
 
 

Delft University of Technology

The Role of Miscible Gas Mixing on CO2-Enhanced Methane Recovery

Yamada, Kenta; Delshad, Mojdeh; Lake, Larry W.; Sepehrnoori, Kamy; Fernandes, Bruno Ramon Batista;
Farajzadeh, Rouhi
DOI
10.2118/221024-MS
Publication date
2024
Document Version
Final published version
Published in
Society of Petroleum Engineers - SPE Annual Technical Conference and Exhibition, ATCE 2024

Citation (APA)
Yamada, K., Delshad, M., Lake, L. W., Sepehrnoori, K., Fernandes, B. R. B., & Farajzadeh, R. (2024). The
Role of Miscible Gas Mixing on CO

2
-Enhanced Methane Recovery. In Society of Petroleum Engineers -

SPE Annual Technical Conference and Exhibition, ATCE 2024 (Proceedings - SPE Annual Technical
Conference and Exhibition; Vol. 2024-September). Society of Petroleum Engineers (SPE).
https://doi.org/10.2118/221024-MS
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.2118/221024-MS
https://doi.org/10.2118/221024-MS


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project  
 

https://www.openaccess.nl/en/you-share-we-take-care 

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 

 
 



SPE-221024-MS

The Role of Miscible Gas Mixing on CO2-Enhanced Methane Recovery

Kenta Yamada, Hilderbrand Department of Petroleum and Geosystems Engineering, The University of Texas at
Austin, Austin, TX, United States ,now with ITOCHU Oil Exploration Co., Ltd.; Mojdeh Delshad, Larry W. Lake,
and Kamy Sepehrnoori, Hilderbrand Department of Petroleum and Geosystems Engineering, The University of
Texas at Austin, Austin, TX, United States; Bruno Ramon Batista Fernandes, Center for Subsurface Energy and
the Environment, The University of Texas at Austin, Austin, TX, United States; Rouhi Farajzadeh, Faculty of Civil
Engineering and Geosciences, Delft University of Technology University, Delft, the Netherlands / Shell Global
Solutions International, The Hague, the Netherlands

Copyright 2024, Society of Petroleum Engineers DOI 10.2118/221024-MS

This paper was prepared for presentation at the SPE Annual Technical Conference and Exhibition held in New Orleans, Louisiana, USA, 23 - 25 September 2024.

This paper was selected for presentation by an SPE program committee following review of information contained in an abstract submitted by the author(s). Contents
of the paper have not been reviewed by the Society of Petroleum Engineers and are subject to correction by the author(s). The material does not necessarily reflect
any position of the Society of Petroleum Engineers, its officers, or members. Electronic reproduction, distribution, or storage of any part of this paper without the written
consent of the Society of Petroleum Engineers is prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300 words; illustrations may
not be copied. The abstract must contain conspicuous acknowledgment of SPE copyright.

Abstract
Depleted gas reservoirs are viable choices for large-scale CO2 storage and to displace remaining methane
volumes to further increase the storage capacity (EGR). However, deployment of such projects depends on
an informed knowledge of the magnitude of mixing of the miscible gases, efficiency in displacing in-situ
methane by CO2, composition of the produced gas, and CO2 storage capacity. This study focuses on the
fundamental analysis of mixing during CO2-EGR using a numerical approach.

We propose to conduct very fine grid compositional simulations to provide insights into the mixing
of CO2 and methane in a gas reservoir at different reservoir and operational conditions. We first analyze
a stratified layer model to understand the basic mechanisms of scale-dependency of dispersion and the
significance of reservoir heterogeneity on fluid mixing. To consider more realistic reservoir heterogeneity, a
two-dimensional stochastic reservoir model is analyzed to estimate dispersivity generated as fluids flow in
porous media at different scales. Reservoir heterogeneity is represented by the Dykstra Parsons coefficient
(VDP) and autocorrelation length, and fluid properties are modeled depending on pressure and temperature
conditions. Field-scale simulation is also performed to discuss the way dispersion is modeled in reservoir
simulation affects simulated gas recovery.

Our study shows that the variance of permeability and convective spreading are the primary causes of
fluid mixing at any scale. In addition, molecular diffusion is not always negligible in gas mixing even in
large-scale heterogeneous reservoirs since gas has much larger diffusivity than liquid. Furthermore, the
mechanism of fluid mixing during CO2-EGR is complex with the interplay between convective spreading,
transverse dispersion (including molecular diffusion), and gravity segregation. Although geoscientists
often assume numerical dispersion can represent physical dispersion, our study indicates this is an
oversimplification and could cause significant errors in calculated gas recovery. Permeability heterogeneity
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2 SPE-221024-MS

is essential for the dispersion growth process and the final displacement behavior. Reservoir heterogeneity
should be modeled with high-resolution grid models to analyze mixing behaviors more accurately.

Introduction
CO2 Enhanced Gas Recovery (CO2-EGR) could help sustain the energy supply in terms of improving
natural gas recovery as well as CO2 storage during the process. Although there have been limited field-scale
applications (Van Der Meer et al., 2005; Pooladi-Darvish et al., 2008; CLEAN Partners et al., 2012), its
great potential has encouraged researchers to perform extensive studies to analyze technical concerns and
explore its feasibility (Liu et al., 2022; Wang et al., 2023).

Oldenburg et al. (2001; 2002) performed one of the first comprehensive field-scale feasibility studies for
CO2-EGR using reservoir simulation. Their simulation demonstrates that CO2-EGR has excellent potential
for gas recovery since the favorable mobility ratio between natural gas and injected CO2 and gravity
segregation support an ideal sweep with the limited impact of mixing between two fluids.

However, there are observations in the literature of early breakthrough of the injected CO2 within one
year (Vandeweijer et al., 2011) to three years (Pooladi-Darvish et al., 2008), and some cases resulted in
early abandonment (Pooladi-Darvish et al., 2008) of field pilot projects. Reducing the CO2 contamination in
the produced gas is crucial for surface facilities, thus understanding the mixing between CO2 and methane
could be an essential driver to determine project life, total gas recovery, and CO2 storage capacity.

Modeling field scale dispersive behavior is still controversial despite a long research history because
of complicated mechanisms of how mixing is generated within the porous media and the inherence of
numerical dispersion in reservoir simulation. Common practice is not modeling physical dispersion based on
the assumption that numerical dispersion can represent the physical one. Oldenburg et al. (2001; 2002) use
large grid size (Δx=200m) in their simulation to represent the expected longitudinal dispersion (αL=100m)
in about 4,400 m well distance. Such a large dispersivity in the field scale has been recognized as scale-
dependency of dispersivity.

Scale-dependency of dispersion creates confusion on the correct input value of dispersivity for field-
scale reservoir simulation. Measured dispersivities from laboratory to field scale have been compiled by
researchers over decades (Fig. 1). The relationship of measured longitudinal dispersivity to the scale of
measurement shows a clear positive relation, providing evidence that large-scale has large dispersivity. It
should be noted that the plots are in a log-log scale, and the data are highly scattered.

Figure 1—Dispersivity data measured over different length scales (Figure from John et al (2008),
original data from Schulze-Makuch (2005), reliability indexes are defined by Gelhar et al. (1992),
and data accumulated from numerous authors (Lallemand-Barres and Peauclecerf, 1978), etc.).
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Considering the discussion above, how much physical dispersivity (α) should be input into field-scale
reservoir simulation, although Oldenburg et al. (2001) modeled 100 m physical dispersivity by inherent
numerical dispersion? Coats (2004) argued that we should input physical dispersivity on the order of 0.01 ft,
not apparent dispersivities typically 100 to 1000 times larger than that. This is because apparent dispersivity
is largely reflected by areal and vertical conformance, which results from well pattern, completion intervals,
and heterogeneity. He also concluded that there is no scale dependence on physical dispersion.

Jha et al. (2009) cast double on Coats's standpoint, which is that dispersion results from convective
spreading only. They used the concept of flow reversal (echo) and demonstrated that dispersion is a result of
an interplay between convective spreading and diffusion. John et al. (2008) extended the theory from pore-
scale to field-scale, concluding that dispersive mixing is significant in field-scale miscible displacement
even in heterogeneous formation. Garmeh and Johns (2010) developed a response surface model based on
reservoir simulation results to estimate local dispersivity.

Mixing within a gas phase has not been fully studied, past studies were focused on liquids (oil or water).
Large (typically two orders of magnitude or more) molecular diffusivity and fluid compressibility in the
gas phase may require a different explanation for the dispersive mechanism compared to the liquid phase.
In addition, not only mixing but also overall displacement behavior during CO2-EGR should be explored
to optimize CO2-EGR operation. Since CO2 fluid properties vary significantly depending on pressure
and temperature conditions relevant to EGR in depleted gas reservoirs, completely different development
strategies may be required for each field.

The objective of this study is a fundamental understanding of the CO2/methane mixing during CO2-EGR,
and resultant displacement behavior. To achieve this, we first perform dispersion analysis using numerical
simulation to explore the mechanisms of how dispersion is generated in the porous media during gas
displacement. Equal-density and equal-mobility fluids are used in the simulation to focus on pure dispersive
behavior in heterogeneous media. Secondly, we perform numerical simulations for displacement analysis
during CO2-EGR. Not only dispersion but also gravity and mobility impacts are explored depending on
different reservoir and operational conditions. We also compare simulation results by different modeling
approaches of dispersion and show how they affect simulated gas recovery. We use a commercial software
(CMG, 2023a) for the compositional reservoir simulations.

Methodology

Dispersion analysis
We first perform dispersion analysis using an analytical solution and numerical simulation for different
reservoir heterogeneity at different scales. The objective is to estimate the apparent dispersivity generated as
fluids flow in heterogeneous porous media. The main result from the simulation is the concentration profile
over time. To focus on analyzing dispersive behavior, we convert the concentration profile to the equivalent
dispersion coefficient and apparent dispersity by the following procedure.

Dispersivity estimation from mixing zone length.   In an isothermal miscible displacement between
two components in one-dimensional, homogeneous porous media, and assuming incompressible fluid,
conservation of the displacing component can be described by the convection-dispersion equation (CDE).
The dimensionless form of the equation is expressed by (Lake et al., 2014)

(1)

where CD is dimensionless concentration, tD is pore volumes injected (=vt/L), xD is dimensionless distance
(=x/L), and Npe is Peclet number (=vL/KL). For continuous injection (CD (0,tD )=1 @tD≥0), the analytical
solution is expressed by using the error function as
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(2)

The dimensionless mixing zone, defined as the dimensionless distance between the position where
CD=0.1 andCD=0.9, can be derived from equation (2) with neglecting the last term for simplicity since it
generally has a small value as

(3)

In this study, dispersivity is estimated by using dimensionless mixing zone length from one-dimensional
flow simulation results. We calculate the average concentration in the vertical direction to obtain the
mixing zone length in the cross-sectionally averaged media (Fig. 2). Also, the location where the average
concentration in the vertical direction is 0.5 is considered the mean travel distance.

Figure 2—Schematic of estimating the mixing zone length of layered
(heterogeneous) reservoir by taking an average concentration profile in each layer.

Equation (3) gives an equivalent Peclet number Npe from the dimensionless mixing zone length, and
the definition of the Peclet number Npe=vL/KL gives an equivalent longitudinal dispersion coefficient KL

fromNpe .The resultant dispersion coefficient from numerical simulation includes three terms of molecular
diffusion, physical dispersion, and numerical dispersion.

(4)

where, Dmol is molecular diffusion coefficient, τ is tortuosity to consider actual diffusive travel distance
in porous media (Perkins and Johnston, 1963), αL is longitudinal dispersivity meaning the proportionality
constant between velocity and physical dispersion coefficient, v is interstitial velocity, and Dnum is numerical
dispersion coefficient.

Therefore, the resultant longitudinal dispersivity αL can be estimated by subtracting molecular diffusion
and numerical dispersion terms from KL and dividing by interstitial velocity. Dnum is equated by the following
equation when the difference equation is approximated with an implicit approach in time and upstream
weighting is considered for the fluxes in X direction (Peaceman, 1977).

(5)

Heterogeneous permeability field generation.   A stochastic heterogeneous permeability field is used
in our analysis. The models are generated by using three parameters: a Dykstra–Parson coefficientVDP,
a dimensionless autocorrelation length of permeability kx for the flow direction λx, and a dimensionless
autocorrelation for vertical direction λz. We use a commercial software (SLB-PETREL) to generate the 2-
D permeability field.
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The Dykstra–Parsons coefficient VDP indicates the variance of permeability under the assumption that
permeability data are drawn from a log-normal distribution, defined as

(6)

where k50 is the log mean permeability and k84.1 is one standard deviation below the mean. Typical petroleum
reservoirs have a Dykstra–Parsons coefficient from 0.5 to 0.9 (Peters, 2012).

Spatial continuity is expressed by a semivariogram. The semivariogram is a function that shows the
relationship between the semivariance γ of the distance between properties at two locations separated by
a distance h and h as shown below.

(7)

where x is location, n is the number of data pairs separated by the distance h. The autocorrelation length
is the distance at which the semivariogram levels off in a semivariogram model. The dimensionless
autocorrelation length is the autocorrelation length divided by the length of interest, usually the distance
between the injection and the production points. A spherical semivariogram is used in this study.

Application for mixing in CO2-EGR
We secondly analyze mixing during CO2-EGR. The objective is to understand displacement behavior,
including gravity segregation, channeling, and dispersion under the typical operational and reservoir
conditions in the CO2-Methane system. We also aim to explore the practical numerical modeling approach
for field scale mixing during CO2-EGR by comparing different approaches and resultant gas recovery.

Physical properties calculation.   Pressure and temperature conditions are key factors determining fluid
properties and resultant diffusive, gravitational, and mobility relations between injection and production
fluid compositions. Since an isothermal condition is assumed, reservoir temperature refers to the initial
reservoir temperature. On the other hand, reservoir pressure for CO2-EGR varies depending on the operation;
in other words, it depends on the timing of starting CO2 injection after a certain level of reservoir depletion
(primary production).

Fig. 3 shows the density difference between CO2 and methane and the mobility ratio (inverse of viscosity
ratio, ) in the range of pressure and temperature. Since the CO2 critical point is close to operational
temperature and pressure conditions where both properties vary near the critical point. At low pressure, the
density difference is low, and the mobility ratio is close to (but less than) 1.0. As pressure increases, the
density difference increases because CO2 density increases faster, and the mobility ratio decreases further.

Figure 3—Density difference and mobility ratio between CO2 and methane for
various temperature and pressure (calculated using NIST chemistry webbook).
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6 SPE-221024-MS

As for molecular diffusivity, the Sigmund model is used in this study to calculate the binary molecular
diffusion coefficient accounting for pressure, temperature, and fluid compositions (Sigmund, 1976a, 1976b).
The binary diffusion coefficient between components i and j in the gas phase mixture is

(8)

where ρ is the molar density of the diffusing mixture at average mole fraction, and ρr is the reduced molar
density calculated by

(9)

where yi is the molar fraction of component i in the gas phase, and vci is the molar volume of component
i in the gas phase.  can be calculated by gas kinetics with Chapman-Enskog theory as follows (Bird
et al., 2007),

(10)

where T is temperature, Mi is the molecular weight of component i, R is the universal gas constant, and
σij and Ωij are Lennard-Jones parameter and collision integral, respectively, between components i and
j. Fig 4 shows the relationship between the binary molecular diffusion coefficient in the CO2-Methane
system calculated by Chapman-Enskog kinetic theory and pressure at a temperature of 60 °C. Pressure has
a significant influence on the diffusion coefficient, which could reach 1.0×10−2 cm2/s at low-pressures and
is around 1,000 times larger in value than a typical value of brine-water at standard conditions.

Figure 4—Binary molecular diffusion coefficient for CO2- Methane system for different pressures.

The solubility of gas components in connate water is modeled using Henry's law. The fugacity of gaseous
components i soluble in the aqueous phase is expressed by

(11)

where yiw is the mole fraction of component i. Hi is Henry's constant, which are the functions of pressure,
temperature, and salinity as

(12)

D
ow

nloaded from
 http://onepetro.org/SPEATC

E/proceedings-pdf/24ATC
E/24ATC

E/D
021S013R

002/3603562/spe-221024-m
s.pdf/1 by Bibliotheek TU

 D
elft user on 07 N

ovem
ber 2024



SPE-221024-MS 7

where  is Henry's constant at reference pressure p* and temperature T,  is the partial molar volume of
component i, p is pressure. In this study, Henry's constants are calculated using software (CMG, 2023b)
using Li-Nghiem's method (Li and Nghiem, 1986).

Fundamental Analysis of Dispersion

Understanding scale-dependency of dispersion (Stratified layer model)

(i) No cross-flow case.   We first analyze the relationship between reservoir heterogeneity and resultant
dispersivity in field scale. The purpose is to validate whether inputting a large dispersivity observed in Fig.
1 into the simulation model is correct. We consider a heterogeneous reservoir model with stratified layers
without vertical crossflow to represent heterogeneous channeling behavior.

We use an analytical solution of the Dispersion-Koval model developed by Naudomsup and Lake
(2017). Their solution is for a one-dimensional convection-dispersion equation considering both local
dispersion (represented by the Peclet numberNpe) and heterogeneous channeling (represented by the Koval
heterogenous factor HK) for heterogeneous reservoir with stratified layer without vertical crossflow. The
Koval heterogenous factor is practical in relating reservoir heterogeneity to vertical sweep efficiency
compared to conventional heterogeneous parameters based on statistics. Paul et al. (1982) show the
relationship between HK and VDP by the following equation.

(13)

Using the analytical solutions by inputting Npe andHK, we calculate the effluent history by continuous
tracer injection. Then the profile is fit by the Peclet number in an analytical solution for the conventional
1-D CDE by minimizing the root mean square error. The fitted Peclet number is converted to the resultant
apparent dispersivity influenced by both local dispersion and heterogeneous channeling. We assume small
local dispersion (Npe = 1000), which is aligned with the bottom line of the historical measured data (Fig. 1)
under the assumption that molecular diffusion is negligible (Npe≈α/L = 1000). We perform sensitivity to the
Koval factor from 1 (homogeneous, which is equivalent toVDP=0) to 7 (heterogeneous, which is equivalent
to VDP=0.67 by equation (13)) and analyze the resultant apparent dispersivity for different Koval factors.

Fig. 5 shows the resultant Peclet number and inverse for different reservoir heterogeneity (Koval factor).
When Hk is 1, the outcome of Npe is 1000, which is equivalent to the initial local dispersivity. However, when
heterogeneity is present, the outcome of Npe decreases significantly and the inverse ofNpe, which is equivalent
to dimensionless dispersivity (α/L), shows a steady increase along with the Koval factor. Compared to
the input local dispersivity of α=0.001 L and resultant dispersivity of α=120 L at Hk =7, heterogeneous
channeling seems to be quite dominant as apparent dispersivity, under the assumptions we made for this
study.
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8 SPE-221024-MS

Figure 5—Estimated Peclet number with different Koval factors.

Fig. 6 shows the resultant dispersivity along with the scale for different Koval factors on the plot of
measured data. A linear relationship exists between dispersivity and scale in the stratified layered flow
without diffusive cross flow. Koval factors varying from 1 to 7 almost cover all scattered measured data in
the plot. This result shows that heterogeneity is crucial for field-scale dispersivity. In other words, such a
large dispersivity should not be input for reservoir simulation where heterogeneity is already represented
by a geological model set; otherwise, the simulation overestimates fluid mixing.

Figure 6—Estimated dispersivity along with distance for different Koval factors (adapted to the plot from John et al. (2008)).

(ii) With crossflow case.   In real reservoirs, communication between layers plays an important role in field-
scale dispersion. A sensitivity study with numerical simulation for a stratified layer model with diffusive
crossflow is performed. The purpose is to analyze how dispersion grows where molecular diffusion occurs
between layers. We prepare a unidirectional velocity field with 5 layers consisting of three high velocities
and two low velocities, and the average velocity is Vo as shown in Fig. 7. Permeability varies with velocity
variation at constant porosity and thickness for each layer. We perform sensitivity simulations for (1)
heterogeneity (velocity variation), (2) average interstitial velocity, (3) thickness, and (4) molecular diffusion
coefficient. The sensitivity parameters are summarized in Table 1. For simplicity, local dispersivity is
neglected.
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SPE-221024-MS 9

Figure 7—Schematic of the input velocity field in a 5-layer model.

Table 1—Sensitivity parameters for stratified layered simulation model.

Sensitivity parameters Low Base High

Heterogeneity (Velocity Variation) high: 1.2 Vo

low:0.7 Vo

high: 1.4 Vo

low:0.4 Vo

high: 1.6 Vo

low:0.1 Vo

Average velocity Vo (m/d) 0.1 1.0 10.0

Total Thickness (m) 0.316 1.0 3.162

Molecular Diffusion Coefficient Dmol (cm2/s) 1.0×10−5 1.0×10−4 1.0×10−3

Fig. 8 shows the simulation results of the estimated dispersivity vs. mean travel distance for each sensitive
simulation. Fig. 8a compares the results from the base case (using all base values of each sensitivity
parameter) and the case with no diffusion. The no-diffusion case shows a linear relationship between
dispersivity and travel distance, which aligns with the previous section's results. However, for the base case
with molecular diffusion, it levels off when the travel distance arrives around 50 m, and finally, it reaches an
asymptotic value. This explains that convective spreading (or heterogeneous channeling) is dominant when
fluid starts to travel through heterogeneous formation, but later molecular diffusion works to equalize the
concentration gradient between the layers, resulting in pure dispersive behavior.

Heterogeneity increases dispersivity by almost keeping the trend of the plots but shifting vertically in Fig.
8b. Heterogeneity mainly impacts convective spreading so that the large heterogeneity case shows a higher
position in the plots, which is the same results in the previous section that a larger Koval factor results in
a larger y-intersect in the plot but slope remains the same.

On the other hand, velocity, molecular diffusion coefficient, and thickness do not impact the linear section
of convective spreading, but they affect the onset of the level-off, and that results in an asymptotic value of
the final dispersivity (Fig. 8c, 8d, and 8e). Lake and Hirasaki (1981) introduced a dimensionless number,
transverse dispersion number NTD, based on the time required for fluid to cross the media in flow direction
driven by convection (tl) and in the transverse direction by diffusion or dispersion (tt) in the two-layer porous
media. vmax is the highest velocity in a layer, and  is the transverse dispersion coefficient in the low-

velocity layer. Assuming there is zero transverse physical dispersion  and using the average
velocity for vmax, the equation can be simplified as

(14)

Fig. 8c, 8d, and 8e suggest that smaller transverse dispersion number NTD takes more time to reach the
asymptotic value, resulting in larger dispersivity. The resultant dispersivity increases with velocity and
thickness, while it decreases with the molecular diffusion coefficient. In addition, the three figures for
velocity, molecular diffusivity, and thickness are almost identical because the low and high values for these
three sensitivity parameters have the same transverse dispersion number.
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10 SPE-221024-MS

Figure 8—Estimated dispersivity vs. mean travel distance for (a) base case and the case without molecular diffusion, (b)
different heterogeneity, (c) different velocity (v), (d) different molecular diffusion coefficient (D), (e) different thickness (H).

Although the transverse dispersion number NTD is strictly for a two-layer medium, simulation results
show that it can also capture the general behavior between convective spreading and dispersion in a simple
stratified layer media such as the model used here.

Small-scale dispersion
Although the field-scale dispersion analysis discussed above implies that large dispersivity measured in Fig.
1 should not be input in the field-scale reservoir simulation, the question is how much dispersivity should
be input. In this study, we apply the scaling-up approach performed by John (2008), in which dispersivity
simulated in one grid-scale of a large-scale model is used as an input dispersivity for large-scale simulation.

To estimate apparent dispersivity in one grid-scale of the large-scale model, we perform reservoir
simulation using a two-dimensional small-scale (1m×1m) model with a grid size of (1cm×1cm). We prepare
a model with a distance five times larger than the region of study to remove the undesired boundary
effect by a producer (Fig. 9). Heterogeneity is represented by permeability variation (Dykstra–Parsons
coefficient VDP), but with constant porosity. There is no autocorrelation length for the semivariogram
(random distribution). We assume an isotropic permeability field with a mean value of 1000 mD. The model
is initially saturated with pure methane with no mobile water saturation. A pseudo-component with the same
properties as methane is injected from the model's left side by flow rate control to maintain the average
interstitial velocity and produced from the right side by bottomhole pressure control. The initial reservoir
pressure is set to 5MPa, and the temperature is 60 °C. We ignore physical dispersivity in this simulation.
Tortuosity is assumed to be 1.4.
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SPE-221024-MS 11

Figure 9—X-Permeability distribution (mD) of the 2-D small-scale model (VDP=0.6).

Numerical sensitivity simulations are performed using different values for Dykstra–Parsons coefficient,
average interstitial velocity, grid size, and molecular diffusion coefficient. Apparent dispersivity is
calculated using mixing zone length from simulation results, which are explained in the methodology
section. Fig. 10 shows the relationship between resultant KL/Dmol and the local Peclet number Pe defined by
vdp/Dmol, where dp is grain size. The plots show data collected by researchers from both lab experiments and
simulation results, and the plot lines show simulation results from this work obtained by varying velocity
for two heterogeneous models with VDP= 0.6 and 0.9. The grid size is used corresponding to the grain size
dp for calculating the local Peclet number. Simulation results show good agreement with the collected data,
and the variety of the collected plots stays within our simulation results at VDP= 0.6 and 0.9. Fig. 10 explains
that the local Peclet number Pe determines small-scale dispersive behaviors. A low local Peclet number
(<0.1), such as low velocity, small grain size, or large molecular diffusivity, shows diffusion dominance.
Convective dispersion starts to take place with increasingPe, and at a certain point, it reaches a straight line
for convective dominant dispersion.

Figure 10—Comparison of the relationship between the ratio of dispersion coeff. (KL) /molecular diffusion
(Dm) and local Peclet number (Pe) from simulation results (plot line) with experimental data (plots)

(adapted from Bijeljic et al. (2004). (Solid circles) experimental data using unconsolidated bead packs,
(open circles, diamonds, and squares) from bead pack experiments obtained by magnetic resonance
imaging, (triangles) bead pack experiments obtained by planar laser-induced fluorescence method).

Fig. 11 shows the estimated dispersivity at 1m travel distance vs. local Peclet number for two models with
different permeability heterogeneities. The estimated dispersivity increases with the local Peclet number and
reaches an asymptotic value at aroundPe=100. The asymptotic value coincides with dispersivity in the case
of no-molecular diffusion plotted by a dashed line. This means that molecular diffusion has a smaller impact
at a larger local Peclet number, resulting in convective dispersion dominance. Also, heterogeneity has a
significant influence on the resultant dispersivity, 0.28 cm for Vdp=0.6 and 2.7 cm for Vdp=0.6 corresponding
to asymptotic values.
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12 SPE-221024-MS

Figure 11—Estimated dispersivity at travel distance = 1m vs. local Peclet number with different VDP values.
Dashed lines refer to the cases without molecular diffusion and sold curves include molecular diffusion.

Most of the past research on small-scale dispersive behavior has been conducted by solving the Navier-
Stokes equation with the convection-diffusion equation in porous structure or particle tracking simulation
in porous networking model (Bruderer and Bernabé, 2001; Acharya et al., 2007; Jha et al., 2009). The
results in this study show that finite volume-based compositional simulation with proper consideration of
numerical dispersion can also model dispersive behavior at a small scale under the assumption that porous
media consists of random packs of uniform-size grains.

Field-scale dispersion
We perform numerical simulations for a two-dimensional stochastic heterogeneous reservoir model to
analyze large-scale dispersive fluid behavior in a field-scale reservoir (Fig. 12). The model is set to
200m×50m, considering the typical well distance in pattern floods, and the grid size is 1m×1m. We prepare
a model with a five-times larger distance than our interest. Heterogeneity is represented by the Dykstra–
Parsons coefficient ?sVDP. Autocorrelation length for horizontal and vertical direction is set to λx=0.6 and
λz=0.1. Reservoir conditions and settings in the simulation are the same as in the small-scale simulation. We
assume a pure methane system, the flow rate is controlled by maintaining the average interstitial velocity of
1m/d, reservoir pressure is 5MPa, and temperature is 60 °C. kv/kh is 0.1, and tortuosity is assumed to be 1.4.

We perform sensitivity simulations for (1) Dykstra–Parsons coefficient, (2) molecular diffusion
coefficient, and (3) input longitudinal dispersivity αL. The molecular diffusion coefficient is varied from low
as the typical value in the liquid phase to high for a gas phase. Input longitudinal dispersivity is set based
on the results of dispersivity variation in small-scale simulation presented in the last section. Transverse
dispersivity is set to a tenth of longitudinal dispersivity following a common practice (Perkins and Johnston,
1963). The parameters we use for the study are summarized in Table 2. Each simulation is performed by
changing one parameter at a time and using the base case values for the other parameters.

Figure 12—X-Permeability distribution (mD) of the 2-D large-scale reservoir model (VDP=0.6).
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Table 2—Sensitivity parameters for large-scale simulation.

Sensitivity parameters Low Base High

Dykstra–Parsons coefficient, VDP 0.3 0.6 0.9

Molecular diffusion coefficient, Dmol (cm2/s) 1.0×10−5 1.0×10−4 1.0×10−2

Input longitudinal dispersivity, αL (cm) 0.3 1.0 10

Fig. 13a shows the estimated dispersivity vs. mean distance for different heterogeneity. Dykstra–Parsons
coefficient has a large impact on the resultant dispersive behavior. The estimated dispersivities when the
fluid travels around 200m have considerable variation, 2.7m for VDP=0.3 and 47.3 m for VDP=0.9. Fig. 13b
and 13c show the estimated dispersivity for different input molecular diffusion coefficients and longitudinal
dispersivity. The figure implies that molecular diffusion and input local dispersivity have less impact on
field-scale dispersion compared to the field-scale heterogeneous channeling in a heterogeneous reservoir
with VDP=0.6. However, the case with a large molecular diffusion coefficient (Dmol=1×10−2 cm2/s) seems to
reduce the dispersivity. Therefore, even in the heterogeneous reservoir, molecular diffusion is not always
negligible for gas displacement, and it can reduce the channeling effect.

Figure 13—Estimated longitudinal dispersivity (αL) vs. mean distance for (a) different heterogeneity
(VDP), (b) different molecular diffusion coeff. (Dmol), (c) different input local dispersivity (α).

Fig. 14 shows the estimated dispersivity including numerical dispersion for different grid sizes. Solid
lines show calculated dispersivity without numerical dispersion. On the other hand, dotted lines show
dispersivities with numerical ones. Numerical dispersivities calculated by equation (5) are about 0.5 m
and 2.5 m when using 1m and 5 m grid blocks, respectively. Using a large grid size increases the overall
dispersive behavior, but a low heterogeneous case (VDP=0.3) is more sensitive to numerical dispersion than
a highly heterogeneous case (VDP=0.9) because the heterogeneous case already has large dispersion caused
by channeling. A smaller grid is recommended for the less heterogeneous cases than the heterogeneous
cases to accurately represent the real dispersivity.
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14 SPE-221024-MS

Figure 14—Estimated dispersivity including numerical dispersion for different grid sizes.

Mixing in CO2-Enhanced Gas Recovery

How reservoir and operational conditions impact displacement in CO2-EGR
In the fundamental dispersion analysis, we analyzed only dispersive behaviors using equal-density and
equal-mobility fluids. In this section, we first perform a sensitivity simulation for CO2-EGR using a
two-dimensional stochastic heterogeneous reservoir. The objective here is to understand the general flow
behavior, including gravity segregation, channeling, and dispersion under the typical operational and
reservoir conditions in the CO2-methane system.

This study assumes a single-phase flow in which CO2 and methane are completely miscible. This is a
fair assumption at pressure and temperature conditions relevant to CO2-EGR (Hughes et al., 2012). Also,
pure CO2 and pure methane are assumed as injectant and in situ gas, respectively, and assume isothermal
reservoir temperature at 60 °C.

Fig. 15 shows the schematic of the model. The model is set to 200m×50m with a grid size of 1m×1m.
Heterogeneity is represented by Dykstra–Parsons coefficientVDP=0.6, and the dimensionless autocorrelation
length λ for x and z directions are 0.6 and 0.1, respectively. Pure methane is saturated at initial conditions,
and pure CO2 is injected for gas recovery. Input longitudinal and transverse dispersivity are 1cm and 0.1 cm,
respectively. Molecular diffusivity is modeled using the Sigmund model, but CO2 and methane solubility in
brine are not modeled. Sensitivity simulations are performed for reservoir pressure, fluid interstitial velocity,
x-direction permeability, and kv/kh ratio. Each simulation is performed by changing one parameter at a time
and using the base case values for the other parameters. The base values and their ranges are summarized
in Table 3.

Figure 15—2-D heterogeneous reservoir model (X-permeability field, mD).

Table 3—Sensitivity parameters for CO2-EGR simulation.

Sensitivity parameters Low Base High

Reservoir pressure (MPa) 1 5 15

Average interstitial velocity (m/d) 0.1 1.0 10.0

x-direction permeability kx (mD) 10 100 1000

Vertical to horizental peremability ratio,kv/kh 0.01 0.1 1.0
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Reservoir pressure determines mobility, gravity segregation, and diffusive properties. CO2-EGR always
has favorable mobility conditions, so the impact of mobility ratio is negligible, but density difference and
molecular diffusivity vary significantly in the pressure range associated with CO2-EGR (Fig. 3 and Fig. 4).

Fig. 16 shows the injected CO2 concentration profile after 0.4 pore volume injected for different reservoir
pressures. Overall, channeling behavior exists since the reservoir is heterogeneous (Vdp=0.6). In the case
of low reservoir pressure at 1MPa, the channeling behavior is reduced, and a more diffusive concentration
profile is observed. This is caused by the larger molecular diffusion at low-pressure conditions for the gas
phase. In contrast, when the reservoir pressure is 15MPa, the gravity segregation is more pronounced. CO2

has a liquid-like density under this pressure range with a higher contrast in density between the two gases
leading to gravity segregation against in situ methane.

Figure 16—CO2 mole concentration profiles at PVI=0.4 for different reservoir pressures.

Fig. 17 shows the CO2 mole concentration profile for each sensitivity parameter at PVI=0.4. Channeling
is dominant for most of the cases, but in the cases of high permeability and low velocity, gravity
segregation is dominant, and their behaviors are similar since these two cases have similar gravity numbers

 (Gharbi et al., 1998). In addition, if we compare these two cases, the case with low
velocity has less channeling since low-velocity increases transverse dispersive behavior and works to
equalize the concentration gradient among the layers, as discussed previously. Also, high kv/kh introduces
gravity segregation since it increases the effective aspect ratio . The effective aspect ratio
is a key parameter to determine Vertical Equilibrium (VE) (Shook et al., 1993). In summary, permeability
channeling is often dominant in heterogeneous reservoirs. However, reservoir and operational conditions
can also change the flow behavior. Dimensionless scaling groups are still insightful for basic understanding
even for heterogeneous media.
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16 SPE-221024-MS

Figure 17—CO2 mole concentration profiles at PVI=0.4 for sensitivity simulations. (top) profiles with different
horizontal permeabilities (middle) profiles with different interstitial velocities, (bottom) profiles for different kv/kh.

Two-dimensional field scale simulation
The second study performs a field-scale two-dimensional reservoir simulation based on a depleted gas field.
The objective is to show how the methodology to model dispersion affects simulated gas recovery. We
follow Oldenburg's previous work (Oldenburg et al., 2001). They analyzed the feasibility of CO2-EGR for
a gas field in California that showed great potential for CO2-EGR with limited gas mixing.

A homogeneous reservoir simulation model was developed similar to the one in Oldenburg et al. The
reservoir has a 1 km width with vertical dimensions of 100 m and a horizontal extent of 6600 m with
0.78 degrees of dip angle. The model has 660 gridblocks (33×20) with a grid size of 200m×5m (Fig. 18).
Primary production was performed from 1936 by a producer at the top of the reservoir. Then CO2 injection
was followed from 1999 by an injector located at 2000 m from the flank. Their simulation was performed
using the TOUGH2 reservoir simulator with the EOS7C module to simulate gas and water flow in natural
gas reservoirs. The simulations in this paper use a compositional reservoir simulator CMG-GEM with
molecular diffusivity and solubility options. Only CO2 solubility in brine is considered in our study. Table
4 summarizes the model properties. Some properties and production data from the paper are unavailable;
hence, we use reasonable values for the input parameters. The pore volume is also adjusted so that the
calculated production, pressure, and produced composition profiles match the results from Oldenburg et al.

Figure 18—Reservoir model with initial gas saturation (original coarse grid model).
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Table 4—Properties used in two-dimensional field scale simulation.

Properties Value

Initial reservoir pressure (MPa) 12.6

Reservoir temperature (°C) 65

Porosity 0.35

kx (mD) 1000

kv/kh 0.01

Capillary pressure van Genuchten model 

Relative permeability Gas: Corey model (Sgr=0.01), Liquid: van Genuchten model

Molecular diffusion Sigmund model, τ=1.4

CO2 solubility Henry's model (Henry's constants are calculated by Li-Nghiem's method assuming salinity =100,000 ppm)

It is a common practice that numerical dispersion is regarded as physical dispersion. Oldenburg's study
used large grids with 200 m length in the flow direction for their simulation to represent 100 m dispersivity
(Oldenburg et al., 2001) when the time step is small enough. This large dispersivity seems reasonable as
a proxy for apparent dispersivity, considering a large well distance of 4,600 m. However, as we discussed
before, this measured dispersivity is the consequence of the combined effect of convective spreading by
heterogeneity and dispersive mixing. Therefore, we implement reservoir heterogeneity with fine grid blocks
to see how the way dispersivity is modeled impacts gas recovery.

The new fine-grid model has 22,000 gridblocks (1,100×20) with a grid size of 6m×5m in x and z
directions, respectively. The expected numerical dispersivity is around 3m, which is much less than the one
from the original coarse grid model. The fine-grid model minimizes numerical dispersion and captures more
realistic physical behavior. We prepare four fine-grid reservoir models with different reservoir heterogeneity.
The first model is homogeneous, and the other three models have stochastic heterogeneous permeability
fields with different Dykstra–Parsons coefficients (VDP=0.6,0.7,0.8). They have the same autocorrelation
lengths (λx=0.6,λz=0.1) and are generated by the same seed numbers to remove the influence of undesired
randomness from the realizations. We input 10 cm of longitudinal dispersivity and 1cm of transverse
dispersivity to consider the expected apparent dispersivity on a grid scale (6m).

Fig. 19a shows methane mass production. Since the producer is controlled at a constant flow rate, the
rate is constant initially; then it declines along with CO2 production. Fig. 19b shows the CO2 mass fraction
profile after starting CO2 injection. Heterogeneity significantly impacts the timing of CO2 breakthrough at
the producer. In addition, the profile from the original coarse grid model is quite similar to the result from
a fine-grid heterogeneous model with a Dykstra–Parsons coefficient of 0.7. This means the way to model
dispersivity using a large grid block (and resultant numerical dispersivity) somehow represents dispersive
behavior with reservoir heterogeneity.
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18 SPE-221024-MS

Figure 19—(a) Methane mass production rate and (b) CO2 mass fraction at producer during CO2 injection for different models.

Fig. 20 shows the CO2 concentration at different times for the coarse-grid homogeneous and fine-grid
heterogeneous models with a Dykstra–Parsons coefficient of 0.7. In the coarse grid model, a uniform
mixing zone is developed by numerical dispersion. In the heterogeneous model, however, the process
of creating a mixing zone is complex. The injected CO2 experiences convective spreading (channeling)
by flowing in a heterogeneous permeability field. The combination with other effects, such as transverse
dispersion (including molecular diffusion) and gravity segregation, determines the final shape of mixing
zones. Therefore, the consequences are similar, but the physical mechanisms are different.

Figure 20—CO2 concentration (mole fraction) at different times for (left) homogeneous
coarse grid model, and (right) fine grid model with Dykstra–Parsons coefficient of 0.7.

The coarse grid model could miss important physical phenomena and lead to a poor estimation of gas
recovery. Fig. 21 shows comparisons between simulation results from the coarse-grid model and fine-grid
heterogeneous model (VDP=0.7) for different reservoir properties. Fig. 21a shows a comparison between
larger input transverse dispersivity (αT=20cm) and the original value (αT=1cm). The left figures show that
the heterogeneous model has a smaller mixing zone because large transverse dispersion works to reduce the
channeling effect. On the other hand, the coarse-grid homogeneous model cannot represent these interplays
between channeling and transverse dispersion (or molecular diffusion). As a result, the heterogeneous model
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causes CO2 breakthroughs several years later than the case with small transverse dispersion, while the
coarse grid model does not make a difference, as shown in the right figure. Fig. 21b shows a comparison
between smaller horizontal permeability (kx=100mD) and the original value (kx=1,000mD). As discussed
previously, small horizontal permeability mitigates gravity segregation, and convection becomes more
dominant. Therefore, the heterogeneous model shows a significant channeling effect (left figure), which
results in an early breakthrough by several years (right figure). However, the coarse grid model cannot
capture these phenomena.

Figure 21—Comparison of simulation results from the homogeneous coarse-grid and heterogeneous fine-
grid models for (a) different input transverse dispersivity (b) different horizontal permeability. Left figures
show CO2 mole concentration map in 2010, and right figure shows mass fraction of CO2 at the producer.

In summary, modeling dispersivity using a large grid block (and the resultant numerical dispersivity)
approximately represents dispersive behavior similar to that of a heterogeneous reservoir. However, this
simple model cannot capture the physical interplays behind the dispersion and could lead to inaccurate
computed gas recoveries and methane purities. Reservoir heterogeneity should be modeled with fine grids
to analyze mixing behavior more accurately.

Three-dimensional five-spot pattern field scale simulation
To extend the discussion to more realistic reservoir conditions, three-dimensional reservoir simulations were
modeled. Fig. 22 shows the simulation model of one-quarter of the five-spot well pattern. The model has
200m in the horizontal direction, and the thickness is 50m, assuming the symmetry element of a 40-acre
5-spot pattern where CO2 is injected at the center well, and methane is produced by surrounding wells. It
has 250,000 gridblocks (100×100×25) with fine grid sizes of 2m×2m×2m. Three reservoir models with
different stochastic heterogeneous permeability fields (VDP =0.3, 0.6, and 0.8) are generated. These models
have the same autocorrelation lengths, which are 120m and 5 m in the horizontal and vertical direction,
respectively. Other basic properties of the simulation are in Table 5.
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20 SPE-221024-MS

Figure 22—Three-dimensional reservoir simulation model of one-quarter of the five-spot well pattern. The color bar shows a
horizontal (isotropic in x and y) permeability field (mD) for the heterogeneous model with a Dykstra–Parsons coefficient of 0.6.

Table 5—Properties used in three-dimensional field scale simulation (five-spot pattern case).

Properties Value

Initial reservoir pressure (MPa) 5

Reservoir temperature (°C) 60

Porosity 0.3

Mean kx (mD) 100

kv/kh 0.1

Input physical dispersivity Longitudinal dispersivity αL=10 cm Transverse dispersivity αT=1 cm

Molecular diffusion Sigmund model τ=1.4

CO2 solubility Henry's model (Henry's constants are calculated by Li-
Nghiem's method assuming salinity =100,000 ppm)

The CO2 injector and the producer are perforated at the bottom and the top of the reservoir, respectively,
to utilize the benefit of gravity segregation. The wells are controlled by flow rate and reservoir pressure
is almost constant. We perform simulations with two different flow rate conditions with different reservoir
heterogeneities to demonstrate the interplay of gravity and channeling in a five-spot flood pattern. The high
flow rate condition is that CO2 is injected at the constant mass rate of 1.0 kg/s, and reservoir fluids are
produced at a constant flow rate equivalent to 0.3 kg/s methane production, while the low flow rate case
is one-fifth of those of the high flow rate.

Fig. 23 and Fig. 24 show the mass fraction of produced CO2 and the CO2 concentration in the cross-
section between injector and producer at PVI=0.21, respectively, for different heterogeneous models. The
left figures are for a high flow rate (convection dominant), while the right figures are for a low flow rate
(gravity dominant). Gravity segregation is decreased in high flow rate conditions, and convection is more
dominant. Therefore, the timing of CO2 breakthroughs is largely impacted by reservoir heterogeneity. On
the other hand, in low flow rate conditions, the gravitational effect is dominant even though there is high
reservoir heterogeneity. This is why reservoir heterogeneity has a minor impact on CO2 purity compared
to the convection-dominant situation.
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Figure 23—Mass fraction of produced CO2 for different heterogeneous models (left) high flow
rate case, (right) low flow rate case (keeping the total mass of injected CO2 was constant).

Figure 24—CO2 concentration (mole fraction) in the cross-section between injector and producer for different
reservoir heterogeneous models (VDP=0.3 and 0.8) at PVI=0.21 (left) high flow rate case (right) low flow rate case.

Another finding is that the preferable displacement is different for different reservoir heterogeneity. A
highly heterogeneous reservoir with for example a Dykstra–Parsons coefficient of 0.8 is more favorable to
sweep using gravity segregation while minimizing channeling. On the other hand, in the less heterogeneous
or homogeneous reservoir, convective-dominated displacement is favorable to minimize early breakthrough
by underrunning gravity tongue.

Conclusions
This study analyzes the mixing of CO2 and methane during CO2 Enhanced Gas Recovery (EGR) and
the resultant displacement behavior. We perform (1) dispersion analysis using an analytical model and
numerical simulation to explore the mechanisms of how dispersion is generated inside porous media and
(2) numerical simulations for CO2-EGR to consider not only dispersion but also how the changes in gravity
and mobility impact displacement behavior at different reservoir and operational conditions. Key insights
observed in this study are:

• Heterogeneity (the variance of x-permeability) and resultant convective spreading are the primary
causes of apparent dispersivity at any scale. Along with fluid traveling, they also induce the
scale-dependency of dispersivity. Molecular diffusion generally reduces convective spreading, and
dispersivity can reach an asymptotic value when certain conditions are satisfied. Local Peclet
number and Transverse dispersion number are helpful for qualitative understanding of these
behaviors at small-scale and large-scale models, respectively.

• In a large-scale heterogeneous reservoir with VDP of 0.6, convective spreading (channeling) is
dominant and unaffected by molecular diffusion and input physical dispersion. However, molecular
diffusivity has a wide variation in the gas phase depending on pressure conditions and cannot
always be negligible during gas displacement. In large-scale reservoir simulation, a smaller grid
size is recommended as reservoir heterogeneity decreases to accurately model real dispersivity.
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22 SPE-221024-MS

• Pressure and temperature conditions are key factors in determining fluid properties and resultant
diffusive, gravitational, and mobility impact on displacement performance. More attention should
be paid to reservoir pressure since it varies depending on the timing of starting CO2-EGR. Mobility
ratio is always favorable in CO2- Methane displacement, so its impact is negligible, but density
difference and molecular diffusivity vary significantly in the pressure range associated with CO2-
EGR. Low reservoir pressure conditions tend to introduce diffusive fluid behavior, but high
reservoir pressure can promote gravity segregation.

• Reservoir Modelers sometimes simplify the impact of dispersion using a large grid size (and the
resultant numerical dispersion) in field-scale reservoir simulation. We confirmed that the large
grid size model does show a similar recovery profile to a realistic heterogeneous reservoir model.
However, the physics behind the flow behavior are different. The mixing zone is impacted by the
combination of heterogeneous channeling, transverse dispersion (including molecular diffusion),
gravity effect, etc. Just using a coarse grid model with numerical dispersion could overestimate or
underestimate gas recoveries. Heterogeneity should be modeled correctly with fine grids to analyze
the mixing behavior accurately.

• The 2D cases were extended to 3D heterogeneous models for five-spot well pattern flooding. In
general, gravity segregation is believed to be a good mechanism for CO2-EGR, but our study
implies that the favorable displacement process is different depending on reservoir heterogeneity.
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