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Abstract 

In sports, the use of motion-capture techniques increases, leading to a fast increase in valuable motion 

data. Automatic recognition and classification of the captured motions, provides an orderly structuring 

of the motion data. By this the users can easily retrieve specific motion data. In this thesis, we consider 

the automatic classification of vault jumps in gymnastics, captured by a high speed video camera 

system. A vault jump consists of a sequence of motions belonging to a predefined motion label, such as 

a Handspring. Then, the vault classification problem consists of automatically recognizing a vault jump in 

a video recording and assigning the appropriate label to the recording. To this end, we segment the 

vault classification problem into a sequence of vault-section classification problems. The following vault-

sections are proposed; Type of Vault (TV), Number of Somersaults (NS), Type of Somersault (TS) and 

Number of Twists (NT). The segmentation into vault-sections allows for the development of a versatile 

classification system, capable of classifying a large number of vault classes based on a limited amount of 

data. Next, we use video analysis techniques to transform a video recording into feature 

representations, or so called feature sets, which reflect the specific characteristics of the vault jump 

throughout the four vault-sections. The four vault-section feature sets are then classified, resulting in 

four vault-section classifications. The final labeling of the recording of a vault jump is by the combined 

results of the four vault-section classifications. The proposed automatic vault classification system is 

based on the vault jump recordings made by Van de Eb et al. [1] at the world championships in 

gymnastics 2010. Extensive experiments have been conducted on these recordings for evaluating 

various feature sets and classifiers per vault-section, resulting in one best performing combination per 

vault-section. Furthermore, the vault-section classifications are evaluated on their influence on the 

classification performance of a complete vault jump. In the end, an overall classification rate of 69.5%, 

with a correct classification accuracy of 90.2%, is obtained for the classification of the vault jump 

recordings. 
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1 Introduction 
In sports, the use of motion-capturing techniques increases. Top athletes use motion-capture 

information to gain more knowledge about performed movements and to assess the execution of the 

movements. Also for gymnastics, new motion-capture techniques have been developed and applied. 

This leads to a fast increase in valuable motion data. Arranging these into an orderly structure has 

proven to be very labor intensive, especially for the recognition and classification of techniques. This has 

led to an increase in the development of automatic motion classification systems [2][3]. In general, a 

classification system assigns unclassified data to one of a given number of labels according to its 

contents. An automatic motion classification system maps an unknown motion data stream to a label 

according to the motion characteristics. 

In this thesis, an automatic motion classification system for vault jumps in gymnastics will be developed. 

A vault jump consists of a sequence of motions belonging to a predefined motion label, such as a 

Handspring. Unlike some other gymnastic routines, vault jumping is performed within a confined space 

and only includes translations and rotations in two directions, namely twists and somersaults. This 

allows in principle for an optical motion-capture system, using a single camera, to capture the vault 

jumps. VU university Amsterdam, in collaboration with InnoSportLab 's-Hertogenbosch, developed a 

high speed video analysis system called the TurnTrainersCockPit (TTCP), to record and analyze 

gymnastic motions. The system is mainly used to capture motions performed on the Vault apparatus. 

The TTCP records and analyzes vault jumps in 2D and has been used at the world championships of 

artistic gymnastics 2010 in Rotterdam to record the vault jumps [1]. Furthermore, the TTCP is installed at 

the top Dutch gymnastics association Flik-Flak. The system is able to automatically record and analyze 

the vault jump characteristics, for example the flight path of the center of mass. It is however not 

capable of automatically classifying jumps into specific techniques, which would be a major timesaving 

addition to the system. 

Automatic classification systems have already been applied in trampoline jumping [2]. Furthermore, 

they have extensively been implemented in human gait and activity researches [3][4][5]. Throughout the 

years a multitude of automatic classification methods have been developed [6]. Several comparative 

and empirical evaluation studies [4][7][8] have been performed and they all conclude that the optimal 

classification method depends on the problem at hand, thus an optimal classification method is not 

known beforehand. Automatic classification methods originate from the scientific fields of pattern 

recognition and statistics and they are mostly based on statistical methods known as supervised learning 

algorithms. In pattern recognition, the goal is to assign/classify objects, or patterns, into a number of 

classes/categories. Supervised learning algorithms make use of the fact that the true class labels are 

known in advance. This knowledge is used to train and test the classification method. The principles of a 

supervised learning algorithm are as followed. From an object, or pattern, a set of numerical measures, 

known as features, is extracted by a preprocessor. This feature set is then presented to a classifier which 

maps the feature set to a class. The classifier is trained and tested by comparing the predicted class with 

the true class of the object/pattern. A well respected book in the pattern recognition world is the book 

“Pattern Recognition”, by Theodoridis et al.  [9]. In this book they propose the following design stages 

for designing an automatic classification procedure: sensor, feature generation, feature selection, 
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classifier design and system evaluation. Figure 1.1 shows a schematic representation of the design 

sequence. 

 

Figure 1.1 Basic stages for designing a classification system. Figure is from the book "Pattern Recognition" by Theodoridis et 
al. [9]. 

The classification problem of this thesis comprises the automatic assignment of vault jump recordings, 

made by the TTCP, to the corresponding motion labels with a sufficient accuracy. The automatic vault 

classification system is designed in a similar manner as the design stages proposed by Theodoridis et al. 

[9]. The classification procedure of this thesis consists of a preprocessor, classifier and evaluation 

method and will be based on the recordings database of the world championships of artistic gymnastics 

2010. In addition to the design of the classification procedure, a segmentation methodology will be 

proposed, expanding the diversity of the classification system. The classification system will contain 

jump classes from different vault types, and jump classes that are in a biophysical way much alike.  

The Code of Points, which is the rulebook by the international gymnastics federation FIG, contains 104 

different jumps. The ideal classification method to classify vault jumps must ideally be able to classify all 

jumps. Furthermore, the system must be robust against inter-performance variations, where the same 

jump is performed by different gymnasts, and intra-performance variations where a jump is performed 

multiple times by the same gymnast. Such a system also needs to be sensitive enough to make the 

distinction between jumps that are much alike. To guarantee that the optimal classification method is 

used, a multiple of preprocessors and classifiers, ranging from simple linear to complex nonlinear 

classifiers, will be designed and evaluated using the same database. The design of the preprocessors and 

classifiers will be based on the principles of supervised learning.  

This thesis is structured as follows. In Chapter 2, an introduction to vault jumping is given, including a 

detailed description of a vault exercise, the physics involved in vault jumping and a description of the 

manual classification. Chapter 3 gives a general introduction into the motion classification task of this 

thesis. The necessary elements of a motion classification system, like the database, preprocessor and 

classifier, are introduced. Furthermore, a summary of the current technologies in motion classification 

and a detailed explanation of the TTCP video analysis system is given, including the numerical 

measurements representing the motions. In Chapter 4, a detailed description of the database is given. 

Furthermore,  a segmentation methodology is proposed. Segmenting the classification problem into a 

sequence of classification problems, allows for a diverse classification system and an optimal use of the 

database. Chapter 5 gives a detailed explanation of the automatic vault classification system. For each 

vault-section, proposed in Chapter 4, different feature sets are described. Algorithms for optimizing the 

feature sets are introduced and described. Also the classifiers used in this thesis are described. Chapters 
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6 and 7 contain the evaluation experiments performed in this thesis. Chapter 6 evaluates the feature 

sets, classifiers and rejection types proposed in Chapter 5. The evaluation is done for every vault-section 

individually and will result in an optimal feature set - classifier - rejection combination for each vault-

section. Chapter 7 validates the vault classification system using the chosen feature sets from Chapter 6. 

The validation is done for the classification of a complete vault jump. In Chapter 8 we present the main 

conclusions of this thesis. In addition to the conclusions of Chapter 8, we will hold a discussion on the 

classification performances in Chapter 9. Chapter 10 ends this thesis by giving recommendations for 

future work. 
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2 Vault Jumping 
The motion classification system proposed in this thesis is developed for the gymnastics routine known 

as Vault Jumping, where athletes perform acrobatic moves while vaulting over the vault table. 

Gymnastics originates back to the ancient Olympic Games and is one of the oldest Olympic sports. 

Gymnastics, and vault jumping, is being performed at every Olympic games of the modern era starting 

from 1896 [10].  

Vault jumping includes complex dynamical movements like somersaults and twists (Figure 2.1). To 

better understand which specific motion characteristics separate one jump from the others, a general 

knowledge about the motions involved in vault jumping is helpful. In this chapter a description of a vault 

exercise is given in section 2.1. In section 2.2, an insight in the physics involved in gymnastics is given, 

with reference to previously applied studies. The vault labels by the FIG Code of Points are introduced in 

section 2.3. 

 

Figure 2.1 Axes of rotation for twists (left) and somersaults (right). Figure is from [11]. 

2.1 Description of a Vault Exercise 
The vault apparatus is included both in mens and womens gymnastics. A vault jump starts at the 

beginning of a 25 meter runway, which leads to the vaulting board and the vaulting table, and ends 

behind the vaulting table. A vault jump is defined by the sequence of motions performed in the 

following time sections: the approach, first flight phase and the second flight phase. For a good 

understanding of the physics and dynamics involved in a vault routine, each section will be addressed 

briefly. 

The approach: The approach starts at the beginning of the runway and ends at the vaulting board. The 

approach consists of the run-up towards the vaulting board and the preparation before take-off from 

the vaulting board. In the preparation phase, the gymnast may perform a hurdle step on the vaulting 

board, resulting in a front-ways take-off, or a round-off (Figure 2.2), resulting in a backwards take-off.  
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First flight phase: The first flight phase is initiated by the take-off from the vaulting board and ends 

when the gymnast hits the vaulting table. It is obligatory to hit the vaulting table only by hands. The 

gymnast is allowed to perform a quarter, half or a full twist (   ,      or     ) but is not allowed to 

perform any kind of somersaults in the first flight phase.  

Second flight phase: The second flight phase is initiated by the push-off from the vaulting table. In the 

second flight phase, the gymnast is allowed to perform a number of twists and somersaults while 

maintaining a certain body posture, see Figure 2.3 for the different body postures. Vaults with straddled 

legs are not permitted. The second flight phase ends with a landing on the mat behind the vaulting 

board. The landing must result in a standing position with the legs together. The gymnast must be facing 

towards, or away from, the vaulting table. This concludes the vault jump. 

 

Figure 2.2 Round-off entry resulting in a backwards take-off from the vaulting board. Figure is from [12]. 

 

Figure 2.3 Body postures, from left to right: Tucked, Piked, Layout. Figure is from [12]. 

2.2 Physics in Vault Jumping 
Several scientific studies have been performed to gain more insight in the kinematics of gymnastics, in 

specific vault jumping. Van der Eb et al. [1] analyzed high-speed video recordings of male and female 

gymnasts, recorded at the Rotterdam Artistic Gymnastics World Championships 2010. They showed that 

a vault routine has specific kinematic characteristics. During the run-up, male gymnasts accelerated to 

maximum velocities up to              . At the point of last foot contact to the runway, male 

gymnasts still have a velocity of               (these results are for Handspring type of vaults). For 

Tsukahara and Yurchenko type of vaults (see section 2.3 for details of these vaults) the maximum 

velocities are respectively         and               and the velocities at the point of last foot 

contact are         and              .  

Previous studies also showed that the flight trajectory of the gymnast is not only determined by the 

take-off from the vaulting board but also by the push-off from the vaulting table. The vaulting board is 

used to direct the mainly horizontal run-up speed into a combination of horizontal and vertical speed, 



10 
 

needed to clear the vaulting table and to gain enough flight time for executing somersaults and twists. 

The adjusting of the gymnasts momentum direction, by the take-off and push-off, is accompanied with 

high forces and thus accelerations. Yeadon et al. [13] created a physical two-segment model of a 

gymnast to investigate the reversal of rotation in a Hecht-vault (where the direction of the somersault 

rotation is reversed during contact with the vaulting table). By initiating the model with realistic take-off 

conditions from the vaulting board, they discovered that over half of the reversal rate is due to the flight 

trajectory in the first flight phase. We must note that currently Hecht vaults are no longer included in 

vault jumping, see [12] 

The execution of somersaults and twists in midair is made possible by the law of conservation of angular 

momentum. Cliff Frohlich et al. [11] stated that angular momentum consists of two parameters, angular 

velocity and moment of inertia, and that the total angular momentum is constant in midair. By changing 

their body posture in midair, a gymnast changes his moment of inertia and thus changes his angular 

speed, which allows him to perform somersaults and twists. 

2.3 Manual Classification 
The manual classification task comprises the manual labeling of the motions, based on the rulebook 

known as the Code of Points.  For male and female gymnastics different codes of points exist [12][14]. 

All the jumps included in the code of points for women are also included in the code of points for men, 

which consists of 104 different vault classes. The jump labels included in the vault classification system 

are according to the code of points for men. A vault is labeled by the type of vault (see Table 2.1), the 

number of performed rotations during the second flight phase and body posture during the second 

flight phase. 
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Table 2.1 Description of the five vault types. 

Vault Type Description Schematic representation 

Handspring/Yamashita Hurdle entry, Frontward take-off 

 
Tsukahara/Kasamatsu Hurdle entry, Frontward take-

off, ¼ or ½ turn in the 1st flight 
phase 

 
Yurchenko Round-off entry, backward take-

off 

 
Yurchenko ½  Round-off entry, backward take-

off, ½ turn in the 1st flight phase 

 
Yurchenko 1/1 Round-off entry, backward take-

off, 1/1 turn in the 1st  flight 
phase 
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3 Motion Classification 
The development of an automatic motion classification system includes three methodologies: the 

performance of motions, the capturing of motions and the analysis of motion-capture data. For this 

thesis, this concerns the performance of vault jumps, the capturing by high-speed video cameras and 

the analysis of the recordings. An extensive description of a vault jump was given in chapter 2. In this 

chapter the capturing of motions and a first step into the analysis of motion-capture data is given. First, 

an introduction to the terminology and principles of automatic classification is given in section 3.1 and a 

summary of the current technologies in motion classification is given in section 3.2. Subsequently, a 

description of the vault motion-capture system “TurnTrainersCockPit” is given in section 3.3 and a 

detailed description of the first analysis step is given in section 3.4.  

3.1 Automatic Classification Principle 
The automatic vault classification procedure is based on algorithms originating from the field of pattern 

recognition and statistics. Let us introduce the pattern recognition terminology and principles, where 

the terminology is the same as in the book "Pattern Recognition" by Theodoridis et al. [9]). Objects, in 

our case vault jump motion data, are known as patterns. A pattern belongs to a class and the name of 

the class is known as a label. From a pattern, different features can be extracted, this is called feature 

generation. A feature is a numerical measure of the pattern, thus a pattern is numerically represented 

by a feature set. It is up to the designer to select the features that represent the pattern the best. This is 

done by feature selection. Features are the input to the classification algorithm, known as the classifier. 

The classifier is the algorithm that maps the input, feature set, to the output, class-label. Training 

patterns are feature sets that are used for training the classifier. The training patterns are presented to 

the classifier with their accompanying true-labels. Test patterns are used to evaluate the performance of 

the classifier and are presented to the classifiers as unknown patterns. Test patterns assigned to a class-

label different from the true-label are called misclassified. A test pattern can be correctly classified, 

misclassified or rejected.  

3.2 Current Technologies 
Motion-capture data are increasingly used as input for automatic motion classification systems. 

Especially inertial sensor data and video analysis serve as input to motion classification systems [15][4]. 

Image classification methods generally focus on initialization, tracking, pose estimation, and movement 

recognition [16]. The movement recognition methods are mostly used for the analysis of gait 

parameters and identification of human movements. 

The application of automatic classification systems in gymnastics has currently not been investigated. 

However, Brock et al. [17] developed an automatic classification system for capturing, segmenting, and 

classifying trampoline routines. They used inertial sensors to capture the trampoline jumps. From the 

inertial sensor data they extracted a multitude of feature vectors. As feature selection method they 

used a variant of dynamic time warping and dynamic programming to generate motion templates. The 

classification is based on comparative measures (Euclidian    norm) and the evaluation is done by 

confusion matrices. They obtained a classification rate of 84.65%. 
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Troje [5] developed a framework that allows for gender recognition from gait data, using a linear 

classifier. They used Principal component analysis as feature selection method and revealed that the 

best classification only includes 4 components and resulted in a classification error of 7.5% (3 out of 40 

samples misclassified). Their proposed artificial gender classification procedure performed better than 

human observers, who received the same motion information via a point-light display. The artificial 

gender recognition procedure reflected a similar behavior as human vision recognition. This 

demonstrates that by designing an automatic motion classification system, also a deeper knowledge 

about the motions is obtained. 

3.3 Video Analysis 
Nowadays many different techniques exist to capture motions. Optical systems are by far the most 

commonly used, but also inertial, mechanical and magnetic sensor systems exist. The applicability of 

motion-capturing techniques is usually expressed in several properties concerning the recording 

environment, capturing volume and mobility. Considering the capturing of vault jumps in gymnastics, 

the mobility of the gymnast is of utmost importance. The motion-capturing technique may not restrict 

the mobility of the gymnast in any way. Given this requirement, optical markerless systems are most 

suitable for capturing vault jumps. Optical markerless systems are noninvasive to the gymnast and their 

capturing volume is large enough to capture vault jumps, as is done by Van der Eb et al. [1].  

Optical markerless systems generally use high-speed video cameras to capture the highly dynamical 

motions. A single camera provides 2D information about the motion. A setup with multiple cameras is 

able to capture full 3D information. For a good performance of optical markerless systems, the 

environmental conditions are of utmost importance, especially concerning the lighting conditions and 

the background. Furthermore, extensive calibration of the system is needed. A disadvantage of optical 

systems is the large overhead in setting up and calibrating the system. For the application of automatic 

vault classification, the video images also need extensive prepossessing, to segment the motion of the 

gymnast from its surroundings. Another weakness of optical markerless motion capturing systems is 

that the recorded motions are not bound to one single moving object, thus objects moving in the 

background are also observed, which will induce errors.  

The optical markerless high-speed video analysis tool “TurnTrainersCockPit” (TTCP) is developed by the 

VU Amsterdam for the analysis of gymnastic motions, specifically vault jumping. At the world 

championships artistic gymnastics 2010, the TTCP was used to record the vault jumps made during 

competition. The camera recorded the motions in the sagittal plane, with a sample frequency of 100 Hz. 

A standard direct 2D linear transformation method was used to calibrate the camera.  

3.4 Particle Measurements 
After a vault jump is captured by the TTCP, it is analyzed to segment the dynamical motions of the 

gymnast from the static background. From the segmented image, numerical measures are extracted 

that represent the motion characteristics. These numerical measures are the pattern of the vault jump. 

To generate the segmented image and vault patterns an image analysis technique known as Particle 

Analysis is used [18]. Particle analysis consists of locating groupings of connected nonzero pixels, known 
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as particles, within an image, and applying measurements, known as Particle Measurements, on these 

particles. First a threshold is used to generate a binary image, where the pixels that belong to the 

background are set to zero and the rest (foreground) is given a value of 1. The TTCP uses a low-pass 

background filter as threshold. After thresholding, binary morphological operations are applied. Binary 

morphological operations extract and alter the structure of the particle to remove discontinuities within 

the particle. By this the gymnast is represented by a single particle, see Figure 3.1. The combination of 

the thresholding and morphological operations can be seen as a function       , which defines whether 

pixel   , of frame   with coordinates        , belongs to the particle or not. From the binary image, 

particle measurements are extracted. In total 26 particle measurements are extracted. However, not 

every particle measure has proven to contain characteristic motion information, useful for automatic 

classification. For the automatic classification of vault jumps, the following particle measurements have 

proven to obtain motion characteristics: Orientation, Area, Hu Moment 1, Rotated Bounding Rectangle 

Length 1, Rotated Bounding Rectangle Length 2. Table 3.2 gives an overview of the particle 

measurements, the definition is by [18]. The sums are short hand notations, see Table 3.1 for the full 

notations of the sums. Note that Table 3.2 also includes the particle measurement     . This particle 

measurement is used for visualization of the motion characteristics in chapter 5. In addition to Table 3.2, 

a detailed description of the Orientation, Rotated Bounding Rectangle and the Hu Moment 1 will be 

given below. 

Orientation: the Orientation ( ) of the particle is defined as the angle between the line with the lowest 

moment of inertia that passes through the Center of Mass and the x-axis, where a counterclockwise 

rotation is considered positive. In Figure 3.2 the orientation is indicated by the magenta line.   is given 

in degrees and is mapped into the range of        . Due to the tangent used to calculate  , rotations 

exceeding      are also mapped into the range of        . This causes a discontinuous signal and the 

TTCP corrects for this by subtracting      each time a discontinuity occurs. 

Rotated Bounding Rectangle: the Rotated Bounding Rectangle (   ) is defined as the smallest 

rectangle that encloses the particle completely, where the orientation of the rectangle is equal to  , see 

Figure 3.2. The length of the     is called the Rotating Bounding Rectangle Length 1. The width is 

referred to as the Rotating Bounding Rectangle Length 2. Units are in pixels. 

Hu Moment 1: the Hu Moment 1 (   ) is the sum of the normalized moments of inertia about the x and 

y axis. The sum of two moments of inertia about two principle axes equals the moment of inertia about 

the third principle axis, thus the Hu Moment 1 represents the normalized moment of inertia about the 

local z-axis, which is perpendicular to the image. The Hu Moment 1 is rotational and space invariant. 

Furthermore, the Hu Moment 1 is size invariant. 
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Figure 3.1 Binary image after the application of thresholding and binary morphology operations. 

 

 

Figure 3.2 Schematic representation of the particle measurements. 

  



16 
 

Table 3.1 Full notations of the sums used in Table 3.2. 

Short hand notation Full notation 

  
 

 

   

 

 

   

 

     
 

 

   

           

 

   

 

     
 

 

   

           

 

   

 

      
 

 

   

             

 

   

 

      
 

 

   

             

 

   

 

      
 

 

   

             

 

   

 

 

Table 3.2 Overview of the Particle Measurements used in this thesis. 

Particle Measurement Definition Symbol Equation 
Area Area of the particle           

Center of Mass x X-coordinate of the particle Center of Mass          

 
 

Orientation The angle of the line that passes through 
the particle Center of Mass about which the 
particle has the lowest moment of inertia 

   

 
     

      

           
   

Moment of Inertia xx Moment of Inertia around the y-axis     
      

         

 
 

Moment of Inertia yy Moment of Inertia around the x-axis     
      

         

 
 

Norm. Moment of Inertia xx Normalized Moment of Inertia around the 
y-axis 

       
  

  

 

Norm. Moment of Inertia yy Normalized Moment of Inertia around the 
x-axis 

       

  
  

 

Hu Moment 1 Sum of the Normalized Moments of Inertia             

Rotated Bounding Rect Left X-coordinate of the leftmost rotated 
particle point 

      

Rotated Bounding Rect Top Y-coordinate of the highest rotated particle 
point 

      

Rotated Bounding Rect Right X-coordinate of the rightmost rotated 
particle point 

      

Rotated Bounding Rect Bottom Y-coordinate of the lowest rotated particle 
point 

      

Rotated Bounding Rect Length 1 Length of the rotated bounding rectangle                
 

Rotated Bounding Rect Length 2 Width of the rotated bounding rectangle                
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4 Database Description 
The automatic vault classification system is based on the Rotterdam Artistic Gymnastics World 

Championships 2010 database (WC 2010). Although the classification system should be complete not all 

the 104 vault classes from the FIG Code of Points are included in the database. Furthermore, the 

amount of data is limited and not every class is presented by 10 or more samples. In this chapter a 

segmentation methodology is described, that in principle allows for classifying a higher number of vault 

classes than the number of vault classes included in the WC 2010. In theory, the segmentation even 

allows for the classification of vault jumps not included in the FIG Code of Points, for example a 

Handspring with a double layout somersault and a double twist.  

In section 4.1, the WC 2010 database is described. Furthermore, the segmentation of the database into 

vault-sections is proposed. It is described how segmentation of a vault class into vault-section classes 

allows for a more divers classification system.  

4.1 Vault-Sections 
The database of the Rotterdam Artistic Gymnastics World Championships 2010 consists of 618 vaults 

(341 male, 277 female). The database contains 151 Handspring (81 male, 70 female), 225 Tsukahara 

(203 male, 22 female), 219 Yurchenko (53 male, 166 female) and 23 Yurchenko 1/2 (4 male, 19 female) 

types of vaults. No jumps where performed containing a Yurchenko 1/1 type of vault. See the figures 

from Table 2.1 for a schematic representation of the vault types. The database contains vaults from 45 

different classes, where 18 classes contain samples from solely female gymnasts, 14 classes contain 

samples from solely male gymnasts and 13 classes contain samples from both male and female 

gymnasts. The number of samples per class varies widely, from only 1 sample up to 82 samples. For a 

somewhat reliable classification, at least 10 samples are needed from each class. Applying this rule of 

thumb leaves only 17 classes, which covers 86.7% of the data (536 jumps), see Table 4.1. Furthermore, 

Yurchenko 1/2 type of vaults are not included in Table 4.1. The most obvious solution for this problem 

would be to enlarge the database such that every class contains 10 or more samples. However this 

proves to be a rather challenging and cumbersome approach. Furthermore, viewing each vault class as 

completely independent would be naïve, because some classes are much alike and only differ, for 

example, by half a twist. 

Instead of viewing the vaults as one time series, a vault jump can also be represented as a sequence, or 

combination, of motions, by segmenting the vault into sections. The segmentation allows the defining of 

section-classes, where the number of classes per section is lower than the number of original FIG Code 

of Points classes. The combination of the section classes matches the vault classes. By segmenting, the 

amount of samples per section class is increased, thus more combinations of section classes can be 

made. This results in a classification method capable of classifying a higher degree of FIG Code of Points 

classes. A drawback of the segmentation is that it considers each vault-section to be independent, thus 

possible relations between sections are neglected.  
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Table 4.1 Table of vault classes containing more than 10 samples. 

Performed by Type of vault Somersaults Type of somersault Twists Samples 
Male and Female Handspring 1 

1 
Tucked 
Layout 

0 
1.5 

24 
19 

Tsukahara 1 
1 

Layout 
Layout 

1 
2 

57 
68 

Yurchenko 1 
1 
1 
1 
1 

Layout 
Layout 
Layout 
Layout 
Layout 

0 
1 

1.5 
2 

2.5 

19 
66 
26 
82 
19 

Male Handspring 2 
2 

Tucked 
Tucked 

0 
0.5 

34 
13 

Tsukahara 1 
1 
2 

Layout 
Layout 
Piked 

1.5 
2.5 
0 

15 
46 
10 

Female Handspring 1 
1 

Piked 
Piked 

0 
0.5 

12 
14 

Tsukahara 1 Piked 0 12 

TOTAL: 17/45 vault classes 536 

 

The segmentation methodology consists of two segmentation parts. The first part comprises the 

segmentation of vault labels into vault-section labels. The second part comprises the segmentation of 

vault patterns (particle measurements) into vault-section feature sets, this corresponds with the feature 

generation design stage proposed by Theodoridis et al. The feature generation stage will be discussed in 

chapter 5.  

The segmentation of the vault labels into vault-section labels is done parallel to the reasoning used to 

manually classify a vault jump, namely, what type of vault is performed, how many somersaults are 

performed, what is the body posture during the somersaults and how many twists are performed, 

resulting in the following vault-sections: Type of Vault, Number of Somersaults, Type of Somersault and 

Number of Twists. In Table 4.2 the classes per vault-section, with the accompanying amount of samples, 

is given. Table 4.2 shows that for each vault-section the full set of 618 samples is used and that almost 

all the vault-section classes include more than 10 samples, except for the classes "0 somersaults" and "3 

twists". This is due to the fact that vaults including 0 somersaults are too easy for a world championships 

event, and that vaults including 3 twists are extremely difficult and can only be performed by a view top 

athletes. 
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Table 4.2 Table of vault-section classes. 

Section Classes Samples 
Type of Vault Handspring 

Tsukahara 
Yurchenko 
Yurchenko 1/2 

151 
225 
219 
23 

Number of Somersaults 0 
1 
2 

1 
559 
58 

Type of Somersault Tucked 
Piked 
Layout 

87 
62 
469 

Number of Twists 0 
0.5 
1 
1.5 
2 
2.5 
3 

132 
50 
135 
63 
158 
72 
8 
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5 Vault Classification 
The first step within the analysis of the motion-capture data, consisting of generating numerical 

measures of the high-speed video recordings, was discussed in section 3.4, resulting in the vault 

patterns. In this chapter, the analysis of motion-capture data is completed, wrapping up the design of 

the automatic vault classification system. This involves the following design steps: Feature Generation, 

Feature Selection and Classifier Design. 

In section 5.1, the second step of the segmentation methodology, proposed in section 4.1, is performed. 

For each vault-section, different regions of interest within the particle measurements are selected, 

resulting in specific feature matrices for each vault-section. For a good performance of the classification 

procedure, a feature matrix must contain a high discriminative power, meaning that each feature 

represents different jump characteristics and optimizes the separation between the section classes. 

Furthermore, in section 5.1, a physical explanation of the jump characteristics is given. Section 5.2 

covers the feature selection design stage. The feature matrices proposed in section 5.1 are  reduced by 

applying transformation mappings. Several transformation mappings are proposed to reduce the 

feature matrices to optimized feature sets. The Dynamic Time Warping transformation mapping is 

treated with special interest. The proposed algorithm is similar to the dynamic time warping algorithm 

used in the automatic classification system for trampoline jumps, by Brock et all. [17]. In section 5.3, a 

variety of classifiers is proposed. The proposed classifiers are all included in the Matlab PRTools toolbox, 

developed by The Pattern Recognition Research Group of the TU Delft [19], except for the classifier 

based on the Dynamic Time Warping mapping. 

5.1 Feature Generation 
The second step of the segmentation methodology involves the segmentation of vault patterns into 

vault-section feature matrices. This involves selecting different particle measurements to represent the 

vault-sections. However, the particle measurements do not have a high discriminative power over all the 

vault-sections. Therefore, we investigate the particle measurement data to find trends in the data that 

separate one class from the others. These trends are known as regions of interest. By this, each vault-

section is represented by a feature matrix        (equation 5.1), where   depicts the number of 

selected particle measurements and   is the number of section frames. 

   

         
   

         

          (5.1) 

As stated in section 2.1, the Type of Vault vault-section is defined by the motions performed in the 

preparation and first flight phase. The other vault-sections all occur in the second flight phase. 

Therefore, the particle measurements are firstly split between the first flight phase and the second flight 

phase. The split is made at the frame containing the last hand contact to the vaulting table, from here 

on referred to as point of last hand contact. Furthermore, the second flight phase ends at the landing, 

thus the particle measurements are cut off at the moment of first contact with the landing mat. The 

frames containing the point of last hand contact and the first contact with the landing mat are 

automatically detected by the TTCP. 
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5.1.1 Regions of Interest 

For locating the regions of interest, a visual inspection of the particle measurements is performed. The 

visual inspection consists of plotting, for all the section class samples, the particle measurements versus 

the x-coordinate of the Center of Mass (    ). To align all the samples in space, we normalize      to 

      , for each vault-section. 

Type of Vault: 

For the type of vault we only consider data occurring in the preparation and first flight phase, depicted 

by the lowercase index FFP. After investigating the particle measurement data we locate regions of 

interest within the Orientation particle measurement (    ) and the Area particle measurement (    ). 

Let us first consider     . 

Figure 5.1 shows, for all the samples of the four Type of Vault classes,      versus        
. Figure 5.1 

shows a clear distinction between Yurchenko and Yurchenko 1/2 type of vaults versus Handspring and 

Tsukahara type of vaults. The Yurchenko and Yurchenko 1/2 type of vaults show a clear linear trend that 

can easily be approximated by a first order polynomial. The Handspring and Tsukahara type of vaults, on 

the other hand, show a trend that can be approximated by a combination of linear fits. Furthermore, 

notice that the Yurchenko and Yurchenko 1/2 type of vaults perceive a rotation of approximately 

     , while the Handspring and Tsukahara type of vaults perceive a rotation of approximately      . 

Although, the perceived orientation values contain a high discriminative power, Figure 5.1 also shows a 

large inner-class variation. Normalizing      to       , resolves the inner-class variation while 

maintaining the motion characteristic shapes. However, the absolute values of the perceived orientation 

are lost, see Figure 5.2.  

Figure 5.1 and Figure 5.2 both show a clear distinction between Yurchenko and Yurchenko ½ versus 

Handspring and Tsukahara type of vaults. However, the distinction between Yurchenko or Yurchenko 

1/2 type of vaults, and Handspring or Tsukahara type of vaults, is far less clear.  

Next we consider the     . Figure 5.3 shows      versus        
. Figure 5.3 shows that the trends for 

the Handspring and Tsukahara type of vaults slightly differ. However, a high interclass variation is 

present. Figure 5.4 shows that we magnify the trends by normalizing      to       . Furthermore, it 

shows that      of the Handspring and Yurchenko type of vault drops between        
   and 

       
    . The Tsukahara and Yurchenko ½ type of vaults do not show this dip. 
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Figure 5.1 Normalized        
vs      for the four Type of Vault classes. 

 

Figure 5.2 Normalized        
vs normalized      for the four Type of Vault classes. 

 



23 
 

 

Figure 5.3 Normalized        
vs      for the four Type of Vault classes. 

 

Figure 5.4 Normalized        
vs normalized      for the four Type of Vault classes. 

  



24 
 

Number of Somersaults: 

For the Number of Somersaults section we only consider data occurring in the second flight phase, 

depicted by the lowercase index SFP. After investigating the particle measurements we locate regions of 

interest within the Orientation particle measurement (    ). Figure 5.5 shows      versus        
, for 

vaults including 1 or 2 somersaults. As stated before, the database includes only one vault where 0 

somersaults are performed, thus we will not include this in the automatic classification system. If we 

look at the perceived rotation between      at        
    , and       at        

  , we clearly 

see a distinction between the two classes. For one somersault the perceived rotation equals on average 

     . For two somersaults the perceived rotation equals on average      . 

 

Figure 5.5 Normalized        
vs      for the two Number of Somersaults classes. 

Type of Somersault: 

For the Type of Somersault section we only consider data occurring in the second flight phase. To align 

all the samples in space we normalized        
. After investigating the particle measurements we 

locate regions of interest in the Hu Moment 1 (      ), Rotated Bounding Rectangle Length 1 

(       ) and in the Rotated Bounding Rectangle Length 2 (       ) particle measurements. Let us 

first consider       . 

Figure 5.6 shows        versus        
, for the Tucked, Piked and Layout Type of Somersaults. Figure 

5.6 shows that tucked and piked somersaults perceive a steep decline after the point of last hand 

contact (       
   ), followed by an approximately constant Hu Moment 1 throughout the rest of 
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the second flight phase. The layout type of somersaults shows a minor decline. Furthermore, the Hu 

Moment 1 is not constant throughout the rest of the vault.  

Next we look at        . Figure 5.7 shows         versus        
, for the Tucked, Piked and Layout 

Type of Somersaults. If we look at Figure 5.7 we see the same trends as in Figure 5.6, for tucked and 

piked somersaults. Furthermore, notice that on average         for the layout somersaults is higher 

than that of tucked and piked somersaults. 

Finally we look at        . Figure 5.8 shows         versus        
, for the Tucked, Piked and 

Layout Type of Somersaults. Looking at Figure 5.8 reveals that         for piked somersaults is on 

average higher than that of tucked somersaults. 

 

Figure 5.6 Normalized        
vs        for the three Type of Somersaults classes. 
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Figure 5.7 Normalized        
vs         for the three Type of Somersaults classes. 

 

 

Figure 5.8 Normalized        
vs         for the three Type of Somersaults classes. 
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Number of Twists 

For the Number of Twists vault-section we only consider data occurring in the second flight phase. After 

investigating the particle measurements we locate regions of interest in the Area (    ) and in the 

       particle measurements. 

Figure 5.9 shows      versus        
, for vaults including 0, 0.5, 1, 1.5, 2 or 2.5 twists. Each class shows 

a specific trend. A higher degree of twists induces more oscillations in     . However, there is a large 

inner-class variance. To magnify the specific class trends,      is normalized to       . Figure 5.10 

shows the normalized      versus the normalized        
. 

Figure 5.11 shows        versus        
, for vaults including 0, 0.5, 1, 1.5, 2 or 2.5 twists. We notice 

that, as for     , a higher degree of twists induces more oscillations in       . However, there is a large 

inner-class variance. To magnify the specific class trends,        is also normalized. Figure 5.12 shows 

the normalized        versus the normalized        
 for all the Number of Twists classes.  

Figure 5.10 and Figure 5.12 show that the specific class trends are more refined. However, a large inner-

class variance is still present. This is due to the fact that twisting is very actor specific, meaning that 

gymnasts have different twisting styles, which are initiated at different moments within the second 

flight phase. The overall trends of the normalized      and       , maintain a positive linear relation 

between the number of oscillations and the number of twists. 

 

Figure 5.9 Normalized        
vs      for the six Type of Somersaults classes. 
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Figure 5.10 Normalized        
vs normalized      for the six Type of Somersaults classes. 

 

Figure 5.11 Normalized        
vs        for the six Type of Somersaults classes. 
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Figure 5.12 Normalized        
vs normalized        for the six Type of Somersaults classes. 

 

5.1.2 Physical Explanation 

Type of Vault: 

We can explain the differences in      by looking at what defines the Yurchenko and Yurchenko 1/2 

type of vaults from the other vault types and by looking at the recordings. First of all, Yurchenko and 

Yurchenko 1/2 type of vaults include a round-off in the preparation phase. Looking at the recordings 

reveals that when a round-off is performed, the gymnast enters the range of the camera in an upside 

down position, thus with his hands on the ground. The Handspring and Tsukahara on the other hand 

include a hurdle jump in the preparation. The recordings reveal that for Handspring and Tsukahara type 

of vaults, gymnasts enter within the range of the camera in a straight up position. For all the vault types, 

the spring board is hit feet first. Furthermore, at the point of last hand contact, a gymnast is in an upside 

down position. During a Yurchenko or a Yurchenko 1/2 type of vault, a gymnast thus performs a full 

rotation before the point of last hand contact, which corresponds with the       in     . Furthermore, 

the gymnast rotates throughout the entire FFP. For the Handspring and Tsukahara type of vaults the 

gymnast performs a half rotation in FFP, corresponding to the       in     . Furthermore, the rotation 

is initiated at the take-off from the spring board. 

For the physical explanation of the trends of the normalized     , we first notice that the deformation 

of the springboard, as well as the deformation of the vaulting table, is also picked up by the TTCP. This 

corresponds with the increase of      at        
   and        

    , see Figure 5.4. To explain the 

differences in trends, we again look at what movements separate the different type of vault classes. 
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Yurchenko 1/2 type of vaults include a 1/2 twist in the first flight phase, whereas the Yurchenko type of 

vaults includes no twists. Furthermore, Tsukahara type of vaults include a 1/4 twist in the first flight 

phase, whereas the Handspring type of vaults include no twists. As stated before, the camera records 

the motions in a sagittal plane. When the gymnast performs no twists, only the sagittal plane of the 

body of the gymnasts is observed. When a 1/4 twist is performed the observation of the body of the 

gymnasts has moved from the sagittal plane (side view) to the coronal plane (front view). For an upright 

posture the area of the body in the coronal plane is larger than the area of the body in the sagittal plane. 

This results in the non-dipping effect in the Tsukahara and Yurchenko 1/2 type of vaults. 

Number of Somersaults: 

The perceived rotation of approximately       for one somersault vaults, corresponds with the 

rotation made between the point of last hand contact and the landing. This includes a full        

rotation from the somersault, plus a rotation from an upside down position to a landing on the feet. 

Vaults including two somersaults perceive a rotation of approximately      . This is a full        larger 

than vault including one somersault, corresponding to the extra somersault made. Furthermore, the two 

somersaults samples show a slightly steeper decline in     , indicating that the rotational speed is 

higher. We notice a wide spread in Figure 5.5. All the class samples show a similar perceived rotation. 

However, some samples are initiated a      lower. This corresponds to the perceived rotation in the 

Type of Vault vault-section. Normalizing eliminates this spread. However, this also eliminates the 

absolute values of the perceived rotations in the second flight phase. 

 Type of Somersaults: 

The decline in       , for tucked and piked somersaults, is explained by the physical interpretation of 

the Hu Moment 1, namely that the Hu Moment 1 represents the normalized moment of inertia about 

the local z-axis, which is perpendicular to the image. Furthermore, the Hu Moment 1 is rotational, space 

and size invariant. The Hu Moment 1 however does vary by the shape of the object, thus by different 

types of somersault postures. The decline in tucked and piked somersaults is due to the shape transition 

of a stretched body posture, at the point of last hand contact, to the tucked or piked body posture. The 

decline in         is due to same shape transition. Furthermore, the length of the body of the gymnast 

is for a layout somersault significantly greater than that of tucked and piked somersaults, thus on 

average,         is greater for layout somersaults than for tucked and piked somersaults.  

The difference in         between piked and tucked somersaults is due to the width difference 

between the piked body posture and that of the tucked body posture in the x-y plane. The width 

difference is due to the stretched legs in the piked body posture. 

Number of Twists: 

The linear relation between the oscillations and the number of twists can be explained by the same 

physics as the non-dipping effect in      of the Tsukahara and Yurchenko 1/2 type of vaults. A 1/2 twist 

includes the rotation of the body from the sagittal plane to the coronal plane and back, which 

corresponds to a single oscillation. 
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5.2 Feature Selection 
In the feature selection stage, the vault-section feature spaces have been reduced to a minimum by 

transforming the feature space   to feature set  ,                           , where   is 

the length of the reduced feature set  . This is done to reduce the dimensionality of the problem, thus 

simplifying the problem. The reduction is performed by transformation mappings. 

5.2.1 Transformation Mappings 

For this thesis, three different transformation mappings are applied, namely: Delta Features, Principal 

Component Analysis and Dynamic Time Warping. Each mapping has its own strengths and weaknesses 

for reducing the feature space while obtaining a high discriminative power. Before the mappings are 

applied, the temporal variations between samples are resolved. Applying a Splines-fit to the regions of 

interest and sampling the spline-fit (N=100) ensures equal sizes for all the vault-section matrices,  

             . Furthermore, the particle measurements are prone to noise. The Principal 

Component Analysis mapping, and possibly the Dynamic Time Warping mapping, are biased by the 

noise, decreasing the discriminative power of the resulting feature sets. To smoothen the particle 

measurements, a low pass third-order Butterworth filter (cut-off frequency of 0.2) is applied to the 

regions of interest, before presenting these to the relevant transformation mappings. 

Delta Features: 

The Delta Features mapping is the most simple, where we use reasoning and simple algebraic operators 

to generate new features from the vault-section feature matrices. The delta feature set is optimized by a 

leave-one-out principle, using the classification error estimate as performance measure. The advantage 

of this mapping is that the Delta Features represent the physical explanations of the regions of interest, 

while reducing the feature space to a minimum. However, this method is not robust against interclass 

and local time variations.  

Principal Component Analysis (PCA): 

PCA converts the possibly correlated feature space into a feature set of uncorrelated features, called 

principal components. PCA assumes that the highest discriminative principal components are found in 

the direction of the largest variance of the feature space. Furthermore, the principal components are 

constrained to be orthogonal to each other. In this thesis, the principle components cover 99% of the 

variance within the regions of interest. This mapping is susceptible to inner-class variations. To improve 

the PCA mapping, the regions of interest are firstly smoothened by the Butterworth filter. 

Dynamic Time Warping: 

The third mapping uses a dynamic programming algorithm known as Dynamic Time Warping (DTW) to 

generate Motion Templates (MT). This mapping does not reduce the feature space but it generates a 

general motion template, representing the motion characteristics. The general motion template is used 

as reference feature matrix for the Dynamic Time Warping classifier, discussed in section 5.3. It is 

thought that the DTW algorithm is more robust against inner-class and local variations. The drawback of 

this mapping is that it is computational expensive. For a better understanding of the power of the DTW 
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mapping, a general discussion of the DTW algorithm and Motion Templates is given below. For a 

detailed discussion of the DTW algorithm and Motion Templates, we refer the reader to [17] [20].  

DTW algorithm: DTW locally stretches and compresses feature matrix   to match a reference feature 

matrix     . A similarity measure is used to compare   to     , resulting in a cost matrix. For this thesis 

the Euclidian distance,      , is used as similarity measure. By dynamic programming, an optimal 

warping path can be subtracted from the cost matrix. By summing up the cost values that lie within the 

warping path, the warping cost is obtained. The warping path is optimized to obtain the minimal 

warping cost. The optimal warping path defines the local stretching and compressing of feature matrix 

 , to best match     . The warping cost defines the similarity of   to     , where a low warping cost 

defines a high level of similarity.  

Motion Templates: A motion template is created by choosing one class sample to act as reference, use 

DTW to transform the remaining class samples such that they best match the reference sample and 

average over all the transformed samples. By this the motion template summarizes the motion 

characteristics of all the class samples. However, the motion template is biased by the reference sample. 

To ensure that the general motion template represents the motion characteristics best and is not biased 

by the reference class sample, each class sample is chosen as reference signal, resulting in an equal 

amount of motion templates as class samples. The motion template with the minimal cost represents 

the motion characteristics best. While the motion template summarizes the motion information of all 

the class samples it is still biased by the reference sample. The biasing is resolved by iteratively 

repeating the process, where the resulting motion templates from the previous iteration step serve as 

input for the current iteration step. This iteration continues until the minimal warping cost becomes 

smaller than 0.5. 

5.2.2 Reduced Feature Sets 

The application of the transformation mappings results in a reduced feature set. Due to the 

computational expense of the Dynamic Time Warping mapping, we only applied DTW for vault-sections 

containing a high inner-class variation in the regions of interest. The delta features below are the 

optimized delta features. 

 Type of Vault (TV): 

The regions of interest for the Type of Vault vault-section are      and     . Furthermore, the 

normalized      and      show specific trends. 

Delta Feature: The delta features     are extracted from      and      and are shown in Table 5.1.  

     represents the perceived rotation and is defined by the difference between      at 95% and 5%. 

     represents the average of      between 60% and 80%.      defines the relative difference 

between the area of the body before hitting the vaulting board and after take-off from the vaulting 

board.  
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Table 5.1 Delta Feature Set for the Type of Vault vault-section. 

Feature Definition 

            
       

 

               
                

               
                         

              

 

PCA: The PCA mapping is based on the normalized regions of interest. Before applying the PCA mapping, 

the regions of interest are filtered by the Butterworth filter. The PCA mapping transforms the feature 

space into 14 principle components,                       . 

Dynamic Time Warping: The DTW mapping was performed on two different feature sets. The first 

feature set includes the normalized      and     . This results in the general template        . The 

second feature set includes the Butterworth filtered normalized      and     . This results in the 

general template        . On average, 9 iterations are needed to obtain a warping cost lower than 

0.5. The DTW mapping is computational expensive and slow, with an average computational time of 

over 2 hours.  

Number of Somersaults (NS): 

The region of interest for the Number of Somersaults vault-section is     . 

Delta Feature: The delta features     are shown in Table 5.2.      represents the perceived rotation 

during the second flight phase. It is defined by the difference between      at 1% and 99 %.     ,      

and      cover the difference in rotational speed between vaults including one and two somersaults. 

Table 5.2 Delta Feature Set for the Number of Somersaults section. 

Feature Definition 

            
       

 

           
 

            
 

            
 

 

PCA: The PCA mapping transforms the butterworth filtered      into 3 principle components, 

                     . 

Dynamic Time Warping: Because the inner-class variance in the regions of interest is small, no DTW 

mapping is generated. 
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Type of Somersault (TS): 

The regions of interest for the Type of Somersault vault-section are        ,         and        . 

Delta Feature: The delta features     are shown in Table 5.3.      and      represent the decline 

in       .      and      represent the decline in        .      represents the average width of the 

body posture during 30% to 70% of the second flight phase.  

Table 5.3 Delta Feature Set for the Type of Somersaults section. 

Feature Definition 

               
                 

               
                             

                   

                
                  

                
                               

                     

                  
                     

 

PCA: The PCA mapping transforms the Butterworth filtered        ,         and         into 20 

principle components,                       . 

Dynamic Time Warping: Because the inner-class variance in the regions of interest is small, no DTW 

mapping is generated. 

Number of Twists (NT): 

The regions of interest for the Number of Twists vault-section are the normalized      and       .  

Delta Feature: No meaningful delta features can be generated due to the large inner-class variance in 

the regions of interest. 

PCA:  The normalized      and        show a large inner class variance. To explore the discriminative 

power of the discriminative power of      and       , the PCA mapping is applied to each particle 

measurement individually, as well as to the combined feature set.  The three resulting feature sets are 

composed of 15, 15 and 27 principal components, see Table 5.4. 

Table 5.4 Principal Component Analysis Feature sets for the Number of Twists section. 

Regions of interest PCA feature set 
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Dynamic Time Warping: The DTW mapping was performed on two different feature sets. The first 

feature set includes the normalized      and normalized        was used. This resulted in the general 

template        . The second feature set includes the Butterworth filtered normalized      and 

normalized       . This results in the general template        . 

5.3 Classifiers 
In this thesis, the Matlab PR-toolbox (version 4.2.1), developed by The Pattern Recognition Research 

Group of the TU Delft [19], is used for the design of 12 standard classifiers. The default settings of the 

PR-toolbox are kept during the design of the classifiers. Furthermore, a 13th classifier, which is not 

included in the PR-toolbox, is designed, allowing for a classification based on the Dynamic Time Warping 

algorithm. The classifiers range from simple linear classifiers, to complex, highly nonlinear classifiers. 

The data sets, presented in this thesis, are presented to the classifiers with equal class priors, except for 

the DTW classifier. 

The classifier is the algorithm that maps the reduced feature sets to the vault-section class labels. The 

mapping consists of generating a decision boundary, which separates the feature space into class 

regions. Each class region is assigned a class label. In addition to the class labels proposed in section 4.1, 

a “reject” class is added to each vault-section. The decision boundary is extended with a rejection 

boundary, by applying the Matlab function rejectc (included in the PR-toolbox). rejectc supports 

ambiguity rejection and outlier rejection. The differences between ambiguity rejection and outlier 

rejection are best shown in Figure 5.13 and Figure 5.14. Samples that lie between the rejection 

boundary and the decision boundary are labeled as rejected. The complexity of the rejection curve 

depends on the complexity of the classifier. Outlier rejection is preferred over ambiguity rejection, 

where only samples that lie near the decision boundary are rejected. However, the used version of the 

PR-toolbox does not yet support outlier rejection for every classifier. Furthermore, outlier rejection risks 

overfitting the rejection boundary for higher order feature spaces. Therefore, in chapter 6, both 

rejection types will be evaluated.  

In this study 13 classifiers have been evaluated. Below, an overview of these classifiers with their default 

settings and the accompanying PR-toolbox matlab functions (between brackets) are given. For a detailed 

explanation of the classifiers the reader is referred to the PR-toolbox website [19], or the book “Pattern 

Recognition”, by Theodoridis et al. [9]. 

1) Nearest Mean Classifier (nmc). A linear classifier that is insensitive to class priors but feature 

scaling sensitive. Outlier rejection is not supported. 

2) Linear Bayes Normal Classifier (ldc). A linear classifier which assumes normal densities of the 

classes. No regularization parameters are added to the classifier. Outlier rejection is supported. 

3) Fisher's Least Square Linear Classifier (fisherc). A linear classifier that uses least squares for 

determining the separation boundary. The classifier is non-density based, thus does not make 

use of the prior class probabilities. Outlier rejection is not supported. 

4) Logistic Linear Classifier (loglc). A linear regression classifier which uses logistic (sigmoid) 

functions to maximize the likelihood criterion. Outlier rejection is not supported. 
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5) Support Vector Classifier (svc). Quadratic programming is used to optimize the classifier. The 

non-linearity of the classifier is determined by the kernel. A linear kernel is used as the default 

kernel. 

6) Optimized Parzen Classifier (parzenc). A nonlinear classifier which is optimized in the smoothing 

parameter. Outlier rejection is supported. 

7) K-Nearest Neighbor Classifier (knnc). A nonlinear classifier, defining the classification boundary 

by the distance between a training sample and its k-nearest neighbors. K is optimized with 

respect to the leave-one-out error on TRN. Outlier rejection is not supported. 

8) Quadratic Bayes Normal Classifier (qdc). A quadratic classifier which assumes normal densities 

of the classes. No regularization parameters are added to the classifier. Outlier rejection is 

supported. 

9) Parzen Density Based Classifier (parzendc). A parzen classifier for which the smoothing 

parameters are based on the estimate of the class densities from TRN. Outlier rejection is 

supported. 

10) Decision Tree Classifier (treec). Uses a binary splitting criterion. Default is purity, no pruning. 

11) Linear perception classifier (perlc). A linear perception with learning rate 0.1. The weights of the 

perception are set by random initialization. Training is performed until convergence of the 

classifier, or when the maximum number of iterations is met (default 100). The classifier is 

updated by batch processing. 

12) Back-Propagation Trained Feed-Forward Neural Network Classifier (bpxnc). A neural network 

that is trained using the back-propagation algorithm. Number of neurons per hidden layer is set 

to 5. Weight initialization is performed by Matlab’s neural network toolbox. Tuning is performed 

on TRN. Training is stopped when the number of iterations exceeds twice that of the best 

classification result.  

13) Dynamic Time Warping Classifier. Dynamic time warping is used, where the general motion 

templates serve as references. The classification is made on the minimal warping cost. The 

difference between the lowest and the second lowest warping cost is depicted by DIFF. A 

sample is rejected if DIFF is lower than 5% of the lowest warping cost. 
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Figure 5.13 Scatter plot of Number of Somersault features       (x-axis) and     . The blue plusses indicate the TRN samples 

belonging to the 1 Somersault label. The red asterisks indicate the TRN samples belonging to the 2 Somersaults label. The 
black line indicates the decision boundary made by the Linear Bayes Normal Classifier. The red striped lines indicate the 

rejection boundaries made by ambiguity rejection. 5% of the TRN samples is rejected. 

 

 

Figure 5.14 Scatter plot of Number of Somersault features       (x-axis) and     . The blue plusses indicate the TRN samples 

belonging to the 1 Somersault label. The red asterisks indicate the TRN samples belonging to the 2 Somersaults label. The 
black line indicates the decision boundary made by the Linear Bayes Normal Classifier. The red striped lines indicate the 

rejection boundaries made by outlier rejection. 5% of the TRN samples is rejected. 



38 
 

6 Vault-section Evaluation 
The remaining chapters of this thesis cover the final design step of the classification system; the 

evaluation of the system.  This includes the evaluation of the vault-section classifications and the 

validation of the classification system for complete vault jumps. 

In chapter 5, several reduced features sets (Delta feature set, PCA feature set, DTW feature set) were 

proposed for each vault-section. Furthermore, different rejection types and a variety of classifiers have 

been given. The combination of these defines the performance of the classification. For classifying the 

entire motion sequence of a vault jump, the overall performance is bound by the classification 

performances of the vault-sections, meaning that the performance is at most as good as the 

performance of the vault-section with the lowest classification rate. Therefore, we will first evaluate the 

classification performance of each vault-section individually, before evaluating the classification of a 

complete vault.  

This chapter treats the experiments applied on the WC 2010 database to evaluate the individual vault-

sections.  The evaluation experiments are introduced in section 6.1. A general evaluation process is 

designed to choose the best reduced feature set - classifier - rejection combination per vault-section. 

The best combination involves the reduced feature set that best represents the characteristics of the 

vault-section-classes, and the classifier - rejection combination that is best able to separate the vault-

section-classes while keeping the number of rejections low. In section 6.2, the general evaluation 

process is applied to the vault-sections “Type of Vault”(TV), “Number of Somersaults”(NS), “Type of 

Somersault”(TS) and “Number of Twists”(NT) resulting in the best combination per vault-section. Section 

6.3, concludes the vault-section evaluation. The four chosen vault-section combinations are used for the 

validation of the system in chapter 7. 

6.1 Evaluation Experiments 
The classification method must be trained and evaluated on independent feature sets. To provide this, 

the database is divided into an even split by randomly assigning 50% of the samples to the training 

database (TRN) and 50% of the samples to the evaluation database (TST). Table 6.1 shows the number 

of training and testing samples per vault-section-class. The 50-50 split allows us to investigate what 

influence the individual components of the reduced feature set - classifier - rejection combination have 

on the classification performance of the combination. This is done by computing the classification error 

estimate, rejection curve and confusion matrix for each combination.  

The classification error estimate is the average of the misclassification rates per class. This experiment 

gives an initial estimate of the classification error without rejection. The rejection curve relates the 

classification error on TST to the percentage of rejected samples of TRN, thus gives insight in the 

rejection properties of the reduced feature set - classifier combination. The classification error does not 

include rejected samples of TST, thus is based on the count of misclassified samples and the total 

number of classified samples. Furthermore, the rejection curve is based on ambiguity rejection. The goal 

of an automatic vault classification system is to reduce the manual labor in classifying vault jumps 

recordings, thus a high rejection rate is inadequate.  
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To give a more detailed insight in the classification performance and the rejection rate on TST, confusion 

matrices are computed. Confusion matrices relate the true class labels (rows) to the estimated class 

labels (columns). The diagonal entries of the confusion matrix, where the estimated class labels 

correspond to the true class labels, indicate the correct classified samples. The off-diagonal entries 

indicate the misclassified samples. The confusion matrices are applied to the reduced feature set - 

classifier combinations and to the reduced feature set - classifier - rejection combination. 

The experiments on the 50-50 split database result in a selection of best performing combinations per 

vault-section. However, using only 50% of the data for training, results in an underestimation of the 

classification performance. Naturally, the best classification performance is obtained by using all data for 

training. However, using the same data for testing results in an overestimation of classification 

performance. To give a trustworthy estimation of the overall classification performance, bootstrapping 

experiments are performed. In bootstrapping, 10 randomly drawn samples from the WC 2010 database 

are used as test samples and the remaining samples are used for training. This ensures that the 

classifiers are trained in the optimal way. However, only using 10 samples for testing results in an 

unreliable error estimate. To give a reliable error estimate, the process is repeated 100 times, where for 

each repetition a new set of test samples is drawn and the classifiers are retrained. Drawback of 

bootstrapping is that it becomes extremely slow when applied to the computational expensive DTW-

mapping. Furthermore, bootstrapping only gives information about the overall classification 

performance, thus provides no insight in the discriminative power of the individual components of the 

reduced feature set - classifier - rejection combinations. We will therefore use bootstrapping as 

validation method for the best performing combinations of the 50-50 split experiments. Remember that 

the 50-50 spit experiments do give insight in the discriminative power of the individual components of 

the reduced feature set - classifier - rejection combinations. 

Table 6.1 Table of training and testing samples per vault-section class. 

Vault-sections Vault-section-classes Training samples, total=306 Test samples, total = 303 

Type of Vault 
(TV) 

Handspring 
Tsukahara 
Yurchenko 
Yurchenko 1/2 

83 
100 
112 
11 

67 
115 
109 
12 

Number of 
Somersaults (NS) 

1 
2 

273 
32 

278 
25 

Type of 
Somersault (TS) 

Tucked 
Picked 
Layout 

46 
28 
232 

40 
34 
229 

Number of Twists 
(NT) 

0 
0.5 
1 
1.5 
2 
2.5 

66 
25 
68 
32 
79 
36 

65 
25 
67 
31 
79 
36 
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6.2 Vault-Section Results 
In this section we apply for each vault-section individually the previously mentioned evaluation 

experiments. This includes the computation of the error estimate, rejection curve and confusion matrix 

on the 50-50 split database, and the validation by bootstrapping. For ease of the reader, only the 

combinations that perform best in the 50-50 split and bootstrapping experiments will be treated. A 

summary of the results is given in Appendix A.  

The bootstrap results include the correct classification rates (with and without rejection), 

misclassification rates (with and without rejection) and the rejection rate.  

6.2.1 Type of Vault (TV) Classification 

The TV-50-50 split experiments show (Appendix A.1) that the best results for the TV vault-section are 

provided by the Delta Feature mapping-Logistic Linear Classifier-Ambiguity rejection combination (   -

LOGLC-Amb5% = 16 misclassifications, 14 rejections), the PCA feature set-Linear Bayes Normal Classifier-

Ambiguity rejection combination (     -LDC-Amb5% = 8 misclassifications, 23 rejections), and the 

general template 1 feature set-Dynamic Time Warping classifier-Diff rejection combination (       -

DTW-Diff5% = 11 misclassifications, 11 rejections). All reduced feature set - classifier - rejection 

combinations show acceptable rejection and misclassification rate. The        -DTW-Diff5% 

combination does not outperform the other combinations. Due to the computational expense involved 

in this combination, we did not evaluate this combination in the TV-bootstrap experiments. 

Table 6.2 shows the results of the bootstrap experiments. It shows that the      -LDC-Amb5%  

combination results in the lowest misclassifications rate while maintaining an acceptable rejection rate. 

Table 6.2 TV-Bootstrap experiment results (1000 test samples). 

Reduced 
feature set - 
classifier- 
combination 

Correct 
classification 
rate (%) 

Mis-
classification  
rate (%) 

Rejection 
type 

Correct 
classification 
rate with 
rejection (%) 

Mis-
classification  
rate with 
rejection (%) 

Rejection 
rate (%) 

   -LOGLC 91.7% 8.3% Ambiguity 
(5%) 

89.8% 6.7% 3.5% 

     -LDC 95.2% 4.8% Ambiguity 
(5%) 

91.2% 3.1% 5.7% 

 

6.2.2 Number of Somersaults (NS) Classification 

The NS-50-50 split experiments show (Appendix A.2) that all the reduced feature set - classifier - 

rejection combinations performed adequately in classifying the 1 and 2 somersaults classes, indicating a 

high discriminative power of the region of interest (    ) and well separated classes in the feature 

space (see Figure 5.13 and Figure 5.14). As stated in section 4.1, we do not include the 0 somersaults 

class in the classification system. However, novice gymnasts generally perform vaults including 0 

somersaults. These vaults are considered to be outliers, therefore, outlier rejection is preferred to 

ambiguity rejection for the NS vault-section. Furthermore, not all the classifiers support outlier rejection 

(Out). The best classification performances given by the combinations that include outlier rejection are 
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given by the Delta Feature set-Linear Bayes Normal Classifier-Outlier rejection combination (   -LDC-

Out5%, 0 misclassifications, 23 rejections), and the PCA mapping-Parzen density classifier-Outlier 

rejection (     -PARZENDC-Out5%, 0 misclassifications, 11 rejections). 

Table 6.3 shows the results of the NS-bootstrap experiments. The high number of training samples 

during bootstrapping in combination with the high discriminative power of      allows for lowering the 

rejection rate during training. The NS-bootstrap results show that the    -LDC-Out1% combination 

performs best.  

Table 6.3 NS-Bootstrap experiment results (1000 test samples). 

Reduced 
feature set - 
classifier 
combination 

Correct 
classification 
rate (%) 

Mis-
classification  
rate (%) 

Rejection 
type 

Correct 
classification 
rate with 
rejection (%) 

Mis-
classification  
rate with 
rejection (%) 

Rejection 
rate (%) 

   -LDC 99.9% 0.1% Outlier 
(1%) 

98.1% 0.1% 1.8% 

     -PARZENDC 99.5% 0.5% Outlier 
(1%) 

97.0% 0.2% 2.8% 

 

The high performance of all reduced feature set - classifier combinations indicates a high discriminative 

power in the regions of interest (    ). This is substantiated by the fact that the PCA mapping is able to 

cover 99% of the variance in only three principal components. The    -LDC-Out1% combination 

performs better than the      -PARZENDC-Out1% combination. Furthermore,     is preferred to 

      because of the preserved physical interpretation of the feature set. 

To check the rejection properties of the    -LDC combination, a rejection experiment was performed. 

In this experiment the    -LDC combination is trained on the complete database for both outlier and 

ambiguity rejection. The excluded sample containing 0 somersaults serves as test sample. When 

ambiguity rejection was applied, the test sample is labeled “2 somersaults”. Using outlier rejection 

results in a successful rejection of the test sample. 

6.2.3 Type of Somersault (TS) Classification 

The TS-50-50 split experiments show (Appendix A.3) that for the classification of the TS vault-section the 

Delta feature set-Quadratic Bayes Normal Classifier-Outlier rejection combination (   -QDC-Out5%, 10 

misclassifications, 17 rejections), the Delta feature set-Parzen Density Classifier-Ambiguity rejection 

combination (   -PARZENDC-Amb5%, 6 misclassifications, 22 rejections), the PCA feature set-k-nearest 

neighbor classifier-Ambiguity rejection combination (     -KNNC-Amb5%, 14 samples misclassified, 2 

samples rejected) and the PCA feature set-Parzen classifier-ambiguity combination (     -PARZENC-

Amb5%, 1 misclassifications, 44 rejections). 

Table 6.4 shows the results of the bootstrap experiments. It shows that the misclassification rate, as well 

as the rejection rate, is best for    -QDC-Out5%. While the misclassification rate of      -KNNC-

Amb5% is lower than that of    -QDC-Out5%, the rejection rate of      -KNNC-Amb5% is much 
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higher. Lowering the rejection rate during training did not lower the rejection rate of the      -KNNC-

Amb combination. 

Table 6.4 TS-Bootstrap experiment results (1000 test samples). 

Reduced 
feature set - 
classifier 
combination 

Correct 
classification 
rate (%) 

Mis-
classification  
rate (%) 

Rejection 
type 

Correct 
classification 
rate with 
rejection (%) 

Mis-
classification  
rate with 
rejection (%) 

Rejection 
rate (%) 

   -QDC 
 

96.1% 3.9% Outlier  
(5%) 

91.8% 2.8% 5.4% 

   -PARZENDC 93.7% 6.3% Ambiguity 
(5%) 

87.0% 2.2% 10.8% 

     -PARZENC 92.1% 7.9% Ambiguity 
(5%) 

88.9% 4.6% 6.5% 

     -KNNC 96.8% 3.2% Ambiguity 
(5%) 

65.6% 1.2% 33.2% 

 

The bootstrap experiments show that the generalization performance of the k-nearest neighbor 

classifier with outlier rejection is low. In general, more complex classifiers risk overfitting the rejection 

boundary if applied to higher order feature spaces. It is thought that the rejection boundary of KNNC 

does not only separate the different classes, it also separates clusters of equal classes. By this, a class 

region is not confined to one cluster but exists of numerous clusters. Samples that lie outside the 

clusters are rejected. This is substantiated by the results of the NT and TV 50-50 split experiments. Why 

KNNC performed adequately in the TS-50-50 split experiment is unclear. 

6.2.4 Number of Twists (NT) Classification 

As stated in section 5.2, due to the high inner class variations in the NT-regions of interest no meaningful 

Delta Features could be derived to determine the number of performed twists in the second flight 

phase. Furthermore, to thoroughly investigate the discriminative power of the regions of interest (    , 

      ) the PCA transformation mapping is applied to the regions of interest separately and combined, 

resulting in three PCA feature sets. In addition to this, two DTW mappings where applied. 

The NT-50-50 split experiments (Appendix A.4) show that the Parzen classifier performed optimal for all 

PCA mappings. Furthermore, lowering the rejection rate during training significantly lowers the rejection 

rate of test samples with a minor increase in the amount of misclassifications. Overall, the       -

PARZENC-Ambiguity combination performs best for the classification of the number of twists. 

The NT-bootstrap experiments give the same result as the 50-50 split experiments, namely that the best 

performance is provided by the PCA3 feature set-Parzen classifier-Ambiguity rejection combination 

(      -PARZENC-Amb1%, 13 misclassifications, 63 rejections). 

  



43 
 

6.3 Conclusion 
By the 50-50 split experiments, we have gained insight into the discriminative power of the regions of 

interest, as well as the discriminative power of the reduced feature sets. Furthermore, the bootstrap 

experiments give a valid estimate of  the overall classification performances of the individual vault-

section classifications. The main results are as followed. 

The Delta feature mapping is best for the NS and TS vault-sections, which show a low inner-class 

variance in their regions of interest. Furthermore the regions of interest of NS and NT are represented 

by signals with a low degree of fluctuations. This allows for defining low dimensional delta feature sets 

(        ,         ) that contain a high discriminative power. The Delta features are based on 

simple algebraic operations and are therefore less powerful for regions of interest containing a 

fluctuating signal or high inner-class variances. 

Both the TV and NT vault-sections regions of interest include fluctuating signals, accompanied b a high 

inner-class variance. The PCA mapping used in this thesis, includes a Butterworth filter, which 

smoothens the regions of interest and reduces the inner-class variance. Instead of focusing on the inner-

class variance, the PCA mapping now focuses on the fluctuations in the regions of interest, which define 

the different vault-section-classes. The vault-section evaluation experiments show that the PCA mapping 

performs best for the TV and NT regions of interest.  

The      -LDC-Amb5%,    -LDC-Out1%,    -QDC-Out5% and       -PARZENC-Amb1% 

combinations turn out to be the best performing combinations of all tested combinations, and are thus 

applied in the complete vault classification evaluation. Table 6.5 shows the bootstrap experiment results 

of these four best performing vault-section combinations. All the combinations show a misclassification 

rate below the 5% (with rejection). The correct classification rate without rejection for the NT 

combination is the lowest (88.9%), thus the best performance of the complete vault classification 

system is at most capable of correctly classifying 88.9% of all samples. 

Table 6.5 Summary of the bootstrap results of the four best performing vault-section combinations. 

Best 
performing 
vault-section 
combination 

Correct 
classification 
rate (%) 

Mis-
classification  
rate (%) 

Rejection 
type 

Correct 
classification 
rate with 
rejection (%) 

Mis-
classification  
rate with 
rejection (%) 

Rejection 
rate (%) 

TV:             -LDC 95.2% 4.8% Ambiguity 
(5%) 

91.2% 3.1% 5.7% 

NS:                 -LDC 
 

99.9% 0.1% Outlier  
(1%) 

98.1% 0.1% 1.8% 

TS:                -QDC 
 

96.1% 3.9% Outlier  
(5%) 

91.8% 2.8% 5.4% 

NT:                  -        
PARZENC 

88.9% 11.1% Ambiguity 
(1%) 

75.7% 2.7% 21.6% 
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7 Classification Evaluation 
In chapter 4, the vaults of the WC 2010 database are segmented into vault-sections. In chapter 5, 

regions of interest are proposed which represent the motion characteristics of the vaults. Furthermore, 

the regions of interest are transformed in feature representations (reduced feature sets) by 

transformation mappings. In chapter 6, we evaluate the reduced feature set - classifier - rejection 

combinations per vault-section. Based on the discriminative power of the combinations, the      -

LDC-Amb5%,    -LDC-Out1%,    -QDC-Out5% and       -PARZENC-Amb1% combinations where 

chosen to represent the motion characteristics of the vault-sections best.  

In this chapter, the classification problem is expanded from the classification of individual vault-sections 

to the classification of a complete vault jump. The classification system is validated by the bootstrapping 

approach in section 7.1.      -LDC-Amb5%,    -LDC-Out1%,    -QDC-Out5% and       -PARZENC-

Amb1% combinations are used to classify the vault-sections. A complete vault is classified by 

consecutively classifying the vault-sections. The resulting label is checked with the true label provided by 

the FIG code of points. Section 7.2 concludes the chapter. 

7.1 Results Vault Classification 
We will first evaluate the classification performance of the combined vault-sections classification system 

for all test samples. The vaults with label ‘Yurchenko-0somersaults-layout-0twists” and “Tsukahara-

1somersault-layout-3twists” are excluded from the database, because the 0somersaults and 3twists 

section-classes are not included in the section-classifiers. This leaves 43 different vault classes to be 

classified. This test gives an estimation of the overall performance of the system for complete vault 

classification. Furthermore, by examining the misclassifications, we acquire insight into the influence of 

the individual vault-sections on the performance of the combined vault-section classification. The 

system is evaluated by bootstrapping. In total 1000 repetitions are made, where for each repetition 10 

test samples are randomly drawn. If either of the vault-sections is misclassified, the complete vault is 

misclassified. Likewise for the rejection label. This implies that the performance of the classification 

system is at most as good as the performance of the NT vault-section.  

In addition to the evaluation of the overall performance of the system, we also evaluate the influence of 

the segmentation methodology on the classification performance. We do this by comparing the 

classification performance of the combined vault-section classification with the classification 

performance of a system that does not segment the vault into vault-sections, from here on referred to 

as the conventional classification system. The evaluation includes only the 17 classes that contain 10 or 

more samples as test samples. The evaluation is done by bootstrapping. 
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7.1.1 Combined Vault-Sections Evaluation 

In Table 7.1, the classification results are given for the combined vault-sections classification. The last 

column of Table 7.1 gives the percentages of the correctly classified test samples (Correct-Classified), 

wrongly classified test samples (Miss-Classified), rejected samples which would otherwise be correctly 

classified (Correct-Rejected) and rejected samples which would otherwise be wrongly classified (Miss-

Rejected). 

Table 7.1 shows that the maximum correct classification rate for classifying complete vault jumps is 

80.0%. However, no rejection is applied, resulting in a classification error rate of 20.0%. By applying 

rejection, 69.5% of the vaults are classified and 30.5% rejected. Of the classified vaults, 90.2% is 

correctly classified and 9.8% is misclassified. Of the rejected vaults, 56.7% are negative rejections and 

43.3% are positive rejections. From the 43 presented vault classes to the system, 35 vault classes are 

classified (32 classes correctly). However, the 11 vault classes that cannot be correctly classified included 

only 1 sample in the WC2010 database. It is thought that if a higher number of test samples are 

presented to the combined system, it is capable of correctly classifying samples from all 43 classes. 

Table 7.1 Results complete vault classification, with and without rejection. 

System setup Total classified/rejected (%) Classified as (%) 
Complete Vault Classification. No rejection. 
     -LDC 
   -LDC 
   -QDC 
      -PARZENC  
 

100%/0% 
 

Correct-Classified  
(80.0%) 

Correct-Rejected  
(0%) 

Miss-Classified  
(20.0%) 

Miss-Rejected  
(0%) 

Complete Vault Classification. With rejection. 
     -LDC-Ambiguity(5%) 
   -LDC-Outlier(1%) 
   -QDC-Outlier(5%) 
      -PARZENC(1%) 

69.5%/30.5% 
 

Correct-Classified  
(62.7%) 

Correct-Rejected  
(17.3%) 

Miss-Classified  
(6.8%) 

Miss-Rejected  
(13.2%) 

 

To gain more knowledge about the weaknesses of the classification system, we investigate the 

misclassifications of the full vault classification, with and without rejection. The results are given in Table 

7.2. 
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Table 7.2 Contribution of the vault-sections to the misclassification rate. Percentages are for total amount of 
misclassifications. The true number of misclassified samples is given between brackets. 

 
System setup 

Percentage per section/multiple sections 

TV NS TS NT TV+TS TV+NT TS+NT 

No rejection, 
20.0% miss 
(2004 samples) 

18.8% 
(377) 

1.1% 
(23) 

15.7% 
(314) 

50.8% 
(1018) 

2.6% 
(53) 

5.7% 
(115) 

5.2% 
(104) 

With rejection, 
6.8% miss 
(618 samples) 

30.0% 
(204) 

3.1% 
(21) 

25.0% 
(170) 

36.3% 
(247) 

0.00% 
(0) 

0.00% 
(0) 

5.7% 
(39) 

 

Table 7.2 shows that for the system without rejection, the majority of the misclassifications is due to the 

misclassification of the number of twists, as was to be expected from the Vault-section evaluation. 

Furthermore, 13.5% of the misclassifications are due to the misclassification of multiple sections. When 

rejection is applied, the 20% misclassification rate of the total amount of samples, is reduced to 6.8% 

(681 of the 10000 samples misclassified). Table 7.2 shows that the rejection has the most effect on the 

number of misclassified NT-samples, this is conform the vault-section experiments, which showed the 

highest number of rejections for the NT vault-section. Furthermore, the rejection rejects all the samples 

that where misclassified by both TV and TS/NT. 

7.1.2 Segmentation Evaluation 

For training the combined section-classification, all the samples of the WC2010 database are used, 

except for the 0 somersaults samples and the 3 twists samples. Note that also the 26 vault classes 

containing less than 10 samples are used for training. For the training the conventional classification 

system, only the samples of the 17 test classes are used. For the conventional classification system we 

used the LDC-ambiguity rejection classifier combined with the PCA transformation mapping applied to 

all the vault-section regions of interest. The PCA-transformation mapping showed proper results in all 

vault-section experiments of chapter 6. The LDC-Ambiguity rejection performed best. On average, the 

PCA mapping is able to cover 99% of the variance by 11 principal components. During training, 5% of the 

training samples is rejected by the ambiguity rejection. 

The combined vault-sections classification system classifies 71.8% of the samples. Of the classified 

samples, 92.4% is correctly classified and 7.6 % is misclassified. In total, 66.4% of the test samples is 

correctly classified, 5.4% is misclassified and 28.2% is rejected. 

The conventional classification system classifies 94.5% of the samples. Of the classified samples, 74.7% is 

correctly classified and 25.3% is misclassified. In total, 70.5% of the test samples is correctly classified, 

23.9% is misclassified and 5.5% is rejected.  
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7.2 Conclusion 
The segmentation evaluation experiments show that the performance of the combined system exceeds 

the performance of the conventional system. The combined vault-sections evaluation experiments show 

that the combined system is not only a more robust system but also a more versatile system. 

By the full classification experiments we have gained insight into the performance of the four vault-

section classifiers combined to classify a complete jump. The combined vault-sections evaluation 

experiments show that the combined system has a classification rate of 69.5% with a correct 

classification accuracy of 90.2%. As was expected from the vault-section experiments, the majority of 

the rejections and misclassifications are due to the classification of the number of twists.  

For the 17 classes that contain more than 10 samples, the combined system has a classification rate of 

71.8% with a correct classification accuracy of 92.4%.  
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8 Conclusion 
In this thesis we have investigated the application of automatic classification for vault jumps based on 

video analysis. The classification is based on the combined classification of four vault-sections; Type of 

Vault, Number of Somersaults, Type of Somersaults, Number of twists. The automatic vault classification 

system transforms the video images to feature representations, which reflect the specific characteristics 

of different vault jumps in the four vault-sections. Then, the four vault-section feature sets are 

automatically classified using for each vault-section a specific feature set - classifier - rejection 

combination. Then the complete vault label is determined by the combination of the estimated vault-

section labels. 

The main contributions of this thesis are as follows. Firstly, we developed a segmentation methodology, 

which allows for a versatile classification system. By segmenting the classification of a complete vault 

jump into a sequence of vault-section classifications we are able to use a limited amount of data (618 

samples, 45 vault classes) to design a classification system capable of classifying a higher number of 

vault classes then the number of vault classes included in the training database. Secondly, we 

systematically analyzed the individual vault-sections on their classification performance. Here, our goal 

was to find the best performing feature set - classifier - rejection combination for each vault-section. To 

this end, we introduced multiple feature sets, multiple classifiers and multiple rejection types for each 

vault-section. We then thoroughly investigated all feature set - classifier - rejection combinations on 

their discriminative power by which we choose a best combination per vault-section. Thirdly, we have 

investigated the overall performance of the chosen vault-section classification combinations in 

classifying a complete vault jump.  

By using the techniques presented in this thesis we obtained a complete vault classification rate of 

69.5% (90.2% correct, 9.8% misclassified). The experiments conducted in this thesis showed that the 

Number of Somersaults vault-section has the highest classification performance and accuracy, followed 

by the Type of Somersault and Type of Vault vault-section. With a classification rate of 78.4% (96.6% 

correct, 3.4% misclassified) and a rejection rate of 21.6%, the Number of Twists vault-section has the 

lowest classification performance. This is due to high inner-class variances in the examined feature sets, 

arising from different twisting-styles and background noise in the video images.  
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9 Discussion 
This chapter contains the discussions of the vault-section evaluation and classification evaluation 

experiments. This discussion focuses mainly on the classification of the Number of Twists vault-section, 

which proves to be the weakest vault-section classification. Furthermore, a discussion will be held on 

the practical implementation of the system in a gymnasium. 

The quality of the classification system is directly influenced by the quality of the video images and the 

quality of the performed vaults. A poorly executed vault is more difficult to classify than a well 

performed one. A recording is considered of high quality if the entire vault motion, from the preparation 

phase to the landing, is captured with a low degree of background noise. As stated in section 3.4, the 

video analysis system “TurnTrainersCockPit” (TTCP), focuses on the dynamical motions of the gymnast 

performing a vault jump. The majority of the movements on the background are excluded reducing the 

background noise. However, objects moving in the background that cross paths with the movements of 

the gymnast in the foreground are not excluded and induce errors. Thus a high degree of background 

movements results in a low quality video recording.  

The bootstrap experiments of the vault-section evaluation show that the Number of Twists vault-section 

classification, consisting of the       -PARZENC-Amb1% combination, produces a classification rate of 

78.4% (96.6% correct, 3.4% misclassified) and a rejection rate of 21.6%. If no rejection is applied, 88.9% 

of the test samples is correctly classified, leaving 11.1% to be misclassified. To gain insight in the 

misclassifications of the system, we will investigate the confusion matrices of the       -PARZENC-

Amb1% combination. The confusion matrices, with and without rejection, are given in tables 9.1 and 

9.2. The confusion matrix without rejection shows two trends in the misclassifications. Firstly, all classes 

contain samples that are confused with the 0 Twists class. Secondly, the remaining misclassification lie 

near the diagonal of the confusion matrix.  

As stated in section 5.1, the twist classes are characterized by the number of oscillations included in the 

normalized observed area and Hu Moment 1 particle measurements of the second flight phase (    , 

      ). Furthermore, normalizing the particle measurements to [-1,1] stresses the oscillations. An 

oscillation results from the transition of the observed body from the sagittal plane, through the coronal 

plane, back to the sagittal plane. The amplitude of the oscillations in      is determined by the ratio 

between the observed area in the sagittal plane and the coronal plane. The amplitude of the oscillations 

in        is determined by the ratio between the observed shape of the body in the sagittal plane and 

the coronal plane. The high confusion rate with the 0 Twists class, indicates that for some samples the 

amplitudes are too small to be recognized by the classification system. It is thought that deviations from 

the layout body posture and gender physiques play a role in the decrease of the amplitudes. For 

example, the area and shape of the tucked body posture in the sagittal plane does not differ much from 

the area and the shape in the coronal plane. Also, female gymnasts have a more slender physique in the 

coronal plane and a broader physique in the sagittal plane, than male gymnasts. Furthermore, female 

gymnasts often put their hair in a knot or ponytail which increases the observed area in the sagittal 

plane. These factors decrease the amplitude of the oscillations. 
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The confusions near the diagonal of the confusion matrix indicate that NT-classes that differ by half a 

twist are confused. This indicates that some oscillations are obscured and lose their distinctive power. 

Maintaining a constant layout body posture during twisting results in characteristic distinctive 

oscillations. Throughout the majority of the second flight phase the body posture is constant. However, 

just after the moment of last hand contact with the vaulting table and just before the landing, the body 

posture is not constant. In general, twisting is initiated by tucking in the arms after the last hand contact 

with the vaulting table. To prepare for landing, the twisting motion is stopped by stretching out the 

arms. These changes in body posture, obscure the twists made during the initiation and completion of 

the second flight phase.  

By the segmentation of the vault jump into vault-sections and basing the classification of the vault jump 

on the combined classification of the vault-sections we assumed the vault-sections to be independent. 

The combined vault-section evaluation experiments, conducted in section 7.1.1, showed no direct 

relation between the misclassification of one of the vault-sections and the classification performance of 

the other vault-sections. However, this does not exclude the presence of correlations between the 

motions performed in the first flight phase and the second flight phase. After all, these are linked. For 

example, Tsukahara vaults include a ¼ twist in the first flight phase, resulting in a sideways push-off 

from the vaulting table, while the other vault types result in a forward or backward push-off, see the 

figures in Table 2.1. A gymnast is not allowed to land sideways, thus Tsukahara vaults always include an 

additional ¼ twist in the second flight phase, for example ¾ twists is labeled as ½ twist. 

The vault classification system of this thesis is based on the recordings of the vault jumps performed at 

the world championships in gymnastics of 2010. This implies that all the vault jumps are performed by 

professional gymnasts with a near perfect execution. This increases the discriminative power of the 

feature sets. Furthermore, the recordings are of high quality with a low amount of background 

movements.  

For a one-to-one implementation of the classification system developed in this thesis in a gymnasium, 

the setup of the TTCP system in the gymnasium is required to be identical to the setup of the world 

championships. This implies that the video images made in the gymnasium are of equal quality as the 

world championships, thus have a low degree of background noise, but most of all have an equal 

capturing volume.  

In general, the recordings made in a gymnasium are of a lower quality than the recordings of the world 

championships. The amount of background motions in a gymnasium is generally higher and the 

capturing volume of the video cameras often differs from that of the world championships setup, thus a 

direct implementation of the developed classification system would result in unreliable classifications. 

The design methods used in this thesis can serve as guidance in modifying the classification system to 

the TTCP setup in the gymnasium. This includes regenerating the feature sets and retraining the 

classifiers.  
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Table 9.1 Confusion matrix of       -PARZENC, based on TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw True: Correct: 

0 twists 62 2 1 0 0 0 65 95.4% 

0.5 twists 3 22 0 0 0 0 25 88.0% 

1 twists 6 2 55 4 0 0 67 82.1% 

1.5 twists 1 0 0 26 2 2 31 83.9% 

2 twists 3 1 0 0 67 8 79 84.8% 

2.5 twists 3 0 0 0 2 31 36 86.1% 

Total: 78 27 56 30 71 41 303 86.7% 
 

Table 9.2 Confusion matrix of       -PARZENC-Amb1%, based on TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw Rejected True: Correct: 

0 twists 38 1 0 0 0 0 26 65 97.4% 

0.5 twists 1 13 0 0 0 0 11 25 92.6% 

1 twists 1 0 32 0 0 0 34 67 97.0% 

1.5 twists 1 0 0 14 1 0 15 31 87.5% 

2 twists 0 0 0 0 47 1 31 79 97.9% 

2.5 twists 0 0 0 0 0 22 14 36 100% 

No label 0 0 0 0 0 0 0 0 - 

Total: 41 14 32 14 48 23 131 303 95.4% 
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10 Recommendations 
The classification system developed in this thesis proves the concept of automatically classifying vault 

jumps based on video analysis. However, there is room for improvement.  

To improve the robustness of the classification system, we recommend to include more training data to 

ensure that all the vault-section classes are represented by an sufficient equal amount of training 

samples. To improve the completeness of the classification system, we recommend to expand the 

classification system with the 0 somersaults NS-class, 3 twists NT-class and the Yurchenko 1/1 TV-class. 

By this the classification system should be able to classify all the 104 vault-classes from the FIG Code of 

Points.  

The experiments conducted in this thesis show that the most room for improvement lies in the 

classification of the Number of Twists vault-section. While the observed area and the Hu Moment 1 

particle measurements prove to contain the highest discriminative power of all particle measurements 

included in this thesis, the discussion held in chapter 9, implies that the discriminative power is not high 

enough. Furthermore, the particle measurements are too sensitive to background noise. This results in a 

low correct classification rate. 

By expanding the capturing volume of the TTCP system with an additional camera, which records the 

vault motions in a front view, a 3-D capturing volume is obtained. It is thought, that by relating the video 

images of the two cameras to each other, more distinctive particle measurements can be computed. 

Front view recordings not only provide more information about the motion characteristics of a vault 

jump, they also provide information about the observed background noise in side view recordings. It is 

expected that the background motions observed by one camera are not observed by the other camera, 

thus a correction can be made for the background noise. However, the correction cannot be made if one 

of the cameras observes a background motion and at the same time the other camera observes a 

different background motion. This will still induce errors. 

Relating the particle measurements of two camera’s to each other to distinguish specific vault 

characteristics is expected to be a challenging task. One of the challenges to be overcome is the fact that 

some particle measurements of front view recordings are influenced by multiple vault-sections. For 

example, the area and Hu moment 1 particle measurements of front view recordings are not only 

influenced by the body posture and twisting motions, but also by somersault motions and flight 

trajectory. It is thought that by including the x-CoM, y-CoM and orientation particle measurements of 

side view recordings in the relation between the observed area of front and side view recordings and 

the relation between the Hu moment 1 particle measurements of front and side view recordings, a 

correction can be made for the influence of somersaults and flight trajectory on the observed area and 

Hu moment 1 particle measurements of front view recordings. 

To summarize; we believe that expanding the capturing volume with a front view camera allows for 

more distinctive feature sets and a better classification performance. However, generating these feature 

sets will prove to be a challenging task. 
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Appendix A 

A.1  TV-50-50 Split Experiment Results 
In this appendix the results of the best performing classifier - rejection combinations per reduced 

feature set are given for the 50-50 split experiments for the Type of Vault (TV) vault-section. The results 

are given in Table A.1.1, which is partitioned as follows. The first two columns indicate the reduced 

feature set - classifier combination. The third column gives the classification error estimate without 

rejection. The fourth column gives the total number of misclassifications. The fifth column indicates 

which rejection type is used. The sixed column gives the total number of misclassifications with 

rejection. The last column gives the number of rejected samples. In addition to Table A.1.1, the 

confusion matrices of the best performing (highlighted) classifier - rejection combinations per feature 

set are given in tables A.1.2 to A.1.7. The confusion matrices are based on the test samples of the TV-50-

50 split experiments (TV-TST). The percentages given in the last column of the confusion matrices, 

indicate the true correct classification rate per class. 

Table A.1.1 TV-50-50 experiment results for the Type of Vault vault-section (over 303 test samples). 

Reduced 
feature set 

Classifier Classification 
error estimate 
(%) 

Total 
misses 

Rejection 
type (5%) 

Total misses 
with 
rejection 

Rejected 

Delta Feature (   ) LDC 7.3% 28 Outlier 24 13 

LOGLC 8.0% 23 Ambiguity 16 19 

QDC 7.3% 28 Outlier 23 13 

PARZENDC 7.1% 27 Ambiguity 16 23 

Principal 
Component 
Analysis (     ) 

NMC 7.0% 22 Ambiguity 16 15 

LDC 5.1% 17 Ambiguity 8 23 

SVC 9.0% 19 Ambiguity 15 24 

PARZENC 4.8% 16 Ambiguity 6 49 

PARZENDC 7.5% 25 Ambiguity 4 56 

Dynamic Time 
Warping (   ) 

        5.3% 17 Ambiguity* 11 11 

        7.5% 22 Ambiguity* 17 9 

 *DTW rejection is based on 5% difference between the lowest two costs, not 5% of the TRN data. 

Table A.1.2 Confusion matrix of    -LOGLC, based on TV-TST. 

True class 
labels 

Estimated class labels Total 

Handspring Tsukahara Yurchenko Yurchenko ½ True: Correct: 

Handspring 60 6 1 0 67 89.6% 

Tsukahara 11 104 0 0 115 90.4% 

Yurchenko 0 0 105 4 109 96.3% 

Yurchenko ½  0 0 1 11 12 91.7% 

Total: 71 110 107 15 303 92.0% 
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Table A.1.3 Confusion matrix of    - LOGLC-Ambiguity, based on TV-TST. 

True class 
labels 

Estimated class labels Total 

Handspring Tsukahara Yurchenko Yurchenko 
½ 

Rejected True: Correct: 

Handspring 55 4 1 0 7 67 82.1% 

Tsukahara 7 97 0 0 11 115 84.3% 

Yurchenko 0 0 105 3 1 109 96.3% 

Yurchenko ½  0 0 1 11 0 12 91.7% 

No label 0 0 0 0 0 0 - 

Total: 62 101 107 14 19 303 88.8% 
   

Table A.1.4 Confusion matrix of      -LDC, based on TV-TST. 

True class 
labels 

Estimated class labels Total 

Handspring Tsukahara Yurchenko Yurchenko ½ True: Correct: 

Handspring 58 8 1 0 67 86.6% 

Tsukahara 4 110 0 1 115 95.7% 

Yurchenko 1 1 106 1 109 97.2% 

Yurchenko ½  0 0 0 12 12 100% 

Total: 63 119 107 14 303 94.9% 
 

Table A.1.5 Confusion matrix of      -LDC-Ambiguity, based on TV-TST. 

True class 
labels 

Estimated class labels Total 

Handspring Tsukahara Yurchenko Yurchenko 
½ 

Rejected True: Correct: 

Handspring 56 4 1 0 6 67 83.6% 

Tsukahara 0 100 0 1 14 115 87.0% 

Yurchenko 1 1 105 0 2 109 96.3% 

Yurchenko ½  0 0 0 11 1 12 91.7% 

No label 0 0 0 0 0 0 - 

Total: 57 105 106 12 23 303 89.7% 
 

Table A.1.6 Confusion matrix of    -       , based on TV-TST. 

True class 
labels 

Estimated class labels Total 

Handspring Tsukahara Yurchenko Yurchenko ½ True: Correct: 

Handspring 57 6 3 1 67 85.1% 

Tsukahara 1 114 0 0 115 99.1% 

Yurchenko 4 1 103 1 109 94.5% 

Yurchenko ½  0 0 0 12 12 100% 

Total: 65 115 106 14 303 94.7% 
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Table A.1.7 Confusion matrix of    -        with rejection (diff>5%), based on TV-TST. 

True class 
labels 

Estimated class labels Total 

Handspring Tsukahara Yurchenko Yurchenko 
½ 

Rejected True: Correct: 

Handspring 55 6 1 0 5 67 73.1% 

Tsukahara 1 113 0 0 1 115 93.9% 

Yurchenko 3 0 102 0 4 109 92.7% 

Yurchenko ½  0 0 0 11 1 12 91.7% 

No label 0 0 0 0 0 0 - 

Total: 59 119 103 11 11 303 87.9% 
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A.2  NS-50-50 Split Experiment Results 
In this appendix the results of the best performing classifier - rejection combinations per reduced 

feature set are given for the 50-50 split experiments for the Number of Somersaults (NS) vault-section. 

The results are given in Table A.2.1, which is partitioned as follows. The first two columns indicate the 

reduced feature set - classifier combination. The third column gives the classification error estimate 

without rejection. The fourth column gives the total number of misclassifications. The fifth column 

indicates which rejection type is used. The sixed column gives the total number of misclassifications with 

rejection. The last column gives the number of rejected samples. In all combinations, the single 

misclassification consisted of a confusion between a sample of the 1 somersaults class with the 2 

somersaults class. 

Table A.2.1 NS-50-50 split experiment results for the Number of Somersaults vault-section (over 303 test samples). 

Reduced 
feature set 

Classifier Classification 
error 
estimate (%) 

Total misses Rejection 
type (5%) 

Total misses 
with rejection 

Rejected 

Delta Feature 
(   ) 

LDC 0.18% 1 Outlier 0 23 

PARZENC 0.18% 1 Outlier 0 27 

QDC 0.18% 1 Outlier 1 22 

PARZENDC 0.18% 1 Outlier 0 41 

Principal 
Component 
Analysis (     ) 

LDC 0.18% 1 Outlier 0 18 

PARZENC 0.18% 1 Outlier 0 18 

PARZENDC 0.18% 1 Outlier 0 11 

BPXNC 0.18% 1 Outlier 1 23 
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A.3  TS-50-50 Split Experiment Results 
In this appendix the results of the best performing classifier - rejection combinations per reduced 

feature set are given for the 50-50 split experiments for the Type of Somersault (TS) vault-section. The 

results are given in Table A.3.1, which is partitioned as follows. The first two columns indicate the 

reduced feature set - classifier combination. The third column gives the classification error estimate 

without rejection. The fourth column gives the total number of misclassifications. The fifth column 

indicates which rejection type is used. The sixed column gives the total number of misclassifications with 

rejection. The last column gives the number of rejected samples. In addition to Table A.3.1, the 

confusion matrices of the best performing (highlighted) classifier - rejection combinations per feature 

set are given in tables A.3.2 to A.3.9. The confusion matrices are based on the test samples of the TS-50-

50 split experiments (TS-TST). The percentages given in the last column of the confusion matrices, 

indicate the true correct classification rates per class. 

Table A.3.1 TS-50-50 split experiment results for the Type of Somersaults vault-section (over 303 test samples). 

Reduced 
feature set 

Classifier Classification 
error 
estimate (%) 

Total 
misses 

Rejection type 
(5%) 

Total misses 
with rejection 

Rejected 

Delta Feature 
(   ) 

LDC 8.0% 17 Outlier 12 12 

LOGLC 8.4% 15 Outlier 11 14 

QDC 6.7% 16 Outlier 10 17 

PARZENDC 7.3% 14 Ambiguity 6 22 

Principal 
Component 
Analysis (     ) 

LDC 8.3% 23 Outlier 20 8 

PARZENC 11.8% 16 Ambiguity 1 47 

KNNC 13.4% 16 Ambiguity 14 2 

QDC 21.1% 24 Outlier 9 45 

 

Table A.3.2 Confusion matrix of    -QDC, based on TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked True: Correct: 

Layout 219 9 1 229 95.6% 

Piked 1 32 1 34 94.1% 

Tucked 1 3 36 40 90.0% 

Total: 221 44 38 303 93.2% 
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Table A.3.3 Confusion matrix of    -QDC-Outlier , based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked Rejected True: Correct: 

Layout 209 5 1 14 229 91.3% 

Piked 0 31 1 2 34 91.2% 

Tucked 1 2 36 1 40 90.0% 

No label 0 0 0 0 0 - 

Total: 210 38 38 17 303 90.8% 
   

Table A.3.4 Confusion matrix of    -PARZENDC, based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked True: Correct: 

Layout 222 6 1 229 96.9% 

Piked 1 31 2 34 91.2% 

Tucked 1 3 36 40 90.0% 

Total: 224 40 39 303 92.7% 
 

Table A.3.5 Confusion matrix of    -PARZENDC-Ambiguity, based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked Rejected True: Correct: 

Layout 138 2 0 44 229 60.1% 

Piked 0 10 1 23 34 29.4% 

Tucked 0 1 24 15 40 60.0% 

No label 0 0 0 0 0 - 

Total: 183 13 25 82 303 49.8% 
 

Table A.3.6 Confusion matrix of      -PARZENC, based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked True: Correct: 

Layout 225 3 1 229 98.3% 

Piked 3 26 5 34 76.5% 

Tucked 2 2 36 40 90.0% 

Total: 230 31 42 303 88.3% 
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Table A.3.7 Confusion matrix of      -PARZENC-Ambiguity , based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked Rejected True: Correct: 

Layout 205 1 0 23 229 89.5% 

Piked 0 19 0 15 34 55.9% 

Tucked 0 0 31 9 40 77.5% 

No label 0 0 0 0 0 - 

Total: 205 20 31 47 303 74.3% 
 

Table A.3.8 Confusion matrix of      -KNNC, based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked True: Correct: 

Layout 227 1 1 229 99.1% 

Piked 5 24 5 34 70.6% 

Tucked 2 2 36 40 90.0% 

Total: 234 27 42 303 86.6% 
 

Table A.3.9 Confusion matrix of      -KNNC-Ambiguity, based on TS-TST. 

True class 
labels 

Estimated class labels Total 

Layout Piked Tucked Rejected True: Correct: 

Layout 227 1 1 0 229 99.1% 

Piked 3 24 5 2 34 70.6% 

Tucked 2 2 36 0 40 90.0% 

No label 0 0 0 0 0 - 

Total: 210 38 38 17 303 86.6% 
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A.4  NT-50-50 Split Experiment Results 
In this appendix the results of the best performing classifier - rejection combinations per reduced 

feature set are given for the 50-50 split experiments for the Number of Twists (NT) vault-section. The 

results are given in Table A.4.1, which is partitioned as follows. The first two columns indicate the 

reduced feature set - classifier combination. The third column gives the classification error estimate 

without rejection. The fourth column gives the total number of misclassifications. The fifth column 

indicates which rejection type is used. The sixed column gives the total number of misclassifications with 

rejection. The last column gives the number of rejected samples. In addition to Table A.4.1, the 

confusion matrices of the best performing (highlighted) classifier - rejection combinations per feature 

set are given in tables A.4.2 to A.4.9. The confusion matrices are based on the test samples of the NT-50-

50 split experiments (NT-TST). The percentages given in the last column of the confusion matrices, 

indicate the true correct classification rates per class. 

Table A.4.1 NT-50-50 split experiment results for the Number of Twists vault-section (over 303 test samples). 

Reduced feature 
set 

Classifier Classification 
error 
estimate(%) 

Total 
misses 

Rejection type Total misses 
with rejection 
(5%) 

Rejected 

Principal Component 
Analysis       
(      ) 

PARZENC 21.8% 65 Ambiguity 33 64 

KNNC 20.3% 55 Ambiguity 0 303 

QDC 33.9% 82 Outlier 54 77 

PARZENDC 29.9% 91 Ambiguity 39 89 

Principal Component 
Analysis        

(      ) 

PARZENC 24.3% 61 Ambiguity 30 61 

KNNC 24.7% 61 Ambiguity 0 303 

QDC 37.1% 85 Outlier 53 75 

PARZENDC 30.6% 75 Ambiguity 47 49 

Principal Component 
Analysis 
              

(      ) 

FISHERC 32.4% 80 Ambiguity 71 13 

PARZENC 13.3% 40 Ambiguity(5%) 6 131 

Ambiguity(1%) 13 63 

KNNC 14.9% 39 Ambiguity 0 303 

PARZENDC 24.5% 67 Ambiguity 8 194 

Dynamic Time 
Warping (   ) 

        28.0% 74 Ambiguity* 50 40 

        23.2% 67 Ambiguity* 36 54 

*DTW rejection is based on 5% difference between the lowest two costs, not 5% of the TRN data. 
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Table A.4.2 Confusion matrix of       -PARZENC, based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw True: Correct: 

0 twists 58 3 3 1 0 0 65 89.3% 

0.5 twists 3 21 1 0 0 0 25 84.0% 

1 twists 13 3 48 3 0 0 67 71.6% 

1.5 twists 4 2 2 19 3 1 31 61.3% 

2 twists 7 2 0 2 61 7 79 77.2% 

2.5 twists 3 0 0 0 2 31 36 86.1% 

Total: 88 31 54 25 66 39 303 78.3% 

 

Table A.4.3 Confusion matrix of       -PARZENC-Ambiguity, based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw Rejected True: Correct: 

0 twists 52 2 2 0 0 0 9 65 80.0% 

0.5 twists 2 19 1 0 0 0 3 25 76.0% 

1 twists 5 3 39 1 0 0 19 67 58.2% 

1.5 twists 1 1 2 17 2 0 8 31 54.8% 

2 twists 2 2 0 0 50 5 20 79 63.3% 

2.5 twists 1 0 0 0 1 29 5 36 80.6% 

No label 0 0 0 0 0 0 0 0 - 

Total: 63 27 44 18 53 34 64 303 68.8% 
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Table A.4.4 Confusion matrix of       -PARZENC, based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw True: Correct: 

0 twists 52 9 2 2 0 0 65 80.0% 

0.5 twists 13 12 0 0 0 0 25 60.0% 

1 twists 3 3 57 3 0 0 67 85.1% 

1.5 twists 5 1 1 21 1 2 31 67.7% 

2 twists 3 0 1 2 69 4 79 87.3% 

2.5 twists 3 0 0 0 2 31 36 86.1% 

Total: 79 25 61 28 72 38 303 77.7% 

 

Table A.4.5 Confusion matrix of       -PARZENC-Ambiguity, based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw Rejected True: Correct: 

0 twists 43 5 1 0 0 0 16 65 66.2% 

0.5 twists 6 8 0 0 0 0 11 25 32.0% 

1 twists 2 3 50 2 0 0 10 67 74.6% 

1.5 twists 1 0 0 17 0 1 12 31 54.8% 

2 twists 0 0 1 1 66 3 8 79 83.5% 

2.5 twists 2 0 0 0 2 28 4 36 77.8% 

No label 0 0 0 0 0 0 0 0 - 

Total: 54 16 52 20 68 32 61 303 64.8% 
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Table A.4.6 Confusion matrix of       -PARZENC, based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw True: Correct: 

0 twists 62 2 1 0 0 0 65 95.4% 

0.5 twists 3 22 0 0 0 0 25 88.0% 

1 twists 6 2 55 4 0 0 67 82.1% 

1.5 twists 1 0 0 26 2 2 31 83.9% 

2 twists 3 1 0 0 67 8 79 84.8% 

2.5 twists 3 0 0 0 2 31 36 86.1% 

Total: 78 27 56 30 71 41 303 86.7% 
 

Table A.4.7 Confusion matrix of       -PARZENC-Ambiguity, based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw Rejected True: Correct: 

0 twists 38 1 0 0 0 0 26 65 58.5% 

0.5 twists 1 13 0 0 0 0 11 25 52.0% 

1 twists 1 0 32 0 0 0 34 67 47.8% 

1.5 twists 1 0 0 14 1 0 15 31 45.2% 

2 twists 0 0 0 0 47 1 31 79 59.5% 

2.5 twists 0 0 0 0 0 22 14 36 61.1% 

No label 0 0 0 0 0 0 0 0 - 

Total: 41 14 32 14 48 23 131 303 54.0% 
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Table A.4.8 Confusion matrix of    -       , based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw True: Correct: 

0 twists 43 9 1 1 0 0 65 66.2% 

0.5 twists 8 13 1 3 0 0 25 52% 

1 twists 1 4 55 5 2 0 67 82.1% 

1.5 twists 0 0 1 26 1 3 31 83.9% 

2 twists 0 0 0 8 65 6 79 82.3% 

2.5 twists 0 0 0 1 1 34 36 94.4% 

Total: 52 28 66 44 70 43 303 76.8% 
 

Table A.4.9 Confusion matrix of    -        with rejection (diff>5%), based on NT-TST. 

True class 
labels 

Estimated class labels (tw=twists) Total 

0 tw 0.5 tw 1 tw 1.5 tw 2 tw 2.5 tw Rejected True: Correct: 

0 twists 41 8 8 0 0 0 8 65 63.1% 

0.5 twists 8 10 1 1 0 0 5 25 40% 

1 twists 1 3 50 4 1 0 8 67 74.6% 

1.5 twists 0 0 1 21 0 3 8 31 67.7% 

2 twists 0 0 0 7 59 6 7 79 74.7% 

2.5 twists 0 0 0 1 1 32 2 36 88.9% 

No label 0 0 0 0 0 0 0 0 - 

Total: 50 21 60 34 61 41 36 303 68.2% 
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