian prediction. The applicability of the approach for a fluid dynamics 
test case is demonstrated by inferring accurate predictions of the transonic flow over the 
RAE2822 airfoil with a small number of model evaluations. Here, the closure coefficients of 
the Spalart–Allmaras turbulence model are considered to be uncertain and are calibrated 
using wind tunnel measurements.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Computer simulation with uncertainties often requires calculating the expectation with respect to a probability distri-
bution of a complex and computationally costly function. Various approaches exist to numerically estimate such integrals, 
for example Monte Carlo approaches [15] or deterministic quadrature rule approaches [10]. In these approaches it is often 
assumed that samples from the probability distribution can be constructed straightforwardly or are readily available. How-
ever, this is not always the case, for instance in the case of Bayesian calibration problems [26,36] the probability distribution 
encompasses the computationally costly model and is highly non-trivial. This is known as Bayesian prediction and is the 
main topic of this article.

A commonly used approach to calculate weighted integrals with respect to such non-trivial distributions is importance 
sampling [8,18,58]. In this approach samples are drawn from a proposal distribution and by means of weighting these samples 
are used to determine integrals with respect to a target distribution, i.e. the distribution for which it is difficult to construct 
samples. If the proposal distribution is chosen well, the constructed samples yield similar convergence rates as samples 
constructed directly with the target distribution. A major disadvantage is that constructing the proposal distribution is not 
trivial and often requires a priori knowledge about the target distribution. A well-known extension of importance sampling 
to a Bayesian framework is formed by Markov chain Monte Carlo methods [31,41], where the proposal distribution is chosen 
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such that the samples form a Markov chain. In this case the proposal distribution is not constructed beforehand, though a 
large number of costly evaluations of the posterior is typically necessary to construct the sequence of samples.

There exist various approaches to improve the performance of Monte Carlo techniques in Bayesian inference. For example, 
using preconditioning based on Laplace’s method [51], where an approximation of the posterior is constructed using the 
maximum a-posteriori estimate and a Gaussian distribution; using transport maps [46], where a low-fidelity model is used 
to precondition a Markov chain Monte Carlo sampler; or by adaptively tuning the proposal distribution [59]. However, 
many preconditioning methods are significantly less efficient if the posterior cannot be represented well using a Gaussian 
distribution. Techniques from the field of machine learning can also be applied [1], though the focus of those techniques is 
mostly on the treatment of large data sets.

Even if samples can be drawn from the posterior (possibly by using any of these improvements), the error of estimating 
an integral by means of random sampling decays as O(1/

√
K ) (with K the number of samples). For example, to double 

the accuracy of the estimate the number of samples must be quadrupled. Therefore using importance sampling techniques, 
or Monte Carlo techniques in general, in conjunction with a computationally costly model is often infeasible. In summary, 
estimating integrals by directly sampling from the posterior is often difficult or very expensive with existing methods.

A commonly used approach to alleviate the high computational cost of sampling and the slow convergence is to con-
struct a surrogate (or “response surface”) and use the surrogate instead of the complex model for inferring the relevant 
statistics. Well-known approaches include Gaussian process regression [3,56] and polynomial approximation [4,6,40,50,52]. 
If the weighting distribution is not known explicitly, it is difficult to construct an optimal surrogate (and moreover it often 
requires analyticity or smoothness), so often the surrogate is constructed such that it is globally accurate (or the distribu-
tion is tempered [6,38], which yields a similarly accurate surrogate). It has been demonstrated rigorously that a posterior 
determined with a globally accurate surrogate converges to the true posterior [14,67].

At the same time, in the context of Bayesian prediction the interest is not directly in accurately approximating the 
model, but in calculating moments of the model with respect to the posterior. These moments are integral quantities and 
there exist many efficient numerical integration techniques for this purpose that do not explicitly construct a surrogate. 
In this article, the focus is specifically on quadrature rules due to their high accuracy and flexibility in the location of the 
nodes. Existing quadrature rule approaches [10] provide rapid converging estimates of the integral for smooth functions, 
without suffering from a deteriorated convergence rate if the integrand is not smooth (as often observed in interpolation 
approaches). However, the state-of-the-art quadrature rule approaches such as Gaussian quadrature rules [28], multivariate 
sparse grids [32,44,54], or heuristic optimization approaches [35,42] also require much knowledge about the distribution 
under consideration, so these are not directly applicable to the problems of interest discussed here.

Therefore, the main goal of this work is to propose a novel flexible method for Bayesian prediction that combines the 
high convergence rates of quadrature rules with the flexibility of adaptive importance sampling. The idea is to construct 
a sequence of quadrature rules and a sequence of proposal distributions, where the proposal distributions are constructed 
using all available model evaluations. The sequence of quadrature rules converges to a quadrature rule that incorporates the 
(expensive) probability distribution (i.e. the posterior). By ensuring that all constructed quadrature rules have high degree 
and have positive weights, high convergence rates are obtained (depending on the smoothness of the integrand). The rules 
are specifically tailored to determine moments weighted with a posterior and require a small number of nodes to obtain 
an accurate estimation. Moreover it can be demonstrated rigorously that estimations made with the sequence of quadrature 
rules converge to the exact integral for a large class of integrands and distributions.

This article is structured as follows. In Section 2 the problem of Bayesian prediction with a quadrature rule is briefly 
introduced, with a main focus on quadrature rule methods and their relevant properties. In Section 3 our main contribution 
is discussed: a method to construct a quadrature rule that converges to a quadrature rule of the posterior. The method is 
analyzed theoretically in Section 4 and to demonstrate the applicability of the quadrature rule to computational problems, 
the technique is applied to some test functions in Section 5. Moreover the calibration of the turbulence closure coefficients 
of the RAE2822 airfoil is discussed. The article is summarized and concluded in Section 6.

2. Preliminaries

2.1. Bayesian prediction

The key goal of this article is to propose an efficient method to infer Bayesian predictions involving a computationally 
expensive model. However, the setting where the proposed methods can be applied is slightly more general than that. 
Let u : � → Rn be a continuous function with � ⊂ Rd (d = 1, 2, 3, . . . ) that describes the quantity of interest and let 
ρ : � → [0, ∞) be a continuous and bounded probability density function (PDF). Throughout this work, it is assumed that u
can be evaluated exactly without any significant numerical error. Even though this is not a realistic assumption in practice, 
the stability of the methods proposed in this work guarantees that any numerical error present in the computational model 
does not affect the accuracy of the proposed approaches (i.e. errors “do not blow up”). Consequently determining Bayesian 
predictions can be described as determining the expectation of a function f : � → R, with f (X) = F (u(X)) where X is a 
d-variate random vector with PDF ρ (so F is a function defined on the range of u). This integral will be denoted by the 
operator Iρ throughout this article, i.e.
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Iρ f := E[ f (X)] =
∫
�

f (x)ρ(x)dx =
∫
�

F (u(x))ρ(x)dx. (2.1)

Integrals of this type have been studied many times in the framework of uncertainty propagation and many efficient 
methods exist to approximate them [37,57,66]. The approach taken in this work is based on a nearest neighbor interpolant 
of ρ(x), which is used to construct quadrature rules for approximating the integral of (2.1). Geometric approaches based on 
nearest neighbor interpolation and the closely related Voronoi tessellation have been used succesfully to construct estimates 
of integrals as considered in this article [13,19,30,39]. However, in these cases the distribution ρ is known explicitly or is 
computationally tractable beforehand (possibly up to constant). In this article, the computationally challenging part is that 
ρ(x) is obtained by Bayesian analysis, i.e. it is, up to a constant, a posterior:

ρ(x) := q(z | x)q(x),

where z, q(z | x), and q(x) are the measurement data, the likelihood, and the prior, respectively. The posterior, denoted by 
q(x | z), is obtained by scaling ρ(x) such that it is a distribution:

q(x | z) = q(z | x)q(x)∫
�

q(z | x)q(x)dx
= ρ(x)∫

�
ρ(x)dx

.

The scaling factor (often called the evidence) that is present in this definition of ρ is neglected throughout this article, as 
it is not of importance for the proposed method. It will be shown that the method proposed in this work is stable (see 
Section 2.2.1) regardless of the exact value of the evidence. Moreover, this is also demonstrated numerically, by considering 
an example of a case with small evidence (see Section 5.1.2).

Bayesian prediction consists of assessing the posterior predictive distribution, which describes the probability of observing 
new data ̂z given the existing data z. It is obtained by marginalizing over the posterior as follows [22]:

q(̂z | z) =
∫
�

q(̂z,x | z)dx =
∫
�

q(̂z | x, z)q(x | z)dx =
∫
�

q(̂z | x)q(x | z)dx.

Here, we assume that ̂z and z are conditionally independent given x. Moments of the posterior predictive distribution can 
be used among others to obtain point predictions. These moments can often be expressed explicitly as integrals over the 
computational model u.

In general we require throughout this article that the distribution ρ is such that an evaluation of ρ(x) requires an 
evaluation of u(x). Moreover if u has been evaluated for a specific value of x, the value of ρ(x) can be determined without 
any significant computational cost. This is often the case if ρ(x) forms a posterior in a Bayesian framework and this property 
is the key observation that will be leveraged to approximate (2.1).

A well-known example of a prior and a likelihood for a scalar model u are a uniform prior, defined as q(x) ∝ 1 for x ∈ �, 
and a Gaussian likelihood, defined as follows for given standard deviation σ :

q(z | x) ∝ exp

[
−1

2

∑m
k=1(u(x) − zk)

2

σ 2

]
, with measurement data z = (z1, . . . , zm)T known.

In this particular case, the expectation of the posterior predictive distribution can be explicitly expressed as follows:

E[̂z | z] =
∫
Z

ẑ q(̂z | z) d̂z =
∫
�

∫
Z

ẑ q(̂z | x)q(x | z) d̂z dx

=
∫
�

q(x | z)
∫
Z

ẑ q(̂z | x) d̂z dx =
∫
�

q(x | z)E[̂z | x]dx =
∫
�

q(x | z) u(x)dx. (2.2)

Here, Z denotes the space that contains all possible values of the data. It is not necessary to derive this space formally, 
as it is only used in an intermediate step of the derivation. Notice that the obtained integral is the expectation of the 
computational model with the parameters distributed according to the posterior. Various statistical models that combine 
measurement error and model error exist for the purpose of Bayesian model calibration. We refer the interested reader 
to Kennedy and O’Hagan [36] and will consider such an extensive model in a numerical example discussed in Section 5. 
Vector-valued u can be incorporated straightforwardly in the framework of this article, since only the posterior distribution 
q(x | z) is used to construct numerical integration techniques.

Throughout this article, two assumptions are imposed on the statistical setting. Firstly, we assume that the statistical 
moments of the prior are finite, i.e.∫

ϕ(x)q(x)dx < ∞, for all polynomials ϕ.
�
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This implies among others that the prior is not improper. Secondly, it is assumed that the posterior is continuous and 
bounded. These two assumptions are not restrictive, e.g. statistical models with Gaussian random variables fit in this setting. 
Moreover, these assumptions are only necessary for the theoretical analysis of the approach discussed in this article. The 
approach requires only straightforward modifications for applying it to cases where an improper prior or discontinuous 
posterior is considered, and an example of the latter is discussed in more detail in Section 5.1.

2.2. Quadrature rules

The integral from (2.1) is approximated by means of a quadrature rule, consisting of nodes {xk}N
k=0 ⊂ � and weights 

{wk}N
k=0 ⊂R:∫

�

f (x)ρ(x)dx ≈
N∑

k=0

wk f (xk). (2.3)

Notice that the distribution ρ(x) does not appear explicitly on the right hand side of this approximation, but that it is 
implicitly incorporated in the values of the nodes xk and the weights wk . We will denote the quadrature rule approximation 
by means of the linear operator Aρ

N , i.e.

Aρ
N f :=

N∑
k=0

wk f (xk).

If ρ(x) = q(z | x) q(x), a quadrature rule with respect to the posterior q(x | z) can be obtained by rescaling the weights of a 
quadrature rule of ρ such that 

∑N
k=0 wk = 1, provided that Aρ

N 1 = Iρ1.
Three properties are relevant for quadrature rules that are applied to computationally expensive models: the exactness 

of the quadrature rule, positivity of the weights, and nesting. The first two properties ensure numerical stability of the 
quadrature rule and make that the quadrature rule converges. These two properties and their relevance are discussed in 
Section 2.2.1. Nesting allows for straightforward refinement of the quadrature rule approximation, and is briefly discussed 
in Section 2.2.2.

2.2.1. Exactness and positive weights
Often the exactness of a quadrature rule is related to the degree of the polynomials it integrates exactly. We choose to 

define the exactness slightly more general to facilitate refinements of arbitrary numbers of nodes.
To this end, let ϕ0, . . . , ϕD be D + 1 d-variate polynomials defined on � and consider the space �D = span{ϕ0, . . . , ϕD}. 

Then the goal is to construct a quadrature rule such that it integrates all functions ϕ ∈ �D exactly. This is, due to linearity, 
equivalent to

Aρ
Nϕ j = Iρϕ j for j = 0, . . . , D.

Without loss of generality, we assume throughout this article that the polynomials are sorted graded lexicographically. This 
ensures that referring to ϕk for any k is well-defined and that �D ⊂ �D+1 for any D , but other monomial orders that are a 
well-order can be used straightforwardly. Moreover we assume that ϕ0 is the constant polynomial, as that allows to straight-
forwardly scale the quadrature rule weights to incorporate the evidence. In the univariate case, this implies that D is the 
degree of the quadrature rule, since �D contains all polynomials of degree D and less. In the multivariate case, the degree 
of the quadrature rule equals Q if dim�D = dimP (Q , d) where P (Q , d) denotes all d-variate polynomials of a degree Q .

The close relation between the nodes and the weights of a quadrature rule is described by the (D + 1) × (N + 1)

Vandermonde matrix V D(XN):⎛⎜⎝ ϕ0(x0) · · · ϕ0(xN)
...

. . .
...

ϕD(x0) · · · ϕD(xN)

⎞⎟⎠
︸ ︷︷ ︸

V D (XN )

⎛⎜⎝ w0
...

w N

⎞⎟⎠=
⎛⎜⎝μ0

...

μD

⎞⎟⎠ ,

where μ j = Iρϕ j . If ϕ j are monomials, μ j are the raw moments of the distribution ρ . If N = D the quadrature rule is called 
interpolatory and the linear system can be used to determine the weights given the nodes, provided that the Vandermonde 
matrix is non-singular. In the univariate case, this holds if and only if the nodes are distinct. In the multivariate case, it 
is less straightforward to ensure that the Vandermonde matrix is non-singular, but all quadrature rules constructed in this 
work have a non-singular Vandermonde matrix.

If the weights are non-negative (i.e. wk ≥ 0 for all k), the dimension of �D is a measure for the accuracy of the quadra-
ture rule and increasing D yields a converging estimate for sufficiently smooth functions. To see this, assume that � is 
bounded and let ϕ̂ be the best approximation of the function u in �D measured in the ∞-norm (assuming without loss of 
generality that it exists):
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ϕ̂ := arg min
ϕ∈�D

‖u − ϕ‖∞, with ‖u − ϕ‖∞ := sup
x∈�

|u(x) − ϕ(x)|.

Then:

|Iρu −Aρ
N u| ≤ ‖Iρ‖∞‖u − ϕ̂‖∞ + ‖Aρ

N‖∞‖u − ϕ̂‖∞ = (‖Iρ‖∞ + ‖Aρ
N‖∞
)

inf
ϕ∈�D

‖u − ϕ‖∞, (2.4)

where

‖Iρ‖∞ =
∫
�

1ρ(x)dx =
N∑

k=0

wk ≤
N∑

k=0

|wk| = ‖Aρ
N‖∞.

The inequality (2.4) is commonly known as the Lebesgue inequality, see e.g. Brass and Petras [10, Theorem 3.1.1]. It is 
arguably best known for its usage in polynomial interpolation [11,33], but it straightforwardly carries over to the setting of 
quadrature rules (then the operator norm ‖Aρ

N‖∞ is the Lebesgue constant).
If all weights are positive, then |wk| = wk and therefore ‖Aρ

N‖∞ = ‖Iρ‖∞ . Hence

|Iρu −Aρ
N u| ≤ 2‖Iρ‖∞ inf

ϕ∈�D
‖u − ϕ‖∞.

As explained before, the weights of the quadrature rule can be scaled such that ρ forms a probability density function. In 
that case, it holds that ‖Iρ‖∞ = ‖Aρ

N‖∞ = 1 and therefore (2.4) simplifies to

|Iρu −Aρ
N u| ≤ 2 inf

ϕ∈�D
‖u − ϕ‖∞.

It is well-known that the right hand side of this inequality decays for increasing D if u can be approximated by a 
polynomial. This is among others the case if u is absolutely continuous and in general the rate of decay of the right 
hand side of this inequality depends on the smoothness of u. If the function u is univariate and u ∈ Cr , i.e. u is r times 
differentiable, the error usually decays with rate r, or in other words:

‖u − ϕ‖∞ ≤ AD−r,

where A is a constant that solely depends on u. If u is smooth (i.e. infinitely many times continuously differentiable), the 
error decays exponentially. The exact rate of decay can be derived using Jackon’s inequality [34], but many more results 
on this topic exist. We refer the interested reader to Watson [60] and the references therein for more information. The 
upper bound of the Lebesgue inequality is not sharp, as for unbounded � and discontinuous u the estimate of a quadrature 
rule might converge, even though infϕ ‖u − ϕ‖∞ is unbounded. It is out of the scope of this article to fully discuss all 
convergence properties of quadrature rules (but see e.g. Brandolini et al. [9] or Brass and Petras [10]).

Notice that the bound described by the Lebesgue inequality depends on the dimension of �. For multivariate u, the 
quantity ‖u − ϕ‖∞ decays significantly slower. In general, it holds that if u is r times differentiable, the error decays at 
least with rate r/d, where d is the dimension of the space �. Estimating the decay of this quantity in multivariate space is 
significantly less straightforward than estimating it in univariate spaces, since computing the best approximation becomes 
significantly more difficult. Nonetheless, the convergence rates as stated here are sufficient for the analysis conducted in 
this work.

A quadrature rule with positive weights and 
∑

wk = 1 is stable regardless of the computational and statistical model 
under consideration [10]. In other words, small variations in the integrand do not affect the accuracy of the rule as a whole. 
In particular, if u is perturbed by a small error ε > 0, say ũ = u ± ε, then

|Aρ
N u −Aρ

N ũ| ≤ ‖Aρ
N‖∞‖u − ũ‖∞ ≤ ε.

This stability result is particularly important for the usage of quadrature rules in a Bayesian setting, as it ensures that the 
rule yields stable estimates regardless of the exact value of the evidence (recall that the evidence is the scaling factor 
neglected in the definition of ρ). However, a small evidence will result in slow convergence, as will be demonstrated 
numerically in Section 5.1.2.

2.2.2. Nesting
Nesting means that smaller sets of quadrature rule nodes are contained in larger sets of quadrature rule nodes, i.e. 

XN1 ⊂ XN2 for N1 < N2. Strictly speaking this forms a sequence of quadrature rules, but we will call this with a little abuse 
of nomenclature simply a nested quadrature rule.

A nested quadrature rule allows for straightforward refinement of the quadrature rule approximation, as computation-
ally costly function evaluations are being reused upon considering a larger quadrature rule. Moreover, if the weights of the 
quadrature rule are non-negative, it provides a straightforward way to assess the accuracy of a quadrature rule approxima-
tion by comparing two consecutive quadrature rule levels. This can be seen as follows:
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Fig. 1. Schematic overview of the two main steps of the method to construct the quadrature rules proposed in this article.

|Aρ
N1

u −Aρ
N2

u| ≤ |Aρ
N1

u − Iρu| + |Aρ
N2

u − Iρu| ≤ 4‖Iρ‖∞ inf
ϕ∈�D

‖u − ϕ‖∞,

where D is such that Aρ
N1

ϕ = Aρ
N2

ϕ = Iρϕ for all ϕ ∈ �D . The difference between two consecutive quadrature rules also 
forms an upper bound:

|Aρ
N1

u −Aρ
N2

u| ≥ |Aρ
N1

u − Iρu| − |Aρ
N2

u − Iρu|,
which is the difference between the errors of the two quadrature rules. This difference vanishes for N1, N2 → ∞ if a 
converging sequence of quadrature rule is used.

3. Bayesian predictions with an adaptive quadrature rule

The main problem addressed in this article is accurate numerical estimation of Bayesian predictions. To this end, the 
main interest is the construction of quadrature rules to approximate integrals weighted with the posterior, a problem that 
was summarized in (2.3) as follows:

Iρ f =
∫
�

f (x)ρ(x)dx ≈
N∑

k=0

wk f (xk) = Aρ
N f .

Here, both f and ρ are functions of u, denoted by f (x) = F (u(x)) and ρ(x) = G(u(x)) for suitable F and G . The functions 
F and G are such that they can be evaluated efficiently and quickly.

The focus of this article is mainly on using a quadrature rule to accurately infer Bayesian predictions, but various other 
statistical quantities that are not considered in this article can be inferred straightforwardly without additional model eval-
uations. For example, moments of the posterior distribution can be determined by integrating suitably chosen polynomials 
or an empirical cumulative distribution function can be constructed by considering the discrete probability density function 
p(xk) = wk for all k (which is well-defined because all weights are non-negative).

3.1. Constructing an adaptive quadrature rule

The proposed procedure consists of iteratively refining a pair consisting of a quadrature rule and a distribution. A typical 
iteration consists of two steps. Firstly, a quadrature rule based on the current estimate of the distribution ρ is constructed. 
Secondly, the estimate of the distribution is refined using all available model evaluations of ρ . The quadrature rules are 
constructed such that a sequence of nested rules is obtained. These steps are illustrated in Fig. 1.

More specifically, at the start of the i-th iteration a distribution ρN is given, accompanied by evaluations of the model u
and distribution ρ at nodes x0, . . . , xN . The first step consists of constructing a new quadrature rule with N + M nodes that 
incorporates ρN and reuses the available model evaluations, i.e. it is nested. Hence the goal is to determine xN+1, . . . , xN+M

and w0, . . . , w N+M with M as small as possible such that
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N+M∑
k=0

wk ϕ j(xk) =
∫
�

ϕ j(x)ρN (x)dx, for all j = 0, . . . , Di .

Here, Di is a free parameter which defines the exactness of the rule, i.e. the dimension of �Di . The second step of the 
iteration consists of constructing a refined approximation of the distribution ρ using all available evaluations of the model 
u and distribution ρ (including the M nodes that have been added this iteration). In this work, this is done by nearest 
neighbor interpolation. Consequently ρN+M is obtained, which is used for the next iteration. The procedure can be initialized 
using a quadrature rule consisting of a single random node and a proposal distribution ρ0(x) ≡ q(x), i.e. by using the prior. 
The convergence can each iteration be assessed by comparing the current quadrature rule estimate with that of a previous 
iteration. The algorithm is sketched in Fig. 1.

The only free parameter in this construction is Di , which can be chosen heuristically. For convergence, it is essential 
to enforce that Di → ∞ for i → ∞. In this work, we will mainly use two variants: linear growth, i.e. Di = O(i), and 
exponential growth, i.e. Di =O(2i).

The distribution ρN is constructed by interpolation of all available point evaluations of ρ . It can be interpreted as a 
proposal distribution, as often used in importance sampling strategies. The efficiency of the approach can be demonstrated 
mathematically by reusing techniques from importance sampling.

The construction of a quadrature rule that incorporates the distribution ρN is non-trivial. We will employ the recently 
introduced implicit quadrature rule [7] for this purpose, though we emphasize that any methodology to construct quadrature 
rules for a given distribution can be used in our approach. The implicit quadrature rule is a nested quadrature rule with 
positive weights that is constructed solely using samples from the distribution ρN . We discuss its construction in Section 3.2. 
Given the quadrature rule nodes, the distribution that is used to refine the quadrature rule is constructed using nearest 
neighbor interpolation, which is explained in Section 3.3.

3.2. Implicit quadrature rule

The implicit quadrature rule [7] is a quadrature rule constructed using samples from a distribution. Hence let K + 1
samples y0, . . . , yK be given, denoted as the set Y K . In the iterative procedure considered in this work (i.e. Fig. 1), these are 
a large number of samples from ρN . Moreover, some model evaluations have been performed in previous iterations, so let 
XN ⊂ � be N + 1 nodes in � where the value of u (and therefore ρ) is known. These nodes are denoted by x0, . . . , xN . 
Notice that ρN is typically obtained by nearest neighbor interpolation of these nodes, which we will discuss in more detail 
in Section 3.3.

The goal is to find for given D (we omit the subscript i in this section) a subset of M samples from Y K , say 
xN+1, . . . , xN+M , with M � K such that

N+M∑
k=0

wk ϕ j(xk) = 1

K + 1

K∑
k=0

ϕ j(yk), for j = 0, . . . , D. (3.1)

The rule is constructed such that the weights wk are non-negative, i.e. wk ≥ 0 (for all k). This ensures that the quadrature 
rule error is bounded, which can be seen by applying the Lebesgue inequality from (2.4).

Notice that only samples from ρN are necessary to construct this quadrature rule, from which the approximate mo-
ments are computed. This is an advantage, since in higher dimensional spaces it is often computationally costly to exactly 
determine the moments of ρN .

The nodes x0, . . . , xN do generally not form a subset of the samples Y K . Ideally we would like to have that M = 0, which 
would imply that no new costly model evaluations are required, but this is often not possible as D increases with each 
iteration. However, we ensure that the following bound is valid:

0 ≤ M ≤ D + 1, (3.2)

such that we add at most D + 1 nodes to the quadrature rule, consequently obtaining a rule of at most N + D + 2 nodes.
The first step in obtaining such a quadrature rule is to consider the following quadrature rule:

XN+K+1 = {x0, . . . ,xN ,y0, . . . ,yK },
W N+K+1 =

{
0, . . . ,0︸ ︷︷ ︸

N+1

,
1

K + 1
, . . . ,

1

K + 1︸ ︷︷ ︸
K+1

}
. (3.3)

It is trivial to see that this quadrature rule is such that (3.1) holds, but it is not such that (3.2) holds. The idea is to iteratively 
remove nodes from this quadrature rule keeping (3.1) as an invariant, which can be done until (3.2) holds. All constructed 
intermediate quadrature rules have positive weights.
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To start off, notice that (3.3) in conjunction with (3.1) can be rewritten as the following linear system:

⎛⎜⎝ ϕ0(x0) · · · ϕ0(xN) ϕ0(y0) · · · ϕ0(yK )
...

. . .
...

...
. . .

...

ϕD(x0) · · · ϕD(xN) ϕD(y0) · · · ϕD(yK )

⎞⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

w0
...

w N

w N+1
...

w N+K+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=
⎛⎜⎝μ0

...

μD

⎞⎟⎠ ,

or denoted equivalently by

V D(XN+K+1)w = μ.

Here μ j are the moments determined by means of sampling (“sample moments”): μ j = 1/(K +1) 
∑K

k=0 ϕ j(yk). The Vander-
monde matrix of this linear system (see Section 2.2.1) is a (D + 1) × (N + K + 2)-matrix, so it has J := (N + K + 2) − (D + 1)

linearly independent null vectors c1, . . . , c J , with

V D(XN+K+1)c j = 0, for j = 1, . . . , J .

Hence it holds that

V D(XN+K+1)(w − c) = μ, for any c ∈ span{c1, . . . , c J }.
These null vectors can be used to remove J nodes from the quadrature rule XN+K+1, W N+K+1 [5], which is done by 
constructing a c ∈ span{c1, . . . , c J } such that:

w − c ≥ 0, (3.4a)

wk j − ck j = 0, for J distinct indices k1, . . . ,k J . (3.4b)

Condition (3.4a) describes that all weights should be non-negative and condition (3.4b) describes that there should be J
weights that equal zero. If such a vector c is constructed, the nodes k1, . . . , k J can be removed from the quadrature rule 
without loss of accuracy. Then the weights can straightforwardly be determined by w ← w − c.

The algorithm to determine such a c is initiated with c = 0 and C = {c1, . . . , c J }. At each iteration, c is updated such that 
firstly (3.4a) is still valid and secondly such that one more weight is equal to zero. Therefore, consider c1, an element (and 
without loss of generality, the first element) of C . Since c1 is a null vector, it holds that c + αc1 is a null vector for any 
α ∈R. The goal is to determine α such that conditions (3.4a) and (3.4b) hold. Condition (3.4a) translates to

w − c − αc1 ≥ 0,

which is equivalent to

αmin ≤ α ≤ αmax, with

αmin = max

(
wk − ck

c1,k
| c1,k < 0

)
and αmax = min

(
wk − ck

c1,k
| c1,k > 0

)
.

Here wk , ck , and c1,k denote the elements of w, c, and c1, respectively. Notice that αmin < 0 < αmax, since c1,k < 0 for αmin

and c1,k > 0 for αmax. Hence α is well-defined in this way. By choosing either α = αmin or α = αmin, there exists one k0

such that

wk0 − ck0 − αc1,k0 = 0.

Therefore, c is updated such that c ← c + αc1 with α = αmin or α = αmax. To ensure that the k0-th weight remains zero in 
subsequent iterations, all other null vectors in C are updated as follows:

c j = c j − c j,k0

c1,k0

c1, for all j > 1.

This is essentially a Gaussian reduction with pivot c1,k0 and ensures that c j,k0 = 0 for all j > 1, which yields that wk0 −ck0 =
0 in all subsequent iterations (independently of the chosen α in that iteration). Finally c1 is removed from C and the process 
is repeated until C is empty. If C is empty, a c is obtained that satisfies both conditions (3.4a) and (3.4b).

By determining such a c, the vector w − c has J coefficients that are equal to 0. We do not want to remove all J nodes 
and weights, since the first N + 1 weights belong to nodes where the costly computational model has been evaluated. A 
straightforward solution to this is to construct the following quadrature rule:
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XN+M = {xk | k ≤ N or wk − ck �= 0},
W N+M = {wk − ck | k ≤ N or wk − ck �= 0}.

The vector w − c has at least J zero elements. So it has at most D + 1 nonzero elements. Hence the quadrature rule based 
on XN+M and W N+M has at most (N + 1) + (D + 1) nodes. Notice that therefore this is a quadrature rule that satisfies (3.1)
and (3.2).

It is not necessary to compute the full null space of the (D + 1) × (N + K + 2)-matrix. Each iteration a null vector of the 
full matrix can be obtained by computing a null vector of a (D + 1) × (D + 2) submatrix using D + 2 columns that represent 
nodes that are still present in the quadrature rule, and subsequently padding the obtained vector with elements equal to 0.

There is freedom in the value of α, i.e. both α = αmax and α = αmin yield a valid quadrature rule with positive weights. 
We use this freedom to determine for each null vector ck the α that yields the smallest quadrature rule (i.e. wk − ck = 0 for 
as many k > N as possible).

3.3. Construction of the proposal distribution

By using the quadrature rule constructed using the techniques from the previous section, a Bayesian prediction can be 
inferred by evaluating the model at the quadrature rule nodes and assessing the accuracy using the nesting of the quadrature 
rules. By using Bayes’ rule, evaluations of the (unscaled) posterior are readily available, that is ρ(xk) for k = 0, . . . , N + M . 
The goal is to use these evaluations to construct an approximation of the posterior.

Constructing an approximation of a distribution is non-trivial and there are some specific requirements on the interpo-
lation algorithm used in this work. These requirements are further discussed in Section 3.3.1. In this article, all results are 
obtained using nearest neighbor interpolation, which is explained in Section 3.3.2. There exist various alternative approaches, 
with varying advantages and disadvantages that warrant our choice for nearest neighbor interpolation. These alternatives 
are reviewed in Section 3.3.3.

3.3.1. Prerequisites of the interpolant
The goal is to construct an approximate posterior ρN+M such that the available N + M + 1 point evaluations of ρ are 

taken into account. These point evaluations of the posterior are exact, so in this work we construct ρN+M such that it is 
interpolatory, i.e.

ρN+M(xk) = ρ(xk), for all k = 0, . . . , N + M.

Obviously, the interpolant should be constructed such that ρN+M (x) ≈ ρ(x) for all x �= xk (for any k). It is not necessary that 
ρN+M is interpolatory for the construction of the quadrature rule, but it is assumed to be the case in the analysis discussed 
in Section 4.

It is known that ρ is a probability density function, possibly up to a finite constant. Therefore the interpolant should be 
such that ρN+M(x) ≥ 0 for all x. Moreover, since a quadrature rule is constructed using this distribution, all moments must 
be finite, i.e.∫

�

ϕ(x)ρN+M(x)dx < ∞, for all polynomials ϕ.

These two conditions ensure that ρN+M is again a probability density function (possibly up to a constant).
We emphasize that in general it is not preferable that the moments of ρN+M are equal to the moments of the quadrature 

rule, i.e. in general it should hold that

IρN+M ϕ j =
∫
�

ϕ j(x)ρN+M(x)dx �=
∫
�

ϕ j(x)ρN(x)dx =
N+M∑
k=0

wk ϕ j(xk) = AρN
N+Mϕ j, for j = 0, . . . , Di .

Here, we use the notation IρN+M and AρN
N+M as defined in Section 2.2, i.e.

IρN+M u =
∫
�

u(x)ρN+M(x)dx,

AρN
N+M u =

N+M∑
k=0

wk u(xk).

The moments estimated by the quadrature rule are generally not equal to the exact moments of the true distribution ρ . 
Hence forcing that the moments of ρN+M are equal to the moments of the (current) quadrature rule does not lead to 
converging sequences of distributions (as all moments would be equal to the approximation of the first quadrature rule).
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Fig. 2. Nearest neighbor interpolations of random samples based on two distributions. In both cases, x1 and x2 are identically and independently distributed.

3.3.2. Nearest neighbor interpolation
In this work, ρN+M is constructed by means of nearest neighbor interpolation of the likelihood and multiplying the 

obtained interpolant with the prior. Hence for any x ∈ � the interpolant ρN+M(x) is defined as follows:

ρN+M(x) = q(z | xk)q(x), with xk = arg min
x j∈XN+M

‖x − x j‖2, with XN+M = {x0, . . . ,xN+M}.

The advantages of this approach are among others that the obtained interpolant is always non-negative and globally 
bounded, i.e. for all x it holds that

0 ≤ ρN+M(x) ≤
(

sup
x∈�

q(z | x)

)(
sup
x∈�

q(x)

)
.

If an improper prior on an unbounded domain is considered, it might be the case that ρN+M is not a well-defined distribu-
tion. This can be alleviated by restricting the nearest neighbor interpolant to a compact set that is larger than the convex 
hull of the quadrature rule nodes.

Moreover, for the purposes of this article it can be implemented very efficiently, as the number of interpolation points 
is relatively small and the exact structure of the interpolant is not of importance: sampling from ρN+M can simply be done 
by means of acceptance rejection sampling using the prior as proposal distribution (which requires that the prior is not 
improper).

In particular, for the nearest neighbor interpolant it is not necessary to construct the Voronoi diagram of the nodes, 
but only to implement a routine that can find the closest node for any given input sample. This can be done very fast 
and efficiently for large numbers of samples. Moreover, searching for the nearest node has only a weak dependence of the 
dimension on the space (contrary to constructing the Voronoi diagram, which is very costly in higher dimensional spaces), 
which allows to use this approach in high dimensions.

Nearest neighbor interpolation is being used often in statistics [2], especially with a focus on classification problems. It 
belongs to the broader class of scattered data interpolation methods [24] and is arguably one of the most straightforward 
methods to use in this regard. Moreover, it is a local interpolation method, whereas the quadrature rule is a global inte-
gration method, which naturally balances exploitation of locality with exploration of the space without any free parameters 
that have to be tuned.

As mentioned briefly before, a nearest neighbor interpolant can also be applied directly to the integral for the construc-
tion of quadrature rules [13,19,30,39]. Many of these approaches focus on explicitly constructing the nodal set such that 
the nodes are the centroids (centers of mass) of the cells of the Voronoi diagram. These approaches cannot be extended 
straightforwardly to the setting to this article, since it is often assumed that the distribution is computationally accessible. 
Moreover, it is usually necessary to construct the Voronoi diagram, which hinders the applicability to higher dimensional 
spaces.

The idea of using a nearest neighbor interpolant to construct a surrogate has been explored successfully before and 
various improvements can be considered to enhance the accuracy of the interpolant [20,49]. The advantages of constructing 
a surrogate in this way are among others that the surrogate exploits locality, as mentioned above. The main difference 
between the approaches used in [20,49] and the approach considered in this article is that in this work a surrogate of a 
probability distribution is generated, which adds several constraints to the approach (see Section 3.3.1).

Nearest neighbor interpolation has been illustrated in Fig. 1 (see page 6). Two other examples of interpolated probability 
density functions are depicted in Fig. 2. For sake of illustration, the interpolation nodes of Fig. 2 are based on random 
samples.
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3.3.3. Alternative distribution approximation methods
It is non-trivial to consider more accurate interpolation methods in this framework, as assuring that the obtained in-

terpolant is a PDF is difficult. For example, many global methods such as Lagrange interpolation and Gaussian process 
regression do not yield an interpolant that is non-negative. Extensions to enforce positivity exist, for example for Lagrange 
interpolation [25,29]. Often these approaches only work in univariate cases. Gaussian process regression can possibly be 
used by using a strictly positive prior that is not improper and enforcing finiteness of integrals over the obtained approxi-
mation [48], but this is rather involved and conflicts with the convenient Bayesian framework behind Gaussian processes.

Another well-known method to construct a suitable approximation is the kernel density estimate, or more general, the 
family of methods based on radial basis functions [12]. However, in the cases in this article explicit values of the probability 
density function are known, which cannot be incorporated in a straightforward fashion in these methods: enforcing specific 
values of a function in a radial basis function setting does not necessarily yield a positive interpolant.

A promising method that balances the accuracy of polynomial interpolation and piecewise behavior of nearest neighbor 
interpolation is the Simplex Stochastic collocation method [23,63–65], where piecewise high order polynomial interpolation 
is combined with a Delaunay triangulation of the nodal set. This method converges exponentially for sufficiently smooth 
functions and is non-oscillatory (i.e. it is bounded from below and above by the minimum and maximum of the model), so 
it is very suitable for the interpolation of a PDF. However, it requires the explicit construction of the interpolant with the 
underlying Delaunay triangulation, which severely limits its applicability to multi-dimensional spaces.

Concluding, it is nontrivial to consider a more efficient alternative approach to nearest neighbor interpolation that yields 
a positive interpolant with similar efficiency as nearest neighbor interpolation. It is out of the scope of this work to de-
rive such a new interpolation approach. Moreover, nearest neighbor interpolation is sufficiently accurate for the examples 
considered in this work, as demonstrated in Section 5.

4. Error analysis

The accuracy of the proposed method is studied by assessing the convergence of the sequence of quadrature rules. The 
overall error we are interested in is the integration error, defined for a given continuous function f : � →R as follows:

eN( f ) := |Iρ f −AρN
N f |.

Here the operator AρN
N has been constructed using the methods outlined in Section 3, i.e. for known Di we have

AρN
N ϕ j =

N∑
k=0

wk ϕ j(xk) =
∫
�

ϕ j(x)ρN(x)dx = IρN ϕ j, for j = 0, . . . , Di,

where we neglect the effect of using samples for the construction of the quadrature rule.
It can be demonstrated that eN → 0 if N → ∞, provided that f is sufficiently smooth and Di → ∞ for i → ∞. The 

details of this are discussed in Section 4.1.
A central question is whether this error decays faster than the integration error of a conventional quadrature rule con-

structed using the prior. As constructing such a quadrature rule does not require interpolation or sampling, there are 
significantly fewer sources of error. This topic can be addressed by using principles from importance sampling, which is 
outlined in Section 4.2.

The error analysis based on importance sampling neglects any error that occurs due to the usage of samples of ρN+M
instead of the full distribution. We do not consider this a severe limitation, since sampling from ρN+M does not require 
costly model evaluations and therefore many samples can be used to minimize this error. Nonetheless, this error will be 
briefly considered in Section 4.3.

4.1. Decay of the integration error

Notice that the integration error eN( f ) can be decomposed into three components: an interpolation error, a sampling 
error, and a quadrature rule error:

eN( f ) = |Iρ f −AρN
N f | = |Iρ f − IρN f + IρN f −AρN

N f |
≤ |Iρ f − IρN f | + |IρN f −AρN

N f |
= |Iρ f − IρN f | + |IρN f − IρN

K f + IρN
K f −AρN

N f |
≤ |Iρ f − IρN f |︸ ︷︷ ︸

Interpolation error IN

+ |IρN f − IρN
K f |︸ ︷︷ ︸

Sampling error S K

+ |IρN
K f −AρN

N f |︸ ︷︷ ︸
Quadrature error Q N

= IN + S K + Q N . (4.1)

Here, IρN f denotes the Monte Carlo estimate of the integral computed using K + 1 samples from ρN :
K
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IρN
K f := 1

K + 1

K∑
k=0

f (yk).

By introducing this operator, the quadrature rule error Q N can be bounded using the Lebesgue inequality from (2.4) as 
discussed in Section 2.2.1:

Q N ≤
(

1 +
N∑

k=0

|wk|
)

inf
ϕ∈�Di

‖ f − ϕ‖∞.

Since all quadrature rules constructed in this work have positive weights, this error decays if Di → ∞ (with i → ∞) for 
sufficiently smooth f .

The interpolation error IN depends on the specific procedure used to construct the interpolant. It holds that IN → 0
for N → ∞ if ‖ρN − ρ‖∞ → 0. The latter can be demonstrated straightforwardly for nearest neighbor interpolants by 
demonstrating that the quadrature rule nodes distribute across the space, i.e. the mutual distance between two closest 
nodes decays to zero. A nearest neighbor interpolant yields a converging interpolant in that case.

To demonstrate that quadrature rule nodes distribute across the space, let x0, . . . , xk, . . . be a sequence of nodes such 
that {x0, . . . , xN} form the nodes of a quadrature rule with positive weights with respect to a distribution ρ for all N . 
Moreover assume that xk ∈ � for all k ∈N . Suppose S ⊂ � is such that there is no k ∈N such that xk ∈ S . To demonstrate 
that the nodes distribute across the space, we will show that S as considered here is a null set, i.e.∫

S

ρ(x)dx = 0,

which implies that the mutual distance between the quadrature rule nodes vanishes. To demonstrate that S is a null set, let 
uS ∈ C∞(�) be a smooth function such that uS (x) = 0 for all x /∈ S and such that∫

�

uS(x)ρ(x)dx > 0.

Such a uS only exists if S is not a null set. A univariate example of such a function is the bump function, e.g. if S = [−1, 1]
then

uS(x) =
{

exp
(
− 1

1−x2

)
if |x| < 1,

0 otherwise.

Similarly, multivariate bump functions can be constructed by products of univariate bump functions defined on a hypercube 
in S . Due to the smoothness of uS , there exists a sequence of polynomials ϕN such that ‖uS − ϕN‖∞ → 0 for N → ∞. 
Hence any quadrature rule operator Aρ

N with positive weights yields a converging estimate of IρuS , i.e.

Aρ
N uS =

N∑
k=0

wk uS(xk) →
∫
�

uS(x)ρ(x)dx, for N → ∞.

We assumed that the sequence of nodes is such that there is no xk ∈ S for any k ∈N . Since the quadrature rule converges, 
this yields that the integral of uS must vanish:∫

�

uS(x)ρ(x)dx =
∫
S

uS(x)ρ(x)dx = 0.

This holds for any smooth function defined in this way, which is only possible if∫
S

ρ(x)dx = 0.

Notice that positivity of the weights is essential here, as otherwise it is not guaranteed that the quadrature rule approxima-
tion of any smooth function converges.

A similar derivation can be formulated for the nodes deduced with the methodology proposed in this article. To see this, 
notice that for uS , as introduced above, it holds that∣∣∣∣∣∣

N∑
k=0

wk uS(xk) −
∫

uS(x)ρN (x)dx

∣∣∣∣∣∣≤ inf
ϕ∈�Di

‖uS − ϕ‖∞,
�
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Fig. 3. A sketch of the motivation why ρ∗
N is introduced. In this particular case, ρ(x)/ρN (x) is unbounded for x → 0. Therefore, a ρ∗

N is introduced that 
yields a bounded fraction near x = 0. Small corrections are necessary to enforce that the raw moments do not change.

which simplifies to (recall that uS (xk) = 0 for all k)∣∣∣∣∣∣
∫
S

uS(x)ρN(x)dx

∣∣∣∣∣∣≤ inf
ϕ∈�Di

‖uS − ϕ‖∞. (4.2)

These inequalities hold for any N . Recall that ρ(x) > 0 for all x, and therefore ρN(x) > 0 for all x and N . Hence, if ∫
S ρ(x) dx > 0, the left hand side of (4.2) is bounded from below by a positive constant that is independent of N . Fol-

lowing the same argument as above, we therefore conclude that S is a null set.
The sampling error S K is independent from N , and can therefore be reduced without any additional costly model eval-

uations by considering more samples from ρ . The exact convergence rate depends on the constructed sequence of samples, 
which will be further discussed in Section 4.3.

Concluding, if i → ∞ and N → ∞, it holds that eN ( f ) → S K provided that infϕ∈�Di
‖ϕ − f ‖∞ → 0. Moreover, if also 

K → ∞, it holds that eN( f ) → 0. This demonstrates the convergence of our method for sufficiently smooth functions, but 
this does not demonstrate that our method converges faster than constructing a conventional quadrature rule with respect 
to the prior, since such a rule does not have an interpolation error. This is the main topic of Section 4.2.

4.2. Importance sampling

The proposed quadrature rule of this article has three sources of error: an interpolation error IN , a sampling error S K , 
and a quadrature rule error Q N . A quadrature rule constructed using the prior (e.g. by means of a sparse grid) only has the 
quadrature rule error, i.e. (4.1) simplifies to eN ( f ) = Q N .

The main difference is that a rule that only uses the prior requires a different integrand, i.e. Iρ f is approximated by 
means of Aq(.)

N (q(z | x) f (x)), whereas the quadrature rule proposed in this work uses f (x) as integrand. In this section we 
derive in which cases the proposed quadrature rule needs fewer model evaluations than a conventional quadrature rule to 
reach a similar accuracy. Without loss of generality, we assume that ρ and ρN are both probability density functions, which 
yields that ‖Iρ‖∞ = ‖IρN ‖∞ = 1.

The analysis is based on the main principle of importance sampling, a technique that is used to estimate integrals with 
respect to a target distribution if samples from a proposal distribution are known. Even though the main interest is not 
in drawing samples from the posterior, the following key idea of importance sampling can be readily used: let ψ(x), the 
so-called proposal distribution, be a probability density function with the same support as ρ . Then

Iρ f =
∫
�

f (x)ρ(x)dx =
∫
�

f (x)
ρ(x)

ψ(x)
ψ(x)dx = Iψ

(
f
ρ

ψ

)
.

Hence it is not necessary to calculate a possibly expensive integral with respect to the distribution ρ , but to calculate one 
with respect to the proposal distribution ψ .

It is a natural idea to use the proposal distribution ψ = ρN for the analysis, but this can severely limit the applicability 
of the Lebesgue inequality from (2.4), as ‖ρ/ρN‖∞ can be large even if ‖ρ − ρN‖∞ is small. In many cases, ρ/ρN can 
be globally bounded. For example, if a uniform prior and a Gaussian likelihood is considered, ρN can be used as proposal 
distribution. An example where this is not the case is if ρ is a Beta distribution and a node is placed on the boundary of �. 
In that case ρ/ρN is unbounded on the boundary.

To alleviate this, we choose a slightly different approach, and use a proposal distribution ρ∗
N such that it is interpolatory 

and integrates the same moments as ρN , i.e.
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ρ∗
N(xk) = ρN(xk) = ρ(xk), for k = 0, . . . , N, (4.3a)

and

Iρ∗
N ϕ j = IρN ϕ j, for j = 0, . . . , Di . (4.3b)

These two conditions define a set of possible proposal distributions, which we will call R in this section, i.e. ρ∗
N ∈ R if it 

solves (4.3a) and (4.3b). See Fig. 3 for a sketch how such a ρ∗
N can be interpreted. In this example, ρ∗

N is discontinuous 
and roughly following ρN , but this is not necessary for the analysis. The only conditions on ρ∗

N are (4.3a), (4.3b), and 
‖ρ/ρ∗

N‖∞ < ∞. It is actually not necessary to construct a ρ∗
N to use the method proposed in this work: only samples from 

ρN are used. The distribution ρ∗
N is only a tool in the analysis discussed in this section. Notice that ρN ∈ R , so R is a 

well-defined non-empty set. However, as explained above it is not desirable to use ρ∗
N = ρN in the subsequent analysis as 

that leads to a potentially large ‖ρ/ρ∗
N‖∞ .

The two conditions stated above ensure firstly that the moments of ρN are equal to the moments of ρ∗
N . Secondly, 

integrating ρN , ρ , or ρ∗
N using a quadrature rule with nodes x0, . . . , xN yields the same result. The latter is especially useful 

in importance sampling, since this implies that for all k = 0, . . . , N:

1 = ρ(xk)

ρN(xk)
= ρ(xk)

ρ∗
N(xk)

.

This property will be used extensively in the remainder of this section. To this end, choose a ρ∗
N ∈ R , i.e. one that satisfies 

(4.3a) and (4.3b), as proposal distribution. Then

Iρ f = IρN

(
f

ρ

ρN

)
= Iρ∗

N

(
f

ρ

ρ∗
N

)
. (4.4)

A similar argument can be applied to rewrite AρN
N :

AρN
N f =

N∑
k=0

wk f (xk) =
N∑

k=0

wk
ρ(xk)

ρN(xk)
f (xk) = AρN

N

(
f

ρ

ρN

)
,

where it is being used that ρN (xk) = ρ(xk) for all k = 0, . . . , N . Hence the following is obtained:

AρN
N f = AρN

N

(
f

ρ

ρN

)
= AρN

N

(
f

ρ

ρ∗
N

)
. (4.5)

These expressions, i.e. the defining properties of ρ∗
N , as described by (4.3a) and (4.3b), and the derived relations for 

the integral and quadrature rule operator, as described by (4.4) and (4.5), form sufficient ingredients to bound eN( f ). The 
derivation is similar to the derivation of the Lebesgue inequality (recall (2.4)), but some bookkeeping is required to keep 
track of the correct proposal distribution:

eN( f ) = |Iρ f −AρN
N f |

=
∣∣∣∣Iρ f −AρN

N

(
f

ρ

ρ∗
N

)∣∣∣∣
=
∣∣∣∣Iρ f − Iρ∗

N ϕ + Iρ∗
N ϕ −AρN

N

(
f

ρ

ρ∗
N

)∣∣∣∣ .
Here, ϕ ∈ �Di . Hence the quadrature rule is exact for ϕ and the following is obtained:

eN( f ) =
∣∣∣∣Iρ∗

N

(
f

ρ

ρ∗
N

)
− Iρ∗

N ϕ +AρN
N ϕ −AρN

N

(
f

ρ

ρ∗
N

)∣∣∣∣ ,
where we use that Iρ∗

N ϕ = IρN ϕ = AρN
N ϕ for ϕ ∈ �Di , which follows from (4.3b). Concluding, the following inequality is 

obtained:

eN( f ) ≤
∣∣∣∣Iρ∗

N

(
f

ρ

ρ∗
N

)
− Iρ∗

N ϕ

∣∣∣∣+∣∣∣∣AρN
N ϕ −AρN

N

(
f

ρ

ρ∗
N

)∣∣∣∣
≤
(
‖Iρ∗

N ‖∞ + ‖AρN
N ‖∞
)∥∥∥∥ f

ρ

ρ∗
N

− ϕ

∥∥∥∥
∞

= 2

∥∥∥∥ f
ρ

ρ∗ − ϕ

∥∥∥∥ . (4.6)

N ∞
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Notice that in a Bayesian framework the ratio ρ/ρ∗
N can be expressed independently from the prior:

ρ(x)

ρ∗
N(x)

= q(z | x)q(x)

q∗
N(z | x)q(x)

= q(z | x)

q∗
N(z | x)

.

Here, with a little abuse of notation, q∗
N (z | x) is the nearest neighbor interpolant of the likelihood. Similarly to ρ∗

N , it is not 
necessary to gain any knowledge about q∗

N (z | x), since it is only used here to demonstrate independence from the prior.
By choosing ρ∗

N ∈ R and ϕ ∈ �Di such that the obtained norm from (4.6) is minimal, an inequality similar to the Lebesgue 
inequality from (2.4) is obtained:

eN( f ) = |Iρ f −AρN
N f | ≤ 2 inf

ρ∗
N

inf
ϕ∈�Di

∥∥∥∥ f
ρ

ρ∗
N

− ϕ

∥∥∥∥
∞

= 2 inf
q∗

N

inf
ϕ∈�Di

∥∥∥∥ f
q(z | ·)

q∗
N(z | ·) − ϕ

∥∥∥∥
∞

. (4.7)

Here, ρ∗
N(x) = q∗

N(z | x) q(x) ∈ R is according to (4.3a) and (4.3b).
It is instructive to compare the obtained inequality with that of a conventional quadrature rule constructed with respect 

to the prior. If such a quadrature rule, say Aq(·)
N , is given, then by using the Lebesgue inequality its error can be bounded as 

follows (notice the difference with (4.6)):

|Iρ f −Aq(·)
N ( f q(z | ·)) | = |Iq(·) ( f q(z | ·)) −Aq(·)

N ( f q(z | ·)) | ≤ 2 inf
ϕ∈�Di

‖ f q(z | ·) − ϕ‖∞, (4.8)

where we use that the prior is not improper (as otherwise ‖Iq(·)‖∞ �= 1).
It is not generally true that the right hand side of (4.7), i.e. the error of our proposed adaptive rule, is smaller than the 

right hand side of (4.8), i.e. the error of conventional rules with respect to the prior. For example, the latter is smaller if 
both f and q(z | ·) are polynomials (which is rarely the case in Bayesian model calibration). In general, it is the case that 
a quadrature rule constructed using the iterative procedure of this article outperforms a quadrature rule constructed using 
the prior if f can be approximated much more efficiently by polynomials than f q(z | ·). To see this, we assume that the 
approximation of f converges strictly faster than the approximation of f q(z | ·), so using little-o notation:

inf
ϕ∈�Di

‖ f − ϕ‖∞ = o

(
inf

ϕ∈�Di

‖ f q(z | ·) − ϕ‖∞

)
. (4.9)

To compare both quadrature rules, recall that ρN is constructed such that ρN → ρ . Then there exists a ρ∗
N ∈ R such that

‖ρ/ρ∗
N‖∞ → 1, for N → ∞.

Hence there exist sequences {aN }N and {bN }N such that aN ≤ ‖ρ/ρ∗
N‖∞ ≤ bN for all N with aN ↑ 1 and bN ↓ 1 for N → ∞.1

Hence

inf
ϕ∈�Di

∥∥∥∥ f
ρ

ρ∗
N

− ϕ

∥∥∥∥
∞

≤ max

(
inf

ϕ∈�Di

‖aN f − ϕ‖∞; inf
ϕ∈�Di

‖bN f − ϕ‖∞

)

≤ max

(
aN inf

ϕ∈�Di

‖ f − ϕ‖∞; bN inf
ϕ∈�Di

‖ f − ϕ‖∞

)
.

So for all ε > 0 there exists an N1 such that

inf
ϕ∈�Di

∥∥∥∥ f
ρ

ρ∗
N

− ϕ

∥∥∥∥
∞

≤ (1 + ε) inf
ϕ∈�Di

‖ f − ϕ‖∞, for all N ≥ N1.

Thus, for N ≥ N1 the following bound is obtained:

eN( f ) ≤ 2(1 + ε) inf
ϕ∈�Di

‖ f − ϕ‖∞. (4.10)

By combining this bound with (4.9), it follows that (4.7) is sharper than (4.8). In other words, we have shown that the decay 
of the error of the adaptive quadrature rule proposed in this work, denoted by eN( f ) in (4.10), depends solely on whether 
f can be approximated well by polynomials. Recall that whether f can be approximated well using polynomials depends 
mostly on its smoothness properties, see Section 2.2.1 for more discussion on this topic.

Concluding, if incorporating the likelihood in the integrand (obtaining f q(z | ·)) yields an integrand that is difficult to 
approximate using polynomials, the proposed adaptive method has a sharper error bound than conventional rules. This is 

1 In other words, aN converges to 1 from below and bN converges to 1 from above for N → ∞.
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described by (4.9) and is often the case if the likelihood is informative (i.e. it has small standard deviation) or if the model 
is irregular (which yields an even more irregular likelihood). For large N the error of the adaptive quadrature rule proposed 
in this work behaves similar to that of a conventional quadrature rule constructed with respect to the posterior, as described 
by (4.10), even though this conventional quadrature rule can usually not be determined without requiring large numbers of 
evaluations of the posterior.

4.3. Sampling error

As an arbitrary sized sample set can be easily drawn from the distribution ρN for any N , the sampling error at least 
decays with rate 

√
K , i.e. for K → ∞, the error converges to a Gaussian distribution as follows:

|IρN f − IρN
K f | ∼ N (0,σ 2),

with σ = σ( f )/
√

K . Here, σ( f ) is the standard deviation of f with respect to ρN , i.e.

(σ ( f ))2 = IρN
(
( f − IρN f )2).

In this article, acceptance rejection sampling is used to draw large numbers of samples from ρN . Several improvements exist 
to construct sequences that convergence faster, for example quasi-Monte Carlo sequences [15,43]. We emphasize that these 
approaches can be used straightforwardly in the framework explained in this article.

The number of samples K can be chosen independently from the number of nodes N under consideration, so the sam-
pling error can be made arbitrarily small without any costly model evaluations. Choosing a larger sample set does however 
mean that it takes more computational effort to determine the implicit quadrature rule. In practice, the interpolation and 
quadrature rule error dominate both the error of the quadrature rule and the cost of the procedure (through model evalua-
tions). Only if the model is analytic and the likelihood is not informative, the quadrature rule error and interpolation error 
decay rapidly enough to make the sampling error dominate.

5. Numerical experiments

The properties of the method derived in this work are illustrated using various numerical examples. Two types of cases 
are discussed.

In Section 5.1 four different classes of analytical test cases are discussed to illustrate the key properties of our method. 
Firstly, in Section 5.1.1 a univariate case is discussed, where the sampling and interpolation error as introduced in (4.1) can 
be observed well. Secondly, in Section 5.1.2 three two-dimensional test functions are calibrated using numerically generated 
data. The test functions, based on Genz test functions [27], are chosen such that the likelihood is very informative. Thirdly, 
in Section 5.1.3 the six Genz test functions are calibrated using numerically generated data. The domain of these functions 
is five-dimensional and a comparison is made with conventional quadrature rules such as the tensor grid and the Smolyak 
sparse grid. Finally, it is instructive to assess the affect of varying dimension on the error of the quadrature rule. Therefore, 
in Section 5.1.4 the calibration of the six Genz test functions is considered for varying dimension of �.

The main motivation for this work is to apply Bayesian calibration to the closure coefficients of turbulence models. 
To demonstrate the applicability of our method to this case, we calibrate the closure coefficients of the Spalart–Allmaras 
one-equation model using measurement data from the flow over a transonic airfoil. This problem is further considered in 
Section 5.2.

5.1. Analytical test cases

5.1.1. Effect of sampling and interpolation error
Let � = [0, 1] and consider a uniformly distributed prior in conjunction with a Beta(40, 60)-distributed likelihood, which 

yields:

ρ(x) ∝ x40(1 − x)60.

To assess the effect of the sampling error, the proposed adaptive quadrature rule is constructed using K = 10n samples with 
n = 2, 3, 4, 5. The obtained quadrature rule is used to approximate the mean of ρ(x):∫

�

ϕ1(x)ρ(x)dx =
∫
�

xρ(x)dx ≈
N∑

k=0

wk xk =
N∑

k=0

wk ϕ1(xk). (5.1)

The obtained estimate is compared to the true mean (which is 2/5). The sampling error depends on the randomly generated 
samples, so the experiment is repeated 50 times and the obtained errors are averaged to illustrate general behavior of the 
error. The results are gathered in Fig. 4a, where the averaged error is denoted by ēN .
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Fig. 4. Integration error as a function of the number of nodes. In the left figure, the error of an adaptive quadrature rule is depicted for various numbers of 
samples. In the right figure, the error of an implicit quadrature rule constructed using various distributions is depicted, for fixed K = 105.

For small N , it is clear that the errors of all quadrature rules converge geometrically, which implies that the quadrature 
error or the interpolation error dominates. For large N , the error does not decay further due to the limited number of 
samples. The point where the error stops decaying depends on the number of samples used, i.e. a larger number of samples 
results in a smaller overall error.

To assess the effect of the interpolation error, three different implicit quadrature rules are constructed. The first rule is 
constructed using the adaptive method proposed in this work, i.e. using ρN (x) like in Fig. 4a. This quadrature rule has a 
sampling error and interpolation error, but no quadrature error since we are comparing the first moment (see (5.1)). The 
second rule is constructed using the exact distribution, i.e. ρ(x), which results in a rule that only has a sampling error. The 
third rule is constructed using the uniform distribution, i.e. using q(x). This rule has a sampling error and a quadrature 
error, as the likelihood needs to be incorporated in the integrand. All three quadrature rules are used to approximate the 
mean of the posterior. The rules constructed using ρN (x) and ρ(x) can estimate the mean using (5.1), whereas the rule that 
is constructed using q(x) requires integration of f (x) = ρ(x) · x. All rules are constructed using 105 samples and again the 
experiment is repeated 50 times to demonstrate general behavior of the rules. The results are gathered in Fig. 4b.

The rule constructed using samples from ρ(x) immediately saturates to a level where the sampling error dominates, as 
no interpolation is used and the quadrature rule error vanishes since the error estimate from (5.1) is based on the mean 
(i.e. the first moment). The rule constructed using the prior q(x) converges geometrically, as the PDF of the Beta(40, 60)-
distribution is a polynomial. A significant improvement is noticed by using our proposed adaptive proposal distribution 
ρN(x). Initially a larger rate of convergence is obtained (up to approximately N = 10), as the interpolant provides rapid 
convergence. For large N , the quadrature error starts dominating and the rate of convergence equals the rate of the rule 
constructed using q(x).

This test case demonstrates that using samples that have been obtained directly from ρ(x) is preferable, but this is 
intractable in practice. The adaptive proposal distribution has a clear advantage over using a rule that only incorporates the 
prior.

5.1.2. Two-dimensional Genz test functions
The previously considered test case of Section 5.1.1 demonstrates the advantages of using an adaptive quadrature rule. 

To illustrate the nodal placement of this rule and to further compare this rule to conventional quadrature rules constructed 
with respect to the prior, the calibration of three two-dimensional Genz test functions [27] with artificially generated data 
is considered. Therefore let d = 2, x∗ = (1/2,1/2)T, and consider the following functions:

u1(x) =
d∏

i=1

[
1

4
+
(

xi − 1

2

)2
]−1

, (Product Peak)

u2(x) = exp

(
−

d∑
i=1

∣∣∣∣xi − 1

2

∣∣∣∣
)

, (C0 function)

u3(x) =
{

0 if x1 > 3/5 and x2 > 3/5,

exp
(∑d

i=1 xi

)
otherwise.

(Discontinuous function)

These functions are specifically crafted such that they have difficult characteristics for numerical integration routines at or 
around x = x∗ . The statistical model under consideration is
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Fig. 5. Convergence of the mean error determined with the new adaptive implicit quadrature rule or a quadrature rule determined using the prior. Equal 
colors refer to the same quadrature rule. Equal symbols refer to the same function. (For interpretation of the colors in the figure(s), the reader is referred 
to the web version of this article.)

Fig. 6. Examples of quadrature rules with D = 65 (exact for all polynomials up to degree 10) obtained by the adaptive implicit quadrature rule. The colors 
indicate the weights of the quadrature rule nodes. The nodes of a quadrature rule of the same polynomial degree, but constructed with respect to the prior, 
are depicted in gray.

zk = ug(x) + ε, with ε ∼ N (0,σ 2) and σ 2 = 1/5, for k = 1, . . . ,20. (5.2)

Here, ug (with g = 1, 2, 3) denotes one of the functions under consideration and z = (z1, . . . , z20)
T are 20 “measurements” 

obtained by zk = ug(x∗) + nk with nk a sample from N (0, σ 2). Hence the data is centered around the defining (“difficult”) 
characteristics of the test functions.

The goal is to infer x from (5.2), or equivalently, characterize the posterior q(x | z) with a uniform prior and Gaussian 
likelihood defined in � = [0, 1]d , i.e. we use ρ(x) = q(z | x) q(x) with

q(x) =
{

1 if x ∈ �,

0 otherwise,

q(z | x) ∝ exp

[
−1

2

∑20
k=1(u(x) − zk)

2

σ 2

]
.

(5.3)

The quantity used to measure the error of the quadrature rules is the maximum error of the mean of the posterior, i.e.

eN =
{

max
(|ANϕ1 − Iρϕ1|, |ANϕ2 − Iρϕ2|

)
if AN w.r.t. ρN(x),

max
(∣∣∣AN

(
ϕ1q(z | x1)

)
− Iρϕ1

∣∣∣ , ∣∣∣AN

(
ϕ2q(z | x2)

)
− Iρϕ2

∣∣∣) if AN w.r.t. q(x),

where AN denotes a quadrature rule operator constructed using the adaptive method proposed in this article (i.e. with 
respect to ρN ) or solely using the prior (i.e. with respect to q(x)). In both cases the weights are scaled such that 

∑
k wk = 1. 

All quadrature rules are constructed using a linearly growing Di , i.e. in iteration i it is enforced that the quadrature rule 
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integrates all ϕ ∈ �i exactly (with �i as introduced in Section 2.2.1). Recall that if x = (x1, x2) we have that ϕ1(x) = x1 and 
ϕ2(x) = x2.

There is randomness both in the generation of the quadrature rules and in the generation of the measurement data. 
Therefore, the error eN is determined 25 times and the obtained errors are averaged, which is denoted by ēN . The con-
vergence results are summarized in Fig. 5. Examples of quadrature rules obtained by applying the proposed procedure are 
depicted in Fig. 6. There are still oscillations visible, regardless of the averaging, though the error decay can clearly be 
observed.

Notice that the adaptive implicit quadrature rule outperforms the conventional quadrature rule in all three cases. The 
scatter plots of the nodes illustrate that the quadrature rules are indeed tailored specifically to the posterior under consid-
eration. Since all rules have positive weights, estimates determined using these rules are unconditionally stable. This is an 
aforementioned advantage of the proposed method: the quadrature rules exhibit both exploitation (due to the interpolant) 
and exploration (due to the spread of the nodes) without suffering from instability.

5.1.3. Five-dimensional Genz test functions
In this section, the calibration of the five-dimensional Genz test functions is considered. The setting is similar to the one 

of the previous section, i.e. let d = 5, x∗ ∈Rd with x∗
k = 1/2, and consider the following functions:

u1(x) = cos

(
2πb1 +

d∑
i=1

ai xi

)
, (Oscillatory)

u2(x) =
d∏

i=1

(
a−2

i + (xi − bi)
2
)−1

, (Product Peak)

u3(x) =
(

1 +
d∑

i=1

ai xi

)−(d+1)

, (Corner Peak)

u4(x) = exp

(
−

d∑
i=1

a2
i (xi − bi)

2

)
, (Gaussian)

u5(x) = exp

(
−

d∑
i=1

ai |xi − bi|
)

, (C0 function)

u6(x) =
{

0 if x1 > b1 or x2 > b2,

exp
(∑d

i=1 ai xi

)
otherwise.

(Discontinuous)

The vectors a = (a1, . . . ,ad)
T and b = (b1, . . . ,bd)

T are shape and translation vectors, respectively, and are chosen randomly 
in this test case. The elements of a enlarge the defining “difficult” property of the function and b translates the function in 
space. The statistical model under consideration is the same model considered in the previous section, see (5.2) and (5.3). 
Notice that, due to the random nature of b, the probability that the difficult property of the functions is around x = x∗ is 
small.

Four quadrature rules are considered to determine the mean of the posterior. Firstly, the proposed quadrature rule with 
a nearest neighbor interpolant is used. At each iteration the exactness of the quadrature rule is doubled, starting with 
D0 = 20 up to D10 = 210. In other words, subsequent quadrature rules integrate larger numbers of polynomials (recall that 
�D denotes the space of D + 1 polynomials, sorted graded lexicographically). Secondly, an implicit quadrature rule without 
interpolation is used, generated using solely the prior. Finally, to compare the results with conventional quadrature rules, 
a tensor grid and a Smolyak sparse grid generated with a Clenshaw–Curtis quadrature rule are used. A linearly growing 
sequence of Clenshaw–Curtis quadrature rules is considered, so the tensor grid and the Smolyak sparse grid do not form 
a sequence of nested quadrature rules. This is done to keep the number of nodes of the multivariate quadrature rules 
tractable. We do not present the results obtained with Markov chain Monte Carlo, since the number of model evaluations 
considered here is too small to obtain a “burned-in” sequence.

For each quadrature rule, the experiment is repeated 25 times and the reported errors are averaged. For each experiment, 
the vectors a and b are drawn randomly from the five-dimensional unit hypercube and a is subsequently scaled such 
that ‖a‖2 = 5/2. Moreover, for each experiment different samples are used to generate the implicit quadrature rules. To 
introduce randomness in the tensor grid and Smolyak sparse grid, the “exact” value x∗ is randomized in the domain. This 
improves the results of calibration with the Clenshaw–Curtis rules, as it otherwise would have a node at x = x∗ and therefore 
significantly overestimate the moments. The quantity used to measure the error of the quadrature rules is the same as in 
the previous test case, i.e. eN is the maximum error of all first-order raw moments (which are ϕ1, . . . , ϕ5). The “exact” 
mean is determined using a Monte Carlo sample from the prior. The number of samples used is the same number used to 
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Fig. 7. Convergence of the mean of the posterior determined using three different quadrature rules. The six functions under consideration are the Genz test 
functions.

generate the implicit quadrature rules, such that the sampling error can be observed well (in that case all errors saturate). 
The obtained results are depicted in Fig. 7.

The first four test functions are analytic, so for these test functions the quadrature rules perform best. The flattening of 
the error of the third test function occurs due to the sampling error of the exact mean (and not due to the sampling error 
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Fig. 8. The integration error of the mean, averaged over 100 runs, considering the Genz test functions for varying dimension.

of the quadrature rule). Moreover, the results of the third test function are best, since the corner peak varies only near a 
corner (hence the name) and therefore yields an almost uniform posterior.

The fifth Genz test function is only continuous (and not smooth), so should theoretically yield inferior performance. 
However, it is not differentiable only at a single point in the five-dimensional domain, so it is very unlikely that point is of 
importance for the accuracy of the quadrature rules.

The sixth Genz test function is discontinuous and all rules do not yield a rapidly converging estimate. This is expected, 
since the quadrature rules are based on approximation using smooth functions. Notice that the convergence of the proposed 
adaptive procedure is significantly worse than in the two-dimensional case considered in Section 5.1.2, since detecting the 
discontinuity in the posterior using nearest neighbor interpolation in five dimensions requires significantly more model 
evaluations than in two dimensions. However, the accuracy remains similar to the other quadrature rules.

Overall, the adaptive quadrature rule proposed here consistently performs better or on the same level as the other 
quadrature rules. This demonstrates that the proposed procedure works for non-informative posteriors, since it is rarely the 
case that the posterior of the Genz test functions in conjunction with the randomized parameters is informative. Intuitively 
one would expect that piecewise interpolation is in these cases not necessarily beneficial, but the results demonstrate that 
it does not deteriorate the performance.

The Smolyak sparse grid performs significantly worse than the other quadrature rules for u1 and u6. This happens due 
to the negative weights of the sparse grid, or more specifically, due to the large positive weights present in the Smolyak 
sparse grid. These large weights significantly deteriorate the accuracy for a small number of the 25 runs, which is reflected 
in the averaged errors presented in Fig. 7. Notice that this effect can be significantly alleviated with an adaptive Smolyak 
sparse grid, as considered by Schillings and Schwab [50], though negative weights will remain present.

5.1.4. d-dimensional Genz test functions
It is well-known that the convergence rate of quadrature rules based on polynomial approximation deteriorates in larger 

dimensional spaces. This follows among others from the Lebesgue inequality, see (2.4), since approximating multivariate 
functions requires larger numbers of basis polynomials. It is not straightforward to precisely assess the effect of the dimen-
sion on the accuracy of the quadrature rule, since the properties of the statistical model and the Genz test functions also 
depend on the dimension. However, if the accuracy of the quadrature rule deteriorates rapidly, the quadrature rule error 
will dominate the overall integration error, which is the quantity reported in this work.

Therefore, the Genz test functions are reconsidered in combination with the previously discussed statistical model, see 
(5.3). The key difference is that the experiment is repeated for different dimensions d. Again the mean integration error ēN

is computed, but contrary to the previous cases the error is determined by averaging over 100 experiments, since the error 
varies significantly less (and otherwise noise would pollute the results). The mean integration error is computed using a 
quadrature rule of degree 20, which is determined iteratively using a linearly growing sequence Di = i (hence 20 iterations 
of the algorithm are necessary to construct a quadrature rule). All other parameters are chosen as in Section 5.1.3. The 
results are reported in Fig. 8, where the error is scaled with the integration error of the bivariate case (i.e. d = 2).

The effect of the dimension on the statistical model and the Genz test functions is clearly visible. For u2 and u3, the 
error is decreasing for increasing dimension, which conflicts with the theoretical expectations. This is due to the region 
that encompasses the defining properties of the product peak (i.e. u2) and corner peak (i.e. u3), which becomes smaller 
in multivariate spaces. A similar effect is also observed in the results of Section 5.1.3. The other functions yield a rapidly 
increasing error for d ≤ 5, but the error stagnates (or even decreases slightly) for larger d. Again, this is the result of the 
varying properties of the test functions and the statistical model.

Even though it is not straightforward to isolate the error of the quadrature rule, this test case demonstrates that the 
growth of the quadrature error for increasing dimension does not dominate the growth of the integration error. In other 
words, the effect of dimension on the quadrature rule is significantly less than the effect of dimension on the test functions 
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and the statistical model. Therefore the quadrature rules yield a viable approach for Bayesian prediction in multivariate 
spaces.

5.2. Transonic flow over an airfoil

The applicability of the approach to complex test cases is demonstrated by considering the transonic flow over the 
RAE2822 airfoil. The problem under consideration is the calibration of the closure parameters of the Spalart–Allmaras turbu-
lence model using wind tunnel measurements. It is computationally expensive to determine an accurate numerical solution 
of this problem, so the usage of efficient calibration approaches is of importance.

This section is split into three parts. Firstly, the problem of modeling the transonic flow over an airfoil and the mea-
surement data under consideration is briefly introduced in Section 5.2.1. Secondly, the statistical model under consideration 
that relates the measurement data to the model output is discussed in Section 5.2.2. The obtained Bayesian predictions are 
presented in Section 5.2.3.

5.2.1. Modeling the flow over an airfoil
The flow over the airfoil under consideration is modeled using the Reynolds-averaged Navier–Stokes (RANS) equations, 

which only model the time-averaged mean flow over the airfoil. These equations do not form a closed system and require 
a closure model. For this purpose, the Boussinesq hypothesis is used, which introduces an eddy viscosity, which is subse-
quently modeled using a turbulence model. The details of this derivation are out of the scope of this article and we refer 
the interested reader to Wilcox [61]. The turbulence model under consideration is the Spalart–Allmaras model [55], which 
is commonly used to model the flow over an airfoil. Various variants of the model exists, though in this work the original 
most commonly used variant from Spalart and Allmaras [55] is considered. The model has 10 constants, which are typically 
defined as follows:

σ 2/3 Cb1 0.1355 Cb2 0.622
κ 0.41 C w2 0.3 C w3 2.0

Ct3 1.2 Ct4 0.5 Cv1 7.1

Here C w1 is omitted, since it depends on the other coefficients by the following expression:

C w1 = Cb1/κ
2 + (1 + Cb2)/σ .

The closure coefficients of turbulence models are usually obtained by fitting the model using canonical test cases, for 
which analytical or accurate numerical solutions are available. There is no clear physical interpretation of many of these 
coefficients. A more structured approach to obtain values for these coefficients is to calibrate these coefficients statistically 
using Bayesian model calibration [6,16,22], which has been discussed in this article. The posterior can be used to infer 
credible intervals of the parameters and can be propagated to infer Bayesian predictions.

A major advantage of the approach discussed in this article is that the determined quadrature rule can directly be used 
to infer prediction of the flow incorporating the uncertainty of the closure coefficients. The costly model evaluations have 
already been performed during the construction of the rule. No Markov chain Monte Carlo routines are necessary to obtain 
the predictions.

In this article, SU2 [45] is employed to numerically solve the RANS equations. It uses a second-order finite volume 
discretization and has support for the Spalart–Allmaras turbulence model. Moreover, it has been tested extensively to model 
the flow over an airfoil and the turbulence model parameters can be made configurable due to its freely available source 
code. As mentioned before, the airfoil under consideration is the RAE2822. Measurements of this airfoil for various values of 
the Reynolds number, Mach number, and angle of attack are freely available [17]. We consider Case 6 (see Cook et al. [17]
for the other cases), with Reynolds number 6.5 · 106, Mach number 0.725, and angle of attack 2.92◦ . The measurements 
encompass nz = 103 point measurements of the pressure coefficient on the surface of the airfoil. To use these values in 
conjunction with SU2, we correct these values to incorporate wind tunnel effects [53]. The flow over the RAE2822 airfoil is 
transonic in this case and there is shock formation with a supersonic regime on the upper part of the airfoil.

5.2.2. Statistical model
The quantity of interest used for the calibration is the pressure coefficient on the surface of the airfoil. Following Edeling 

et al. [22], the parameters considered for calibration are ϑ = [κ,σ , Cb1, Cb2, Cv1, C w2, C w3]T. Let s ∈ [0, 2] be the spatial 
parameter that runs from the trailing edge in anticlockwise direction over the airfoil. Then u(ϑ; s) denotes the mapping 
that yields the pressure coefficient at s using the turbulence parameters ϑ . We denote the calibration parameters by ϑ
(instead of x) to avoid confusion between ϑ and the usual spatial coordinates x and y. A single evaluation of SU2 yields the 
pressure coefficient at all spatial coordinates in the discrete mesh for given ϑ and we use linear interpolation to obtain the 
pressure coefficient at the measurement locations.

The statistical model under consideration incorporates both model uncertainty, denoted by δ, and measurement error, 
denoted by ε. It is, following Kennedy and O’Hagan [36], as follows:
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zk = u(ϑ; sk) + δ(sk) + εk, with εk ∼ N (0,σ 2) for k = 1, . . . ,nz. (5.4)

Here, zk denotes the measured pressure coefficient at location sk . The random process δ(s) ∼ N (0, Cov(s, s′ | A, l)) models 
the discrepancy between the model and the truth by means of a Gaussian process with zero mean and squared exponential 
covariance:

Cov(s, s′ | A, l) = A exp

[
−
(

s − s′

L10l

)2
]

.

The values of A and l are hyperparameters and are being inferred from calibration, whereas L is a fixed parameter whose 
value is provided later. Measurement error is modeled by εk , which is Gaussian distributed with known standard deviation 
σ = 0.01. This value is based on the measurement errors reported by Cook et al. [17].

The model from (5.4) yields the following likelihood:

q(z | ϑ, A, l) ∝ exp

[
−1

2
dT K −1d

]
, (5.5)

with d the misfit and K the covariance matrix, i.e.

dk = zk − u(ϑ; sk),

K = 
 + C, with Ci, j = Cov(si, s j | A, l) and 
 = σ I.

The prior of the turbulence closure parameters is as follows:

κ [0.205,0.615]
σ [1/3,1]

Cb1 [0.0678,0.2033]
Cb2 [0.311,0.933]
Cv1 [3.55,10.65]
C w2 [0.2,0.4]
C w3 [1,3]

These values are such that they encapsulate all commonly used variants of the turbulence model and are such that SU2 
converges for all possible combinations.

The hyperparameters A and l are also being calibrated and therefore also require a prior. These are respectively A ∼
U(0, 0.01) and l ∼ U(0, 1). We choose L = 0.01, such that the maximal covariance length is significantly larger than the 
length of a single numerical cell on the surface of the airfoil. The computational model does not depend on A, l, and L, so 
given ϑ the distribution of these parameters is fully known analytically.

By combining the prior with the likelihood from (5.5), Bayes’ law yields the posterior:

q(ϑ, A, l | z) ∝ q(z | ϑ, A, l)q(ϑ)q(A)q(l).

We are not interested in the exact distribution of the hyperparameters and the evidence can be neglected by rescaling the 
quadrature rule weights. Hence we apply the adaptive implicit quadrature rule to the following distribution:

ρ(ϑ) =
∫∫

q(z | ϑ, A, l)q(ϑ)q(A)q(l)dl dA.

Afterwards, the quadrature rule weights are scaled such that 
∑N

k=0 wk = 1 and the rule is used to infer Bayesian predictions, 
e.g. as derived in (2.2):

E[̂z | z](s) =
∫
�

u(ϑ, s)q(ϑ | z)dϑ ≈
N∑

k=0

wk u(ϑk, s), with q(ϑ | z) ∝ ρ(ϑ).

5.2.3. Results
The quadrature rule constructed in this test case has polynomial degree 3, which constitutes a polynomial space with 120 

basis polynomials. This number of polynomials is a good balance between accuracy in the predictions and overall running 
time. The quadrature rules are constructed with linearly increasing exactness, so at the i-th iteration a quadrature rule of 
degree i is constructed that incorporates all available model evaluations (up to iteration i − 1).

The obtained rule incorporates an approximation of the posterior. There is no exact solution available, so it is not straight-
forward to assess the accuracy of the quadrature rule. For this purpose, each iteration the mean of the pressure coefficient 
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Fig. 9. Left: convergence of consecutive differences, Right: Mean and standard deviation of C p − x determined using the proposed approach (solid line and 
red area), compared to using canonical coefficients (dashed) and measurement data (scattered).

is determined and these are consecutively compared using the 2-norm, i.e. if Ni is the number of nodes of the quadrature 
rule after i iterations, then the error measure is

eNi = ‖ANi u −ANi−1 u‖2.

We will denote this with a little abuse of notation simply as

eN = ‖AN u −AN−1u‖2.

The obtained errors are depicted in Fig. 9a.
The quadrature rule clearly yields a converging mean and the error converges approximately linearly to zero. The oscil-

lations are the result of the random sampling of the proposal distributions in combination with the fact that this test case 
was run only once. Obtaining a smoother decay would require repeating the experiment various times and averaging the 
obtained error (as done in the previous test cases), but this is too computationally costly in this case. In practical computa-
tions, the error decay can be assessed by regressing the convergence rate by means of least squares (i.e. by fitting analytic 
error decay).

Each iteration SU2 is evaluated for each additional quadrature rule node, so obtaining Bayesian predictions of the pres-
sure coefficient is a straightforward post-processing step. The obtained predictions of the pressure coefficient are depicted in 
Fig. 9b. The measurement data, uncertainty bounds, and the deterministic pressure coefficient determined using the canon-
ical turbulence coefficients are also depicted. It is clearly visible that the largest uncertainty occurs near the shock on top 
of the airfoil, which is in line with existing results on uncertain transonic flows around the RAE2822 airfoil, either using 
uncorrelated prescribed distributions [47,62] or calibrated parameters in a Bayesian setting [6]. Notice that the number of 
evaluations of SU2 needed to infer these predictions is of similar order of magnitude as is common for uncertainty prop-
agation with prescribed distributions. It is a significant reduction compared to commonly used Markov chain Monte Carlo 
methods [16,21,22].

SU2 yields the full flow field around the airfoil and therefore it is also possible to predict the statistical moments of the 
pressure coefficient away from the airfoil surface, as depicted in Fig. 10. We want to emphasize the importance of positive 
weights, since these ensure that the prediction of the variance is positive. Notice that the pressure coefficients depicted in 
these figures (i.e. away from the airfoil) have not been used in the calibration process, as only measurement data on the 
airfoil surface is available. So technically it not evident whether these results are correct or not. It is not straightforward 
to make general claims about this, since the specific properties (such as smoothness) of the model under consideration 
determine to a large extent whether it is viable to infer predictions of quantities using parameters that have been calibrated 
with a different quantity.

6. Conclusions

In this article a new methodology is proposed to construct quadrature rules with positive weights and high degree for 
the purpose of inferring Bayesian predictions. It consists of two steps. Firstly a quadrature rule is constructed using an ap-
proximation of the posterior. For this step the so-called implicit quadrature rule has been used. Secondly the approximation 
of the posterior is refined using all available model evaluations. For the second step nearest neighbor interpolation has been 
used. It has been demonstrated rigorously that our approach yields a quadrature rule whose error behaves like a quadrature 
rule with respect to the exact posterior for increasing number of nodes.
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Fig. 10. Predictions of pressure coefficients in vicinity of the airfoil using calibrated coefficients.

The performance of the quadrature rule has been demonstrated by calibrating the Genz test functions in a Bayesian 
framework. The results demonstrate that the quadrature rules consistently outperform (or perform as well as) conventional 
numerical integration approaches. The performance gains are most significant if the posterior is very informative, e.g. if 
its standard deviation is small. If, on the other hand, the posterior resembles approximately the prior, the performance is 
comparable to a quadrature rule determined using solely the prior.

The applicability of the approach to an expensive fluid dynamics model has been demonstrated by using the quadrature 
rule to calibrate the transonic flow over the RAE2822 airfoil. It has been demonstrated numerically that estimates of the 
rule converge and predictions of the mean and standard deviation of the pressure coefficient have been inferred. The results 
are in line with existing research, though significantly less model evaluations are necessary compared to existing Bayesian 
calibration approaches.

There are various opportunities to further extend the approach. The nearest neighbor interpolation procedure does not 
leverage smoothness in either the distribution or the posterior. A major opportunity is replacing nearest neighbor interpo-
lation by a more efficient interpolation approach, which could allow for more rapid convergence. This is however far from 
trivial, since our method requires that the obtained interpolant is a distribution.
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