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A Three-Dimensional Iterative Scheme for an 
Electromagnetic Capacitive Applicator 

MACIEJ J.  SOWINSKI A N D  PETER M.  VAN DEN BERG 

Abstract-An efficient iterative method for solving quasi-static elec- 
tromagnetic field problems is presented. A relaxation function is intro- 
duced in the quasi-static field equations. Then, the resulting equations 
can be solved by iteration. The method is similar to the one of solving 
a Laplace equation by computing the stationary state of a diffusion 
equation. Next, for a radially layered configuration the numerical re- 
sults are compared with the results from an existing integral equation 
method. Subsequently, for a realistic three-dimensional model of a hu- 
man knee numerical results are arrived at. 

I. INTRODUCTION 
RING capacitor applicator has recently been devel- A oped [ l ]  for regional deep heating in human tissue. 

With this type of applicators it seems possible to create a 
sufficient amount of electromagnetic heat disposition in 
deep-seated parts of human body. 

For a radially layered configuration a computer model 
has been presented [2] based on an integral equation 
method of the relevant quasi-static electromagnetic prob- 
lem. Numerical results have been presented and agree- 
ment with experimental results has been established. 
However, for an arbitrary three-dimensional configura- 
tion this computer model cannot be employed. 

In the present paper we discuss a method based on the 
direct discretization of the governing partial differential 
equations. In order to handle the 1arge.number of un- 
knowns, an iterative method was developed to solve the 
discretized equations. By introducing a spatially depen- 
dent relaxation function and an iteration coordinate the 
problem may be solved by iteration. The method is sim- 
ilar to the one of solving a Laplace equation from a par- 
abolic (diffusion-type) partial differential equation by 
using an explicit, stable scheme [3]. When we have 
reached the stationary state we have solved our quasi-static 
problem. 

If we choose our relaxation function to be constant, we 
end up with a particular form of the “successive over- 
relaxation” method [4]. The introduction of a spatially 
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dependent relaxation function in our iterative scheme leads 
to an iterative method superior to this successive over- 
relaxation method. For a radially layered configuration, 
the numerical results are compared with the results of an 
integral equation method [2]. Good agreement has been 
achieved. We finally present the numerical results for a 
realistic, three-dimensional model of the human knee. In 
a number of cross sections we present the electromagnetic 
(EM) power distribution. 

11. FORMULATION 
The configuration to be investigated is shown in Fig. 1. 

A pair of ring-shaped, perfectly conducting electrodes is 
located around a tissue configuration and fed by a sinu- 
soidally in-time varying voltage source. The complex time 
representation of field quantities is used with time factor 
exp ( jut )  where w = 2 r f (  f = frequency of operation). 

The electromagnetic properties of the media are char- 
acterized by its permittivity E and electrical conductivity 
U .  In the range of frequencies ( f I 30 MHz) the quasi- 
static approximation, V X E = 0, is valid and hence the 
electric field E can be written as 

E = -vv = -(ixax + iyay + iza,)v(x,  y ,  z ) ,  ( 1 )  

where V is the potential, while i,, iy, i, are unit vectors in 
Cartesian coordinate system. From the generalized elec- 
tric current density J and the continuity equation 

V J = a,J, + a,J, + a,J,, 

J = ( U  + j w ~ ) E  (2.b) 

together with ( l ) ,  we obtain a system of two partial dif- 
ferential equations to be satisfied by the electric potential 
and generalized current 

V * J = O ,  ( 3 . 4  

(3.b) 

( 3 . 4  

J =  - K ( X ,  Y ,  Z)vv, 
K ( X ,  Y ,  z )  = U ( &  y ,  z )  + j U E ( X ,  y ,  z ) .  

The volume density of dissipated electromagnetic (EM) 
power can be obtained from the relation 
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Fig. 1 .  The applicator configuration. 

electric current J - nE through the surface E. In particular, 
for 0 = 0 we get from (9) that V = 0 at the surface C and 
this means that C comes to play the role of the third elec- 
trode with potential Vi, = 0. For /3 = 00 the current J - 
nE should be equal to zero what means that there is no 
outflow of energy through the surface C. 

111. GENERAL CONCEPT OF THE ITERATIVE METHOD 
To work with strongly inhomogeneous media and to 

handle the large number of unknowns in a three-dimen- 
sional problem we design a suitable iterative method for 
the problem formulated above. To obtain this iterative 
process we extend our three-dimensional problem to a 
four-dimensional one. The new fourth coordinate is the 
iteration coordinate 7. The general definition of the con- 
vergence of such a process has the form 

(1o.a) lim V ( x ,  y, z ;  7 )  = v,(x, y, z ) ,  
T + W  

where in the second expression of (4) we have used (2b). 
To determine the field in the whole domain shown in Fig. 
1, we must further specify the boundary conditions at the 
interfaces. At the electrode surfaces SI and S2 the electric 

lim J ( x ,  y, Z; 7)  = J m  (x, Y ,  Z ) ,  
7-m 

(10.b) 

lim [ V I ( . )  - V2(7)]  = U ,  (1O.c) 
7 -  m 

potential is constant, viz., 

while at all other interfaces, the potential 1/ and the com- 
ponent of the current J normal to the interface are contin- 
uous. The value of the electric current fed into one of the 
electrodes by an external source follows from the surface 
integral of the normal component of the current density 
evaluated over whole electrode surface, 

Z, = J n,ds  

where ne is an outward normal vector to the electrode sur- 
face S,. The electrodes are fed in such a way that the 
difference between the potentials VI and V2 is equal to the 
output voltage of the power feeding generator, 

U = VI - v2, (7) 

where the pair V,, J ,  together with potential difference 
U between the electrodes is the desired solution to our 
three-dimensional problem. 

Let us define our present problem of (3), (3, (7), (8), 
and (9) as the initial boundary value problem in a four- 
dimensional domain with an iteration coordinate 7, as the 
fourth coordinate, viz., 

av 
a7 
- = - F ( x ,  y, z ) V  * J ( x ,  y, z ;  7) ,  (1l .a)  

K ( X ,  y, z )  v q x ,  y ,  z; 7), (1 l .b )  J =  - 

with impedance boundary conditions (9), with boundary 
conditions at electrode surfaces SI  and S2 

and the net current fed through both electrodes vanishes, 
lim ( I , ( . )  + Z2(7))  = 0, 

II + z2= 0. ( 8 )  7 - m  

(12.c) 

To solve our problem, we have to truncate our domain 
of investigation. We assume some external boundary sur- 
face C where we prescribe an impedance boundary con- 
dition of the type, 

and with initial value condition 

V ( x ,  y, z ;  0 )  = h(x ,  Y ,  z ) ,  

J ( x ,  y, Z; 0 )  = Jo(x,  Y ,  z ) ,  

(13.a) 

(13.b) 

v = P ( X ,  y ,  z ) J  * W E ,  (X, y, 2) E (9) 
where n~ is an outward normal vector to C and 0 is a 

dependent 'pecific impedance at the point (x, Y ,  Furthermore, the relaxation function F is a suitably tho- z )  of the surface E. This boundary condition is the quasi- 
static version of the radiation boundary condition. In our 
case, it allows us to control the outflow of the generalized 

sen function such that 

F ( x ,  y, z) # 0 for each (x, y, z ) .  (14) 

r--- - 
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The four-dimensional initial boundary value problem for- 
mulated above usually has a solution which possesses the 
property of reaching some equilibrium solution [cf. (lo)], 
when 7 -+ 00. Note, that for real functions F and K ,  and 
for fixed and real VI and V2, (1 la) and (1 lb) describe a 
diffusion problem with boundary conditions ( 5 )  and (9), 
and initial conditions (13a) and (13b). 

One of the possible solutions to our four-dimensional 
problem is the “marching-on” process in 7 coordinate. In 
this general form of an iterative method. we assume that 
we have obtained a field solution for T = T,, and then, 
using the information contained in this solution, we want 
to obtain the field values for 7 = T , , + ~ .  In Section V, we 
discuss this iterative procedure in more detail. If the equi- 
librium (dVl8.r  = 0, 7 -+ 00) is achieved, the iterative 
process described in this way has been converged to the 
desired solution of the original three-dimensional problem 

As the next step we discuss a proper numerical discre- 
defined by (31, (9, (71, (8), and (9). 

tization of our problem described by (1 1)-( 14). 

Iv. FINITE DIFFERENCE APPROXIMATION I N  SPACE 

Let us introduce in the spatial domain a rectangular grid 
with mesh sizes h,, hy,  h,. The discretized space contains 
the body shown in Fig. 1, including the electrodes and 
some free space outside it. The nodal points are located 
in the baricenters of each elementary block as shown in 
Fig. 2 .  

Integrating ( l l a )  over the volume V k , / . , ,  = h,h,h, of 
an elementary block and assuming that V is constant in- 
side the block and equal to V k , / . r n  we amve at 

Assuming that the relaxation function F is constant in each 
block we can apply Gauss’ theorem to (15) and arrive at 

where S k , / , , ,  is the surface enclosing the elementary block 
with nodal point ( k ,  1 ,  m.). Fk,I ,m is the value of the relax- 
ation function F inside the block with number ( k ,  1 ,  m) 
and n is an outward normal vector to the surface S k . / , r n .  

Next, using Stokes’ theorem we can rewrite ( l l b )  in 

G, Y 

( k  - 1 9 1 ,  m) 

Fig. 2.  Elementary block of the rectangular grid in the spatial domain. 

example, on the line between the points P k ,  /, ,,, and P k  + I ,  rn 
the current J - t is constant and equal to the current J n 
on the surface S: (see Fig. 2 ) .  This value of the current 
can be found from (17) as 

where 

The coefficient KP+! is called the effective admittance 
between the points P k , / . r n  and P k  + Similar expres- 
sions can be found for the normal component of the cur- 
rent J on other sides of the elementary block. Assuming 
that each elementary block contains only one type of tis- 
sue we arrive at the simple expressions for the effective 
admittances 

K k , / , m  = ~ ~ k , l , m ~ k - I . l , r n / ( ~ k , / , m  + K k - l , / , m ) ,  

[ K i : m  = 2 K  k , / , r n K k , l - I . m / ( K k , l , m  + K k , / - l , r n ) ,  (19) 

K k , / . r n  = 2 K k , / , r n ~ k , / , r n - I / ( ~ k , l , r n  -k K k . l , r n - l ) ,  

in which K k , f , r n  denotes the value of K inside the block with 
number (k,  1, m ) .  Assuming that the elementary block is 
not directly neighboring a boundary surface S I ,  Sz, or E, 
we calculate the surface integral in (16) as 

1 r r  ‘-1 J - n d s  
hxhyhz SA.1.m 

1 (x) (1) (XI the integral form - _  - [ ( K k . / , r n  -k K k + l , / , r n )  V k . 1 . m  - K k . l , r n V k - l I . / , r n  “ J . t  
- dl = V(P1;  7) - V ( P 2 ;  T ) ,  (17) 1 (1) 

K k +  I , / . r n V k +  I , / , r n ]  + 7 [ K ( ? j , r n  -k K k y j +  1 . m )  I / k , / , m  
S P ,  K - 

where P I ,  P 2  are points in R3 and t is the vector tangential 
to the curve of integration connecting these two points. - ( Y )  V ( Y )  

sume that the current J n is constant on each rectangular 1 ( 2 )  ( 2 )  

netting two adjacent nodal points. This means that, for 

hY 

To compute the surface integral in formula (16) we as- K k , / . r n  k , / - 1 . m  - K k , / + I , m V k , l + I , r n ]  

+ [ ( K b f ) , r n  + K k . / , r n + l ) V k , / , m  - K k , / , r n V k , / , r n - I  
hz 

side of the block. To evaluate integrals of the type of (17), 
we also assume that J . t is constant on each line con- 

( 2 0 )  ( Z )  
‘ A . /  m +  I ‘k , / .m  + 1 1 .  

- 

I 1-7.- 
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We can also describe boundary conditions (5) in terms 
of effective admittances. It is important to point out that 
the electrodes are modeled by blocks completely filled up 
with a metallic medium and with a prescribed potential in  
the nodal points of these blocks equal to Vq. Using the 
integral expression (18.b), the effective admittance K ( - ~ )  in 
a point adjacent to the electrode is arrived at 

Pk- in tissue, 

b::,m = 2Kk,[,,,, Pk - in electrode, P k , / , m  in tissue, 

(21 ) 
provided the admittance of metallic medium is equal to 
CO. Similar formulas hold for the effective admittances K (  ?) 

and K ( ' )  

To describe the impedance boundary conditions (9) in 
a similar way, we can assume that crossing the surface C 
(see Fig. 1) the medium parameters do not change. Then, 
in the boundary nodal point the effective admittance Kg 

[cf. (19)] is equal to the admittance of the external me- 
dium. Examining (18.a) we observe that in order to cal- 
culate the current at the boundary surface C we need to 
know the potential outside our grid as well. To avoid this 
problem we assume that the potential at the boundary sur- 
face C is a mean value of the potentials Vi,, and Vex, on 
both sides of the surface; subsequently using the imped- 
ance boundary condition (9) we arrive at the relation 

On the other hand, from the (18.a) we have 

where Kg is the admittance at the boundary C and h is the 
mesh size in either x, y, or z direction. Eliminating the 
value of the exterior potential Vex, from (24) and (25) we 
amve at the relation 

(26.a) 

Now we can evaluate the surface integral using (20) also 
in the points adjacent to the surface C assuming that in 
each point outside this surface the electric potential Vex, 
is equal to zero and an effective admittance at that point 
is calculated through (26.b). 

v. FINITE DIFFERENCE APPROXIMATION IN 7 
COORDINATE 

In order to obtain the computational iterative scheme 
we apply some finite difference formula for the 7 deriva- 
tive in the left-hand side of (16). For this purpose we in- 
troduce the discretization of the 7 coordinate as follows 

T O ,  71, 72, * - * 9 7n9 7,+1, ' * 3 

where 70 < 71 < 72 < * - < 7, < 7,+1 < * * , 

(27)  
and the notation V ( , ) ,  J ( , )  for electric potential Vand cur- 
rent J evaluated at 7 = 7, as 

v(fl) = v(x, Y ,  Z ;  7 n ) 7  (28.a) 

J ( " )  = J ( x ,  Y ,  Z ;  7,). (28.b) 

Now, let us apply for the 7 derivative appearing on the 
left-hand side of (16) the leap-frog formula 

( V ( n + l )  - p - 1 )  ) (29) 
1 - - 

67, + 67,+1 

where 67, is the size of the (n)th 7 step along the iterative 
coordinate, 67, =def 7, - 7,- I .  Using Taylor's series ex- 
pansion [4], we can find the exact equivalence of our leap- 
frog formula (29) as 

1 ( v ( n + l )  - v ( n  - 1 ) )  

67, + 67,+1 = ( - +  av 6T,+1 - a7,, a2v 
a7 2 a72 

From (30) we observe that in the case of equal steps 67, 
= the formula (29) has second-order accuracy and 
almost second-order accuracy is achieved providing 67, + I 

- 67, is relatively small. 
Using (29) in (16) we arrive at the iterative scheme 

where the integral over the surface is evaluated using 
(20) with V = V ' , ) .  In (31), 6, is defined as 6, =der 67, 

Although, for equal 7 steps, (3 1)  implies second-order 
accuracy with respect to the 7 discretization, this scheme 

+ & , + I  = 7,+1 - 7,-1. 
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is numerically unstable [3]. It means that when we start 
our iterative process with two properly chosen fields V C o )  
and V ' ' ) ,  after some number of iteration steps a small in- 
accuracy together with round-off errors cause the process 
to start to diverge. 

To eliminate the instability of the scheme of (31) we 

Pk- I , l , , n  and Px.l,,, is equal to the value of ( J  n) ls;  and 
the current flowing between the points Pk./.,,, and Pk+ 
is equal to the (J n)ls,+,  see Fig. 2. Using the second 
expression of (4) we can find the EM power dissipated by 
x component of generalized current in the block (k, 1,  m )  
as 

where the weight factor 0 is the real number satisfying 
1 /2 5 e 5 1. Averaging with e = 1 /2 is used in the 
derivation of the stable Dufort-Frankel scheme for the 
heat-diffusion equation [3]. In the case of convergence the 
(n)th solution V'") may be closer to V ( n + l )  than to 

where the superscripts denote the values of the x compo- 
nent Of J at the left-hand "-" and the right-hand side 
" + " of the block. Using (18a) we can find these CUrrents 
as 

(X)  
Kk./.m V(" - I ); then, the averaging formula (32) gives better re- 

sults with 8 > 1 / 2  than with 8 = 1/2 .  J:k,/.m = - (Vk- I , / . r n  - Vk./,m), (37.a) 
Applying the averaging formula of (32) to the scheme h, 

( X )  
K k +  l . / ,rn of (31) the final iterative scheme is arrived at 

J:k,/,m = ~ (Vk.1.m - Vk+ 1.l.m)- (37-b) 
8 n ( A V ( n ) ) p  1 - (1  - e)8,,Ap ( n - l )  hx j/y+I) = + VP 9 1 + 8 6 , A p  1 + 86,,AP In a similar way we can find the y and z components of 

(33)  the current J and complete the calculation of the EM . ,  
power dissipated in a particular block. 

To satisfy Kirchhoff 's condition (8) we need to find the 
proper values of the potentials V ,  and V2 on both elec- 

where P = Pk,I,m is the point of the mesh, A is the spatial 
difference operator of the form 

Fk.l.m (1) ( X I  irodes satisfying (7). This can be done by starting with 
the initial values of (13c) which are the exact potentials 
for the symmetric configuration. During the iterative pro- 
cess, after each m iterations, we need to correct the po- 
tentials on the electrodes to enforced Kirchhoff's law (8). 
This can simple be carried as follows: 

( A V ) ~ i . l . , , 8  = hf (Kk./.mVk- I./.m -t K k + l . / . r n V k +  I./.m) 

, Fk ' I .m ( Y )  ( Y )  
h; (Kk./.mVk.k.l- 1.m + K k . / + l , m  V k . / +  1.m)  

+ K ? j , r n + l  ~ k . / . m + l ) >  (34) 
and A p  is the complex number given by q = 1 ,  2, (38.b) 

( X )  ( Kt/ ) ,m +h{k+ 1.l.m where the current is the current after n + m itera- 
tions flowing out from q electrode with the potential 
V p ) .  These currents are evaluated using (6),  (18a), and 

A P ~ . / . , , ,  = F k . / . m  

( Y )  ( Y )  
K k . / , m  + ~ k , / + l . r n  K?!,m + K ? j , m + l  + + 

h: h: 

(35) 
Equations (33)-(35) are valid at all the mesh points Pk,l,m 
when the formulas for effective admittances of Section IV 
are used. 

VI. NUMERICAL IMPLEMENTATION 
To obtain numerical results for the volume density of 

dissipated EM power, this quantity is calculated using (4). 
It is important to notice that in Section IV we have as- 
sumed that the current is constant on the line connecting 
two adjacent nodal points and equal to the value of the 
normal component of the current on the block-surface 
perpendicular to this line between the two nodal points. 
This means that the current flowing between the points 

(2=1)-(23). 
To start the averaging-leap-frog iterative scheme (ALF) 

described in Section V we need to know two starting val- 
ues of the electric potentials V'O) and I/(" in all mesh 
points and the size 871 of the first 7 step. One of the sim- 
plest possibilities, which proves to be very efficient in 
practice, is to start the ALF iterative scheme with 

V'O' = Vel) = 0 in all grid points, 
(39) i 871 = 0. 

The potential V ( 2 ) ,  obtained from (33) with initialization 
(39) and with some 872 > 0, will have nonzero values at 
the points adjacent to the electrode surfaces and zero val- 
ues at other grid points. When the scheme continues the 
electric potential V ( " )  will penetrate through the configu- 
ration ("diffusion") until the equilibrium situation is ar- 
rived at. 
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As a measure of the convergence, the normalized inte- 
grated square error with respect to the satisfaction of the 
original three-dimensional problem is introduced to 

I .  . 2 \  1/2  I 

where the surface integrals are evaluated using (20). In 
the case when the initialization of (39) is used, the de- 
nominator in (40) is equal to the value of the integral of 
the normal component of the initial current J ' O '  over the 
electrode surfaces. As a second measure the normalized 
power balance error is introduced as 

where P j"' is the input power fed to the electrodes 

P:"' is the power dissipated in the volume VE of the whole 
applicator configuration enclosed within the surface C, 

(43) p y '  = W(") du, 

VE 

and P r '  is the power flowing out through the surface C, 
n n  

P?' = I J Re [ V[",(J'"' * nE)*] ds. (44) 
E 

The volume density of dissipated EM power W in (43) is 
evaluated using (4), (36), and (37), the current J'"' * nE 
in (44) is calculated from (26a) and the potential Vi:' is 
found from the impedance boundary condition (9) after 
the current J'")  * nE is known. 

After some numerical experiments we have observed 
that the speed of convergence of the ALF method depends 
on the choice of the specific impedance introduced in 
(9). The most rapid convergence was achieved for /3 = 0. 
In this case the external boundary surface E becomes the 
third electrode with the electric potential equal to 0. How- 
ever, to obtain realistic results in this case, the truncation 
distance between the applicator and C should be signifi- 
cantly enlarged at the cost of an increase in the number 
of grid elements and this is not recommended in practice. 
From this point of view the Neumann boundary condition 
at C,  p = 00, which is equivalent to the J nE = 0, allows 
us to work with the minimum number of grid elements by 
locating surface C very close to the applicator. Unfortu- 
nately, in this case the convergence was much slower than 
the one for = 0. The best situation can be achieved with 
some finite value of /3 and the number of grid elements 
slightly larger than if = 00. To be able to deal with a 

nonzero and finite value of we have established some 
physical meaning of this parameter as follows. Let us as- 
sume that the potential V decays outside our grid linearly 
and reaches the value 0 within a distance d in the direction 
of outward normal nE from the surface C. With these as- 
sumptions the normal derivative of V at the surface C is 
equal to - & I .  Now, using (3b) and (9), we can find the 
value of as 

(45) 
d 
K B  

p = -. 

The physical meaning of this particular value of the spe- 
cific surface impedance is such that the whole configu- 
ration shown in Fig. 1 is continuously extended in each 
direction, and next enclosed in a Faraday box at a distance 
d from the surface C with zero electric potential. 

We finally consider the spatially dependent relaxation 
function F. Very large differences in the admittance K in 
the different tissues and the fact that all these values are 
complex numbers reduce the convergence rate of our 
scheme dramatically. To accelerate the convergence, ex- 
tensive numerical experiments have shown that a suitable 
choice for this function appears to be 

where max ( 1 K 1 ) denotes the maximum value of 1 K k , / , , ,  1 
in the configuration. The second factor in (46) is added 
for normalization purposes, while the first, spatially de- 
pendent factor, reduces large differences of the values of 
( A V )  ,/,,,, and A, ,/,,,, in different points of the grid. This 
choice of relaxation function F overcomes the decrease of 
convergence and facilitates an iterative solution for prob- 
lems where the quantity max ( I K I ) /min ( 1 K I ) exceeds 
the value of 1000 and where the complex value of K in 
one of the media of our model, namely air, is almost 
imaginary. 

The configuration of the model used in the numerical 
program is characterized in a three-dimensional integer 
array; each integer represents the type of the tissue or the 
presence of an electrode in the current block of the mesh. 
To save computational time in the evaluation of the 
expressions appearing in (19), the effective admittance 
between the points located in two different tissues is com- 
puted only once and stored in a two-dimensional complex 
array NT x NT where NT is the number of different tissues 
used in the computer model. 

VII. NUMERICAL RESULTS 
A .  Test Example 

As a test example we chose the radially layered model 
of a human thigh. This is a three-dimensional model in 
Cartesian coordinates system while in a polar cylindrical 
coordinates system the field quantities depends only on 
the axial and radial coordiantes. Using this rotational 
symmetry of the field and of the test model, the EM power 
distribution in the human thigh have been computed pre- 
viously by an integral equation method [2]. 
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At the external boundary surface E the specific imped- 
ance 0 appearing in the impedance boundary condition (9) 
was calculated from (45) where the distance d was equal 
to 5 m in the longitudinal z direction and to 0.5 m in x 
and y direction. This choice enforced the outflow of en- 
ergy through the surface E to a negligibly small value. 

The cross section of the human thigh was modeled into 
a 35 x 35 square array with h, = h, = 3.72 mm. The 
ring electrodes and the air gap between the electrode and 
the thigh model were replaced by a circular construction 
of single blocks with air and metal blocks, respectively. 
In this way, the cross section of human thigh + air-gap 
+ electrode was modeled in a 39 X 39 array. The cross 
section of the whole configuration shown in Fig. 1 was 
described by a 51 X 51 array with six rows and six col- 
umns added to each side of the thigh + air-gap + elec- 
trode array. Finally, the whole three-dimensional config- 
uration was modeled into 51 X 51 X 45 = 117045 blocks 
where the length in the z direction of each block was taken 
as h, = 8 mm. Both ring-shaped electrodes were 32 mm 
wide and were located with 200 mm distance between 
them. The electromagnetic parameters and the outer di- 
ameters of the tissue layers used in the computer model 
of the human thigh are listed in Table I. 

We performed some experiments with the choice of the 
7 step 67, and the weight factor 8 examining the speed of 
convergence of the method. A strong dependence on the 
67, has been found. It was also found that a suitable im- 
provement in convergence is achieved when 67, is grow- 
ing at the beginning of the iterative procedure and, after 
a few hundreds iterations, 67, is slightly decaying. The 
choice of the weight factor 8 has been found less critical 
provided that 1/2 I 8 I 1 .  Taking 8 < 1/2 we have 
detected that the scheme is divergent in most cases. For 
the test model described above the most efficient proce- 
dure was found to be the following one: the relaxation 
function F defined by (46) was used with the 7 step 67,, 
growing sinusoidally from 6r2 = 4 to 6 ~ ~ ' '  = 15 and next 
decreasing to 67420 = 10. The weight factor 8 was de- 
creased from 8 = 0.53 to 8 = 0.5 in the first 40 iterations 
and next was kept constant with value 8 = 0.5 up to the 
moment, when after 320 iterations 67, stopped its growth. 
In the last 100 iterations, 8 was increased again to the 
value 8 = 0.5 1 .  Iterating in this way, after 280 iterations 
the normalized integrated square error defined by (40) was 
equal to ERR1?'') = 0.24% when the normalized power 
balance error defined by (41) was equal to ERR(p2") = 
2.3%. After 420 iterations both errors were decreased to 
ERRP2" = 0.05% and ERR(p420) = 0.04%. Further iter- 
ations did not improve the ERRV error decreasing only the 
power balance error to ERR$m) = 0.01 % which seems to 
be the maximum accuracy which can be achieved in the 
single-precision arithmetic used by the computer. The 
computer program was written in Fortran. The CPU com- 
putation time of one iteration on a VAX-8250 computer 
amounts to 80 s .  

For the human thigh model, the relative EM power dis- 
tribution computed by our ALF iterative method and by 

TABLE 1 
PARAMETERS OF THE RADIALLY LAYERED THIGH MODEL USED IN 

COMPUTER PROGRAM ( f = 27.12 MHz) 

Admittance 
K =jut + U Medium 

Relative 
Out Diam. Permittivity Conductivity 

Name [ m m ]  € U [S /m]  Real ( K )  Imag ( K )  

Marrow 11.2 30.0 0.46 0.46 0.0453 

Muscle 108.0 113.0 0.61 0.61 0.17 
Fat 123.0 20.0 0.047 0.047 0.0302 
Skin 130.5 113.0 0.61 0.61 0.17 

Air 1.0 0.0000001 0.0000001 0.0015 

Bone 41.0 7.3 0.028 0.028 0.01 I 

the integral equation method (IEM) [2], is shown in Fig. 
3.  In both patterns the EM power distribution is normal- 
ized to the average dissipated EM power in the tissue 
within the domain between the rings. In the marrow, bone, 
and muscle tissues we observe an excellent agreement be- 
tween both patterns. Some discrepancies appear in the fat 
and skin tissues where higher EM power deposition is 
predicted by the ALF method. In the author's opinion, 
these higher values are mainly caused by the block-shaped 
surfaces of the thigh cylinder and ring electrodes in the 
ALF method which results in the grid model in a larger 
effective surface of the electrodes. The input capacitance 
of the whole applicator computed for the grid configura- 
tion was about 12 % higher than the capacitance found for 
the circular model used in IEM. This fact can result in a 
higher value of the electric field in the layers adjacent to 
the air-gap in the same ratio, and accordingly to (4), in 
an about 25% higher value of dissipated EM power in 
those layers. This phenomenon is visible in the skin layer 
but also in the fat layer where in the neighborhood of the 
electrodes hot spots are produced by the radial electric 
field [ l ] ,  [2]. On the other hand, the averaging differen- 
tiation in radial direction used in IEM can have a negative 
influence on the prediction of the hot-spot values com- 
puted by IEM. In this way, the discrepancies between 
presented patterns can be explained. These discrepancies 
should be significantly decreased when the model with 
larger air-gap is cmputed by the ALF iterative method. 

B. Knee Model 
After obtaining positive results with the test model of a 

human thigh, the knee joint of the left leg with the parts 
of thigh and mid-calf were modeled into 41 x 41 x 36 
= 60516 blocks. To build this model, the CT images of 
the supine left leg of a 25-year-old woman were used. The 
model was designed with the help of the Dr. D. Den Hoed 
Kliniek in Rotterdam, The Netherlands, where these CT 
images were taken. 

At first, 20 CT images with a 10 mm scanning interval 
were converted into 20 two-dimensional tissue type arrays 
with the aid of the gray scale of each image. The number 
of pixels on each CT image was reduced by the factor of 
9, ( 3  X 3 ) ,  to obtain a 41 x 41 array. The Houndsfield 
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A L F  compu ted  p a t t e r n  
Fig. 3. The EM power distribution patterns for the model of the human 

thigh computed by the ALF and IEM methods; air gap = 3.72 mm, 
electrode width = 32 mm, distance between electrodes = 200 mm, fre- 
quency = 27.12 MHz 

numbers of each CT image were automatically converted 
into a tissue types, namely, muscle, fat, or bone. In the 
next step, these tissue type images were compared to the 
original images by a professional radiologist and adjusted 
for improper tissue allocation. Furthermore, another ad- 
justment regarding marrow, cartilage, nerve, etc., were 
made with the Cross-Sectional Anatomy Atlas [5] and 
pictures found in [6]. The model thus obtained consists of 
20 slices, each of 10 mm in thickness. Finally, to extend 
this model with some truncation distance from the elec- 
trodes, the first and the last tissue type image have been 
duplicated eight times forming a continuous part of the 
thigh and mid-calf at each end of the model. 

When the 41 x 41 X 36 block model of the knee was 
completed, the pair of 30 mm wide electrodes with an 
internal diameter 135 mm was added to the model. The 
electrodes were located with 200 mm distance between 
them and adjusted in such a way that the air-gap between 
the first electrode and the thigh surface varies from 6 to 
12 mm and between the second electrode and the mid-calf 

surface varies from 12 to 21 mm. The distance between 
the external surfaces of the electrodes and the boundary 
surface C varies from 12 to 18 mm. The whole model of 
the knee joint with part of the thigh, part of the mid-calf, 
with the pair of electrodes and with some space around 
the applicator was build with 57 X 57 X 36 = 116 964 
homogeneous blocks. The electromagnetic parameters 
used for the knee model are listed in Table 11. 

At the external boundary surface E, as before, the spe- 
cific impedance /3 was calculated from (45). Now, the dis- 
tance d was equal to 0.8 m in the longitudinal z direction 
and to 0.15 m in x and y direction. With this choice of p 
the power P,  flowing out through the surface C [cf. (44)] 
was found as 16% of the input power Pi, [cf. (42)]. 

During the iterations, the relaxation function defined by 
(46) was used. The 7 step h,, was grown sinusoidally from 
8~~ = 4 to 8~~~~ = 16 and next, sinusoidally varying be- 
tween 8 and 16 with the period equal to 300 iterations. 
The weight factor 8 was parabolically decreased from 0.54 
to 0.5 within first 50 iterations, and then only slightly var- 
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TABLE I1 
PARAMETERS USED I N  COMPUTER PROGRAM FOR THE MODEL OF THE KNEE 

JOINT ( f =  27.12 MHz) 

Relative 
Permittivity Conductivity 

Medium E a [ S / m l  

Air 
Marrow 
Bone 
Fat 
Muscle 
Skin 
Ligament* 
Blood 
Nerve 
Cartilage* 

1 .o 
30.0 
7.3 

20.0 
113.0 
102.0 

17.0 
118.0 
150.0 

12.0 

0.000000 1 
0.46 
0.028 
0.047 
0.61 
0.5 
0.15 
0.8 
0.25 
0.09 

*Data estimated from the water content 

ied within the range 8 E (0.498, 0.505). After each 25 
iterations the potentials on the electrodes were corrected 
according to the relations of (38) and then the weight fac- 
tor 8 was slightly increased with the growth proportional 
to the change of the electrode potentials. Both measures 
of the convergence introduced by (40) and (4 1) were used. 
The resulting errors are presented in Table 111. 

During the first 200 iterations the potential field V was 
penetrating to all the bricks in the configuration, starting 
from the electrodes. Quite realistic values of V were es- 
tablished in the neighborhood of the electrodes while near 
the external surface C the values of V were still far away 
from the final solution. Thisxesulted in the fast decrease 
of ERRv, but the erroneous solution near the external 
boundary C led to nonsatisfaction of the power balance. 
The next 250 iterations significantly improved our solu- 
tion near the boundary surface and gave the first approx- 
imate value of the outflowing power P,. In the next 300 
iterations the results were improved again. After 750 it- 
erations we obtained the first results yielding realistic pat- 
terns of the EM power distribution in our model. Contin- 
uing this process we still observed some oscillating 
behavior of the convergence which resulted in irregular 
decreasing of the error measures ERRV and ERRp. The 
complex potentials satisfying (8) with U = 2 V were found 
as: VI = (0.85, 0.02) V for the electrode located near the 
thigh and V2 = -( 1.15, 0.02) V for the electrode located 
near the mid-calf. 

One more numerical experiment was done to check 
whether the choice of the specific surface impedance /3 of 
(45) is the proper one. The thigh part of the knee model 
was continuously extended in z direction by adding five 
more thigh cross sections. Then, the value of /3 used at 
the thigh part of the boundary surface C was computed 
from (45) with d = 0.75 m instead of 0.8 m used before. 
The results, for the extended 57 x 57 x 41 = 133209 
block model, show no large differences from the results 
of the nonextended model. The only significant difference 
found for the extended model was the decrease of the out- 
flowing power, viz., P ,  = 15.83%. The difference from 
the former results is equal to 0.73% of the input power. 

TABLE 111 
CONVERGENCE OF ALF ITERATIVE PROCESS I N  T H E  CASF OF T H E  KNEE 

MODEL 

Errors 
Outflowing 

Number of ERRY ERR, Power P ,  
Iterations from (40) from (4 1 ) from (44) 

200 1.26% 43.23% 4.43% 
450 0 .68% 10.16% 14.14% 
750 0.49% I .60% 16.11% 

I350 0 .26% 0.24% 16.48% 
1950 0 .13% 0.16% 16.53% 
2550 0 .06% 0.13% 16.56% 

This difference can be explained by the extra power dis- 
sipation in the extended part of the thigh. 

The results obtained for the knee model are presented 
in some cross sections: one sagittal cross section [ZX( 1 ) ]  
is shown in Fig. 4(a), one coronal cross-section [ZY( l ) ]  
is shown in Fig. 4(b), and four transverse cross sections 
[XU( l)-XY(4)] are shown in Fig. 4(c)-(f). On the top 
of each of these figures we present the tissue configuration 
in the current cross section with other cross sections 
marked by the solid lines. The EM power distribution pat- 
terns, normalized to the average dissipated power in the 
tissue domain between the rings, are shown below. All 
the results shown in Figs. 4(a)-(f) were obtained after 
2550 iterations and they have been compared with the re- 
sults obtained after 1350 iterations. No visible difference 
was found when examining the normalized EM power 
distribution patterns. 

The main phenomenon that can be observed from the 
presented patterns is extremely high EM power deposition 
in the muscle tissue at the back of the knee joint, see Fig. 
4(b). In the previous case of the cylindrically layered test 
model (Fig. 3), the maximum amount of the EM power 
distribution occurred in the fat tissue located close to the 
electrodes or in the skin. This maximum was approxi- 
mately two times higher than the maximum magnitude of 
the EM power distributed in the muscle tissue. In the case 
of the knee model, the most heated tissues were the sar- 
torius and biceps femoris muscles in the parts close to the 
joint. Also the semimembranous and the heads of the gas- 
trocnemius muscle were treated quite heavily, while in 
the quadriceps femoris the level of EM power deposition 
was about three times lower than in the hamstrings, see 
Fig. 4(c)-(f). A low level of EM power deposition was 
also observed in the bone-marrow tissue as well as in the 
other tissues of the knee joint. 

VIII. CONCLUSION 

We have developed an efficient iterative scheme to solve 
three-dimensional quasi-static electromagnetic field prob- 
lems with strongly inhomogeneous media. The number of 
iterations amounts to about 1000 for our present problem 
with 120 000 unknowns. Double precision arithmetic are 
not needed in the case of a required accuracy of about 1 % . 
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Tissue in ZX( 1) cross-section 
(a) 

- 

I 1  I -  

Tissue in ZY( 1) cross-section 

Tissue in X Y (  1) cross-section 

e 

EM power distribution in ZX( 1) cross-section 

e 

EM power distribution in ZY( 1) cross-section 

o 25% 5wb 75% 10wb 1% 2M)% more 

EM power distribution in XY( 1) cross-section 

Fig. 4 .  (a) Central cross section of the knee model in the sagittal plane Z X (  1 ) and the EM power distribution in ZX( 1 ) computed 
by the ALF method. (b) Cross section of the back part of the knee model in the coronal plane Z Y (  1 ) and the EM power 
distribution in Z Y (  1 )  computed by the ALF method. (c) Cross section of the lower part of thigh of the knee model in the 
transverse plane X Y (  1 ) and the EM power distribution in X Y (  1 ) computed by the ALF method. (d) Cross section of the upper 
part of knee joint of the knee model in the transverse plane X Y (  2 )  and the EM power distribution in X Y ( 2 )  computed by the 
ALF method. (e) Cross section of the lower part of knee joint of the knee model in the transverse plane X Y ( 3 )  and the EM 
power distribution in X Y (  3 )  computed by the ALF method. ( f )  Cross section of the lower part of mid-calf of the knee model 
in the transverse plane X Y ( 4 )  and the EM power distribution in X Y ( 4 )  computed by the ALF method. 

r -  T 
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Tissue in X Y ( 2 )  cross-section EM power distribution in XY( 2) cross-section 
(d) 

e 

Tissue in XY(3) cross-section EM power distribution in XY(3) cross-section 
(e) 

Tissue in XY(4) cross-section EM power distribution in XY(4) cross-section 
( f )  

Fig. 4 (Continued) 
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We are now able to determine the EM power distribution 
in three-dimensional models, provided that the 
frequency of operation is such that the quasi-static ap- 
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