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Abstract
One of the single most important reasons that modeling and model-
based testing are not yet common practice in industry is the per-
ceived difficulty of making the models up to the level of detail and
quality required for their automated processing. Models unleash
their full potential only through sufficient formality, and after being
processed by tools. However, making sufficiently formal models is
regarded by industry as laborious, expensive, and overall daunting.

This article presents a solution for circumventing the manual
modeling process by bootstrapping and devising the model auto-
matically from observations, and using that model for test case gen-
eration. It describes a combination of existing techniques and tools,
some of which are readily used in industry, to provide an iterative
process with which test engineers can create a formal model of a
component, use it to generate test stimuli, compare the observed
component behaviour with the modeled behaviour, and refine the
code of the model or the component quickly and easily, according
to the issues detected. Moreover, this process turns modeling more
into an activity akin to programming, favoured by developers. The
technique is demonstrated on one case study, in which it finds is-
sues on both the implementation and the specification.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: testing and debugging—test execution, test management

1. Introduction
Testing is the most commonly used approach in industry for ver-
ification and validation of software, and it can be regarded as the
ultimate review of a system’s specification, design, and implemen-
tation [7]. Model-Based Testing (MBT) refers to all automated
test case generation techniques that are based on formalized de-
scriptions of the System Under Test (SUT), in contrast to hand-
crafting test cases from other available (non-formal) documents, or
the source code [20]. Since testing can, often, consume up to half
of the overall development cost for a software project, while it adds
nothing in terms of functionality to the software, there is a strong
incentive towards test automation with MBT. Once the models are
made and appropriate tools are available, model-based testing is
a push-button solution. Unfortunately, making sufficiently formal
descriptions, i.e., the models of the SUT that can be used for auto-
mated processing and test case generation, can be seen as the most
significant cause for MBT not having penetrated industrial practice
yet. Making the models is an activity that does not add any immedi-

∗ The work presented in this paper has been carried out partially under
the Poseidon project in cooperation with the Embedded Systems Institute
(ESI), Eindhoven, The Netherlands, and supported by the Dutch Ministry
of Economic Affairs (BSIK03021 program). This work has been supported
by the Nokia Foundation.

ate additional value to the final product, and it is typically perceived
by practitioners as being difficult, expensive, and overall daunting.

One solution for circumventing the difficult and costly man-
ual design and construction process to obtain models for MBT is
to generate them out of observations automatically [8], e.g., with
the aid of a process mining technique [22]. Obviously, this method
of observation-based modeling can only be “boot-strapped" from
existing runtime scenarios and their executions. Examples of this
type of scenarios are demo applications, user sessions and exist-
ing test cases (VIITE). Because most typical software projects in
practice exhibit such properties, observation-based modeling can
be adopted easily by practitioners, and can, eventually, offer auto-
mated support for constructing system specification models to be
used for various purposes, including MBT.

This paper presents a compilation of techniques and tools that
have been combined and integrated in order to devise an iterative
and automated method to support the creation of behavioural mod-
els out of execution traces (observations). Those models are espe-
cially purposed for model-based testing. The contributions of the
paper are

• a technique with a concrete tool chain for generating be-
havioural models out of system execution traces,

• a method with guidelines for manual refinement of the gener-
ated behavioural model,

• guidelines for applying the aforementioned method for devising
test cases based on the models, and

• a concrete example to illustrate and evaluate the application of
the method and tools.

Sect. 2 briefly outlines related work on the methods and techniques
relevant to this article. Sect. 3 describes the tools and techniques
used for OBM, and how they were integrated to generate a be-
havioural model from execution traces semi-automatically. Sect. 4
summarizes a concrete application of OBM for testing part of a
maritime surveillance system, and discusses experiences with the
techniques. Finally, Sect. 5 concludes the paper with directions for
further research.

2. Background and Related Work
The observation-based modeling approach presented in this pa-
per uses dynamic analysis as primary underlying model extraction
technique. It means the running system is observed, and traces of
its behaviour are captured. In this respect, the approach presented
shares the basic properties of a number of techniques in fields rely-
ing on dynamic analysis, such as reverse engineering and program
comprehension.

These techniques require models to be built at different levels of
abstraction, based on information collected from program artifacts.
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Observation-based modeling follows the same principles, although,
with the goal of using the obtained models for testing and related
activities. A common application in dynamic analysis is to trace
the method and function calls and use this data for building mod-
els of the system [9]. (VIITE?) Since most modern programming
languages use methods as basic building blocks of programs, the
techniques can be applied extensively. When external tracing mech-
anisms such as aspects are used [15], they have the added benefit
of not requiring access to, or modifications in the source code. Var-
ious tools provide models and visualizations from this data, such
as sequence and scenario diagrams, graphs and custom visualiza-
tions [9]. (VIITE?) Of these, we focus on tools most related to our
approach.

Bertolino et al. [1] provide the basics of the concept we apply
here, using the term anti-model-based testing. They describe how a
set of program executions based on usage profiles can be devised,
and how traces can be used, which are collected from these exe-
cutions as a basis to synthesize a behavioural model. Besides de-
scribing the basic concept of generating a model and analysing it
for unexpected behaviour, they do not take the concept further.

Ducasse et al. [4] use logic-based queries on SUT execution
traces to test legacy systems. Their traces include events and object
states, recorded from program execution. Events are messages sent
between objects, including parameters and return values. The states
of objects are recorded through their interfaces, including states of
nested objects. To validate the assumptions about the SUT, they
use logic queries on the traces and define a set of trace-based logic
testing patterns. They use these tests to check for possible software
regressions after updates, and for supporting the understanding of
a program, by creating and validating assumptions about it. Their
work is closely related to this paper w.r.t. to applying similar traces
for testing and facilitating the understanding of legacy systems.

Whereas our focus is on dynamic analysis, related tools and
techniques also exist in the field of static analysis. For exam-
ple, Walkinshaw et al. [23] use symbolic execution to mine state-
machines from the source code, including the paths that lead to
these transitions. Their work is related to ours in mining for state-
machines and using method calls as a basis for the work. They de-
scribe using their models for such activities as supporting inspec-
tions and design activities, and program comprehension. Although
our focus is on MBT, our models could be used for these activities
as well.

D’Amorim et al. [3] apply symbolic execution and random se-
quence generation in order to mine method invocation sequences.
They use these techniques to generate unit tests. The test oracle is
devised based on catching yet un-caught exceptions, plus monitor-
ing the results of executions that violate the program’s operational
profile. The operational profile is described by an invariant model,
built with Daikon1, and is based on existing test suites. We follow
this approach in that we generate a test oracle as part of our model,
and in that the test oracle supports the same properties and the same
type of verification for interaction sequences.

Lorenzoli et al. [13] present an algorithm called “GK-tail” that
can be used to generate an extended finite state machine (EFSM)
from execution traces. This is based on finite state machines (FSM)
and Daikon-invariants similar to our approach. They use the EFSM
for test case selection and for building an optimal test suite from
existing test cases in order to increase coverage of the model.

They also compare the interactions of a component in a new
context in order to observe changed behaviour [14], and suggest
to use this information to update existing test suites. Our approach
uses similar building blocks to partially automate the generation
of the EFSM and we also share the application domain of test

1 http://groups.csail.mit.edu/pag/daikon/

automation. However, the model representation and application
are different. In contrast to our approach, Lorenzoli et al. do not
generate tests from the model, and they do not use the model as an
executable specification to verify the SUT against its specification.

3. Observation-Based Modeling
This section describes our approach of Observation-Based Model-
ing which will be demonstrated with a concrete example in Sect. 4,
to illustrate how it can be applied to MBT. Observation-Based
Modeling (OBM) can also be referred to as Test-Based Model-
ing (TBM), a concept used sometimes in Test-Driven Development
(TDD) and Agile Development [19].

The term Model-Based Testing has many definitions, and we
use a definition by Utting and Legeard [20] who describe it as
“Generation of test cases with oracles from a behavioural model”.
The model describes the expected behaviour of the SUT, and is
used to generate sequences of method invocations and data as SUT
stimulus. In order to validate the correctness of the responses from
the SUT, test oracles check the expected output data and interaction
sequences. The basic constituents of an MBT system include the
system specification that is used as a basis to create the test model,
the test tool required to generate tests based on this model, and the
test harness (for online-testing) or test script generator (for offline-
testing).

The OBM approach presented in this paper generates the test
model, the test harness and the test oracle, all as one object, by
using the execution traces of the SUT as an initial specification.
Using an MBT tool, our approach can generate and execute tests
based on this model in order to assess the implementation of the
SUT. EFSM, which are commonly used for behavioural modeling
and model-based testing [20, 18], describe the system or compo-
nent in terms of control states and transitions between these states.
States are externally visible abstract representations of the com-
ponent’s internal variable combinations. They are modified by the
effects of transitions, and initiated through stimuli sent to the com-
ponent under test. Specification items of a model can be translated
into test programs that stimulate the SUT, and the outputs from the
SUT executions are compared to the outputs defined by the model.

Observation-based modeling turns this approach around as de-
scribed in [1]. It turns traces captured through executing the SUT
into a model. This is done through the execution of existing test
cases while monitoring the stimuli sent and retrieved, and the anal-
ysis of the captured information with process mining and invariant
analysis tools. The outcome of these tools can be turned into a rudi-
mentary model, to be refined and completed both manually and by
further test cases. This approach is outlined in the following sub-
sections.

3.1 Case Example
For the rest of the paper, we use a running example based on
components (Merger) of a maritime surveillance system. Here we
present the basic concepts of Merger, and in the following sections
we use this to illustrate the different concepts related to our OBM
method. In Sect. 4 we discuss our experiences in using OBM for
testing the Merger component.

The Merger system receives information broadcasts from ships
called AIS messages [10] and processes them in order to form a sit-
uational picture of the coastal waters. The (simplified) architecture
of this system is displayed in Figure 2. The system comes with a
specification in plain English defining behaviour and communica-
tion protocols of its components. The components are implemented
in Java specifically crafted to be executed under Fractal [2], a com-
ponent middleware platform. The Merger component was selected
as SUT for our case study because it exhibits complex interaction
with the other components. It acts as a temporary database of AIS
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messages, and client components can consult it for track informa-
tion of a ship. It can also be asked by clients to be notified of certain
ship events, and it is key to displaying ship tracks on the screen of
the command and control centre.

3.2 Requirements for OBM
There are a number of initial requirements that an observation-
based modeling approach should abide to. First, it should work
with black-box components and systems, for which source code
is not necessarily available, so that the external interface of an
SUT is the only required documentation to start with. Second,
it should be easy to use by practitioners, meaning that the user
of the observation-based modeling approach is not required to
have extensive knowledge or experience in modeling and formal
specifications.

The only requirement we set to the user is knowledge about
setting up the SUT for testing, and experience with respect to
the domain concepts of the SUT, i.e., its context. The domain
concepts comprise creating and setting up initial testing states for
the SUT, creating objects that the SUT uses (runtime context), and
some basic understanding of its function in the context, i.e., its
required functional specification. These are all basic requirements
of what one could expect from a developer or tester in any arbitrary
software project.

While OBM is able to provide a model of what the SUT does,
it is essential that the user understands whether the observed be-
haviour is indeed also its expected behaviour, or whether the SUT
deviates from what is expected. Typically this information is avail-
able in the form of some specification, i.e., the required specifi-
cation of the context in which the SUT is going to be integrated.
A final requirement is that the user should be able to work with
and amend the model, i.e. without having modeling experience or
knowledge of formal methods (an earlier requirement). In order to
accommodate this requirement, we use Java (in ModelJUnit for-
mat) for the modeling part, so that Java programming skills are
sufficient to master the modeling part. The remainder of this sec-
tion describes the OBM approach in detail.

3.3 Turning Observations into Models
In order to derive models from observations, we make use of many
existing techniques and tools. During model generation we use
Daikon, a tool for dynamic detection of invariants, and PROM2,
a process mining tool. To represent the model in Java for MBT, we
use ModelJUnit3, JUnit4 and EasyMock5.

Daikon describes the SUT in terms of a set of invariants over
its data values. For example an invariant could be a client name
parameter value always being present in a list of subscribed clients,
i.e., ClientName is a variable and Subscriptions a list of the
names of subscribed clients. These invariants are inferred from a
set of program executions. Thus, they are only as good (generic) as
the initial test cases used, and are only meaningful for the scenarios
used in the test executions. In general, they can be described as
properties that hold at certain points of the SUT execution [6].

PROM is intended to mine process models from event logs [22].
It can produce a variety of models, such as petri-nets and FSM. The
FSM model is used as a basic model in our approach. The FSM is
generated through PROM’s in-built transition system miner plugin,
which is described in more detail in [21]. It is augmented with the
invariant model from Daikon in order to turn it into a full EFSM.

2 http://www.processmining.org
3 http://www.cs.waikato.ac.nz/~marku/mbt/
modeljunit/
4 http://www.junit.org
5 http://www.easymock.org

ModelJUnit is an MBT tool that uses executable EFSM mod-
els expressed in Java for generating test cases. JUnit is a com-
monly used unit testing framework for Java, employed to execute
test cases, and to provide the test oracle for asserting the correct-
ness of output data received from the SUT. EasyMock is a mock-
object-framework or a test-stub-framework for Java. It supports the
creation of programmable test stubs that can be used to isolate the
tested part from the rest of the system, and for verifying the cor-
rectness of the interactions between the SUT and its environment.
EasyMock is used for creating a test harness and a test oracle rep-
resenting the expectations towards the SUT.

3.4 Capturing a Trace
Observation-based modeling starts by capturing a trace of the SUT
behaviour which is coming from a set of executions. This is de-
picted as Step 1 in Fig. ??. These runtime scenarios may be based
on any available real executions, e.g. from performing tests, or from
nominal field data captured while using the component under con-
sideration, as discussed in [5]. Since we generate a test model in-
cluding test oracles based on program traces, we expect these traces
to describe the correct nominal behaviour of the SUT. Test cases
focusing on error handling properties of the SUT will expect ex-
ceptions or error codes to be thrown, and they should not be part of
this set of executions. Thus, separation of nominal and exceptional
behaviour helps generating a better, more concrete model. A simple
way to retrieve the right stimuli is to use an existing test suite with a
categorization of scenarios for the SUT, such as nominal behaviour,
or exceptional behaviour. For example, this can also come from us-
age scenarios defined by use cases. We acknowledge the fact that
in real systems with thousands of test cases and realistic field data,
such classification is often difficult to obtain, and therefore is not
strictly required. However, such test categories are “nice-to-have”
for ease of model generation. Not having them simply means that
the more “error state”-related behaviour will be represented in the
traces, leading to more refinement effort to be performed by the
integration test engineer, in order to retrieve a good model, eventu-
ally.

The information required to be captured in the trace includes the
external messages passed through the input- and output-interfaces
of the SUT and its global state when each message was passed. The
messages are captured at the interface of the SUT, if used as mere
black-box modeling approach. Adding global state information re-
quires design for testability support by the SUT, such as additional
test interfaces, following [7], or serialization interfaces. In case the
SUT does not support such a test interface, it is also possible to
maintain an “artificial” state within the component that monitors
the SUT external interfaces by observing the inputs and outputs
of the component and classifying them by type. This technique is
again a full black-box approach.

For Step 1 of the process, the user must define what should
be part of the trace. Typically, tracing comprises a list of methods
(function points) or messages representing the external interface(s)
of the SUT. Also fine-grained (white-box) tracing information can
be used if needed but we have focused on keeping to a fully black-
box approach. The instrumentation tool must then be connected
with our Tracer (or other similar) component to produce the input
logs compatible with our model generator. Note that when a com-
ponent framework is used as a middleware, this framework can be
instrumented to capture all component interactions, thus avoiding
the need to separately instrument each component. More discussion
on these different approaches can be found in [11].
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3.5 Model Generation
Our tool6 for EFSM generation takes as input the trace captured in
the previous step, the list of the monitored SUT input and output
interface classes, and the SUT implementation class for the input
interface. As output the tool produces the EFSM in ModelJUnit
format.

As a first phase in Step 2, PROM is used to produce an FSM
from the trace. This FSM consists of all the input and output mes-
sages of the SUT represented by states, and the transitions be-
tween these states describing the discovered message sequences.
For example, Figure 1 shows the FSM produced by PROM for our
Merger component example, used as a running example, and de-
scribed in more detail in Sect. 4. The states in this model represent
the messages (method invocations) sent to and received from the
external input- and output-interfaces of the SUT. The transitions
represent the order in which these messages occurred in the trace.
The simple behavioural model shown in Figure 1 can be used al-
ready by an engineer as useful indicator of the kind of interactions
performed when using an SUT in its real execution context and
to see if the model seems correct and complete w.r.t. what is be-
ing tested. At this stage, it is not necessary for the user to amend
this model manually, since a model generator will run the required
algorithms automatically. Amendment of the model will only be
required later on, in the model refinement phase, described in Sub-
section 3.6, in order to assess desired and faulty behaviour.

[{}]

[{0=Cconnect}]

Cconnect
complete

[{0=AISin}]

AISin
complete

Cconnect
complete

[{0=Crequest}]

Crequest
complete

[{0=Cnew}]

Cnew
complete

[{0=Cdisconnect}]

Cdisconnect
complete

[{0=Csubscribe}]

Csubscribe
complete

[{0=Cunsubscribe}]

Cunsubscribe
complete

AISin
complete

[{0=Creply}]

Creply
complete

Cconnect
complete

Crequest
complete

AISin
complete

Cnew
complete

[{0=Cpublish}]

Cpublish
complete

Crequest
complete

Cnew
complete

Csubscribe
complete

Cconnect
complete

AISin
complete

AISin
complete

Cnew
complete

[{0=Cdispose}]

Cdispose
complete

AISin
complete

Cpublish
complete

Cdispose
complete

AISin
complete

Cdispose
complete

Figure 1. Merger component FSM produced by PROM.

In the second phase, Daikon is used to produce an invariant
model from the trace. This model describes the invariants for data
values related to both states and transitions. For example, Daikon
produces invariants for the Crequest state, shown in the centre
of Figure 1, as well as for any of its outgoing transitions, i.e., the
transitions to Creply (Creply_complete) and AISin (AISin_

6 http://sourceforge.net/projects/noen/

complete). This is done for all states and all transitions of the
FSM.

In the third phase, the names of the FSM states are mapped to
respective method names of the input- and output-interfaces. The
input- and output-interface definitions are part of the input provided
by the user to the model generator, which is able to parse these
definitions from the given class files. Since method names are used
to describe the states in the FSM, making this mapping is straight-
forward.

The final phase of this step combines the FSM, invariants, and
interface-mapping data into one single EFSM in ModelJUnit for-
mat. A sample listing with different parts of the model generated for
the Merger component is shown in Listing 1. The generation of the
reset() and getState() methods for ModelJUnit is relatively
simple to perform. The reset method is always generated. It resets
all existing mock objects, re-creates the SUT object, and sets the
model state to its initial state. The generated getState() method
returns a string that is updated by the @Action transition meth-
ods to describe the current state of the model. The three cleared
variables Messages, Subscriptions, and Clients in the reset
method in Listing 1 are examples of global state variables gener-
ated by our model generator. This is done by examining all invari-
ants produced by Daikon, and, based on a chosen set of invariants
such as “Client always in Subscriptions” (”Client” parameter value
is always part of the global Subscriptions list), matching Java Col-
lection objects are generated in order to store the global state of
the EFSM. The reset method in Listing 1 clears and resets the
global state after each completed test. One more item visible here
is the object for the SUT that is being tested. In this particular in-
stance it is the aISMerger object, reference to which is also stored
globally in the model, to permit the different EFSM methods to ac-
cess it as a part of the test harness. In addition, an empty template
is generated for setting up the SUT object, createAISMerger in
Listing 1. The SUT data type is provided by the user as part of the
EFSM generator configuration along with SUT input- and output-
interface definitions. The user must fill in the code skeleton for the
createAISMerger method in order to set up the SUT object cor-
rectly. The mock objects for all output interfaces are provided by
the model generator as parameters to this method call in order to
enable the user to write the required setup code for the SUT.

The transition @Action methods and their related guard meth-
ods represent the largest and most complex element of the EFSM
generation. They are generated for all methods that belong to
the input interfaces for the SUT. As an example we will con-
sider the Crequest (input) method of the Merger component re-
ferred to above. The first @Action method generated is matched
to the state for the method in the FSM displayed in Figure 1. This
@Action method is called Crequest, corresponding to the state
and method name. Subsequently generated @Action methods rep-
resent the transitions from this state (method) to states matching the
names of methods from output interfaces of the SUT. Crequest
in Figure 1 has outgoing transitions to AISin and Creply. Since
AISin belongs to the input interface of the Merger component, an
@Actionmethod is not generated for the transition from Crequest
to AISin. Instead, AISin will get its own @Action methods, sim-
ilar to Crequest, as they are both input methods. In contrast, an
@Action method is generated for the transition from Crequest
to Creply, because Creply is an output method of the Merger
component. The code for this @Action method is shown in List-
ing 1. Each of these generated @Action methods for the tran-
sitions is named by prefixing the input method with the output
method name(s) that comes next in the transition. For example, the
Crequest_Creply represents the transition from the Crequest
input method to Creply output method.

Kanstrén, Piel, Gross – Observation-Based Modeling for Model-Based Testing SERG

4 TUD-SERG-2009-012



...
public void reset(boolean b) {

state = "";
System.out.println("- TEST "+testIndex+" -");
testIndex++;
Messages.clear();
Subscriptions.clear();
Clients.clear();
EasyMock.reset(mockClientRcv2);
try {
aISMerger = createAISMerger(mockClientRcv2);

} catch (Exception e) {
throw new RuntimeException(e);

}
}

...

@Action
public void Crequest_Creply() throws Exception {

this.state = "Crequest->Creply";
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn("ok");
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals("ok", rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}

public boolean Crequest_CreplyGuard() {
if(ClientsIsNot_myclient()) return false;
if(ClientsAreDifferentFrom_myclient_()) return false;
if(SubscriptionsIsNotEmpty()) return false;
if(ClientsSizeDoesNotEqual1()) return false;
return true;

}
...
private String Crequest_p0() {

return (String) randomItemFrom(Clients);
}

private int Crequest_p1() {
return (int)1.0;

}

private byte Crequest_p2() {
return (byte)1.0;

}
...
private String Cdisconnect_p0() {

return (String) randomItemFrom(Clients);
}

Listing 1. Generated reset method and sample transition (@Ac-
tion), guard and parameter value generation methods for Merger.

Following these principles, the ModelJUnitTest-code for the test
harness and test oracle parts of the model are generated inside the
@Action methods. Generating the test harness element is simple.
The SUT object has been created as described earlier, and the
model contains a global reference to this object. All that needs to be
done is to generate a call to the input method on the SUT object that
the @Action method is related to. This only requires the provision
of the parameter values for the method invocation as follows.

Specific procedures are generated to provide input parameter
values for method invocations. Listing 1 shows these procedures
as Crequest_pX(), in which X denotes the parameter index plus
the name matching the input method. The procedures employ the
invariant model (from Daikon) to generate possible values. For in-
stance, Crequest_p0 in Listing 1 is generated from the invari-
ant “this parameter value is always to be found in the global ar-

ray named Clients”, i.e., a successful request is only possible
for a connected client which is stored in the respective array (list)
Clients. Further, according to observations from the traces, pa-
rameters 1 and 2 have always been constant, therefore p1==1.0.
That way, reasonable input values can be generated according to
prior observations deduced from the traces. Alternatively, if no suit-
able invariant is found, a null value or a random number will be
generated. In that case, it is the responsibility of the user to re-
fine these missing parts of the model manually. This example also
illustrates the importance of separating nominal from exceptional
behaviour in the model. If the categories are not separated, e.g. ex-
ecutions with exceptional values such as clients that are not con-
nected, it would not be possible to infer this kind of invariants (thus
leaving more manual work).

The test oracle element of the generated EFSM consists of two
parts, the so-called interaction oracle and the return value oracle.
The return value oracle is similar to parameter values in that they
are based on the invariant model. Return values in our invariant
model are described separately from global state and parameter
values, which results in a set of simple invariants that are turned
into JUnit assertions. For the @Action method in Listing 1, this can
be written as assertEquals("ok",rv5); This assertion ensures
that the correct value is returned by the SUT. In this case, Daikon
has inferred that the return value should always be "ok", because
only nominal behaviour has been executed and traced. Automatic
generation of non-primitive objects through invariants is currently
not supported by the tools, so that the mapping to such more
elaborate objects, currently, has to be done manually in order to
augment the final model. In this particular case, the user would
have to change the line of code under consideration in the model to
ReturnStatus.ok, as will be discussed below in subsection 3.6.

Generation of the interaction oracle is based on the FSM and
its mapping to the input-output interfaces. Before a call is made
to the actual input method of the SUT, the expected interactions
are defined with the help of mock objects that were generated
earlier. The example in Listing 1 shows one such expectation
in that a call to the input method Crequest causes a another
call from the SUT to the output method of Creply. This is ex-
pressed as expect(mockClientRcv2.Creply((AISMessage)
anyObject())).andReturn("ok"); in the model as shown in
the listing. Once again, the return value for this call by the SUT is
inferred and must be refined by the user similar to the return value
assertion. Similar expressions are deduced for all expected interac-
tions, i.e., the output method calls. Finally, after making a call to
the SUT input method, it is verified that correct interactions took
place, and all mock objects are reset for the next transition.

Generation of guard methods is based on invariants for the
global state variables according to the state or transition un-
der consideration. For example, the guard method Crequest_
CreplyGuard in Listing 1 is derived from the invariants of the
global state if Creply has been executed after Crequest. For the
Creply state alone, the guards would be based on all invocations of
Creply, regardless of previous or next FSM states. Only the global
state is considered for the guards as that is the only state available
during their evaluation.

3.6 Refining the Model
The final element of completing the model is the manual refinement
phase. This is a process in which the model is iteratively executed
and refined to match the user’s expectation of the model, according
to observations coming from the implementation (either the model
or the implementation have to be amended). This process is de-
picted as Step 3 in Figure ??. Tests generated from the model are
executed and asserted with the MBT tool against the implementa-
tion to assess the correctness of the model and the implementation.
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...
@Action
public void Crequest_Creply() throws Exception {

this.state = "Crequest->Creply";
expect(mockClientRcv2.Creply((AISMessage)anyObject()))

.andReturn(ReturnStatus.ok);
replay(mockClientRcv2);
ReturnStatus rv5 = aISMerger.Crequest(Crequest_p0(),

Crequest_p1(),
Crequest_p2());

assertEquals(ReturnStatus.ok, rv5);
verify(mockClientRcv2);
EasyMock.reset(mockClientRcv2);

}

public boolean Crequest_CreplyGuard() {
if(Clients.size() < 1) return false;
if(Messages.size() < 1) return false;
return true;

}

...

private String Crequest_p0() {
return (String) randomItemFrom(Clients);

}

private int Crequest_p1() {
AISMessage msg = (AISMessage) randomItemFrom(Messages);
return msg.getUserID();

}

private byte Crequest_p2() {
return (byte)1.0;

}

...

private String Cdisconnect_p0() {
String client = (String) randomItemFrom(Clients);
Clients.remove(client);
Subscriptions.remove(client);
return client;

}

...

Listing 2. Refined versions of methods in listing 1.

Finally, any inconsistencies found in either the SUT or the model
during this execution are fixed. Since the model for any non-trivial
SUT will likely contain a large number of states and transitions,
we propose to iteratively process and check one issue at a time,
in order to keep the model under control, and to facilitate the un-
derstanding of the tests and the implementation. Listing 2 shows a
refined version of the generated model depicted in Listing 1.

For a stepwise approach of looking at one state at a time, the
user progresses by enabling the guards for the @Action methods
one at a time. When starting with the refinement, the model is in
its initial state. From here, the process goes to transitions, i.e., the
@Action methods, that can be taken once the initial state transition
has been made. The sequence follows the nominal behaviour of
the SUT as defined by its protocol. This process is repeated until
all the states and transitions in the model have been enabled and
all errors in test generation and assertion have been fixed either
in the model or the implementation. Typically and quite likely,
during this process, there will be a number of issues or errors
reported, indicating either the requirement to refine the EFSM that
was generated, or the requirement to amend the implementation of
the SUT.

This can be seen as the most critical part of observation-based
modeling, requiring careful consideration from the user. The model
is based on observations of what the SUT is doing and not on what

it is supposed to do according to a specification, i.e., the model that
one would be looking for. Thus the user has to pay specific attention
that it actually describes the correct behaviour.

Issues related to the model include the refinement of the inter-
action sequence because of multiple invocations that are not visible
in the FSM, missing object or parameter value creation errors and
missing updates to global state. The number of output method invo-
cations can vary depending on various properties such as originat-
ing input method and global state. The model is currently generated
to expect a single invocation of each output method only. During
refinement it can turn out that a method can be invoked multiple
times, which is manifested as an error in the model execution. In
this case as in any model refinement, the user has to check whether
this is indeed the (nominal) expected behaviour of the SUT and
amend the model accordingly if it is. In this case, this change in the
model is achieved through adding .anyTime() to the end of the
expected call, relaxing the requirement of a single call only.

As discussed earlier, creating non-primitive objects and main-
taining global state falls under the responsibility of the user. List-
ing 2 shows how the "ok" objects from Listing 1 have been
amended to ReturnStatus.ok in order to create these non-
primitive objects. For global state, the collection of objects to
store the global state are provided, but maintaining the contents of
these global state objects is the responsibility of the user. Listing 2
displays this in the Cdisconnect_p0() method in terms of the
statements Clients.remove(client) and Subscriptions.
remove(client), which means that once a client is disconnected,
it should be removed from the list of connected and subscribed
clients. These are concrete examples of domain knowledge nec-
essary to apply our OBM method successfully.

Any errors in the model will be reported to the user as failures
during the execution of the model, along with the line number and
error message of the failed assertion. This helps in making the
model refinement process easier and faster.

3.7 Debugging Errors
Sometimes the model will have residual defects that are difficult to
identify, even though the model execution reports an issue. Such
error could be located in the model, or in the SUT. An effective
means of debugging and identifying such errors is to take the fail-
ing test case that has been automatically generated by ModelJUnit
and turn it into a separate JUnit test case on its own and execute
it. This will reveal all the hidden assumptions in data generation,
interactions and similar properties, and it will allow the user to ex-
periment with different settings of the test case. Through analysis
of the results and comparison with the SUT specification, the fault
can be located more easily. Currently, these tests have to be created
manually, but the information required to automate their genera-
tion is already available in the ModelJUnit test case and with this
information, this type of debugging support could be built into the
testing environment.

4. Merger Case Study and Experiences
Goal of this experiment was the evaluation of the previously de-
scribed OBM method with the target of generating suitable test
cases for the Merger component.

4.1 Applying the Method
In order to capture a suitable initial trace for Merger, we used
seven tests executing the component in situ of the encompassing
system and having it process actual AIS field data. One of the tests
consisted in running the entire system of 25 components over the
course of 5 minutes of real AIS data, summing up to around 20,000
AIS messages, and about 60,000 recorded events of the system such
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Figure 2. Architecture of the surveillance system used as example.

as invocations to Merger. This somewhat more elaborate test was
used to capture the general interactions of Merger for building
the FSM and capturing data for the invariant model. The other,
less extensive tests were applied to extend the FSM of Merger
with less common states and transitions. Detailed discussion on
different types of tests and their coverage can be found in our earlier
work [12].

AspectJ7 was used to instrument the system to produce the re-
quired traces, including logs for every method invocation, return
values, parameter values, and the global state of the component at
the time an event occurred. Adequate logging formats for PROM
and Daikon were provided through our Tracer component de-
scribed earlier. The Merger component was extended with a test
interface exhibiting its global state, including the list of connected
clients, the list of subscriptions, and a list of AIS messages that
it received. A more general approach for tracing could have been
achieved through the message passing mechanisms of the used
middleware. More discussion on the required testability and exe-
cution tracing infrastructure can be found in [11]. After capturing
the traces, the initial FSM, shown in Figure 1, could be evaluated
in PROM to check for compliance with the original specification.
The EFSM model for ModelJUnit was generated by feeding the
trace log files to the model generator component. After the final
step of refining the generated model as described earlier lead to the
final EFSM displayed in Figure 3. This model is a representation
created by ModelJUnit, which can also be used during the model
refinement process to get a view of the EFSM at any time.

In the following subsections, we summarize our experiences in
performing these experiments.

4.2 Errors Discovered
The generated model must be refined manually to get the final
model. In this process, errors were found in the generated model
such as missing object creation, and global state updates, but also
in its application against the SUT. The generated guard methods
based on Daikon invariants were also overly strict, and all of them
had to be amended.

A number of errors were found in the implementation of the
Merger component, i.e., mismatches between implementation and
specification, ambiguities, and problems in the design that cause er-
rors under certain conditions. Problems in the system design were
related to assumptions the SUT made about its environment. In one
instance it made the assumption that one client component would
never have several connections at the same time with the Merger
component. Although the specification did not forbid such case,
and the EFSM did test for this, the SUT developers considered
supporting such corner case would make the implementation much
more complicated without real advantages. However, this assump-
tion and the resulting optimization also produced a tight coupling
with the used middleware, which needed to be undone later, in or-
der to port the component to another middleware. These findings
provided useful insights into the implementation.

7 http://www.aspectj.org

Mismatches identified between implementation and model were
wrong return values, discovered by the return value assert oracles,
and incorrect or missing transitions discovered by the mock ob-
ject interaction oracles or by inspection of the FSM vs. the speci-
fication. In the case of return values, making a connection would
always return “OK”, regardless of the parameter provided, and
whether a connection was successful or not. This was a clear vi-
olation of the specification, which states that Merger should return
error codes.

Another issue detected was a missing specification item, about
queries on ships that do not exist. The generated model issued an
“OK”, but the implementation returned an error code. The specifi-
cation made no statement how this should be handled by Merger.
In this case, this highlighted a need to update the specification and
then re-evaluate the model vs. the implementation.

Protocol issues of the Merger were discovered through the in-
teraction oracles and through inspection of the FSM. The speci-
fication states that “if a client is subscribed to a ship for which
data exists, the Merger should immediately publish this data to the
client,” which it did not, initially, and this case was also not present
in the trace, nor in the generated model. This problem was found
when comparing the model and specification and could be verified
by inspecting the FSM’s shown in Figures 1 and 3.

The subscription code contained another problem that was dis-
covered by the interaction oracles. Subscribing to a ship for which
no messages had been received so far, caused the loss of data
through a missing output message. This was an error in the im-
plementation.

These issues could be resolved, eventually, by amending the
Merger code following the specification and the refined model.
Overall, in terms of identifying previously unknown errors of a
component that had been used for some time in this context, this
can be regarded as a very successful model-based testing experi-
ment with real value to the quality of the system.

4.3 Model Evolution
Once the errors had been amended, the next step was to re-generate
the model in order to evaluate to which extent the existing model
could be updated with this new information. A direct patch of
the initially generated version of the model with the newly re-
generated model failed, due to scalability problems with the Unix
patch-tool. Instead, a visual diff-tool8 was utilized to compare
the two versions and copy the relevant changes, which was easy
to perform. Finally, the model was further amended with additional
error handling behaviour, initially not considered in the tracing and,
thus, in the model. Error handling behaviour was incorporated for
client connection failures and erroneous request ID values.

4.4 Discussion of the Experiment
Generating EFSM from traces and using them together with input-
and output-method information is a feasible option to retrieve mod-
els for model-based testing. This subsection presents a brief critical
evaluation of the process.

Using the Daikon invariant model in order to generate transition
guard statements turned out to be difficult. None of the generated
transition guards were usable as such. They could be used as mere
basis for defining a guard statement, in particular, for identifying
participating variables. Overall, they were found too restrictive and
had to be amended.

Our presented OBM approach requires global state information
of the SUT, either through built-in query interfaces, or by monitor-
ing the SUT’s environment while executing it. If global state infor-
mation is not available, most of the techniques presented will be

8 http://meld.sourceforge.net/
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Figure 3. Final Merger EFSM produced by ModelJUnit.

applicable, such as capturing interactions at input and output inter-
faces, in order to come up with a rudimentary EFSM. However, the
invariant model from Daikon will not be available, omitting infor-
mation about return values, proposed basic guard statements, and
parameter values. It would be sufficient to generate basic states and
the test oracles, though, more elaborate modeling would have to
be done manually by the user, which would decrease the value of
this method considerably. This emphasizes the significance of hav-
ing a built-in testability and testing infrastructure along the lines
presented in [7] as part of the system architecture.

Bootstrapping and extending a full behavioural model based
on runtime observations is challenging. Generating the most sig-
nificant parts of the model by exercising test cases according to
the nominal behaviour of the (informal) specification is straight-
forward. Any behaviour that is not stated in the specification, as
discussed earlier, is difficult to discover. More elaborate testing
techniques, including white box testing, and employing powerful
search heuristics such as evolutionary algorithms [16] may be fea-
sible solutions for behaviour exploration. However, this might run
contrary to our initial requirement of using black-box testing only.

5. Conclusions and Future Work
This article describes a method and a collection of tools that help
test engineers derive and refine behavioural models in a semi-
automatic way to be used for model-based test generation. A rudi-
mentary model is generated automatically based on observations
from execution traces. This can be augmented with additional in-
formation derived according to further test executions, and assessed
according to non-formal descriptions of the subject under test. Fol-
lowing this method makes the process of defining the models more
akin to programming and code refinement, something that, in our
opinion, is much more amenable to practitioners in industry, than
writing formal specifications in an abstract mathematical notation,
and it ensures seamless integration into a typical development and
testing environment. Some of the tools employed are readily used
in industry, in particular, the JUnit test framework is applied exten-
sively in practice.

However, deriving models from observations also bears inher-
ent dangers. That is, it is easy to generate and accept a model rep-
resenting the behaviour of what an SUT does, rather than what it is

supposed to do, thereby generating test cases assessing whether an
SUT behaves the way it behaves, and not the way it should behave.
Future work is, therefore, directed towards better support of the
user in terms of (1) better behaviour exploration through more pow-
erful search heuristics than random [3], (2) further automation of
the debugging support, (3) improved invariant generation through
relaxation of the Daikon rules along the lines described in [17], and
(4) built-in tracing support by the middleware platform. Eventu-
ally, these improvements will not take the responsibility of the user
to carefully refine and explore the behavioural state space of the
SUT, but they will help to direct the user’s attention to the essential
tasks.
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