
 
 

Delft University of Technology

Code Phonology
An exploration into the vocalization of code
Hermans, Felienne; Swidan, Alaaeddin; Aivaloglou, Efthimia

DOI
10.1145/3196321.3196355
Publication date
2018
Document Version
Accepted author manuscript
Published in
Proceedings of the 26th Conference on Program Comprehension, ICPC 2018

Citation (APA)
Hermans, F., Swidan, A., & Aivaloglou, E. (2018). Code Phonology: An exploration into the vocalization of
code. In Proceedings of the 26th Conference on Program Comprehension, ICPC 2018 (pp. 308-311).
Association for Computing Machinery (ACM). https://doi.org/10.1145/3196321.3196355

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3196321.3196355
https://doi.org/10.1145/3196321.3196355


Delft University of Technology
Software Engineering Research Group

Technical Report Series

Code Phonology: an exploration into the
vocalization of code

Felienne Hermans and Alaaeddin Swidan and Efthimia
Aivaloglou

Report TUD-SERG-2018-001

SERG



TUD-SERG-2018-001

Published, produced and distributed by:

Software Engineering Research Group
Department of Software Technology
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology
Mekelweg 4
2628 CD Delft
The Netherlands

ISSN 1872-5392

Software Engineering Research Group Technical Reports:
http://www.se.ewi.tudelft.nl/techreports/

For more information about the Software Engineering Research Group:
http://www.se.ewi.tudelft.nl/

Note: -

c© copyright 2018, by the authors of this report. Software Engineering Research Group, Department of
Software Technology, Faculty of Electrical Engineering, Mathematics and Computer Science, Delft Uni-
versity of Technology. All rights reserved. No part of this series may be reproduced in any form or by any
means without prior written permission of the authors.



Code Phonology: an exploration into the vocalization of code

ABSTRACT
When children learn to read, they almost invariably start with oral
reading: reading the words and sentences out loud. Experiments
have shown that when novices read text aloud, their comprehen-
sion is better then when reading in silence. This is attributed to
the fact that reading aloud focuses the child’s attention to the text.
We hypothesize that reading code aloud could support program
comprehension in a similar way, encouraging novice programmers
to pay attention to details. To this end we explore how novices
read code, and we found that novice programmers vocalize code
in different ways, sometimes changing vocalization within a code
snippet. We are thus lead to believe that in order to teach novices
to read code aloud, an agreed upon way of reading code is needed.
As such, this paper proposes studying code phonology, ultimately
leading to a shared understanding about how code should be read
aloud, such that this can be practiced. In addition to being valuable
as an educational and diagnostic tool for novices, we believe that
pair programmers could also benefit from standardized commu-
nication about code, and that it could support improved tools for
visually and physically disabled programmers.

KEYWORDS
ACM proceedings, LATEX, text tagging

ACM Reference Format:
. 1997. Code Phonology: an exploration into the vocalization of code. In
Proceedings of ACM Woodstock conference (WOODSTOCK’97). ACM, New
York, NY, USA, Article 4, 4 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
Everyone that has ever seen a young child that has just learned to
read, knows they do not read like adults. Young children read aloud,
not just to demonstrate their newly acquired skill, but also because
they simply cannot do it in a different fashion yet. Most children
take years to learn to read silently, during which they go through a
number of phases including whispering and lip movement. Several
studies have shown that, for novice readers, reading aloud supports
comprehension [10]. This should not come as a surprise, even expert
readers on their native language sometimes fall back to this behavior
when reading text that is difficult, or written in a foreign language
they have not fully mastered yet.

We observe that, in learning how to program, no attention is
given to the pronunciation, or rather the phonology of code, i.e. the
way we read code aloud.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
WOODSTOCK’97, July 1997, El Paso, Texas USA
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

When teaching programming, we simply assume that students
can read the code silently, in their head, while also processing what
the code does, an activity known as tracing. We do not practice the
vocalization as a skill in isolation, leading to various different ways
in which code is pronounced by programmers.

The fact that vocalization is not standardized might, inadver-
tently, impose a higher cognitive load to novice learners, since they
have to both read the code in their head, and ‘execute’ the func-
tionality of the code, an activity often referred to as ‘tracing’ [11].
We propose exploring the idea of code phonology, ultimately lead-
ing to consensus in the field about how code snippets should be
pronounced.

This can be challenging, even for simple statements. For example,
how should we pronounce an assignment statement like x = 5? Is
it “x is 5”? Or “set x to 5”? Or “x gets 5”? And what about an equality
check? Is it “if x is is 5”? Or “if x is 5”? Or “is x is equal to 5”?

We see two distinct phases in this process. Firstly, language
communities will have to define a shared phonology for their lan-
guages, answering the vocalization question for simple statements
like the ones above, but also for higher level concepts like classes
and modules. Discussing questions of the vocalization like the ones
above can reveal how we think about code. In our exploratory ex-
periments, we found that teenage novices show little consensus in
how to read code, so there is a lot to learn from. For example, one
participant read a function application as “f of x” while reading the
definition of that function as “f takes x” which might lead to a great
discussion in language design whether they should or should not
be the same character. After this phase in which vocalization is ex-
plored, we envision that communities would converge on a shared,
unambiguous phonology of their language. While this may seem
like a daunting task, we think it compares to how programming
language communities agreed on style guides, even after languages
had been in use.

We hypothesize that such a shared phonology of source code will
be useful in teaching in a variety of ways. Firstly, it helps teachers
to read code in a systematic way, allowing them to explain more
precisely, and removing the need for conversations like “You need a
bracket there. No a round one"". Secondly, reading code aloud could
be a diagnostic tool, helping teachers to assess what learners have
understood from their reading of a piece of source code. Finally, we
expect the activity of reading code aloud to contribute to better un-
derstanding of what the code does, following findings from natural
language acquisition.

In addition to uses in education, we see broader applications too.
An agreed upon understanding of how code is vocalized can help
pair programmers in their communication, as well as visually and
psychically impaired developers in hearing and dictating code to
their programming interface.

2 BACKGROUND AND MOTIVATION
Ourmainmotivation for this work is observing the struggles novices
have in learning to program. When teaching or pairing, we have

SERG Code Phonology: an exploration into the vocalization of code

TUD-SERG-2018-001 1



WOODSTOCK’97, July 1997, El Paso, Texas USA

observed programmers learning a new language spending effort
on communicating clearly. “A bracket. Now a curly one. And then a
closing bracket. Yes a round one.” Such statements can be heard in
programming classes worldwide. We seem to be spending insuffi-
cient effort on how to vocalize code. In that, the field of program-
ming clearly differs from the field of natural language acquisition, in
which reading aloud or oral reading as it is more commonly referred
to in literature, is studied extensively. For example, researchers have
found that comprehension of text is better when reading aloud [10].
According to literature, this is due to the fact that, when reading
aloud, children are less likely to skip parts of the text, leading to
better understanding [5].

This made us wonder if reading aloud would also improve pro-
gram comprehension, but for that, we need a shared way of pro-
nouncing code, for which we coin the term code phonology. The
focus of this paper is to explore how we would define and use such
a phonology. In future full length papers we plan to run studies to
measure the effect of vocalizing code on comprehension.

3 A FIRST EXPLORATORY EXPERIMENT
To explore the idea of code phonology, we conducted a first ex-
ploratory experiment with novice programmers reading Python
out load. The subjects were 10 Dutch high school students: 8 boys
and 2 girls participated in the experiment, all between 11 and 13,
with an average of 12. At the time of the experiment, the students
had received about 20 hours of Python lessons. We asked them
to read the some snippets of Python code aloud 1 in such a way
that a student that knows Python would be able to type the code, a
method similar to the one used by Begel and Graham [2].

3.1 Observations
Reading the code in a consistent fashion proved a daunting task to
our 10 participants. All of them read at least one symbol, keyword
or variable in an inconsistent way. Children aged 11 to 13 should
not have any issues in reading their native language in a consistent
way, and even with English they should be able to read with relative
ease. The fact that they struggle and make conflicting decisions
strengthens our belief that an agreed upon way to read code could
help them comprehend it. In the following subsections we will
zoom in on some of these inconsistencies, but the fact that they
appear in itself is interesting.

Natural language effects In addition to generic inconsisten-
cies, we saw specific ones. For example, participants struggled with
choosing between Dutch and English reading. None of the children
in the study were native speakers of English. Most of the children
(8) had Dutch as their native language, 2 were bilingual children
naming Turkish as their first language, however still being fluent
in Dutch.

While reading the code, some children used Dutch pronunciation
of English words, saying “wheel” rather than “while”. Two children
spelled out if in Dutch, saying it as “ie-ef”. The most interesting
natural language effect though was on the variable i. In Dutch, i
is read as “ee” as in “to breed". In English of course it is read as “ai”
like in “fry". Just one child pronounced the variable in a consistent

1Read the program here: https://pastebin.com/n36Upp1p

way (the Dutch way). The other 9 all mixed the Dutch and English
vocalization, sometimes even within the same code block.

A different effect was that on word order. One of the subjects
changed the order of the words to form a proper Dutch sentence.
Rather than saying “if temperatuur is 20”, he said “als temperatuur
20 is” which is grammatically correct.

Symbols Since these students did not learn about lists yet, we
did not include statements with lists and symbols [] in the reading
exercise. The symbols included were: (, ), ==, !=, <, += and =. An
interesting vocalization (which we hardly ever encountered with
professional developers) is to say == as “is is”, which 7 children in
the experiment did. There were also other ways that the symbols
confused the children. The symbol <was vocalized inmany different
ways, including smaller than and lower than, but also arrow or
bracket, or was skipped entirely.

One participant struggled specifically with combinations of two
symbols like != and ==, and systematically only reading the first
symbol. This behavior is likely to be influenced by their experience
in mathematics where there usually is only one symbol, and that
carries over as an assumption into programming. Misconceptions
often move from one field to another in such a way [3].

Syntactic versus semantic level Some children read things
that were not technically in the code, adding meaning. One partici-
pant read for i in range(0,15) as “for i in a range 0 comma 15”,
adding the meaning that the numbers occur in a range and making
the sentence more like a sentence in natural language. Another
participant read def kwadraat(x): as “def function kwadraat x
colon” adding the meaning that this is a function definition. That
might be good practice for novice learners, or a hint to language
designers that function is a better keyword.

Omissions There were symbols that were omitted by students
consistently. Some did not read the double prime symbol (“"” ) any-
where, which is somewhat reasonable since it occurred only in print
statements and is thus somewhat implied. One student omitted “:”
consistently which can also be said to be implied after an if or
a while. Most students, however, were inconsistent and omitted
some symbols selectively. One of the most common omissions are
the open brackets and the colon in the first snippet, which com-
prises a for loop ranging from 0 to 15. It was was read as “"for
i in range 0 comma 15"” by 5 participants, who however all did
pronounce the brackets or the colon in other snippets.

3.2 Oral Reading and Programming
Capabilities

Even though the scale of this experiment is small, we observed that
the students that were able to read the programs more consistently
and more ‘semantically’ were also the students that were ranked as
the best programmers by their teacher. Of course, an open question
here is whether the students read better because they comprehend
better or the other way around.

3.3 Summary
In the exploratory study we have seen confusion over how to pro-
nounce source code, confirming our hypothesis that how to read
code is not a given.

Code Phonology: an exploration into the vocalization of code SERG

2 TUD-SERG-2018-001



Code Phonology: an exploration into the vocalization of code WOODSTOCK’97, July 1997, El Paso, Texas USA

We observed students struggling with reading keywords, pro-
nouncing variables and symbols. Even though we did not explicitly
measure cognitive load in our experiment, it seems that students
were spending energy on deciphering symbols, such as < and ==, on
what to read and what to skip, and—in case of bilingual learners—
on choosing between English and their native language. Cognitive
load theory [17] suggests that to free up mental room for more com-
plex thoughts, easier processes must be automated. For example,
before reading full words at once, children first automate the skill
of reading letters. Before being able to process large multiplications,
children need to have automated additions. We believe that the
cognitive load spent on deciding how to read a variable or keyword,
cannot be spent on comprehension, and must thus be automated by
separate practice, making room for the more complicated process
of metal execution of a program, often called ‘tracing’ [11].

4 CODE PHONOLOGY
Based on research into learning natural language, and on the above
described experiment, we believe that a focus on reading code
aloud is needed. As such, our goal is for programming language
communities to converge on a common vocalization of their pro-
gramming language, which could have the form of a mapping from
syntax elements to their sounds. We use the word vocalization here,
rather than verbalization as previous papers have used, since we
can imagine that communities would use sounds rather than words
to express syntax elements. Why not use a tongue click for a curly
bracket?

We envision two steps in this process: establishing the phonol-
ogy, and using it. In the following subsections we sketch these
phases. We, however, are looking for feedback of the program com-
prehension community on how to shape these phases.

4.1 Establishing the phonology
Before we can use the phonology for teaching, it needs to be stan-
dardized. While our end goal is to put the phonology to use, we
do believe that its creation has value itself. For example, studying
where syntax and sound disagree, gives us insight into how people
interpret code, and how they give meaning to syntax. As described
in Section 3, some participants vocalized the open bracket differ-
ently dependent on its context. A participant would say “f of x”
when reading a function call, while that same participant used “f
takes x” when reading the definition of a function. This gives rise
to the question of whether a function call and its definition should
be represented with the same symbol. On one hand, using the same
symbol seems logical because of the close relationship between def-
inition and application. On the other hand, if many programmers
vocalize it differently, is it really a good choice?

Similarly, programming languages can have symbols written in
different ways, but vocalized the same by many developers. For
example, both = and == are read in the same way by some expe-
rienced developers. Some picked “is” while others said “equals”,
but they used the same term for all these, and never used “is-is” as
novices did. That gives rise to the question of whether these should
be different symbols. A study by Stefik and Siebert [16] that showed
that it is best for programmers to use = for both assignment and
equality checks seems to confirm the way programmers pronounce

symbols. That gives credibility to our hypothesis that pronunciation
can give insights into the quality of programming syntax.

We are however aware that the question of how to pronounce
code can be seen as controversial, since one can argue that code is
meant to be written by humans and executed by machines. But can
we really comprehend and communicate source code if we cannot
vocalise it? When exploring the shared phonology, we expect to
gain a deeper understanding on program comprehension from a
fresh angle.

While reaching a shared phonology seems very far away, we
imagine the process similar to that of agreeing on a style guide,
with rules for naming and whitespace.

4.2 Using the phonology
After the establishment of the shared phonology, we see several
uses for it.

Firstly, we envision a use in programming education, for both
learners and teachers. For teachers, the phonology could be a way
to communicate more efficiently with learners. Agreeing on how
to vocalize keywords and symbols eases communication. We also
see reading code aloud as a valuable tool for diagnosing learners’
understanding of code. For reading natural language, this is seen as
an important aspect of reading aloud; it transforms what is being
read into an observable artifact [6, 9, 13]. As a result, it becomes
simpler for educators and researchers to reflect upon the student’s
understanding of the text. We hypothesize that this will be a benefit
of reading code aloud too. It can be hard for novice programmer
to clearly articulate what they have understood about a program-
ming concept and its execution, hampering a meaningful exchange
with teachers. Reading code aloud might ease this process. In some
cases, the vocalization of code could help educators identify mis-
conceptions novices hold about programming. A misconception is
an incorrect understanding of a concept, leading to mistakes in
writing or reading programs [15]. For example, imagine “x becomes
5” being the agreed upon reading for the assignment of 5 to x, and
a student reads it like “x is 5”. This might mean that the student
focuses on the symbol of the = as known from mathematics class,
and the associated meaning of equality, rather than on storing a
number.

We also see value in using the activity of reading code. We ex-
pect it to engage children in programming a fresh way, connecting
programming more to reading natural language than to mathemat-
ics, a potentially more inclusive frame. With a shared and agreed
upon phonology, learners can practice reading the code separately
from comprehension, much like learners of a language first practice
speaking and reading the "a" and only then use it in words, which
could result in lower cognitive load when tracing programs [11, 17].

In addition to novices, we see broader usage too. A group of
people that could benefit from phonology are adult professional
programmers engaging in (distributed) pair programming. Research
shows that defective communication is one of the four causes of
the pair dismissal [4] and that vocal dialog helps the pair cooperate
more realistically than with written means. Pairs often also need
audio communication in order to search for information and solu-
tions on the web and use them for modifying the code [14], and
therefore pair programmers could benefit from a consistent way

SERG Code Phonology: an exploration into the vocalization of code

TUD-SERG-2018-001 3



WOODSTOCK’97, July 1997, El Paso, Texas USA

to ‘speak’ code to each other. A code phonology could also be use-
ful when designing tools for programming, since an agreed upon
method to read code aloud would allow computers to also read
the code consistently, possibly aiding blind and visually impaired
programmers. Inversely, there are programmers that can read but
not easily write code because they lack full control over their arms.
A phonology of code will ease the dictation, since it defines how a
language should be pronounced. IDE’s or programming-by-voice
tools (e.g. [2, 7, 12]) could offer more powerful dictation support by
taking advantage of that.

5 RELATEDWORK
We are not the first to explore how code could sound. Related to our
current research question are two lines of work. The most related
are programming-by-voice tools. Inspired by the need to provide an
alternative input method for programmers suffering from repetitive
stress injuries, after observing that “spoken programs contain lexical,
syntactic and semantic ambiguities that do not appear in written
programs", Begel and Graham designed Spoken Java, a semantically
identical variant of Java that is easier to say out loud [2]. Other
natural language interfaces for programming include NaturalJava
[12] and VoiceCode [7]. While some of these papers, most notably
[1] also describe experiments in which developers read code aloud,
the goal of these papers was to create a version of Java that could
be spoken and do not further explore the issues in vocalization and
its effect on comprehension. For example, an issue like the context
dependent vocalization of ( was not in the scope of these papers.

Another category of work related to ours is work on program
auralization, an idea firstly coined by DiGiano and Baecker [8]. Pro-
gram auralization is the idea to use non-speech audio to increase the
ease by with programmers comprehend source code, for example
by playing a note for every execution of a loop to quickly hear how
often is was executed, or to lower the note in case of recursive calls
to a function. Some experiments [18, 19] have demonstrated that
program auralization can help novice programmers to comprehend
code, indicating that ‘hearing’ code, albeit different from how we
propose, can be an aide for code comprehension.

6 CONCLUSION AND OUTLOOK
In this paper we propose to start working towards a standard
phonology of programming languages, which prescribes how to
read source code aloud. We performed an exploratory study with
10 novices reading code, in which we observed subjects struggling
with reading the code, and a preliminary link between code reading
and performance in programming.

The difficulties we observed among these non-native English
learners of code have increased the confidence in our idea that
in teaching attention should be devoted to how to read source
code aloud. The fact that better programmers also read code in a
more consistent way indicates that reading code aloud could be a
useful diagnostic instrument, and potentially even increase code
comprehension.

We have a broad group of future studies in mind. Firstly, we
want to measure the correlation between program comprehension
and consistency of oral reading. Furthermore we plan to measure
the quality of oral reading in a more systematic way to be able

to compare that to comprehension too. Subsequently, we plan to
design a teaching method for oral reading of code and measure its
effect on program comprehension in a controlled study. In parallel,
we will explore various different phonologies, their attractiveness
to programmers and the ease with which they can be taught to
both novice programmers and experts.

REFERENCES
[1] A. Begel and S. L. Graham. 2005. Spoken programs. In 2005 IEEE Symposium on

Visual Languages and Human-Centric Computing (VL/HCC’05). 99–106. https:
//doi.org/10.1109/VLHCC.2005.58

[2] A. Begel and S. L. Graham. 2006. An Assessment of a Speech-Based Programming
Environment. In Visual Languages and Human-Centric Computing (VL/HCC’06).
116–120. https://doi.org/10.1109/VLHCC.2006.9

[3] B. Du Boulay. 1986. Some Difficulties of Learning to Program. Journal of
Educational Computing Research 2, 1 (1986), 57–73. https://doi.org/10.2190/
3LFX-9RRF-67T8-UVK9 arXiv:https://doi.org/10.2190/3LFX-9RRF-67T8-UVK9

[4] G. Canfora, A. Cimitile, and C. A. Visaggio. 2003. Lessons learned about
distributed pair programming: what are the knowledge needs to address?.
In WET ICE 2003. Proceedings. Twelfth IEEE International Workshops on En-
abling Technologies: Infrastructure for Collaborative Enterprises, 2003. 314–319.
https://doi.org/10.1109/ENABL.2003.1231429

[5] Peter F. de Jong and David L. Share. 2007. Orthographic Learn-
ing During Oral and Silent Reading. Scientific Studies of Read-
ing 11, 1 (2007), 55–71. https://doi.org/10.1080/10888430709336634
arXiv:http://www.tandfonline.com/doi/pdf/10.1080/10888430709336634

[6] Ryan Deschambault. 2011. Thinking-Aloud as Talking-in-Interaction: Reinter-
preting How L2 Lexical Inferencing Gets Done. Language Learning 62, 1 (2011),
266–301. https://doi.org/10.1111/j.1467-9922.2011.00653.x

[7] Alain Désilets, David C. Fox, and Stuart Norton. 2006. VoiceCode: An Innovative
Speech Interface for Programming-by-voice. In CHI ’06 Extended Abstracts on
Human Factors in Computing Systems (CHI EA ’06). ACM, New York, NY, USA,
239–242. https://doi.org/10.1145/1125451.1125502

[8] Christopher J DiGiano and Ronald M Baecker. 1992. Program auralization: sound
enhancements to the programming environment. In Proceedings of the conference
on Graphics interface’92. Morgan Kaufmann Publishers Inc., 44–52.

[9] Andrea D. Hale, Renee O. Hawkins, Wesley Sheeley, Jennifer R. Reynolds,
Shonna Jenkins, Ara J. Schmitt, and Daniel A. Martin. 2010. An investiga-
tion of silent versus aloud reading comprehension of elementary students us-
ing Maze assessment procedures. Psychology in the Schools 48, 1 (2010), 4–13.
https://doi.org/10.1002/pits.20543

[10] Sherry Kragler. 1995. THE TRANSITION FROM ORAL TO SILENT READ-
ING. Reading Psychology 16, 4 (1995), 395–408. https://doi.org/10.1080/
0270271950160402 arXiv:https://doi.org/10.1080/0270271950160402

[11] Mike Lopez, Jacqueline Whalley, Phil Robbins, and Raymond Lister. 2008. Rela-
tionships Between Reading, Tracing and Writing Skills in Introductory Pro-
gramming. In Proceedings of the Fourth International Workshop on Comput-
ing Education Research (ICER ’08). ACM, New York, NY, USA, 101–112. https:
//doi.org/10.1145/1404520.1404531

[12] David Price, Ellen Rilofff, Joseph Zachary, and BrandonHarvey. 2000. NaturalJava:
A Natural Language Interface for Programming in Java. In Proceedings of the 5th
International Conference on Intelligent User Interfaces (IUI ’00). ACM, New York,
NY, USA, 207–211. https://doi.org/10.1145/325737.325845

[13] Suzanne M Prior and Katherine A Welling. 2001. " Read in Your Head": A
Vygotskian Analysis of the Transition from Oral to Silent Reading. Reading
Psychology 22, 1 (2001), 1–15.

[14] Till Schummer and Stephan Lukosch. 2009. Understanding Tools and Practices
for Distributed Pair Programming. 15, 16 (oct 2009), 3101–3125.

[15] J. Sorva. 2012. Visual program simulation in introductory programming educa-
tion. PhD Thesis, Aalto University. (2012), 428 pages. http://urn.fi/URN:ISBN:
978-952-60-4626-6

[16] Andreas Stefik and Susanna Siebert. 2013. An Empirical Investigation into
Programming Language Syntax. Trans. Comput. Educ. 13, 4, Article 19 (Nov.
2013), 40 pages. https://doi.org/10.1145/2534973

[17] John Sweller. 1994. Cognitive load theory, learning difficulty, and instructional
design. Learning and Instruction 4, 4 (1994), 295 – 312. https://doi.org/10.1016/
0959-4752(94)90003-5

[18] Paul Vickers and James L Alty. 1996. Caitlin: A musical program auralisation
tool to assist novice programmers with debugging. ICAD.

[19] Paul Vickers and James L. Alty. 2005. Musical Program Auralization: Empirical
Studies. ACM Trans. Appl. Percept. 2, 4 (Oct. 2005), 477–489. https://doi.org/10.
1145/1101530.1101546

Code Phonology: an exploration into the vocalization of code SERG

4 TUD-SERG-2018-001





TUD-SERG-2018-001
ISSN 1872-5392 SERG


