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Abstract

Synthetic polymers are crucial in diverse industries, but current Al-driven design methodologies primar-
ily target linear homopolymers, with limited emphasis on developing customized approaches for copolymers.
To address this gap, we introduce a generative model for goal-directed synthetic copolymer design using re-
inforcement learning. Our model operates in a graph generation environment, facilitating efficient monomer
unit design while incorporating domain-specific constraints to ensure high validity rates. In a case study
optimizing for Hydrogen Evolution Rate (HER) and synthetic accessibility, our approach showcases the
efficacy of reinforcement learning in advancing copolymer design. Furthermore, experimental results under-
score the challenges in designing effective scoring functions due to the sparse nature of polymer datasets,
emphasizing the need for robust property predictors in polymer design methodologies before integrating
more complex generative models into the design process.

1 Introduction

Polymer materials are essential in many industries
due to their unique properties and versatility. De-
signing new molecules is a key objective in various
chemical applications, from small molecules for drug
design to large macromolecules for polymer synthe-
sis. The vast extent of the chemical space, with
an estimated order of 100 possible structures for
drug-like molecules alone [1], makes exhaustive enu-
meration approaches infeasible. As a result, signifi-
cant effort has been devoted to exploring Al-driven
techniques for efficient proposal of new candidate
molecules [2 B]. These advancements enable the con-
cept of inverse molecular design [4], where scientists
start with the desired properties of a molecule and
work backward to determine the molecular structure
that will exhibit these properties. This approach
allows for a more systematic method compared to
direct molecular design, where an initial molecular
structure is incrementally updated to better suit im-
posed requirements.

Generative models for polymer design are still in
the early stages of development [5], with significant
potential yet to be realized. Among existing meth-
ods, one strategy leverages a Variational Autoencoder
(VAE) [6] to learn the underlying distribution of a
polymeric dataset [7, [§]. To tailor these VAE-based
models for inverse molecular design, examples from
molecular design illustrate how property predictors
can be employed to filter candidate molecules [9] or
be used to optimize over the latent space [I0]. Alter-

natively, the latent space can be structured according
to a molecular property by training predictors in par-
allel with the VAE [7] or by employing a Conditional
VAE [11]. However, while effective within the bound-
aries of the latent distribution, these methods can
face challenges in extrapolating beyond the training
dataset. This effect is likely even more pronounced in
polymer design due to the often sparse, inaccessible,
or incomplete nature of available datasets [7].

Kim et al. [I2] employed an Evolutionary Al-
gorithm (EA) to discover homopolymers exhibiting
high thermal stability at high temperatures, lever-
aging biologically inspired mechanisms such as mu-
tation and crossover to evolve a population of can-
didate molecules iteratively. More recently, Ma et
al. [13] rephrased the polymer design problem as a
sequential decision-making task, with Reinforcement
Learning (RL) being utilized to develop homopoly-
mers with desired thermal conductivity. In this ap-
proach, RL algorithms learn to generate molecules by
iteratively selecting actions that modify a molecular
structure while aiming to optimize domain-specific
properties [14]. This methodology has been explored
across a wide range of molecular design benchmarks
[15], demonstrating either superior or similar perfor-
mance compared to other methods within restricted
oracle call budgets, a factor particularly significant in
the context of polymer design.

The choice of representation for molecules is highly
relevant when designing a molecular design environ-
ment amenable to Reinforcement Learning. In this
context, text-based representations such as SMILES
[16] have been a conventional choice [3]. In SMILES,



each character represents a specific atom or bond.
This format enables straightforward manipulation by
RL algorithms, allowing actions that directly aug-
ment the string, changing the molecular structure
[14, 17). To denote the stochastic nature of poly-
mers, Lin et al. [I8] introduced BigSMILES, rep-
resenting polymeric fragments by a list of repeating
units, which are encoded following the SMILES syn-
tax. Recently, Schneider et al. [I9] extended this rep-
resentation by incorporating additional information,
such as the connection probabilities among repeating
units.

While SMILES-based representations are compact
and easy to generate, their inherent redundancies
and lack of structural detail can hinder the abil-
ity of generative models to fully understand chem-
ical and structural relationships between molecules
[20). Other text-based representations attempt to
address some limitations of SMILES. For example,
Thiede et al. [2I] employed the SELFIES [22] syn-
tax in their molecular design environment, leverag-
ing its modular structure and 100% validity. How-
ever, due to their simplified grammar and the lack of
explicit bond information, such representations may
still struggle with capturing complex structures, like
polymeric materials.

Recent years have seen the introduction of RL-
based generative models that directly manipulate
molecular graphs [23] [24] 25| 26]. These models typi-
cally represent the state as the current molecule, with
actions corresponding to modifications to the graph,
such as adding or removing atoms or bonds. For in-
stance, Zhou et al. [24] used Morgan fingerprints, a
type of molecular fingerprint, to encode the current
state into a fixed-size vector, which was then used in
the decision-making process for goal-directed small
molecule design. Derived from the extended connec-
tivity fingerprint (ECFP) [27], Morgan fingerprints
encode molecular structure information by consid-
ering atom neighborhoods within a specified radius,
converting this structural data into a bit vector. Due
to their numerical vector format and computational
efficiency, fingerprints are frequently adopted as fea-
tures in machine learning models for chemistry [2§].
They are also utilized in polymer discovery applica-
tions, including techniques tailored for polymer net-
works [29].

Over the past years, several frameworks have been
developed for graph-based molecular design using
graph neural networks (GNNs) [23]26]. These frame-
works, operating directly on the molecular graph,
have effectively employed reinforcement learning for
goal-directed molecule design [23] [30]. Unlike text-
based and fingerprint-based representations, graph

representations can be easily extended to accommo-
date additional features by augmenting the graph
matrix representation. Aldeghi and Coley [3I] in-
troduced a graph representation tailored specifically
for polymers, coupled with a weighted directed mes-
sage passing neural network (wd-MPNN) operating
directly on the graph structure. Their evaluation on
a property prediction task revealed that this method
outperformed a traditional fingerprinting technique
when sufficient data was available. This underscores
the potential benefit of employing end-to-end graph-
based approaches, which enable the explicit integra-
tion of molecular ensemble information within the ar-
chitecture.

Existing polymer design methods are limited to
homopolymers [7, 12, [I3], or leverage a Variational
Autoencoder (VAE) [7, [8], limiting their applicabil-
ity for truly de novo design. To address this gap,
we propose a graph-based design method amendable
by reinforcement learning. While our work is con-
strained to the design of the monomer units, future
extensions could enlarge the decision-making to form
synthetic polymers from scratch. By leveraging a re-
lational graph convolutional network (R-GCN), our
model learns to generate polymers end-to-end. More-
over, the use of a graph representation allows us to
incorporate domain-specific constraints on the action
space, resulting in high validity rates amongst gener-
ated polymers.

We illustrate our approach in a case study, target-
ing the generation of synthetically accessible copoly-
mers with high sacrificial Hydrogen Evolution Rates
(HERs). Experimental results show that the model
can be pretrained to generate polymers similar to an
expert dataset, containing over 39K copolymers. By
the subsequent use of reinforcement learning, we show
that the output distribution of the model can be suc-
cessfully moved towards more desired regions of the
chemical space. Our study highlights the importance
of including sufficient atom descriptors in the graph
representation. Furthermore, our work sheds light on
potential pitfalls in designing robust property predic-
tors customized for polymers.

2 Problem Definition

In this chapter, we begin by explaining the employed
graph representation for polymers, which is essential
for generating polymer graphs. We then discuss how
our graph generative environment defines actions and
how these actions can be used to augment polymer
graphs. Lastly, we describe how the environment en-
ables the efficient detection of invalid actions.
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Figure 1: Different polymer topologies represented by a graph and associated stoichiometry. The graph
contains a deterministic subgraph for each unique monomer unit found across the polymer chain. Cross-
monomer bonds are represented by stochastic edges (p < 1.0). Ilustrated by the blue, dashed lines, the
associated probability of a bond of this type reflects the chance of this bond occurring in the polymer chain.
Another important aspect of the polymer topology is the stoichiometry, depicting the relative abundance of
each monomer unit in the entire polymer chain. Figure adapted from [31].

Graph Representation We represent a polymer
chain as a stochastic graph G with associated stoi-
chiometry v [3I] (Fig. [1). The graph consists of a
union of all m unique monomer units. In G, nodes
represent atoms, and edges represent bonds. More-
over, each edge is weighted with a probability p re-
flecting the chance of a bond occurring in a polymer
chain. Here, we can distinguish between two types of
bonds, namely cross-monomer bonds (p < 1.0) and
within-monomer bonds (p = 1.0). Within-monomer
bonds describe how atoms within a unique subgraph
are connected, whereas the combination of cross-
monomer bonds and stoichiometry, hereafter referred
to as higher-order structure, are used to describe the
average structure of the repeating unit.

In this work, we define G as (M, E, E, F). Here,
M € {0,1}"*™ encodes for each node n to which
monomer unit it belongs to. E € {0,1}*"*" and
E €[0,1]P*™%" are both edge-conditioned adjacency
tensors, assuming b edge types. Here, F and E cap-
ture, respectively, all possible within-monomer and
cross-monomer bonds. Lastly, I € R"*? is the fea-
ture matrix, assuming all nodes have d features. The
main objective of this work is to generate polymers
that optimize a scoring function S(G,v) € R. This
translates to maximizing Eqv ,/[S(G’, V)], where G’
denotes a generated graph, v’ reflects the chosen stoi-
chiometry, and S represents domain-specific statistics
of interest.

In this work, we assume that we can perfectly sub-
divide S(G,v) in a summation over scores over all
unique monomer units (Eq. . Importantly, the
scoring of an individual monomer unit k consists of
a multiplication between a term dependent on the
entire polymer graph and stoichiometry S, (G,v),
and a component solely reliant on the monomer unit
chemistry S,,on (g(G,k‘)) (Eq. . Here, g(G, k) C G
represents the subgraph corresponding to monomer
unit k, which is one of the m subgraphs obtained by
removing all cross-monomer bonds and all nodes v;
not part of the monomer unit, i.e. M;; # 1. This
formulation allows us to explore generative models
that benefit from more precisely identifying the ac-
tions responsible for specific parts of the scoring.

(1)
(2)

Polymer Completion Environment We consider
the problem of polymer chain generation as a hier-
archical decision-making problem. Specifically, we
explore a two-phase design, where the first phase is
responsible for describing the higher-order structure
of the polymer chain, and the second phase entails
the fine-grained design of its monomer units. In this
work, we focus solely on the second phase of the pro-
posed polymer design approach. We refer to the re-

S(G.v) = = 3" Sw(G,v,k)
k=1

SJ\/[ (Ga v, k) = Spol(G7 V) * Smon (9(G7 k))
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Figure 2: An overview of the Markov Decision Process (MDP) used for modeling the proposed polymer
completion optimization problem. (a) The initial state s = (G1,v1) ~ u is sampled from the initial state
distribution p. At each timestep ¢, an action a; € A,, can be selected that either augments the graph or
transitions the state to a terminal state. (b) We can identify several actions leading towards the generation
of invalid polymers. Specifically, from top to bottom, (i) actions connecting two existing nodes belonging
to different monomers using a within-monomer bond, (ii) actions violating valency constraints, (iii) actions
signaling for graph completion whilst at least one monomer unit (red) is still ’disconnected’.

sulting problem as polymer completion. Illustrated in
Figure 2h, we model this problem using a Markov-
Decision Process. A state s; after ¢ timesteps in the
environment represents a polymer chain, reflected by
a graph G and a stoichiometry v;,. An episode starts
by sampling an initial state from the initial state dis-
tribution s1 = (G1,v1) ~ p. Importantly, G; adheres
to a few constraints. Namely, it does not include
any within-monomer bonds (Eq. , and each node
v; € (G1 contains at least one cross-monomer bond

(Eq. [4).

m_ax(Em-J + Er,j,i) =0 Vv, €Gy

2,7

max( 7,0, + Er,j,i) >0 Vv €Gy
VELS

3)
(4)

We model the action space of the polymer comple-
tion environment similar to the approach of GCPN
[23], which introduced a molecular graph generation
environment amendable by reinforcement learning.
An action in the environment corresponds to any of
3 types of actions (1) connecting two existing nodes
in Gy, (2) connecting an existing node v; € Gy to a
new node v, € C, (3) signaling graph completion.
Importantly, actions can only augment the graph us-
ing within-monomer bonds, keeping intact the sto-
ichiometry and set of cross-monomer bonds. With
these higher-order features remaining fixed during an
episode, it is conceivable that optimal behavior in the
environment entails adjusting the selection of action,

especially if the optimal monomer chemistry relies
heavily on the higher-order structure to exhibit de-
sired properties.

(5)

An action a; at timestep t in the environment
comprises four sub-components, namely the selection
of a first node, a second node, edge type, and stop
signal (Eq. . If the stop signal asop = 1 is selected,
all other subactions are ignored and the environment
transitions to a terminal state, completing the graph.
The choice of the first node is constrained to existing
nodes in Gy, whereas for selecting the second node
it is also possible to choose a new node from the set
of candidate nodes C. In the environment, we allow
for a maximum of T actions, finalizing the graph
automatically if this limit is reached.

at = (afi7'st7 Qsecond, Qedge astop)

Detection of Invalid Actions Since partially gen-
erated subgraphs represent valid substructures, the
environment enables the efficient detection of actions
violating domain-specific constraints (Fig. ) For
instance, an action is invalid if it connects two exist-
ing nodes belonging to different monomers i.e. nodes
u, v for which M, # M,. Moreover, an action signal-
ing for graph completion is only considered valid if all
monomer units are ‘connected’. We can validate this
by looking for a path p C E over within-monomer
bonds between any two nodes u,v belonging to the
same monomer M, = M,.



Additionally, actions are invalid if they violate the
octet rule for one or both endpoints of a newly in-
troduced bond, a constraint already incorporated in
other molecular graph generative models [23| 24]. To
adapt this rule for polymer graph representations, we
require 7(v;) > 0 for any node v; in the resulting
graph Gy41 (Eq. @, assuming hydrogen atoms are
implicit.

r(v;) = val(v;) — Z Z drErij— n},a;x(dr (EA'T”]) (6)

JENT r=1

Above, wval(v;) is the intrinsic valence of node v,
and d, denotes the bond degree (single, double, or
triple). The term max; , (dr [EAT”D accounts for
the highest degree of polymerization in the worst-
case scenarios, assuming F is symmetric for simplic-
ity. This equation helps detect invalid actions by en-
suring nodes do not exceed permissible valence, main-
taining the chemical validity of polymer structures.

3 Methodology

In designing our approach for polymer completion,
we developed an agent capable of dynamically inter-
acting within this specialized environment. At the
core of this agent’s decision-making lies a policy net-
work 7y, which is parameterized by 6. This network,
conditioned on the current state of the environment,
generates a probability distribution over all possible
actions mp(a|s) = P(als; #). Subsequently, by contin-
uously sampling actions from 7y, this network facili-
tates the generation of new graphs.

In this chapter, we describe the architecture of
the agent policy 7y, which uses graph convolution
at the core of its decision-making. Moreover, we
describe how the agent can be pretrained to generate
polymers similar to an expert dataset, and how it
can be finetuned through reinforcement learning to
generate more desired polymers.

Graph Convolution To facilitate action prediction,
we compute node embeddings for all nodes in the
current graph Gy using a Relational Graph Convo-
lutional Network (R-GCN) [32]. This type of neural
architecture operates directly on graphs and is de-
signed specifically to deal with multi-relational data.
In this work, we define the propagation rule for up-
dating the embedding of a node v; as follows:

B — o (WORY £ mD) (1g)

Here, mglﬂ) reflects a relational-specific transfor-

mation of all messages received from neighboring
nodes:

(1+1) (1+1)

mglﬂ) = thlg)g(mi,o D .. & my, ) (13)

mi = 3" e WY (14)
JENT

Cijr = 7,750 7,0 (15)

> kent Erki + Erg

We apply convolution to the current graph G;. In
this light, we define X™ = {th), th), oy h%L)}
as the set of final node embeddings obtained after
applying L layers of convolution starting from the
node feature matrix F. The propagation rules we
defined closely follow the original work, except for
our definition of ¢; ;. This coefficient is adjusted to
accommodate stochastic edges by normalizing edge
weights based on the total incoming sum of edge
weights, as opposed to normalizing by the number of
incoming edges.

Action Prediction For selecting subactions, we
largely follow the modeling approach and architec-
ture of GCPN [33] which involves a sequential selec-
tion process. Specifically, this action selection process
starts with selecting the first node, before the second
node, edge type, and stopping signal. For each subac-
tion type, the policy network 7y contains a Multilayer
Perceptron m, which is used to map an input vector
to a continuous value for each available subaction.
These continuous values are then used to form an
action probability distribution via the softmax func-
tion (Eq. . Importantly, while GCPN resamples
a new action if it is invalid, we solely softmax over all
actions that do not violate any of the aforementioned
validity constraints on the action space (Fig. )
With the large amounts of invalid actions in the en-
vironment, we observed that resampling in case of
invalid actions did not constitute a computationally
feasible approach.

In comparison to the architecture of GCPN, we in-
corporate several vectors specific to polymer design
in the input space of the action selection networks.
First of all, we incorporate the stoichiometry v; by
including a weight matrix W € [0, 1]™ that denotes,
for each node v; € Gy, the relative frequency of the
monomer unit v; belongs to. Depending on the subac-
tion, this matrix is either concatenated to the input
vector (Eq. 7 or used as a scaling factor (Eq.
. In a similar manner, we incorporate a connec-
tivity mask C € {0,1}" that is used to label nodes



N"=Xa@&WaeC; N™ ~N(0,1)0+2 (
Frirst(5t) = SOFTMAX yagia (m s (N, B™)) 8
fsecond(st) = SOFTMAX atia (m.s (N, (
fedge(st) = SOFTMAX yatid (me (V.

afirst ~ [rirst(se) € {0,1}",
Asecond ~ fsecond(st) € {0,1
edge ~ fedge(st) € {0,117,
Astop ~ fstop(se) € {0, 1},

yres

in case a monomer unit is still ’disconnected’ (Fig.
2b). In this scenario, C; = 1 for each node v; € G
which does not belong to the largest cluster within
the subgraph reflecting the monomer unit.
Additionally, following the Torchdrug [34] imple-
mentation of GCPN, we incorporate graph-level in-
formation B when selecting most subactions (Eq.
. In this work, we explore three definitions of this
vector. Namely, an aggregation of all node embed-
dings (Eq. , an aggregation of all node embeddings
of nodes in the monomer subgraph (Eq. , and a
hybrid approach that combines these strategies to en-
hance contextual understanding (Eq. . Incorpo-
rating graph-level information when selecting nodes
and edge types allows for the inclusion of more con-
textual information, as opposed to being restricted to
the neighborhood within L layers of convolution.

BT — Agg(X™ « W) (16)
B = Agg({X" « Wi VY v; € Gy, My = M,}) (17)
Bifocus =my (B;mon’ BfTaph) (18)

Pretraining We pretrain the agent policy 7y using
an NLL loss, increasing the likelihood of reproducing
polymer graphs within an expert dataset (Eq. .
However, for graphs, there are numerous methods for
spitting up expert graphs into series of state, action
pairs, hereafter referred to as a trajectory. Solely re-
sponsible for determining the trajectory is the Graph
Traversal Algorithm (GTA), which labels all nodes
according to a predefined strategy. Mercado et al.
[35] observed that the choice of GTA can influence
the molecular graphs being generated after pretrain-
ing, with a BFS strategy leading to more ’circular’
molecules, as opposed to DFS, in which the agent ap-
peared to be more biased towards generating longer
structures.

In this work, we explore two different GTA’s, which
we refer to as BF'S and BF'S);. Regardless of the
GTA, each unique polymer (G*, v*) in the dataset
maps to a single initial state s = (G1,v1). Impor-
tantly, multiple polymers in the dataset can map to
the same initial state. The graph G; belonging to the

fstop(st) = S()]:—N:[‘l\/IA><valid (mt (Agg(Xn * W)a maX(C))

Buyv )
afi'rst7Nasecond)) (10

Afirst) "~ Afirst)

B

QAfirst)

initial state contains all cross-monomer bonds of the
expert graph, in addition to all nodes being either the
source or destination of at least one of these bonds.
For both GTA’s, the same approach is used to obtain
node orderings. This process involves creating a node
ordering for all monomer units in G* individually, i.e.
for monomer unit & we sample a node v € f(G1,k)
and label all nodes in f(G*, k) — f(G1, k) randomly
in a BFS order.

The difference between both GTA’s lies in the way
the orderings for all monomer units are combined to
form the series of actions A (Fig. [3)), with the NLL
loss designed to maximize the likelihood of taking the
corresponding actions P(A). Whereas in BF'Sy; the
monomer units are (re)constructed one after another
in A, BF'S builds them up in a more distributed man-
ner, alternating between the monomer units. The
pretraining loop can be summarized by the steps be-
low:

1. Sample the next batch of N expert polymers
from the dataset. Each polymer is reflected by a
tuple (G*, v*).

2. For each polymer, extract the initial state and
create a series of actions A; (Fig. |3).

(a) Extract the unique initial state:
(Gl,l/l) with Gy C G* and v, = v*.

(b) Obtain a random BFS node ordering for all
nodes in G* — G.

(¢) Combine all node orderings according to
the chosen GTA, and use this to form A;.

S1 =

3. Update 7y as to minimize the NLL loss (Eq. .
4. Go back to step 1.

1 N
JNLL(g) = — ; log P(A;) (19)
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Figure 3: Method used in this work during pretraining to create a series of actions A; from a tuple (G*,
v*), representing a polymer in an expert dataset. (a) After extracting the unique initial state G; C G*, a
random BFS node ordering is created for each monomer unit. (b) These node orderings are then combined
using a specified Graph Traversal Algorithm (GTA). Starting from G4, the BF'S approach reconstructs the

expert polymer in a balanced manner, while BF'S); assembles the polymer monomer-by-monomer.
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Lp(Tres, (G, v), A,0) = —[log P(A),.., + 0S(G,v) — log P(A),]? (21)
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Finetuning For finetuning the agent policy 7y we
adapt the Best Agent Reminder (BAR) loss [30]. In
addition to my, this loss function keeps track of two
other policies, namely the prior policy mprior and the
best policy mpes:. The prior policy mprior constitutes
the policy obtained after pretraining and remains
fixed during finetuning, whereas mpes: is periodically
set to my if the agent policy improves.

The BAR loss takes the form as written in Eq. 20]
with « serving as a scaling factor, and L defined as the
agreement between the agent policy 7y, and an aug-
mented log-likelihood. In this work, we explore two
variants of L, namely Lp (Eq. and Ly (Eq. .
Both variants define the augmented log-likelihood as
the log-likelihood of a reference policy modulated by
a score. However, while Lp follows the traditional
approach of using all actions taken by the agent and
the score defined on the entire graph [14] 30], LM ex-
ploits the fact that the score is defined as a summa-
tion of scores of individual monomers (Eq. . Specif-
ically, L™ calculates the average agreement between
the agent policy and augmented log-likelihood across

6) = S [og PUF(A, K))r,., +0Su (G k) —log P(F(A K, ]* (22)
k=1

all individual monomers, which uses the scoring Sy,
(Eq. and model log-likelihood across a subset of
all actions f(A, k) C A. Here, f(A, k) contains solely
the stop action, in addition to all actions augmenting
the neighborhood of at least one node v; € ¢g(G, k)
that belongs to monomer unit k (M;, = 1).

By anchoring the agent policy 7y in the prior pol-
icy Tprior, the BAR loss function shifts the probabil-
ity distribution from that of the prior policy towards
a distribution modulated by the desirability of the
graphs, favorable for chemical diversity [14]. More-
over, by generating half of the molecules using the
best policy mpest, the BAR loss reminds the agent
policy of actions leading towards high-scoring graphs.
The finetuning loop can be summarized as follows:

1. Initialize mp and myest to the policy mprior Ob-
tained after pre-training.

2. Equally distributed amongst all unique initial
states encountered during pretraining, create a
batch of M initial states S; ( subgraphs with
associated stoichiometries V).



3. For each s! € Sy, generate a graph..

(a) using the agent policy mg, with A; repre-
senting the episodic set of actions taken to
form the final state (G;, V;).

(b) using the best policy Tpest, with A; repre-
senting the episodic set of actions taken to
form the final state (G;, V;)

4. Calculate a score for all final states (Eq. .
5. Compute the action probabilities of

(a) mp and mpyi0r assigned to A.

(b) mp and Tpest assigned to A.
6. Update 7y as to minimize the BAR loss (Eq. .

7. Every 5 learning steps, repeat steps 2 and 4 with
a larger batch of generated molecules. If the
graphs generated with mp have a higher mean
score, initialize mpest With the weights of my.

8. Go back to step 2.

4 Case Study and Dataset

We illustrate our approach in a case study target-
ing the generation of synthetically accessible linear
copolymers with high sacrificial Hydrogen Evolution
Rates (HERs). This metric reflects the ensemble’s
capability to catalyze the hydrogen evolution reac-
tion, thereby generating hydrogen gas. Since this
is a clean-burning fuel, the discovery of novel poly-
mers with high HERs could contribute to a transition
towards more sustainable energy sources. However,
predicting HERS of novel compounds is difficult, since
it does not correlate strongly with any single physical
property.

To bridge this gap, Bai et al. [36] created a machine
learning model predicting HERs using four molecu-
lar properties. In a dataset comprising 6354 copoly-
meric materials, the authors observed an inverse re-
lationship between HER and Electron Affinity (EA).
Moreover, polymers with higher HERs appeared to
frequently have an Ionization Potential (IP) closer to
1.0 V. In this work, we combine these two observa-
tions with a Synthetic Accessibility (SA) score, cal-
culated for each monomer unit, to define the scoring
function S(G,v). As such, favoring polymers that are
more likely to be synthesizable, and more probable to
have high HERs. Each of the three aforementioned
properties is individually scored, and depicted below.

Sip(G,v) =1 — |1 —IP(G,v)|]} (23)
a6 - [EAGH=8)
Soala(Gub)) = | =TRIER) )

Above, |z|} returns the clipped value of x between
0 and 1. The scoring ranges were chosen to ensure
that the polymers generated after pretraining exhibit
a diverse range of scores across individual properties,
while none achieve high scores across all properties si-
multaneously. SA(g(G,k)) is the predicted SA score
calculated on the subgraph of g(G,k) C G reflect-
ing monomer unit k& (Chapter [2). In this context,
we modify ¢g(G, k) to include wildcard atoms, which
are used to denote points of attachment to other
monomer units. This representation is illustrated in
Figure b, where monomer units are depicted with
these wildcard atoms.

To calculate SA scores on this subgraph, we uti-
lize the RDKit [37] implementation of the scoring
algorithm introduced by Ertl et al. [38]. This al-
gorithm incorporates a fragment score derived from
statistical analysis of substructures in the PubChem
database [39]. The fragment score reflects cumulative
knowledge of synthetic accessibility based on common
structural motifs found in a vast set of representa-
tive molecules. It is computed by summing contribu-
tions from these motifs and dividing by the number of
such fragments present in the molecule under evalu-
ation. Additionally, the scoring algorithm includes a
complexity penalty factor. This penalty accounts for
molecular characteristics such as the presence of large
rings, non-standard ring fusions, and stereocomplex-
ity. These factors collectively enhance the algorithm’s
accuracy in predicting the synthetic accessibility of
molecules.

The predictors IP and FA utilize a weighted
Directional Multi-Passing Neural Network (wD-
MPNN) to predict single molecular properties (Fig.
4h). This architecture is inspired by Aldeghi et
al.  [31], but differs by employing node-centered
messages instead of messages centered on directed
edges, as detailed by Yang et al. [40]. The predictors
are trained on a dataset comprising 42,966 polymer
graphs (Fig. [4b), where property values are derived
from density functional theory calculations. This
dataset augments the aforementioned dataset intro-
duced by Bai et al. [36] by considering three chain
architectures, and stoichiometries.
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Figure 4: Architecture of the property predictor and dataset utilized for its training. (a) The architecture
of the property predictor involves node-centered message passing. Node messages are initialized based on
atomic properties within each node’s local neighborhood. This process includes 3 steps of message passing
where node-centered messages are updated using current messages and weighted messages from neighboring
nodes. In the final step of message passing, the node feature vector is concatenated with neighboring node
messages before projecting to the final node embedding. To derive polymer features, node embeddings are
aggregated via a weighted average. This involves scaling each node embedding according to the relative
abundance of its corresponding monomer unit as defined by the polymer’s stoichiometry. Prediction of the
property is performed using a multi-layer perceptron on these polymer features. (b) The dataset used to
train the property predictor was generated by perturbing two lists of monomer units and including three
types of chain architectures, along with three stoichiometry values [3I]. * The alternating chain architecture
is not available for this stoichiometry.



For training the property predictors, we considered
a single run with an 80/20 train/test split. On the
test set, the property predictor for EA achieved an R?
of 0.998 and an RMSE of 0.027. For [P, we achieved
similar accuracy with an R? of 0.997 and an RMSE
of 0.025.

For pretraining the agent, we use the same dataset
used for training the property predictors. However,
in this study, our focus was solely on augmenting
the graph with neutral atoms to simplify the pro-
cess. Consequently, due to the inability to recon-
struct polymers with formal charges, we excluded
all such polymers from the dataset. This decision
resulted in an 8% reduction in the number of B
monomers, decreasing from 681 to 631. For finetun-
ing, we combine the aforementioned scores for EA
and IP to form the polymer-level score (Eq. ,
whereas the monomer-level score is equal to the score
obtained for the SA component. (Eq. . Similar
to the approach used by Atance et al. [30], we as-
sign a zero score if a polymer is not unique, valid, or
properly terminated (PT) via sampling of a terminal
action.

0 if (G,v) is not {unique, valid, PT
spom,u):{ (G, v) is ot {uniq }

Sip(G,v) - Sga(G,v) otherwise
(26)
Smon(9(G, k)) = Ssalg(G, k)) (27)

Experimental Details We use the Adam [41] opti-
mization algorithm for pretraining and finetuning of
the agent. Included in the appendix, Table [S1| details
how node features are derived, and Table [S2| contains
all remaining fixed hyperparameters used in the ex-
periments. When generating molecular graphs, we

allow for a maximum of T' = 68 actions, equalling the
number of steps necessary to form the largest graph
encountered during pretraining. Furthermore, we use
a batch size of N = 140 during pretraining, and a
batch size of M = 70 during finetuning. We evaluate
the agent policy 7y and best policy mpest after every
5 learning steps by generating a larger batch of 280
graphs with both policies, updating mp.s; with the
weights of 7y if it achieves a higher average score.

Our implementation of the environment and
methodology closely follows the reimplementation
of GCPN [23] from Torchdrug [34]. We conducted
our experiments using the HPC cluster at Delft
University of Technology, utilizing only CPUs for all
computations. Pretraining the model takes about 22
hours while finetuning requires around 10 hours. For
logging and saving model weights, we used Weights
and Biases [42].

Evaluation Metrics For evaluating the final agents
obtained after pretraining and finetuning, we use the
agent policy mg to generate a batch of 2100 graphs,
which equals 300 graphs per unique initial state (Fig.
4p). Across this batch of graphs, we use a simi-
lar notation as Mercado et al [26] and calculate the
metrics described in Table Importantly, since
Morgan fingerprints are not specifically tailored for
synthetic polymers and only apply to deterministic
graphs, we calculate the fingerprint on the discon-
nected subgraph obtained after removing all cross-
monomer bonds. This makes the diversity invariant
to both the stoichiometry and the chain architecture.

Table 1: Evaluation metrics used to assess different agents in polymer generation. The metrics cover various
aspects such as validity, uniqueness, diversity, and specific chemical properties of the generated polymers. *
The diversity is estimated on a smaller batch of 400 polymers to ease computation.

Metric Description

PV Percent of valid polymers.

PPT Percent of polymers that were properly terminated via sampling of astop = 1 within 7" timesteps.
PVPT Percent of valid polymers in the set of PPT molecules.

PU Percent of unique polymers (graph and stoichiometry) in the set of PVPT polymers.
PUg Percent of unique graphs amongst the set of PVPT polymers.

PN Percent of novel polymers in the set of PU polymers.

Diversity Average Tanimoto distance across the Morgan Fingerprints of PUg polymers™ (r=3).
EAq.. Average electron affinity amongst the set of PU polymers.

IP . Average ionization potential amongst the set of PU polymers.

SAq. Average synthetic accessibility score across all monomer units in the set of PU polymers.
Vv Average number of atoms amongst the set of PU polymers.

Bav Average number of bonds amongst the set of PU polymers.

Scoregy Average S(G,v) amongst the set of PU polymers.
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5 Results and Discussion

We evaluated the impact of various training setups
and architectural changes on the molecule distribu-
tion generated by the agent policy my after pretrain-
ing on the dataset and subsequent finetuning on
the optimization task. To effectively compare these
changes, we considered six different types of agents.
The baseline agent only considers node embeddings
in the current monomer when constructing the global
information vector (B = By,on). Moreover, during
pretraining, expert graphs are split into a series of ac-
tions, reconstructing the polymer in a balanced man-
ner across all monomer units (GTA = BFS).

We define two other agent types with identi-
cal model architecture. gta_mon uses a different
graph traversal algorithm during pretraining which
reconstructs polymers monomer-by-monomer (GTA
= BFS)). obs_graph constructs the global informa-
tion vector differently compared to baseline, consider-
ing all node embeddings in the process (B = Bgraph)-

Three additional agents exhibit slight variations in
model architecture compared to the aforementioned
agents. obs_focus employs a hybrid approach that
combines a global embedding and a local monomer-
specific embedding into a single global information
vector (B = Byocus). only-symbol simplifies the fea-
ture matrix F' by including only the atom symbol
in node featurization (Tab. [SI). Lastly, unlike the
other agent types, no_stoich does not incorporate the
stoichiometry in the node and graph embeddings.
By systematically comparing these agent types, we
aimed to evaluate the impact of architectural choices
and training strategies on the diversity and quality of
molecules generated by the agent.

5.1 Pretraining

For each agent type, we conducted 9 runs, which
equals three runs per weight decay value in [0, le™%,
le™3] with a fixed learning rate of 3e™3. For each
run, we saved the model after 800, 1600, and 2400
learning steps, leading to a total of 27 agents per
agent type. Mean NLL loss values obtained from
these runs are summarized in Table located in
the appendix.

Tendency to Overfit Amongst all policies, we ob-
serve that no policy came very close to the dataset
in terms of average property values and size (Fig. [9)).
Upon closer inspection, we observe a tendency where
occasionally the agent generates very large molecules
with high values for EA and SA, whereas otherwise,
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the molecules appear more similar to those in the
dataset (Fig. E[) Additionally, we observe that these
high EA and SA polymers are often not properly ter-
minated via sampling of a terminal action (PPT). We
hypothesize that this effect is caused by the small size
of the dataset, making it hard for the policy to gen-
eralize to unseen parts of the chemical space. Fur-
thermore, we believe that this occasionally leads to
the generation of invalid polymers, as the agent may
not successfully connect all monomer units within the
allocated time budget. This scenario is the only sit-
uation where invalid polymers can be generated, as
indicated by the consistent PVPT of 100 across all
agents in our experiments.

With a total of 39,753 datapoints, the dataset is
way smaller than typical datasets, such as ZINC, used
for pretraining generative models [3]. Moreover, we
believe that the dataset lacks diversity in comparison
to most molecular datasets, as the copolymers are
derived from a limited set of monomer units, chain
architectures, and stoichiometry values (Fig. [4p). Al-
though training for more learning steps or with lower
weight decay values seems to bring V.., EA,, and
other property values closer to the dataset, we ob-
serve that this comes at the cost of lower uniqueness
values, PU and PUg, and lower diversity. We be-
lieve this highlights again the small size and lack of
diversity in the dataset, causing the model to easily
overfit. This hypothesis would also be in line with
the results of Mercado et al. [20], suggesting that an
ideal dataset for GNN-based molecular design should
contain at least 100,000 molecules to prevent overfit-
ting.

Table [2[ provides an overview of the hyperparame-
ters and reported metrics for a single agent for each
agent type that has a uniqueness greater than 96
amongst generated graphs (PUg), and an average
electron affinity (EA,, ) closest to that of the dataset.
We think this approach balances to some extent be-
tween overfitting and generating molecules similar to
the dataset, although a more rigorous method would
likely involve withholding a validation set and select-
ing the best-performing architecture based on its per-
formance on this set. Moreover, we only considered
a limited set of hyperparameters, for which their val-
ues might depend on the architecture at hand. For
instance, agents trained using solely the atom sym-
bol as node features (only_symbol) achieve lower PU
(Fig. |p), suggesting they are more prone to overfit-
ting and could potentially benefit from reduced model
complexity.
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Figure 5: Comparison of mean electron affinity (EA,,), mean number of nodes (V,,), diversity, percentage
of unique polymers (PU), and percentage of properly terminated polymers (PPT) across different agent
types. Boxplots depict the distribution of these metrics across all 27 agents for each agent type. Green dots
indicate the values for the agent with the lowest EA,,. Blue dashed lines show the average metric values
from the pretraining dataset.

Table 2: Hyperparameters and reported metrics for the best agent found for each agent type. The best
agent was selected based on having an EA,, closest to the dataset value of —2.58, while also meeting the
uniqueness constraint of PUg > 96.0.

‘ Pretraining Configuration ‘

Agent Type baseline  only_symbol  gta_mon  no_stoich  obs_focus  obs_graph | dataset
Connectivity Mask v v v v v v -
Incorporate Stoichiometry v v v X v v -

All Node Features v X v v v v -
Graph-Level Information Brmon Brmon Brmon Brmon Brocus Byraph -
Graph Traversal Algorithm | BFS BFS BFS)s BFS BFS BFS

Learning Steps 2400 1600 800 2400 1600 2400 -
Weight Decay le~3 le™3 0 le~3 le~3 le3 -

‘ Evaluation Metrics ‘

PV 99.9 99.8 98.9 100.0 99.6 99.0 100
PPT 98.6 90.5 98.1 99.6 97.6 97.1 -
PVPT 100.0 100.0 100.0 100.0 100.0 100.0 -
PU 99.2 98.4 98.9 99.0 99.2 99.0 99.5
PUg 97.5 97.1 96.1 96.3 97.2 96.4 14.2
PN 93.6 96.8 85.8 89.7 93.5 92.1 -
Diversity 89.7 91.0 89.1 89.6 89.6 89.7 84.1
EAqv -2.11 -1.58 -2.0 -2.09 -2.1 -1.91 -2.58
IP qv 1.57 1.66 1.63 1.49 1.51 1.68 1.44
SAqv 4.99 5.55 5.04 5.03 5.07 5.11 4.54
Vav 31.0 28.0 29.5 28.4 31.2 29.5 25.2
Bav 34.1 30.2 31.8 30.8 34.2 31.9 27.0
Scoreqy T 0.01 0.0 0.01 0.01 0.01 0.01 0.03
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Comparison Between Agent Types Experi-
mental results show that the selected agent for
only_symbol achieves low PTT and low similarity to
the dataset in terms of average property values. We
observe a similar effect for obs_graph, where the pol-
icy network shares the architecture of the baseline,
but more global information is used to augment node
embeddings (B = Bgrqpn). We hypothesize that, for
only_symbol, the agent lacks sufficient informative
features for the task at hand, whereas the observa-
tions for obs_graph seem to suggest the relevance of
more local information. This hypothesis is supported
by the pretraining results, where the respective agent
types consistently achieve higher training losses com-
pared to other agents (Tab. .

However, an alternative explanation for the higher
training loss observed in obs_graph could be the na-
ture of the dataset itself, which is generated by
perturbing a limited set of monomer units, chain
architectures, and stoichiometry values (Fig. [b).
Consequently, the correct decision on how to aug-
ment a monomer unit during pretraining should rely
solely on its intrinsic chemistry, while the chain ar-
chitecture, stoichiometry, and chemistry of the other
monomer can be regarded as 'noise’. Supporting this,
we observe that not incorporating the stoichiome-
try, no_stoich, does not decrease PPT, or move prop-
erty values further away from the dataset. A similar
conclusion applies to obs_focus, which includes more
global information (= 'noise’) compared to baseline,
but can distinguish more effectively between data
from the current monomer and other monomers, un-
like the agent for no_graph.

5.2 Finetuning

For finetuning, we employed a random search ap-
proach.  Specifically, for the selected pretrained
agents across all agent types (Tab. , we conducted
50 runs. For each run, we sampled a learning rate
from the range [1.5e-4, 6e-4] and a weight decay value
from the range [le-2, le-5]. Specifically, we sampled
a scalar w € [2,5] and set the weight decay to le™*.
We also varied ¢ within the range [5, 600]. Addi-
tionally, we randomly decided whether to define the
cost function at the polymer level (L = Lp) or the
monomer level (L = Ljs). Another random decision
was whether to include a best agent (« = 0.5) or not
(o = 0.0). In scenarios without a best agent, we in-
creased the number of epochs from 500 to 900 and the
batch size from M = 70 to M = 140. This adjust-
ment ensures a comparison with the same number of
oracle calls, which is an important factor in molecular
discovery applications.
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Score and Diversity Trade-Off In our experi-
ments, we observed a significant trade-off between
Score,,, and diversity, indicating that optimizing
chemical structures often comes at the expense
of reduced chemical diversity. However, this ob-
servation is expected, since high-scoring solutions
typically occupy a smaller portion of the chemical
space. Figure [f] provides an overview of the Pareto
front between diversity and average score (Scoreg,)
across various finetuning settings and agent types.
It also includes more detailed insights into these
Pareto front solutions, showing that higher-scoring
solutions typically include larger molecules. Later in
this section, we will investigate this phenomenon in
more detail. Table |3| highlights six solutions sampled
from the Pareto frontier, offering a comprehensive
overview of all reported metrics.

Cost Function Notably, we observe that Pareto-
optimal solutions with high Score,, consistently
feature a cost function defined on the monomer level,
which seems to suggest the benefit of being able to
more precisely identify the source of scoring, thereby
reducing variance. However, it is worth considering
that this observation might be influenced by the fact
that the monomer cost function defines the loss on a
smaller set of actions, potentially resulting in larger
updates during training. Hence, instead of employing
a uniform interval for o, individually tuning these
values for each cost function could enable a fairer
comparison. In a smaller significance, we believe the
same principle applies to the different prior policies
(Tab. [2)). Among other factors, these policies
can differ slightly in their degree of determinism,
with more overfit policies likely requiring higher
values for o to obtain similar Score,,. Furthermore,
incorporating the best agent (o = 0.5) reminds the
agent of actions leading to high-scoring polymers, in
addition to the traditional approach of aligning with
a prior agent [I4], possibly amplifying the effect of
smaller values for o.

Inclusion of Best Agent We observe that includ-
ing a best agent (o = 0.5) does not seem to offer a
significant advantage, as solutions trained without
a best agent (o = 0.0) still manage to converge to
high-scoring outcomes within the same amount of
oracle calls (Fig. |§[) Several factors could explain
this observation. For instance, the problem might
not be sufficiently complex, reducing the need for
a best agent to remind the current agent of actions
leading to high-scoring solutions. Additionally, we
only experimented with a single set of hyperparame-
ters (such as « and update interval) based on values



Table 3: Hyperparameters and reported metrics for six agents on the Pareto front between Score,, and
Diversity. Each column includes the hyperparameters used for training a single agent and the metrics
reported across the batch of generated molecules by this agent.
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Finetuning Configuration

Agent Type gta_mon baseline obs_focus  gta_mon gta_mon gta_mon dataset
Cost Function LM LP Lp L]M LM LM -
Weight Decay | 8-1073 3-1073 7-1074 4.107° 3.1073 7-1073 -
Learning Rate | 4.2-107% 1.5-107% 2.1-107% 45-107% 24-107% 45-.107% | -
a 0.5 0.5 0.5 0.0 0.5 0.5 -
o 20 597 87 340 284 458 -

‘ Evaluation Metrics ‘
PV 100.0 100.0 100.0 100.0 99.8 99.9 100
PPT 100.0 99.0 100.0 100.0 98.5 98.3 -
PVPT 100.0 100.0 100.0 100.0 100.0 100.0 -
PU 76.3 84.6 89.3 87.3 97.5 91.8 99.52
PUg 57.9 67.9 69.9 69.8 91.5 82.5 14.2
PN 90.0 99.7 99.9 100.0 100.0 100.0 -
Diversity 79.1 73.7 69.2 65.0 60.8 53.5 84.1
EAqo -3.55 -3.84 -3.92 -3.9 -4.01 -4.05 -2.58
IP 40 1.15 0.97 0.95 0.98 0.97 0.97 1.44
SAqv 4.89 4.13 4.03 3.6 3.56 3.45 4.54
Vav 21.1 31.0 29.5 39.0 44.5 50.5 25.2
Bav 21.6 32.8 31.1 42.2 48.3 55.3 27.0
Scoregy T 0.14 0.27 0.3 0.35 0.4 0.42 0.03
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Figure 6: Pareto front analysis based on Score,, and diversity across the generated polymers by each agent.
The top row illustrates the influence of cost functions, the inclusion of a best agent, and different agent types
on Score,, and diversity, with larger points highlighting Pareto-optimal solutions. The blue vertical lines
depict values for the reported metric calculated using the polymers in the dataset. The bottom row offers
in-depth insights into the identified Pareto-optimal solutions, including average SA score (SA,,), average
electron affinity (EA,,), average number of nodes (V,,), and percentage of unique polymers (PU).
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Table 4: Top-2 agents found with highest Score,, across the agent types explored in all experiments. For
each agent, the average score obtained (Score,,) and diversity are reported.

Agent Type ‘ Scoreq,  Diversity ‘ Scoreq,  Diversity ‘ Agent Type ‘ Scoreq,  Diversity ‘ Scoreq,  Diversity
gta_-mon 0.4214 53.49 0.4161 56.90 obs_focus 0.3749 57.12 0.3721 60.29
baseline 0.4100 53.39 0.4092 53.32 no_stoich 0.3458 56.96 0.3451 63.58
obs_graph 0.3753 54.33 0.3639 56.18 only_symbol 0.3292 66.41 0.2905 67.22

from Atance et al. [30], whereas optimal values may
vary significantly depending on the specific problem.
Importantly, we dedicated a large part of the oracle
budget (28%) to evaluating the best agent against
the current agent and deciding whether to update
it. Possibly, reducing this fraction could improve
sample efficiency when employing a best agent,
provided that it does not significantly worsen the
evaluation. Alternatively, combining the BAR loss
with experience replay has shown the potential to
directly enhance sample efficiency [43].

Global Information We observe that augment-
ing more global information to node embeddings
(obs_graph) does not enhance performance, as few
solutions incorporating this approach appear on the
Pareto front (Fig. @ Specifically, top-scoring agents,
with the global information vector solely defined on
nodes in the current monomer, outperform other ap-
proaches that include more node embeddings across
the entire polymer (Tab. , suggesting the limited
advantage of global insights. This conclusion also ap-
plies to the agent that can distinguish between local
and more global information (obs_focus).

Upon closer examination, we observe that high-
scoring agents appear to generate chemically similar
molecules, predominantly forming polyphenyl chains
with frequent amino groups (Fig. [7). Notably,
the monomer units across all generated copolymers
appear chemically similar, suggesting that the
optimization target may prioritize smaller repetitive
structures where the relative abundance of chemical
structures is more important than their spatial dis-
tribution in the polymer. This observation suggests
that the setup may be biased towards optimizing
around smaller structures, where their relevance
dominates the landscape, obscuring any potential
benefits from integrating more global information.
Alternatively, the optimization process may have
converged to a global optimum that inherently
favors local information, although this remains un-
certain. Later, we will discuss how limitations of the
scoring function could also play a role in our findings.
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Stoichiometry We observe that finetuned agents
without the stoichiometry incorporated in the node
and graph embeddings (no_stoich) do not achieve
a Scoreq, higher than 0.35 (Tab [d). In contrast,
this threshold is exceeded multiple times by other
agents that do incorporate the stoichiometry, except
for agents trained solely on the atom symbol as node
features. A closer examination of the highest-scoring
agents reveals that when we artificially evaluate us-
ing a different stoichiometry than the one used dur-
ing molecular generation, there are significant drops
in Score,, (Fig. Eh) This suggests that the agent
adapts the graph design to the given stoichiometry,
which is randomly sampled during each epoch. Con-
versely, the best solution of no_stoich does not exhibit
the same magnitude of drop in Score,, when we eval-
uate with a different stoichiometry, suggesting that
it converges to a local optimum where the monomer
units fit independently of the stoichiometry.

Notably, for the highest-scoring agent, the size
of the monomer unit appears to correlate with its
relative frequency (Fig. @1), a trend not observed
in the no_stoich solution. Considering again that
the distinct monomer units across all generated
graphs appear chemically similar, we anticipate that
nearly identical copolymers will form when simulat-
ing macromolecules across all sets of graphs and sto-
ichiometry values. Therefore, we expect minimal dif-
ferences in predicted properties based on these chem-
ical similarities, despite notable variations in graph
size, stoichiometry, and chain architecture.

However, in a toy example featuring two different
monomer units, we demonstrate that the employed
property predictors are sensitive to changes in
these chemical characteristics (Fig. , despite
not resulting in a different copolymer being rep-
resented. Building on our previous observations,
we hypothesize that high-scoring agents exploit
this lack of robustness from the property predictor,
scaling the monomer size with its relative frequency
to ’trick’ the property predictor, even though
this might not necessarily be favorable for the un-
derlying goal of maximizing the HERs of copolymers.



Highest-Scoring Solution of baseline

ook 11—} —— T
block 1:3 — — T —{ T+
block 3:1* — — —
block 3:1** — — —{ T+
20 40 30 35 40 03 04 05
Vav (A monomer) SAav (A monomer) Score,y
) O .
Q O & O

0.409 (block 1:1) 0.361 (block 1:3) 0.411 (random 3:1) 0.404 (block 1:1) 0.384 (random 3:1) 0.456 (block 1:3) 0.426 (random 1:1)

Highest-Scoring Solution of no_stoich

ook 11— — T —— —{—
block 13— _[— — 1+ T —{T —{ T}
block 31— T}—— — —— T — T
block 3:1%  +—{ [ }— — T —{ — T
block 31** " [}—— — —— — —L
20 40 3.0 35 4.0 -42 -40 -38 -36 08 1.0 1.2 02 03 04 05
Vay (A monomer) SA,y (A monomer) EA,, 1P,y Score,y
/ " s - X Q " . )
FEave S vaen o5 RS S v o d¢qd Lo
0.169 (random 3:1) 0.325 (random 1:3) 0.353 (random 1:3) 6:561 (random 1:3) 0353 (bl/ock 11) 0.356 (block 3:1) 0.308 (block 1:1)

Figure 7: Reported metrics across subsets of polymers generated with specific chain architectures and stoi-
chiometry values for the agent types baseline and no_stoich, where no_stoich does not incorporate stoichiom-
etry in the node and graph embeddings, and baseline does. In the figure, we use a notation such as ’0.353
(random 1:3)’ to indicate that the polymer, with the depicted monomer units above, has a score of 0.353 and
a chain architecture 'random’ with stoichiometry 1:3. For the selected polymers subsets, the reported metrics
include the average number of nodes (V,,) and average SA score (SA,,) for all A monomers, alongside the
average electron affinity (EA,, ), the average ionization potential (IP,,), and average score (Score,,) for all
polymers. The figure showcases a selection of generated polymers for both agents, consistently depicting
the B monomers at the top and the A monomers on the bottom. * Evaluated with a 1:1 stoichiometry. **
Evaluated with a 1:3 stoichiometry.
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(c)

Subgraphs SA (A) | SA(B)

As displayed 3.45 2.22

Wildcard atoms (*) turned into Bromine (Br) 1.24 1.06

Wildcard atoms (*) turned into Hydrogen (H) 1.00 1.00

Figure 8: Toy example of a copolymer, featuring two distinct monomer units, that remains invariant when
simulating macromolecules with different chain architectures or stoichiometry values, yet exhibits sensitivity
in property prediction and SA score calculation in the case study. (a) Property prediction varies with chain
architecture and stoichiometry. (b) This sensitivity is observed only with chain architecture in homopolymer

cases.

(c) SA score calculation shows sensitivity to subtle differences in monomer unit representation,

particularly with wildcard atoms influencing scores favorably for larger monomers. Notably, substituting
wildcard atoms in the subgraphs with hydrogen or bromine, used for polymerization in the case study,
reduces the overall SA scores and observed disparities between monomer units.

One explanation could be that the policy takes
advantage of the method used by the property pre-
dictors to form the graph embedding. Specifically,
the property predictors scale the node embeddings,
formed by the wD-MPNN, based on the relative
frequency of the monomer units to which the nodes
belong, before aggregating them into the complete
graph embedding (Fig. ) When more frequently
occurring monomer units are also larger, the average
scaling factor for all node embeddings increases.
In scenarios where node embeddings are nearly
identical, as expected when monomer units exhibit
minimal diversity, this tends to predominantly
amplify the magnitude of the graph embedding.
As a multi-layer perceptron operates on this graph
embedding to predict a chemical property, variations
in its structure can lead to different outcomes. To
address this issue, we propose that future work
should use a property predictor that normalizes the
scaling factor across all polymer graphs to a fixed
mean value.

Large Molecule Size In both the best solution
and the best solution of no_stoich, the generated
molecules exhibit a notably high average number of
nodes (V) (Fig. [7). This characteristic correlates
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with higher average scores (Scoreq,) on the Pareto
front. We can think of two possible reasons that
could explain this observation. Firstly, consider that
our model assigns a zero score to all non-unique poly-
mers, penalizing deterministic outcomes (Eq. [26]). It
is likely that by generating larger polymer graphs,
more actions introduce stochasticity, thereby poten-
tially enhancing uniqueness. This is also what we
see in Figure [B] where Pareto-optimal solutions with
high Score,, and large graph size V,, tend to have
higher uniqueness values. Moreover, small changes to
a larger molecule likely have less impact on its prop-
erties, thereby preserving high scores.

An alternative explanation revolves around the SA
score calculation for individual monomers. In this
calculation, we use the representation frequently used
for represented repeating units, using wildcard atoms
to denote connection points with other monomers.
However, in an illustrative example (Fig. ), we
notice a significant increase in the SA score when
wildcard atoms are included. Interestingly, substi-
tuting these wildcards with bromide atoms, integral
parts of the dibromo monomers that disappear post-
polymerization [36], results in a significant SA score
reduction. Upon closer inspection, we attribute these
differences in SA score to fragment scoring, a key



component of the SA scoring algorithm.

As outlined in Chapter @] molecules are frag-
mented, and each fragment is assigned a score based
on its frequency in PubChem. Since wildcard atoms
are likely infrequent in this dataset, fragments con-
taining them receive higher scores. In our toy exam-
ple, the impact of wildcard atoms on the SA score
of the B monomer is less pronounced compared to
the A monomer, due to the relatively larger molecu-
lar size of monomer B, which dilutes the influence
of the high-scoring fragments (Fig. ) We sus-
pect a similar phenomenon in our findings, supported
by Figure [/} where larger monomer units exhibit
lower SA scores despite their chemical similarity to
smaller ones. With the generated chemical struc-
tures, polyphenyl chains with frequent amino groups,
appearing synthetically accessible, the results imply
that the higher average number of nodes in gener-
ated polymers might provide a strategic advantage,
mitigating the adverse effect of wildcard atoms on SA
score calculations.

Selected Agent Figure [J] highlights an agent situ-
ated on the Pareto frontier with a Score,, of 0.27.
This figure effectively illustrates the impact of fine-
tuning on the generated polymers by the agent, pre-
senting density functions among molecules generated
by the agent for three molecular properties used in
scoring polymers. It compares these distributions
both before and after pretraining, showcasing the
shift in property distributions. We selected this par-
ticular agent to balance scoring and diversity. More-
over, as previously discussed, this agent with lower
Score,, is less likely to take advantage of weaknesses
in the scoring function.
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Figure 9: Density functions calculated across three sets of polymers for all three molecular properties used
in the scoring of polymers. The three sets of polymers include, with samples visualized from left to right,
the ~ 39K polymers in the dataset (Fig. Ié-_lb)7 2100 molecules generated by the prior agent of baseline (Tab.
2]), and 2100 molecules generated by the agent after finetuning on the case study objective. In the figure, we
use a notation such as '0.353 (random 1:3)’ to indicate that the polymer, with the depicted monomer units
above, has a score of 0.353 and a chain architecture 'random’ with stoichiometry 1:3.



6 Conclusion and Outlook

In conclusion, we have developed a graph-based gen-
erative model that can be pretrained to generate
molecules similar to those in an expert dataset and
finetuned using reinforcement learning to explore
more desired regions of the chemical space. This
model achieves high validity rates by excluding ac-
tions that result in invalid molecules, a key advan-
tage of its graph representation, which also facilitates
the incorporation of more detailed information. To
validate the effectiveness of our approach, we con-
ducted a case study focused on designing polymers
optimized for Hydrogen Evolution Reaction (HER)
activity, which measures the production of hydrogen
gas in photocatalytic water splitting. Our model suc-
cessfully navigated the chemical landscape, optimiz-
ing polymer designs based on key properties like elec-
tron affinity and ionization potential. It also consid-
ers the synthetic accessibility of the monomer units,
a practical consideration when producing synthetic
polymers.

However, our experimental results indicate some
nuances in our findings. It appears that high-scoring
agents in our case study might be manipulating the
optimization process. They tend to generate larger
molecules to artificially reduce the predicted syn-
thetic accessibility score of monomer units, which
may not align with the true objective. Future work
could look into forming more robust predictions on
the synthetic accessibility of monomer units to mit-
igate this issue. Additionally, exploring the integra-
tion of polymerization types and resulting functional
groups into the scoring system would be advanta-
geous, particularly if the generative model is afforded
flexibility in selecting these factors.

Furthermore, the high-scoring agents in our case
study adjust the size of monomer units based on
their relative abundance in the polymer stoichiom-
etry, likely misleading the used property predictors.
These findings underscore the difficulty of develop-
ing reliable property predictors for polymer design,
a largely unexplored field hampered by a scarcity of
empirical data. Future efforts should aim to enhance
the robustness of property predictors for polymers,
integrating the adjustment proposed in Chapter

The design goal in this work seemed to favor
smaller repetitive chemical structures, primarily pro-
ducing polyphenyl chains with limited variations be-
tween the monomer units. This approach seemingly
made the incorporation of global information across
the entire polymer redundant for decision-making.
However, the prior was trained on a small and non-
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diverse dataset, which might have forced the agent to
stay too closely aligned with the dataset, limiting its
ability to explore more diverse structures. Addition-
ally, our architecture and cost function potentially in-
fluence the optima reached, constraining the agent’s
ability to leverage global information effectively.

Future work could explore diverse design tasks to
assess the agent’s ability to utilize global information,
considering not only the relative abundance of chem-
ical motifs but also their spatial distribution within
the polymer. Furthermore, future efforts could look
at integrating deep exploration [21], or the combi-
nation of curriculum learning and diversity filters
[20},[44] to more efficiently explore the chemical space,
potentially leading to high-scoring optima that em-
phasize larger chemical structures. Alternatively, as
in the approach by Zhou et al. [24], which does not
involve pretraining on a specific dataset or incorpo-
rating prior likelihood in the cost function, omitting
these constraints could increase flexibility. Consid-
ering the aforementioned limitations of copolymer
datasets in terms of size and diversity, this approach
may facilitate the discovery of a broader range of so-
lutions.

In this study, copolymer design was constrained
to manipulating monomer units, with stoichiometry
and chain architectures sampled from a pretraining
dataset. Another constraint was that the environ-
ment only allowed actions that augmented molecu-
lar graphs solely with zero-charged atoms, thus lim-
iting the representation of a significant portion of the
chemical space. Additionally, the study focused ex-
clusively on linear copolymers, leaving a gap for ex-
ploring more complex copolymer structures, such as
graft or network copolymers.

Moving forward, future research could enhance the
agent’s flexibility by introducing a wider variety of
building blocks, potentially including relevant motifs
like functional groups to guide molecular generation.
Furthermore, expanding the methodology to enable
the creation of more complex copolymers from the
ground up, including those with high branch factors,
presents an opportunity for exploration. However,
given the previously described challenges in develop-
ing reliable property predictors in this field, we advo-
cate for the design and evaluation of robust scoring
functions before progressing to more advanced and
flexible generative models.
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Table S1: Overview of molecular features included in the node embeddings to form the feature matrix F.
These features are extracted using RDKit. For the agent type only_symbol, only the atomic symbol feature
is used. * The symbol encodes for one of {C, N, O, F,S,Cl, Br,I,*}

Feature Size  Type

Symbol* 9 One-hot
Chiral Tag 4 One-hot
Total Degree 8 One-hot
Number of Implicit Hydrogens 7 One-hot
Number of Radical Electrons 8 One-hot
Hybridization Type 9 One-hot
Is Aromatic 1 Boolean
Is in Ring 1 Boolean

IS
0]

Table S2: Fixed hyperparameter values during pretraining and finetuning.

‘ Parameter ‘ Value ‘
R-GCN hidden layers [256, 256, 256, 256)
R-GCN activation function ReLLU
my (first node MLP) hidden layers [128, 1]
ms (second node MLP) hidden layers | [128, 1]
me. (edge type MLP) hidden layers [128, 3]
my (stop signal MLP) hidden layers (128, 2]
m¢, Mg, Me, My activation function Tanh
Agg (aggregation function) Mean
Adam epsilon 1x1078
Adam beta parameters (0.9, 0.999)

Adam AMSGrad False
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Table S3: Mean Negative Log-Likelihood (NLL) training loss for different agent types evaluated at 800, 1600,
and 2400 learning steps. Each value represents the average loss across three replications for weight decay
values of 0, 0.001, and 0.0001.

Mean NLL Loss
Weight Decay 0 Weight Decay 0.0001 Weight Decay 0.001

Agent Type (Learning Steps)

baseline (Step 800) 1.386 1.426 1.624
baseline (Step 1600) 1.258 1.291 1.504
baseline (Step 2400) 1.189 1.253 1.447
only_symbol (Step 800) 1.660 1.713 2.001
only_symbol (Step 1600) 1.478 1.531 1.751
only_symbol (Step 2400) 1.387 1.448 1.689
gta_mon (Step 800) 1.181 1.238 1.377
gta_mon (Step 1600) 1.083 1.127 1.302
gta_mon (Step 2400) 1.034 1.094 1.273
no_stoich (Step 800) 1.357 1.409 1.543
no_stoich (Step 1600) 1.227 1.288 1.458
no_stoich (Step 2400) 1.179 1.223 1.414
obs_focus (Step 800) 1.359 1.407 1.627
obs_focus (Step 1600) 1.212 1.259 1.487
obs_focus (Step 2400) 1.140 1.201 1.440
obs_graph (Step 800) 1.491 1.537 1.734
obs_graph (Step 1600) 1.320 1.388 1.571
obs_graph (Step 2400) 1.226 1.305 1.535
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