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Abstract

Digital printing systems allow for the production of a large variety of different prod-
ucts. Making production plans for all these different products is challenging. One of
the challenging aspects of making these production plans is choosing the right sequence
of machines, to produce the desired intent. This is challenging due to three aspects:
the large number of interdependent variables in the problem instances, the variability of
machines, and the search for the best solution from a large set of valid solutions. In this
thesis, we implement and evaluate the use of a domain-specific language (DSL) called
RSX (Routing Space eXploration), to assist in choosing a sequence of machines. We do
this together with an industrial partner. For RSX we use a model-driven approach, and it
can be used to model the devices, production steps, and product properties of the digital
printing domain. It transforms those into a constraint model described in the MiniZinc
language, which is used as input for a constraint solver. We present the implementation
of the RSX language and MiniZinc constraint model, and we evaluate the language cov-
erage, accuracy, and performance. From these evaluations, we conclude that RSX can be
used to model a number of cases, which were characteristic in the context of our indus-
trial partner. Furthermore, we conclude that RSX can compile and solve the evaluated
cases in the order of a few seconds and that the implementation is accurate, such that it
can be used as a proof of concept.
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Chapter 1

Introduction

The printing industry finds its roots in ancient times. Early civilizations used clay tablets
and papyrus rolls to write down information [28]. Nowadays, we would not see this process
of manual writing as part of the printing industry anymore. However, this was one of the
earliest forms of information sharing by other means than oral communication. It serves the
same goal as the printing industry today, which is the creation of physical matter to share
knowledge between people. Luckily, we do not have to rely on clay tablets and papyrus rolls
anymore and have much more advanced techniques available in our modern times. Today,
we can print thousands of books, newspapers and any other printed matter in only a few
hours or less.

This advancement in the printing industry is owed to the invention of the printing press
and later, digital printers. Even though the invention of these advanced machines makes
printing easier than before, there are still issues which operators of these machines need to
solve manually. The most difficult problems to solve currently are in the development of a
production plan for these printed products. One of these problems is that the operator needs
to know which devices to use to make the printed product and in which order to use these
devices. This is what we call the routing problem. It is not straightforward to solve and often
has to be performed manually by an operator. Automation techniques assisting in solving
this problem could potentially help the operators in solving this problem. In this thesis, we
describe a case study into the use of a domain-specific language (DSL) with a constraint
modelling language as a backend to automatically generate solutions to the problem and
therefore assisting in overcoming the challenges of the routing problem in digital printing
systems.

In this chapter, we will discuss the background of digital printers and, by extension, dig-
ital printing systems in general. Furthermore, we will outline the context of our research,
and we will give an overview of the contributions of this thesis.

1.1 Digital Printing Systems

Digital printing systems are manufacturing systems which can flexibly produce different
forms of printed matter. This includes, but is certainly not limited to, books, calendars, mag-
azines, textile, cardboard and wallpaper. A digital printer is the primary component of such
digital printing systems. Alongside this printer, an array of devices, called finishers, are used
to combine the printed material into a finished product. In this section, we will describe these
two types of devices.
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1.1.1 Digital Printers

The main component of a digital printing system is a digital printer. These printers can
use a different number of techniques to recreate a digitally loaded image onto almost any
surface. Household printers and larger office printers are examples of digital printers that
almost everyone is familiar with. While this technique is used by many for their daily printing
needs, this technique competes with a much older way of printing. Mainly in the process of
printing books, offset printing is a common technique. Offset printing finds its origins in the
Middle Ages and makes use of printing plates to press the content of a page onto a sheet of
paper. While the making of printing plates was a tedious manual process before, modern
systems can make them automatically. Although the automation of this process reduces the
costs of making these printing plates, this is still an expensive operation. The advantage is
that this only needs to happen once for each exact copy of the book and can then be reused
for any amount of copies.

The older technique of offset printing is very straightforward and optimized due to cen-
turies of development. However, this technique requires extensive preparation, due to the
printing plates which need to be made for each different book and, if applicable, for each
different version of a book. While the costs of actually producing larger quantities of books
using offset printing are low compared to digital printing, it is less profitable to make print-
ing plates for lower quantities.

Digital printers do not suffer from this problem. A digital printer can print different
books or even different kinds of printed matter, without creating and changing printing
plates. This makes digital printers interesting for producing products which are published
in lower volumes. Furthermore, it makes extensive customization of the printing more vi-
able. An example of this is personalized photo albums, which are unique for the person that
orders the photo album. It is also not surprising that this technique is used for on-demand
book printing. In on-demand printing, books are not printed in advance and then stored in
warehouses. Only after a customer explicitly orders a book online, the book is printed. This
can greatly reduce costs and reduces the risk of overproducing.

1.1.2 Finishers

Digital printers are not the only equipment that is required to produce printed matter in
its finished form. Other machines, so-called finishers, play a crucial role in the production
printing process. They execute all the steps required to get from a collection of printed sheets
to a final product. These machines can for example ensure that a stack of printed sheets
is turned into an actual book. The steps required depend on the type of product that is
produced. Examples of product types are ring-bound books or perfect-bound books, but
also folded flyers or birthday calendars. These product types might have the same set of
printed sheets and are produced by the same printer, but they can require different finishing
steps. For a ring-bound book, there needs to be a step in the production process that punches
holes into the sheets and one which binds the stack of punched sheets together using a ring
wire. For a perfect-bound book, the stack needs to be milled and glued first, before a cover
sheet is glued to the book block. These finishing steps are mostly done by different machines,
often produced by different manufacturers.

Apart from the flexibility of digital printers themselves, these different types of finishers
also introduce a form of freedom in digital printing systems. Not only does the individual
configuration of each specific type of finisher allow for more options, the choice of which
finisher to use is also a new form of flexibility that has been introduced in digital printing
systems. The introduction of this flexibility comes with the introduction of a complex prob-
lem: choosing the right finisher for the job. This problem needs to be solved before a product
can be produced.
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1.2 Routing in Digital Printing Systems

In this thesis, we will discuss the routing problem in digital printing systems. This problem
will be covered extensively in Chapter 2. Routing in digital printing systems occurs whenever
there are two or more steps in the production process that need to be executed. Then, a
decision must be made in which order to execute these steps. Depending on the type of
printer and finishers, there can be a lot of freedom in this routing and thus many possible
routes. Some printers and finishers are configured to be inline. This means that together
they form one big machine, in which the product automatically moves from one machine to
the other. The advantage of this configuration is that it requires less manual work to make
a product. However, some flexibility is lost, because the steps can only be executed in one
specific order. Other printers and finishers are configured to be offline. This means that they
can be seen as completely separate machines and that they do not automatically move any
intermediate product from one machine to the other. This has as advantage that doing so
gives a lot of flexibility in constructing the production line. The disadvantage is that it also
requires more manual work to ensure the product is placed in the right machine, at the right
moment.

Both approaches and also combinations of these approaches are used in printing shops,
i.e. shops that produce printed products. It depends on the main goal of a printing shop
whether they use inline or offline equipment. If they want to provide flexibility in the types
of products they offer, they would most likely use offline equipment. If they want to provide
a more efficient and faster way of producing, they would rather go for inline equipment.

1.3 Contributions

In this thesis, we perform a case study about the implementation and application of a domain-
specific language (DSL) which tries to help reduce the challenges an operator faces when try-
ing to solve the routing problem. We call this language RSX (Routing Space eXploration).
Before we explain the implementation of RSX, we first present a more detailed overview of
the routing problem and the challenges of this problem. It is important to understand these
difficulties because in our case study, we try to minimize these as much as possible by im-
plementing RSX.

RSX compiles to MiniZinc [20]. MiniZinc is a constraint programming language, which
integrates with multiple constraint solvers. We can use such a solver to solve the routing
problem for us, instead of developing an algorithm ourselves. Unfortunately, we do not
get the solution to our problem for free. We get back the challenge of having to model our
problem in a constraint language. We present a way of modelling our problem directly in
MiniZinc, which is then used as a basis for the compilation of RSX.

For the implementation of RSX, we used the Spoofax Language Workbench [17]. In this
language workbench, we define the syntax and static semantics specifications. We also use
this workbench for defining transformations of RSX to MiniZinc. In this thesis, we present
the exact implementation of these aspects of the language.

We evaluated the language on three different aspects. First, we evaluated whether the
language covers the domain enough to define realistic cases in RSX. To achieve this we per-
formed multiple think-aloud co-design sessions together with domain experts. Secondly, we
evaluated whether the language is correct and complete by implementing a test suite for the
language. Last, we evaluated the language performance by benchmarking the compilation
and solving times for different cases developed in RSX.

To summarize, we make the following contributions.

e We design an approach of modelling the routing problem in a constraint model (Chap-
ter 3).
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e We design and implement a language, RSX, which allows to model a digital printing
setup, which can be used to find a production route (Chapter 4).

e We evaluate the coverage, accuracy and performance of RSX (Chapter 5).

1.4 Research Context

The research for this thesis is performed in collaboration with our industrial partner Canon
Production Printing. Canon Production Printing is a company developing digital printers.
Every printer comes with control software, which is used to control both the printer and its
finishers. When these finishers are placed inline, the control software directly manages the
finisher. Using this software, a production plan can be created which is executed automati-
cally by the printer and finishers.

Making the production plan using this control software requires considerable knowledge
and is mostly done by experienced operators. To aid in this process, Canon Production Print-
ing has been trying to encode the knowledge of these operators into a system that can help
with the decision-making in building a production plan. The language CSX was developed
as research into configuration space exploration [9]. By abstracting over a constraint model,
CSX helps an operator in finding a valid or optimized parameter configuration for an intent.

In its current form, CSX has one limitation, which is that the sequence of actions per-
formed is fixed. However, products can have multiple valid production routes. These dif-
ferent routing options cannot be explored with CSX alone. Therefore, in this thesis, we do a
case study into the development of another language named RSX. The focus of this language
is on researching the possibility to also help with choosing a correct sequence of actions.



Chapter 2

The Routing Problem

When you ask people to describe a book, flyer or calendar they want to print, they are often
very capable of doing so, albeit up to a limited level of detail. It is easy to describe the content,
the cover page or the type of cover for a book. However, when asking people if they could
describe the steps required to make their desired book, they will encounter more difficulty.
Most of the time, the reason is that people lack knowledge of bookmaking. That is not so
surprising, but even when people would have a basic understanding of bookmaking, this
is a difficult question. Bookmaking, or production printing in general, is not just a single
physical action; it involves many, different aspects. The printing process starts with a series
of questions like how to make the book block, the cover page or the binding. Each question
refers to a small step in the production process. The operator of the machines that are going
to make the product, can therefore use the answers to these questions to come up with a
production plan.

Such a production plan is easily created when the choices of intent are limited. If all
books look the same, an operator could just executes the same production plan over and
over. However, as you can see when looking at your bookshelf, each book is different. Not
only do they differ in their content, but the way they look is also different. They have different
sizes, paper, covers and bindings. Furthermore, the variety of printed applications reaches
much further than just books. Digital printers can print, for example, banners, cardboard,
textile and wallpaper as well. This large variety in applications is the reason that developing
production plans is more involved than choosing a predefined plan.

In this chapter, we will discuss how finding a production route is a problem that needs
to be solved. We discuss why this problem is difficult to solve and what potential solutions
there are to solve the problem, based on the difficulties discussed.

2.1 The Routing Problem Explained

To fully understand the challenges of the routing problem which we try to solve using RSX,
we will first explain the problem in more detail.

2.1.1 An example

To explain what the routing problem entails, we will use an example. Imagine that we are
an operator at a printing shop. Our task is to produce the orders that the printing shop gets
from its customers. Because we know our customers have very different needs and wishes
about what they want their books to look like, we have a large set of different machines at
our disposal to be able to produce almost any kind of book.

Now, what happens when we receive an order from a customer? Imagine our customer
is a student that wants to print their thesis as a small book. We need to know what the

5
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student wants their book to look like, and they, in turn, need to know what their options
are. Therefore, we discuss the possibilities with them. We ask questions like: what kind
of binding do they want? what type of cover sheet? what should the size of the pages be?
Using their answers, we try to come up with an intent specification. This specification should
specify the aspects of the book and describe the book in such a way that the student will be
happy with the book that we produce.

Now that we know what the book needs to look like, we can determine how we are going
to produce it. We start by looking at the machines we have at our disposal and ask ourselves:
which machines do I need to use to get the book that the student wants? Say that the student
has decided on the perfect-bound binding method. From our knowledge as a trained opera-
tor, we know which actions we need to perform. A perfect-bound book is not easy to make,
so we will describe the actions in random order below.

o Gluing A perfect-bound book is a book where the cover is glued to the book block. This
is different from other binding methods where the book block is bound using a wire
or by stitching. Thus, a logical action to perform is that the glue needs to be applied to
the book block.

e Milling Because we want a high-quality perfect binding, we need to ensure that the
glue sticks well to the book block. This is done by a process called milling. In milling,
one edge of the book block is made rough, so the glue adheres better to the block.

e Covering The cover needs to be glued to the book block. This means there needs to be
an action which applies the cover to the book block. Usually, this is done by folding a
cover sheet over the book block.

e Creasing To ensure that the book is easy to read, and the cover sheet wraps nicely
around the book block, the cover sheet is creased. This means that small creases are
applied to the cover sheet in the places where it folds around the book block and where
the cover needs to open up.

e Printing A very logical step in the process is printing. A thesis without pages would
not result in a high grade. So, somewhere in our production route, we need to make
sure that the sheets are printed.

o Gathering Printing happens on a sheet-by-sheet basis. To ensure we have a book block
which we can cover with a cover sheet, we need to gather all the sheets together to form
a book block.

o Trimming When gathering sheets and during the covering of the book block, it is very
likely that the sheets are not perfectly aligned. Therefore, trimming the non-bounded
edges can make sure that the book has clean edges without any pages or the cover
sticking out.

Now that we know which actions to use, we ask ourselves: in what order do we need to
execute these actions? For this, we take a look at what we know about each action. Again,
from our knowledge of being a trained operator, we know that when applying the glue to the
book block, we need to have a milled edge first. Therefore, we know that somewhere before
gluing, we need to do milling. We also know that an edge needs to be glued before applying
the cover sheet. So, before covering, we need to do gluing. An overview of the requirements
for each action is given in Table 2.1. Based on this knowledge, we try to come up with an order
in which we need to execute the actions. It is important that for the order, all requirements
for the actions are met. An example of a valid route can be seen in Figure 2.2. This route
is valid because the requirements for the actions are met. For example, as discussed before,

6
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Action Requires Produces

Gluing milled book block glued book block
Milling book block milled book block
Covering | glued book block + creased sheet | perfect-bound book
Creasing | sheet creased sheet
Printing sheet printed sheet
Gathering | sheets book block
Trimming | book block trimmed book block

Table 2.1: Requirements and products for all actions needed to make a perfect-bound book.

Printing P Gathering P Milling | Gluing > Covering P Trimming

A

Creasing

Figure 2.2: A possible order of actions to produce a perfect-bound book.

gluing needs to happen after milling and milling after gathering. If we swapped the milling
and gathering actions, we would get an invalid route.

Note that this route is not a simple sequence of steps, but involves the combination of
two parts of the route in the covering step. The reason for that is that when executing the
covering action, you need both a cover sheet and a book block. These require different actions
and therefore have different routes before being joined in the covering action.

So, are we ready to make the book? Almost, but there is still one question that remains.
How do we configure the machines that execute these actions? The student wants their
perfect-bound thesis in a specific size. So we need to configure the machines to ensure that
the book will be that size. There are two actions during which the size of the final product
changes. During milling, a part of one edge will be milled off and during trimming a part of
the book block will be trimmed off. To ensure that the book block is of the specified size, we
need to configure the milling and trimming machines in just the right way so that the final
book block is the correct size. This is dependent on the size of the input sheets, so before
we are ready to produce the book, we need to make sure these parameters are configured
correctly.

After all these questions have been answered, we have a complete production plan. We
know which actions and machines to use, in which order we need to execute these actions
and what the configuration parameters are. Using this production plan we can start pro-
ducing the book and, if everything goes to plan, the machines can do the rest. Note that for
this example we have formalized the process of coming to a production plan extensively. In
real life, most of the steps given in this example are not made in the exact order we present
them here. Furthermore, the specification is rarely completely clear, and an operator might
make assumptions about what the customer wants. The operator can also often choose from
different actions that achieve the same result, making the decisions even more complex.

2.1.2 Routing Problem Definition

To generalize the example given in the previous section, the three aspects that an operator
encounters when trying to come up with a production plan are the following.

1. The operator needs to know which actions are needed in the production plan.

2. The operator needs to know in which order to execute these actions.
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3. The operator needs to know how to configure the parameters of those actions.

The first two questions can be seen as part of the routing problem. The answers to these
questions result in the route a product makes during the printing process. However, these
aspects of coming to a production plan are not independent of one another. As you might
expect, the question of how to configure an action is dependent on when the action is ex-
ecuted in the sequence of actions that form the production process. Also, the question of
when to execute an action is dependent on which actions are chosen in the first place. These
dependencies are also present in the opposite direction. Thus, the point in the production
process where an action is chosen, is dependent on the configuration parameters of the ac-
tion and the actions that are chosen is dependent on the order of those actions. There might
be configuration parameters that influence whether a certain order of actions is valid. Fur-
thermore, whether a certain position of an action in a route is decided can influence which
other actions can subsequently be used. This makes the problem more difficult, and we will
go deeper into why it is difficult in Section 2.2.

Our focus will be on the first two aspects stated in this section: which actions need to
be executed and in which part of the process? The third aspect is already tackled in ear-
lier research [9]. When needing to decide on those questions, an operator needs to oversee
the whole process. This becomes problematic when the different properties of the intended
product and the number of steps to get to the intent increase. When the intent is only to
have a single printed sheet of a certain size, it is quite easy to find a production route that
produces this sheet. However, when someone wishes to have a high-quality bounded book
of a few hundred pages, this becomes a lot more challenging. Even more so, when there is a
need of doing so efficiently.

The problem that arises, is that the operator needs to know if an action can be executed
before another. There are situations where the order of actions is very strict and where it is
very clear which action should come first. For example, when forming the book block, an
operator wants to ensure that the pages of the block are in the correct order and are printed.
So when forming the book block, e.g. by making a stack of sheets, it is required that the sheets
are printed beforehand. In this case, the printing step needs to be done before gathering. It is
difficult to do this the other way around because printing a stack of sheets can only be done
by taking the stack apart into individual sheets again. An operator needs to be aware of these
constraints when making a production plan.

However, the consequences of some actions might not be immediately clear and only
noticed after the action is executed. An example of this is when gathering sheets, the machine
executing this action might not be able to nicely align all the sheets in such a way that the stack
does not contain slightly skewed sheets. In general, this is perceived as ugly and something
that needs to be prevented. This is usually done by trimming the edges of the complete stack
so all the sheets get the same size. However, to trim the edges, the sheets need to be larger
than their desired size, as trimming will always reduce the size of the sheets. Thus, to ensure
that sheets still get the right size and are not skewed, it is important to take into account that
these steps need to be in this order and that the sheets that are stacked are initially larger
than the desired sheet size.

Furthermore, another interesting aspect that arises from the earlier example where an
operator prints sheets first, before stacking them, is that there is physically nothing prevent-
ing the operator from stacking sheets first, taking the stack apart, printing the sheets, and
then stacking them again. However, it is clear that this involves more steps and is therefore
less efficient. Additionally, the more you separate the sheets, the higher the chance that the
sheets will get damaged. This shows what occurs more often in the domain, namely that
there are a lot of possibilities in the routing, but that some of these possibilities are neither
logical nor desirable. Another example is that when trimming a stack to its desired size, this
can be done by trimming each edge once, by trimming only two edges, or by multiple com-
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binations of these two. Again, there is nothing physically preventing the operator to choose
one of these routes, but they still need to make a decision on which of these options to use.

To summarize the routing problem, we can give the following formal definition of the
problem:

The routing problem is the problem that arises whenever an operator of digital
printing systems needs to choose a set of actions to execute and needs to choose
in which order to execute them. He needs to choose these in such a way that
the product satisfies the intent, and such that each action can be executed at its
location in the route, without any unwanted side effects.

2.2 The Difficulty of the Routing Problem

In the previous section, we discussed what the routing problem entails. It is difficult for an
operator to find a route that adheres to the constraints of individual actions and still produces
the intended product. The operator needs to choose the right actions, at the right position in
the route to ensure the desired result. To make this easier for an operator, special software
could be used to assist the operator. This way the operator would not require the extensive
domain knowledge currently demanded from them. It would be very helpful if there was
software that could point out to the operator whether a chosen route is valid or better yet,
could suggest a valid route for the specified intent. Such software currently does not exist
and a good reason for that could be that building such software is not trivial. This section will
explain the three reasons why solving the routing problem is difficult, even when delegating
this task to a computer.

2.21 Complexity of Solution Space

The first reason is that the problem is very complex. To show this, we can make use of an
analogy between cooking and the production of books. Say that you had dinner with a friend.
At the dinner, your friend made an amazing soup for you. After you compliment them, they
tell you that they just followed the recipe, and it was not much of an effort. Encouraged by
these words and because you enjoyed the soup so much, you want to make the soup yourself.
You do not have the recipe, but you remember what it looked like and what it tasted like. Is
that enough to make the soup yourself? Maybe if you were a very experienced cook and the
soup is simple, it would be doable, but most people would have trouble recreating the soup.
Your friend had a recipe that they could follow, in which the ingredients and steps to make
the soup are described. However, for you, it is very difficult to guess which ingredients they
used, which steps they took, and in which order they put the ingredients together.

This problem is analogous to the routing problem in the production printing domain. To
show this, we will take a look again at the example given in Section 2.1.1. There we tried to
find a production route that produces the thesis of a student as a perfect-bound book. In our
analogy the soup can be compared to the thesis from our earlier example. It is the product
we try to create. The actions and the order of actions are analogous to the steps of the recipe
for the soup. Now, imagine that we look at the routing problem the other way around. Then
we would have a production route and the question becomes: what would we be able to
produce by that route? Then the problem would be much simpler. If we know that in our
production route we mill, glue, and then cover, we can easily see that we get a perfect-bound
book. Just as when following a recipe to make a dish, we can follow the steps to see what it
produces. However, when reasoning from the point of intent, this is not a problem in which
we simply follow all the actions anymore. Then we also need to guess which steps we need
to do in which order and which “ingredients” we need to use to get our desired intent.
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The examples in this analogy are both instances of satisfiability problems. In these prob-
lems, the goal is to determine whether a mathematical formula is satisfiable [4]. In general,
satisfiability problems belong to the class of problems which cannot be solved in polynomial
time. This means that the solving time of the problem could grow exponentially with the
size of the problem. The larger the problem instance, the more difficult it becomes to find a
satisfactory solution to this formula. Because in the routing problem this mathematical for-
mula consists of many variables, which are also interdependent, an algorithm that can solve
the problem efficiently is impossible to find. The difficulty here is therefore to find an algo-
rithm that can find a solution in a still acceptable amount of time, by optimizing the specific
instances of satisfiability problems we are dealing with.

2.2.2 Variability of Production Lines

The problem described in the previous section could be surmountable by extensively opti-
mizing the algorithm on the possible solutions. This could be done, for instance, by reducing
the solution space by removing any wrong solutions. However, the variability in the intent is
not the only thing that needs to be taken into consideration. Although this is indeed the only
problem an operator faces, the developer of an algorithm that solves the routing problem also
faces variability in production lines. While an operator has only a limited set of machines at
their disposal, a developer of an algorithm should solve for all possible combinations which
are used in the field. In our previous example of printing the thesis, we explained that the
operator had a lot of different machines at their disposal. However, some printing shops
have a more limited set of machines available. Furthermore, printing shops could have dif-
ferent versions of the same machines, with different limitations. In the real world, printing
and finishing systems consist of tens of different finisher types, which are produced by dif-
ferent manufacturers. Operators have different subsets of finishers available. Furthermore,
there is a continuous development of new finishers with different capabilities.

This makes the routing problem more difficult to solve. As said earlier, we could find
an algorithm that is optimized for a very specific set of possible actions, but when these sets
are different for each operator, there would be limited use for the algorithm. Furthermore,
the algorithm would only be useful for a limited amount of time, because any change to the
machines would make the algorithm unusable. The challenge that is introduced here is that
we need to find an algorithm that can be optimized for different sets of available actions
which could change over time.

2.2.3 Searchability of Solution Space

The third challenge lies in finding the right solution to the problem. In some situations, there
is an almost endless set of solutions that result in the same product. To give a more concrete
example, say that the student of our previous example wants to have their thesis in a small
book of 148mm by 210mm, which is the size of an A5 sheet. The problem is that we do not
have this exact paper size available and that we need to trim the book after we glued the cover
sheet to it. Therefore, we need to have a larger sheet size for our book block than intended
before trimming. The question of how much bigger is dependent on how much we trim.
However, nothing is preventing us from trimming twice, thrice, or even more times. Say that
we need to trim 20mm from one edge to get to the intended size of 148mm. Then we could
trim 20mm in one go. We could also trim 10mm twice. We could also trim 5mm once and
15mm once. As you can see, there are a lot of different possibilities, which all produce our
valid intended size.

To help the operator in finding a production route, an algorithm needs to choose one
of these configurations. However, to do so, the algorithm needs to know what the value
of a certain configuration is. Some configurations might be faster, but also result in more
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paper loss. Other configurations might reduce the paper waste, but take longer. Often, it
is dependent on the situation which of these configurations is desirable. The challenge that
is introduced here is that an algorithm needs to decide which configuration to give to an
operator to properly assist the operator. This is what we call the searchability of the solution
space. If the solutions that we get are all valid, which one do we have to choose?

2.3 Potential Solutions for the Routing Problem

Analyzing and describing the problem can be interesting from a researcher’s point of view,
but in the end, our goal is to solve the problem in the best way possible. Therefore, we also
present potential solutions. The combination of the three difficulties described in the previ-
ous section gives us an indication of what the three requirements are for a potential solution
to the problem. To ensure that the solution is helpful for an operator, it should address these
three challenges. Therefore, the potential solution needs to be able to solve a large problem
instance, be able to be easily extendable, and be able to navigate the solution space for an
instance of the problem. In this section, we will take a look at some techniques that could aid
in solving the routing problem. These techniques fall into one of two categories: a retrieval-
based approach or a generative approach.

2.3.1 Retrieval-based solutions

A retrieval-based solution to the routing problem would be to predefine the possible routes
that an operator can choose from. This might sound like an inadequate solution. However, if
we had a printing shop that only produces one single type of book, this is the perfect solution.
We can experiment with different production routes and optimize our production line for
this specific intent. Once we have done so, there is no need to create any other routes. Even
if we would slightly increase the intent options we offer, this option is still viable. We can
manually devise specific solutions for each customization we want to offer. The only problem
is that at some point there is a limit to the customization that you can offer. It is impossible
to manually devise all possible solutions. Furthermore, it becomes problematic whenever
there is a change in the production line. Whenever a machine is replaced by another or a new
machine is added to the production line, the fixed routes have to be adjusted to accommodate
this change. Therefore, this solution would limit the utilization of all the different capabilities
amachine has to offer. The potential of these machines then goes to waste, only because there
is no set of all fixed routes available for these machines.

2.3.2 Generative Solutions

A generative solution to the routing problem is different from a retrieval-based solution.
Instead of choosing a known solution, we generate the solution based on the specific problem
instance. This has the advantage that we can potentially solve all possible problem instances
and not only the problem instances we devised beforehand. However, the question then
becomes how we are going to find this solution. In this chapter, we see that it is not easy to
find such a solution. Two approaches can potentially help in finding a solution.

Data-Heavy Solutions

Data-heavy solutions could be used to let a computer learn what a viable production route
is. By using a lot of data about successfully executed production routes, a computer could
gain the same knowledge as an experienced operator. This could be a viable option, as long
as there is enough data available to train the model. Without enough data, the model could
give routes that do not produce the intended result or routes of which an operator says that

11



2. TuHe RouTiING PROBLEM

it is not reasonable to execute it in that way. Both problems can become a nuisance because
it would mean that either an operator needs to check every single production plan gener-
ated by the model or there is a risk that products are produced which do not abide by the
intent. Currently, there is not a lot of data available about production plans and their intent.
Therefore, within our domain, this is not a viable solution.

Rule-Based Solutions

While there is a limited set of data available on production plans, there is a lot of knowl-
edge available about the domain. This knowledge is taught in special education programs
for operators in the printing industry. Therefore, an idea is to model this knowledge into an
algorithm using constraint modeling. A rule-based solution allows us to encode this knowl-
edge into an expert system. We could describe the limitations of our machines and let the
system itself find a solution that abides by these limitations. This is a viable solution as long
as we can realistically model our knowledge into these rules. However, that can be a chal-
lenge, which is also recognized by other authors [14, 13].
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Chapter 3

Solving the Routing Problem: A
Constraint Model

To find a solution to the problem described in the previous chapter, we make use of the
method of constraint programming. In our research, we use the programming language
MiniZinc [3]. MiniZinc is a declarative language for constraint programming. This means
that the programmer defines a set of variables and constraints. These variables and con-
straints are compiled so that a generic solver can be used to find a value for these variables,
which satisfies the constraints. This way, if you can describe your problem as variables and
constraints, that is the only thing you have to do. It is not required to also describe an algo-
rithm for finding a solution to the problem. A solver takes care of that, by applying a smart
brute-force search on your solution space. The task of a programmer in MiniZinc is thus
to correctly describe the problem, in such a way that the solver finds a correct solution. In
this chapter, we start by giving a motivation for the use of MiniZinc. Then we describe an
implementation of a MiniZinc model that describes the routing problem in digital printing
systems. After that, we will present a summary of the constraint model and how a solver
finds solutions to the routing problem.

3.1 Motivation for MiniZinc

RSX is compiled into the MiniZinc constraint programming language. However, more lan-
guages can be used to model constraint problems. Before we chose MiniZinc as the target
language, we looked at a few other languages and made a decision for MiniZinc. This deci-
sion is described in this section.

3.1.1 Criteria

The target language is the language that RSX is translated to. The goal of the target language
is, therefore, to be able to define the constraints that a satisfactory solution for the routing
problem adheres to. Computing a solution is not something that is expressed in the target
language and there is no necessary one-to-one relationship between a language and a solver.
However, it is still important to take the solver into account when choosing a target language.
The target language is useless without a solver that can find a viable solution.

Based on this constraint-solving approach, we defined a few criteria to help in choosing
a target language. These were divided into two parts. The must-haves and the nice-to-haves.
The must-haves are the criteria that the language should abide by without exceptions. If a
language does not follow all of these criteria, the language is not a valid choice for our target
language. The nice-to-haves are the criteria that are not a necessity, but of which it would
be good to have as many as possible in the target language. These criteria make it easier to
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model our problem in the target language. The must-haves for the language are described
below.

Must-haves

1. In the language it must be possible to declaratively define the problem as described in
the previous chapter.

a) The language should support defining boolean and integer constraints.

b) The language should support defining constraints over collections of integers or
enumerable types.

2. There should be a solver for the language that can find a solution to the problem de-
scribed in the language.

3. The solver should be able to find an optimal solution based on an optimization function.

The first criterion describes that in the language, it should be possible to declaratively de-
fine the problem using constraints. Declaratively here means that only the constraints them-
selves should be expressed in the language itself and not the way that a solution to the prob-
lem can be found. This is in contrast to a language that imperatively describes the way that a
solution can be found. The two types of constraints are based on the problem that needs to
be solved. These are the minimum type of constraints expected, at this moment, to be needed
to describe the problem.

The second and third criteria describe the need for a solver that can be used in combina-
tion with the target language. There needs to be a solver that can find a solution based on
the constraints and also order multiple solutions based on a function to decide on the best
solution. Without this last part, any solution is seen as equal in value to the solver and there
is no guarantee that the solver finds the best solution.

Now that we have defined the minimum criteria for our target language, we will take a
look at the criteria which describe language and solver features that would be nice to have
in our target language. These are described below.

Nice-to-haves

1. The solver can solve the problems which are present in the domain in time and space
efficient way.

2. The language supports abstractions like functions to model repetitive tasks.
3. The solver can show the possible values for variables based on the constraints given.

4. The solver can show the constraints enforcing values for variables based on the con-
straints given.

5. The language is well documented and several examples of programs in the language
exist.

6. The language describes the constraints in such a way that it is easy for a human to
understand what the described constraints intend to achieve.

The first item on the list describes the need to have a solver that can efficiently solve the
problem. In theory, a solution can be found by trying all possible combinations of parameters
until the result satisfies the constraints. However, this is not a time-efficient way of solving the
problem given numerous parameters and would therefore most likely not suffice. Therefore,
a solver should be smart enough to give a solution faster than a brute-force algorithm.
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The second item concerns the efficiency of describing the problem in the language. To
ensure that repetitive constraints do not have to be described multiple times, abstractions
like functions or predicates are a nice-to-have feature in the modeling language.

The third and fourth items describe the nice-to-have query capabilities of the solution
space. There are cases in which the objective is not necessarily to find a solution that satisfies
the constraints, but more so to describe the possible values a variable can have. Another
aspect one might be interested in, are the constraints that limit the value of a certain variable.
This way, it is possible to see why a solver came to a given solution.

The fifth item states that it is desirable to use a language that is well documented and for
which multiple examples exist. The reason is that without good documentation, modeling
the problem in such a language becomes unnecessarily difficult. This is not desirable for a
research project which is not focussed specifically on finding the best modeling language for
the problem.

The last item describes the wish for the target language to be easily interpreted by a hu-
man reader. The reason for this is that, especially during development, the intent of the
constraints described should easily be understood by other parties involved in the project.
Again, not having a human-readable language makes modeling unnecessarily difficult.

3.1.2 Choice

Based on the criteria described in the previous section, we need to make a choice on a lan-
guage to model the problem in. For a language to be considered, the language should at least
follow the must-have criteria. Based on the nice-to-haves, a decision can be made for one of
these languages. Three languages are the main candidates for the target language. These
are:

1. MiniZinc [20]
2. IDP-Z3 [6]
3. Prolog, with the c1pfd library [8]

These three languages implement all the must-have criteria, although Prolog only when
using a specific library. The advantages and disadvantages of each language, based on the
nice-to-have criteria, are discussed below.

MiniZinc

MiniZinc is a widely used constraint programming language built on top of FlatZinc. This is
a language that is developed as a solver-input language. It is implemented for several solvers
that each have different specializations. MiniZinc makes it possible to define constraints over
integers, boolean and floating-point numbers and to reason about these using universal and
existential quantifiers or using logical connectives. The ability to use different solvers allows
for choosing a solver that is best for the problem at hand. However, it is mainly focused
on finding a solution, and it is more difficult to explore the solution space by querying the
possible values for a specific variable.

IDP-Z3

IDP-Z3 is a language that is developed at the KU in Leuven. Just as with MiniZing, it allows
defining constraints over integers, boolean and floating-point numbers. It is also possible to
reason about those, similarly to in MiniZinc. It only supports the Z3 solver and is, therefore,
more limited with regard to choosing the best solver for a specific problem. However, it does
allow for extensive querying of the solution space. It can decide which values are allowed
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for certain variables and by which constraints they are constrained. An example of this can
be found in the Interactive Consultant, which is built on top of IDP-Z3.

Prolog

Prolog is another widely used language, but not necessarily in the field of constraint pro-
gramming. When using the general language, it is not possible to reason about constraints
in Prolog, due to the requirements it enforces on the instantiation of unknown variables.
Therefore, a library was developed to solve this problem. Using this library, it is possible to
define constraints in Prolog, in a way that is similar to MiniZinc or IDP-Z3. However, this is
not as natural as in the other two languages, as Prolog was never developed to be used as a
constraint programming language.

Final Choice

Based on the discussion about these three languages, we decided to use MiniZinc as the
target language for modeling the routing problem. The language is widely used and well-
documented. This makes it a more attractive choice over the IDP-Z3 language, which - al-
though it has almost all the same language features - is much more of an academic research
language. It is therefore less well documented than MiniZinc, which is widely used in the
industry. Furthermore, MiniZinc is written to define constraint programs and has an easier
syntax and semantics for defining such problems. There is only one disadvantage of using
this language and that is the fact that it is more difficult to explore the solution space for a
problem described in MiniZinc. However, this seems to be a problem that is mainly on the
solver side and not on the modeling side. Since for a proof-of-concept implementation the
focus will be more on the modeling side, this should not impose a big problem in this phase
of the research.

3.2 Constraint Model Implementation

In this section, we give an implementation of our problem in a constraint model. We use an
example to show how the different aspects of the problem can be modeled in MiniZinc. The
example consists of a small setup. We have two actions: ToTrim and Toorientate. The first
action trims the top edge of a stack and the other action rotates the stack by 90 degrees in a
clockwise direction.

3.2.1 Route

The ultimate goal in our problem is to find a route. In Chapter 2 we described this route as a
sequence of actions. For our case study, we assume that a route can always be described by
a linear sequence of actions. This excludes routes that contain different branches. The reason
we make this assumption is that this simplifies our problem.

In MiniZinc, we describe this sequence as an array of variables. Each variable in the
array describes an action that is taken at a step in the sequence. The first variable describes
the action taken in the first step, the second variable the action taken in the second step, and
so on. The array is described in MiniZinc using the following definition.

1 par 1int: maxActions = 4;
2 enum ACTION = {ToTrim, ToOrientate, ToSkip};
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3 array[l..maxActions] of var ACTION: actions;
4 constraint actions[maxActions] = ToSkip;

Each variable in the array is of type ACTION, which is a type that describes all the possible
actions in our domain. Here we have the two actions of our example and an extra action
ToSkip. This last action is to model the fact that we can also do nothing in a step. This is
required, because arrays in MiniZinc have a fixed length. When would have a route that
only requires three steps, we still need to define an action for the fourth position in our array.

In the actions array, each value describes the action to take in each step of our sequence.
The length of the array is the maximum number of actions we can perform and thus the
maximum length of our sequence. A solver for MiniZinc can now automatically find a value
for each variable in the array. Because we have not restricted the actions using constraints in
MiniZinc, the solver can return any possible action for each variable. Thus, to get a useful
solution from the solver, we need to extend our model first.

3.2.2 Product

In our domain, a sequence of actions produces a product. Each action modifies the product
in some way and the sum of all these changes forms the final product. Ultimately we want
to reason about the aspects of this product, thus we need to find a way to model a product
in MiniZinc. One way to describe a product is by a set of properties that specify the aspects
of the product we want to model. In MiniZinc, we describe these properties as an array
of variables, where each variable in a property array describes the state of that property
at a certain step in the sequence. The following MiniZinc code gives the modeling of the
properties in our example.

—_

array[l..maxActions] of var bool: isTopTrimmed;
array[l..maxActions] of var bool: isRightTrimmed;
array[l..maxActions] of var bool: disLeftTrimmed;
array[l..maxActions] of var bool: -isBottomTrimmed;

constraint isTopTrimmed[1] = false;
constraint isRightTrimmed[1] = false;
constraint isBottomTrimmed[1] = false;

O 0 N N ks W N

constraint isLeftTrimmed[1] = false;

Here, we describe the array of variables for four properties. Each property models wheth-
er a certain edge is trimmed or not. The type of the properties here is a boolean but can be
any MiniZinc type. Again, the length of the array is equal to the maximum number of actions
in our sequence. We also add a constraint for each property which defines the initial value
for that property. For our example, we assume that each edge is not yet trimmed at the start.

3.2.3 DPostcondition

In the previous section, we described a way to model the product as a set of properties.
Each action that we choose to perform, applies changes to the product. These changes are
something we need to model as well. In MiniZinc, the changes of an action can be modeled
by a constraint over the properties of the product after the execution of an action. In the
following code snippet, we show how we model this for the actions and properties in our
example.
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constraint forall(i in 1..maxActions-1) (actions[i] ToTrim -> disTopTrimmed[i+1]

— == true);

constraint forall(i in 1..maxActions-1) (actions[i] == ToTrim ->
— isRightTrimmed[i+1] == isRightTrimmed[i]);

constraint forall(i 1in 1..maxActions-1)(actions[i] == ToTrim

— —>isBottomTrimmed[i+1] == -isBottomTrimmed[i]);

constraint forall(i in 1..maxActions-1)(actions[i] == ToTrim ->

— dsLeftTrimmed[i+1] == disLeftTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] ToOrientate ->

— isTopTrimmed[i+1] == dsLeftTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToOrientate ->
— isRightTrimmed[i+1] == [disTopTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToOrientate ->
— isBottomTrimmed[i+1] == disRightTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToOrientate ->
— dislLeftTrimmed[i+1] == disBottomTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToSkip -> isTopTrimmed[i+1]
«— == isTopTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToSkip ->

— isRightTrimmed[i+1] == [disRightTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToSkip ->

— isBottomTrimmed[i+1] == isBottomTrimmed[i]);

constraint forall(i in 1..maxActions-1) (actions[i] == ToSkip ->

— dslLeftTrimmed[i+1l] == disLeftTrimmed[i]);

We define the following constraint for each action: if the action is chosen, the changes that
are applied to the property must hold in the step after the action was chosen. For example,
we say that if the ToTrim action is chosen, we set the value of the isTopTrimmed property to
true in the following step. The other properties stay the same. This models the fact that the
ToTrimaction only trims the top edge of our stack. The Toskip action models an action where
we do not do anything. Therefore, we say that the properties keep their value in the step
after the ToSkip action.

3.2.4 Precondition

Some actions have preconditions on the product that the action is applied on. This means
that an action can only be executed if the properties of the product it changes, satisfy these
preconditions. This can be modeled in MiniZinc by adding constraints on the properties of
the product at the moment an action is executed. We can add a precondition to our example
in the following way.

constraint forall(i in 1..maxActions-1) (actions[i] == ToTrim -> isTopTrimmed[i]
— == false);
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Here, the ToTrim action can only trim the top edge, if it is not already trimmed. We model
this by adding a constraint on the value of the isTopTrimmed property at the step where the
ToTrim action is chosen.

3.2.5 Intent

In our problem, we want the product to satisfy the intent. Because we model the product as a
set of properties, this set of properties should satisfy the intent as well. To describe whether
the properties satisfy the intent, we should look at the value of the property after we applied
all actions in our route. In our MiniZinc implementation, this is described by the last value
in the array that describes the property. To ensure that this value satisfies the intent, we can
add a constraint to our MiniZinc model. For example, we add the following constraints.

constraint isTopTrimmed[maxActions] = false;
constraint isRightTrimmed[maxActions] = false;

constraint isBottomTrimmed[maxActions] = true;

= W N =

constraint isLeftTrimmed[maxActions] = false;

We add a constraint for each of our four properties. The constraint says that the last value
in the array which describes the properties should satisfy the intent. In this case, the intent is
that only the bottom edge is trimmed. The other edges are explicitly not trimmed. Note that
it is not required to describe the intent for all properties. Then, the property becomes free,
which means that we do not care what the value is, and we accept any value the solver comes
up with. For example, if we would not define whether the top edge should be trimmed, the
solver can both give a solution in which the top edge is trimmed and one in which it is not.

3.2.6 Action Order

Not all actions can be chosen freely in the domain. Sometimes, we can only apply an action if
we first apply another action. We can describe this in MiniZinc using a constraint that says:
if an action is chosen, then the other action must be chosen in the next step of the sequence.
An example of our two actions is shown below.

1 constraint forall(di 1in 1..maxActions) (actions[i] == ToOrientate <-> actions[i+1]
«— == ToTrim);

Here the action Toorientate is always followed by the action ToTrim. Because we use a
bi-implication, the action ToTrim, can only be used in a step, if the action Toorientate is used
in the previous step.

3.3 Summary

Together, the translations of domain concepts to MiniZinc, as described in the previous sec-
tions, form a core constraint model for our routing problem. To summarize, the solver tries
to find a solution to all variables we have defined and ensures that for each of the values it
finds, the constraints hold. In our model, the most important variables are described by the
action array. The values that the solver finds for these variables describe the actions we need
to take. Because we also add the variables for properties, the constraints over the actions, and
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the constraints over the intent to the model, we ensure that the solver only chooses actions
that are valid in our domain.

So, what happens if we run the solver on our MiniZinc model? For this example, we
leave out the action order constraint described in Section 3.2.6. The solver comes up with the
following solution.

actions = [ToTrim, ToOrientate, ToOrientate, ToSkip, ToSkip];
isTopTrimmed = [false, true, false, false, false];
isRightTrimmed = [false, false, true, false, false];
isLeftTrimmed = [false, false, false, false, false];

isBottomTrimmed = [false, false, false, true, true];

The route that we follow is described by the array of actions. We first need to trim the
stack, then rotate it twice, and then do nothing. As we see by the values in the property
arrays, after executing these actions, the bottom of our stack is trimmed and the other edges
are not. This is exactly what we described in our intent in Section 3.2.5.

It can easily be verified that the above solution is valid. However, there are more solutions
that are valid. We can ask our solver to give us all possible solutions. For this specific problem
instance, there are five possible solutions. One of the other options is given below.

actions = [ToOrientate, ToTrim, ToOrientate, ToOrientate, ToSkip];
isTopTrimmed = [false, false, true, false, false];

isRightTrimmed = [false, false, false, true, false];

isLeftTrimmed = [false, false, false, false, false];
isBottomTrimmed = [false, false, false, false, truel;

In this solution, we orientate the stack first before we trim. Because all the edges are
untrimmed at the start of our route, the stack after a rotation is equivalent to the stack before
the orientation. It might seem obvious that the first orientation action here is unnecessary.
However, this example shows that the constraint solver is only as smart as the model we feed
it. If we do not explicitly define the fact that the first rotation is unnecessary, the solver cannot
deduce that from our model.
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Chapter 4

Solving the Routing Problem: RSX

In the previous chapter, we showed a way of modeling the routing problem using constraints.
Using a generic constraint solver, we can find a solution to the problem instance. As we have
seen in that chapter, it was quite straightforward to model the problem instance in a con-
straint model. However, if we would extend this model, the number of variables and con-
straints will grow significantly. Then, choosing the right predicates and keeping an overview
of the available actions can become more difficult. Furthermore, changing production lines
can be challenging because it requires the problem definition to change over time. To aid in
this modeling, we propose a domain-specific language (DSL) called RSX. RSX allows giving
a high-level definition of the actions and the properties an operator has at their disposal. This
high-level description is translated into the MiniZinc language. The translation generates a
constraint model based on the model described in Chapter 3. This constraint model can then
be used to find a production route. In this chapter, we will go into more detail about why
we chose to build a DSL and what this DSL looks like.

4.1 Why a Domain-Specific Language?

The first question that might come time mind is: why do we need a DSL for this purpose?
Why do we even invest in developing a DSL? Constraint modeling is a widely researched
topic, and it is not surprising that several solutions already exist in helping someone model
their problem as constraints. MiniZinc, which we have seen in Chapter 3, is one of the tools
that can help us to define a constraint model. However, using only a constraint language has
some disadvantages for our problem.

One disadvantage of constraint modeling is the difficulty of expressing your intent. Note
that we mean the intent of the programmer of the constraint model here, not the intent in our
routing problem. There are many ways of describing the problem in constraints and without
expertise, it is difficult to formulate a good model [14]. Furthermore, at our industrial part-
ner, constraint modeling is not a widely used technology. Asking programmers of control
software to define a model in low-level constraints, is therefore not something that they have
experience with.

Moreover, in our problem, we need more than a few models to be defined in a constraint
language. One of the challenges of the problem is the variability of the devices we have to
model. If we only had to model a few of these devices, it would probably be acceptable to try
and overcome the challenges of programming directly in a constraint language. However,
because of the large number of devices, it becomes more difficult.

For that reason, an investment in the development of a DSL is more interesting. A DSL
promises that it is easier to understand for a user with knowledge of the domain. This makes
it easier to express intent for problems in that domain. However, building and maintaining a
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DSL is not free and it requires considerable work to ensure that these promises can be lived
up to.

Whether the advantages of a DSL outweigh the investment needed for our specific prob-
lem, is something we cannot say at this moment. In our case study, we study the use of a
DSL, so the result of our research could help in answering that question.

4.2 Language Development

We developed RSX in the language workbench Spoofax [17]. Spoofax and language work-
benches in general strive to allow for the implementing, testing, and deploying of program-
ming languages, using meta-languages for aspects like syntax in SDF3 [23]; semantics in
Statix [2]; and transformation definitions in Stratego [5]. By combining these important as-
pects of language design into one IDE, the goal of a language workbench is to increase the
productivity of the language designer [12].

Inspired by the development of other DSLs in Spoofax [25, 9], we decided to develop our
language incrementally and iteratively. This means that the phases of analysis, design, and
implementation of the language are combined into small iterative steps, which are repeated
in the process of language development. This process is supported by the features and meta-
languages which are implemented in Spoofax. Small iterations are possible because Spoofax
provides us a functioning IDE and testing environment, without the need of implementing
the complete language. This makes an agile approach to language development possible and
natural.

4.3 An Example in RSX

To give an idea of what the language looks like, we will start with a small example in which
we model a production line. This example has the goal of showing the syntax, semantics,
and how an RSX program is transformed into a MiniZinc model. In the other sections of this
chapter, we will go deeper into these concepts, and we will give more formal specifications
of those.

Our example consists of the modeling of a problem that an operator sometimes faces in
a real printing shop. As an operator, we have the intent to have a trimmed stack of sheets.
In the storage room, we already have a stack, but none of the edges of this stack is trimmed.
The only two devices we have available in our print shop are a device that can perform the
action of rotating a stack 90 degrees in a clockwise direction and a device that performs the
action of trimming the top edge of the input stack, rotating it 180 degrees, and then trimming
the top edge again. Using these two devices, we are going to try to produce our intended
trimmed stack. How we do that is something our RSX model is will help us with.

4.3.1 Properties

We start our model by defining our properties. For each edge of the stack, we are defining a
boolean property that says whether that edge is trimmed or not. Figure 4.1 shows how these
properties are defined in our RSX program. As you can see, we have four lines describing
each property. These are defined by the property keyword, a name, and a type.

4.3.2 Devices and Actions

Now that we have defined our properties, we can define our devices and actions. As men-
tioned, we only have two devices available in our printing shop, each with a single possible
action. We can model these directly in our RSX model. Next to these two devices, we add
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property isTopTrimmed: bool
property isRightTrimmed: bool
property isBottomTrimmed: bool
property isLeftTrimmed: bool

Figure 4.1: Properties of the example RSX model.

an extra device that models the action of us fetching a stack from our storage. Later, in Sec-
tion 4.6.6 we will go deeper into the reason why we require this extra action. How these
actions are modeled is shown in Figure 4.2.

All devices are defined by their name after the device keyword. A device can have mul-
tiple paths. The Trimmer device here has two paths and the other two devices only have a
single path. Each of these paths gives an order of actions that can be followed in the device.
This means that when an action in a path is used in a route, the rest of the actions in that
path need to be performed as well. The Trimmer for exapmle has a path that performs the
ToTrimaction, the ToOrientate action twice and then the ToTrimaction again. This to simulate
a trimmer that always trims the top and bottom edges of a stack.

The paths can also have a length of zero actions. This means that the device can be by-
passed, i.e. the device is used, but does not perform any actions. In the example, the Trimmer
device has such a path. Such an empty path can be useful when a device is inline. The Trimmer
and Rotator devices are inline, which means that these devices are physically connected and
that the Rotator cannot be used without using the Trimmer. This is modeled using the inline
keyword, with a path of devices that are inline.

Each action defined in a device should also be defined by the action keyword, a name,
and a set of constraints between curly brackets. These constraints give the conditions which
must hold when one of these actions is chosen at a certain point in the route. A constraint
is given by the constraint keyword and an expression that evaluates to a boolean value. In
these constraints, the properties are referred to by their name, as defined by their property
definition, and an in or out keyword. This keyword describes whether we are reasoning
about the property value before or after the action. A property with an in keyword describes
the value of the property before a step where the action is chosen and out describes the value
of the property after a step where the action is chosen. We can use these values to reason
about the pre- and postconditions of the action.

As explained earlier, the ToFetch action describes the action of taking a stack from our
storage room. When we take a stack, the stack is not trimmed. Therefore, we say that when
the ToFetch action is chosen, all the edges are not trimmed afterward. Thus, the constraints
are added for the properties that the value is false after the action is executed. Because before
we fetch a stack from the storage room, there is no stack we can use, we say that the trim
properties are absent. This models the fact that we cannot reason about these properties
when there is no stack.

The ToTrim action can only trim the top edge of the input stack. So, when we do a ToTrim
action, the result is that the top edge is trimmed. The ToTr1im action, therefore, has the con-
straint that the top edge is trimmed after the action is executed.

In the Toorientate action, we rotate the stack 90 degrees in a clockwise direction. There-
fore, when the top edge is trimmed, the right edge becomes trimmed. When the top edge is
not trimmed, the right edge will not be trimmed after the orientation action. The same holds
for the other edges. This is expressed by the four constraints which say that the value for the
properties after the action is executed is equal to the value of the property of the edge it was
rotated from.
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inline Trimmer -> Rotator

device StorageRoom {
path ToFetch
}
device Trimmer {
path ToTrim -> ToOrientate -> ToOrientate -> ToTrim
path
}
device Rotator {
path ToOrientate
}
action ToFetch {
constraint isTopTrimmed.in.absent and isTopTrimmed.out == false
constraint isRightTrimmed.in.absent and isRightTrimmed.out == false
constraint isBottomTrimmed.in.absent and isBottomTrimmed.out == false
constraint isLeftTrimmed.in.absent and -isLeftTrimmed.out == false
}
action ToTrim {
constraint isTopTrimmed.out == true
}
action ToOrientate {
constraint isRightTrimmed.out == isTopTrimmed.in
constraint isBottomTrimmed.out == [isRightTrimmed.in
constraint isLeftTrimmed.out == isBottomTrimmed.in
constraint isTopTrimmed.out == disLeftTrimmed.in
}
Figure 4.2: Devices and actions, including their constraints of the example RSX model.
Intent

The last thing we need to specify is the intent. Without intent, our constraint model does not
know what we want and therefore thinks that any route is valid. For our intent we want all
edges to be trimmed. The specification of this intent in RSX is shown in Figure 4.3. There,
you can see that the intent is declared by the intent keyword and an expression evaluating a
boolean value. For each edge, we specify the property, and whether it is trimmed, to be true.
We use the in keyword to define that this is a precondition on the intent. It does not make
much sense to define a postcondition on the intent, thus the out keyword cannot be used in
the intent specification.

4.3.3 Generation of MiniZinc

Now that we have defined a model for our problem, we can use this model to find a solution
to our problem. Our RSX compiler transforms the model into MiniZinc variables and con-
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1 dntent isTopTrimmed.in == true

2 intent 1isRightTrimmed.in == true
3 1dntent isBottomTrimmed.in == true
4 -ntent isLeftTrimmed.in == true

Figure 4.3: Intent specification of the example RSX model.

straints. When we run the compiler we get the MiniZinc code as shown in Figure 4.4. Later
in this chapter, in Section 4.6, we will go deeper into how each part of the RSX model gets
translated into MiniZinc.

1 enum UNIT = {present};

2 1dnt : maxActions = 12;

3 1dnt : intMinValue = -intMaxValue;

4 1int : intMaxValue = 10000;

5 array[l..maxActions] of var ACTION : actions;

6 constraint actions[maxActions] == ToSkip;

7

8 constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip -> actions[i + 1]
— == ToSkip);

9 enum ACTION = {ToSkip, StorageRoom_ToFetch_0, Trimmer_ToTrim_0,
— Trimmer_ToOrientate_0, Trimmer_ToOrientate_1, Trimmer_ToTrim_1,
< Trimmer_ToBypass_0, Rotator_ToOrientate_0};

10 constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip -> disTopTrimmed[i]
« == isTopTrimmed[i + 1]);
11 constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip ->
— isRightTrimmed[i] == disRightTrimmed[i + 1]);
12 constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip ->
— isBottomTrimmed[i] == isBottomTrimmed[i + 1]);
13 constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip ->
— dsLeftTrimmed[i] == disLeftTrimmed[i + 1]);
14

15 array[l..maxActions] of var opt bool : -isTopTrimmed;

16 constraint isTopTrimmed[1] == <>;

17 array[l..maxActions] of var opt bool : isRightTrimmed;

18 constraint isRightTrimmed[1] == <>;

19 array[l..maxActions] of var opt bool : isBottomTrimmed;

20 constraint isBottomTrimmed[1] == <>;

21 array[l..maxActions] of var opt bool : -isLeftTrimmed;

22 constraint isLeftTrimmed[1] == <>;

23

24 constraint forall(i in 1..maxActions - 1) (actions[i] == Trimmer_ToTrim_1 \/
— actions[i] == Trimmer_ToBypass_0 <-> actions[i + 1] ==
— Rotator_ToOrientate_0);

25 constraint not (actions[1] == Rotator_ToOrientate_0);

26 constraint forall(i in 1..maxActions - 1)(actions[i] == StorageRoom_ToFetch_0 ->
— absent(isTopTrimmed[i]) /\ isTopTrimmed[i + 1] == false);
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26

constraint forall(i in 1..maxActions - 1) (actions[i] == StorageRoom_ToFetch_0 ->
— absent(isRightTrimmed[i]) /\ isRightTrimmed[i + 1] == false);

constraint forall(i in 1..maxActions - 1) (actions[i] == StorageRoom_ToFetch_0 ->
— absent(isBottomTrimmed[i]) /\ isBottomTrimmed[i + 1] == false);

constraint forall(i in 1..maxActions - 1) (actions[i] == StorageRoom_ToFetch_0 ->
— absent(isLeftTrimmed[i]) /\ isLeftTrimmed[i + 1] == false);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_0 <->

— actions[i + 1] == Trimmer_ToOrientate_0);

constraint forall(i 1in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_0 <->

— actions[i + 1] == Trimmer_ToOrientate_1);

constraint forall(i 1in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_1 <->

— actions[i + 1] == Trimmer_ToTrim_1);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_0 ->

— isTopTrimmed[i + 1] == true);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_0 ->
isRightTrimmed[i + 1]);

constraint forall(i in 1..maxActions - 1) (actions[i]

— isRightTrimmed[i] =

Trimmer_ToTrim_0 ->
— 1isBottomTrimmed[i] == isBottomTrimmed[i + 1]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_0 ->
— dsLeftTrimmed[i] == disLeftTrimmed[i + 1]);

constraint forall(i in 1..maxActions - 1) (actions[i]

Trimmer_ToOrientate_0 ->
— dsRightTrimmed[i + 1] == isTopTrimmed[i]);

constraint forall(i 1in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_0 ->
— dsBottomTrimmed[i + 1] == isRightTrimmed[i]);

Trimmer_ToOrientate_0 ->

constraint forall(i 1in 1..maxActions - 1) (actions[1i]
— disLeftTrimmed[i + 1] == isBottomTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_0 ->

— isTopTrimmed[i + 1] == dsLeftTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_1 ->

« isRightTrimmed[i + 1] == disTopTrimmed[i]);

constraint forall(i 1in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_1 ->

< isBottomTrimmed[i + 1] == disRightTrimmed[i]);

constraint forall(i 1in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_1 ->

— dislLeftTrimmed[i + 1] == isBottomTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToOrientate_1 ->

— isTopTrimmed[i + 1] == dsLeftTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_1 ->

— isTopTrimmed[i + 1] == true);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_1 ->

« sRightTrimmed[i] == disRightTrimmed[i + 1]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_1 ->

— isBottomTrimmed[i] == isBottomTrimmed[i + 1]);

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToTrim_1 ->
— dslLeftTrimmed[i] == disLeftTrimmed[i + 1]);

constraint forall(i 1in 1..maxActions - 1) (actions[i]

Trimmer_ToBypass_0 ->
— isTopTrimmed[i] == disTopTrimmed[i + 1]);

constraint forall(i 1in 1..maxActions - 1) (actions[1i]
— isRightTrimmed[i] == isRightTrimmed[i + 1]);

Trimmer_ToBypass_0 ->

constraint forall(i in 1..maxActions - 1) (actions[i] Trimmer_ToBypass_0 ->

— isBottomTrimmed[i] == isBottomTrimmed[i + 1]);
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constraint forall(i in 1..maxActions - 1) (actions[i] == Trimmer_ToBypass_0 ->

— dsLeftTrimmed[i] == disLeftTrimmed[i + 1]);

constraint forall(i in 1..maxActions - 1) (actions[i] == Rotator_ToOrientate_0 ->
— isRightTrimmed[i + 1] == isTopTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] == Rotator_ToOrientate_0 ->
— sBottomTrimmed[i + 1] == isRightTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] == Rotator_ToOrientate_0 ->
— dsLeftTrimmed[i + 1] == -disBottomTrimmed[i]);

constraint forall(i in 1..maxActions - 1) (actions[i] == Rotator_ToOrientate_0 ->
— isTopTrimmed[i + 1] == qdisLeftTrimmed[i]);

constraint forall(i in maxActions..maxActions) (isTopTrimmed[i] == true);
constraint forall(i in maxActions..maxActions) (isRightTrimmed[i] == true);
constraint forall(i in maxActions..maxActions) (isBottomTrimmed[i] == true);
constraint forall(i in maxActions..maxActions) (isLeftTrimmed[i] == true);

Figure 4.4: Generated MiniZinc code for the example RSX model.

Now that we have transformed our model into a MiniZinc model, we can use a solver
to solve the constraint problem. We can choose what solution we are interested in. It could
be that we just want any solution, but we could also want to optimize a certain variable or
a function of multiple variables. For this example, we try to find any route. We do this
by manually adding a statement in the last line that states that we just want a satisfactory
solution to our problem. When we now run this MiniZinc program with the Gecode solver
!, we get the result as shown in Figure 4.5.

actions = [StorageRoom_ToFetch_0, Trimmer_ToTrim_0, Trimmer_ToOrientate_0,

— Trimmer_ToOrientate_1, Trimmer_ToTrim_1, Rotator_ToOrientate_0,

— Trimmer_ToTrim_0, Trimmer_ToOrientate_0, Trimmer_ToOrientate_1,

— Trimmer_ToTrim_1, Rotator_ToOrientate_0, ToSkip];

isTopTrimmed = [<>, false, true, false, false, true, false, true, true, false,
— true, truel;

isRightTrimmed = [<>, false, false, true, false, false, true, true, true, true,
— true, truel;

isBottomTrimmed = [<>, false, false, false, true, true, false, false, true, true,
— true, true];

isLeftTrimmed = [<>, false, false, false, false, false, true, true, false, true,

— true, true];

Figure 4.5: Solution of the Gecode solver for the example RSX model.

The solution we get from our solver is only a single solution. For this specific problem,
there are multiple valid solutions. In this particular solution, we see that all the variables in
our MiniZinc model have an assigned value. In our case, this is the array of actions and the
four properties we have defined in our RSX specification. The array of actions gives us the
route of actions we need to execute. Each action is prefixed by its device and suffixed by a
unique identifier. This way, we can differentiate between actions with the same name used
in different devices and at different paths within devices.

]https: / /www.gecode.org/
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We start our route by fetching the stack from our storage room. Then, we trim the stack,
rotate it twice, trim again, rotate it again, trim it again, rotate it twice more, and then trim
it one last time. The rotation action which is used as the last action is not required for our
intent. However, the action is required because the Rotator device is inline with the Trimmer.
Therefore, we always need to perform a ToOrientate action after we use our Trimmer. We also
see that at the last position in all the property arrays, the value of the property is true. This
is also what we had specified and if we execute these actions in real life, we would indeed
get a trimmed stack.

4.4 Syntax

Now that we have defined and shown an example of RSX, we will go deeper into the differ-
ent parts of designing RSX. The syntax of RSX is designed in such a way that it requires as
little knowledge about the language as possible to understand an RSX model. This means
that the design tries to make the syntax explicit. We want the reader of the RSX code to im-
mediately understand the concepts encoded in the model. All definitions in the RSX model
are, therefore, clearly described by a keyword from which it should immediately be clear
what the definition describes. For example, properties in the language are described by the
property keyword, and constraints are described by the constraint keyword.

The reason for this explicit syntax is the fact that the language is to be used in a very
specific domain. The language tries to be as close as possible to this domain, to ensure that
someone with a lot of domain knowledge can easily understand the language. If the language
syntax would not be explicit, it would negate the effects of the language being close to the
domain.

Another part of the syntax of RSX where this reasoning is used is the representation of
some logical expressions. While most expressions in RSX are inspired by their MiniZinc
equivalent, the syntax for some expressions intentionally deviates. The \/ and /\ expres-
sions in MiniZinc represent an or and and expression respectively. This notation is common
in predicate logic and probably for that reason chosen in MiniZinc. However, outside this
domain and specifically in the domain of digital printing systems, this notation is not used
as much. Therefore, in RSX, these expressions are denoted using the or and and keywords,
which make itimmediately clear what they mean, even for someone without in-depth knowl-
edge of constraint programming.

The complete grammar of the language is described in Figure B.1. In this grammar, ID
is used to denote an identifier in the language. These identifiers need to match the regular
expression [a-zA-Z\][_a-zA-z0-9]*. Allidentifiers matching this expression are valid, except
for identifiers which match keywords in the language: action, unit, int, nat, float, bool,
true, false, property, preserve, constraint, not, intent, device, path Or exit. Integer values
are represented by i. Any value matching the regular expression [0-9]+ is a valid integer
value. Negations in the language are done using a specific negation expression.

4.5 Static Semantics

RSX s a statically typed language. This means that the types of expressions are known at the
time of compilation. The choice for a statically typed language instead of a dynamically typed
language is because MiniZinc is statically typed. Therefore, during compilation, the types of
expressions must be known to be able to generate the correct MiniZinc code. Furthermore, a
static type system is also useful for RSX itself. It is practical to have clear types for properties,
to better understand the domain concept they describe.

To ensure that an RSX model can always be transformed into a correct MiniZinc program,
a set of typing rules was defined. These typing rules ensure that every expression in RSX
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RSX RSX RSX RSX MiniZinc

Generate

Desugar —»Instantiater» Uniquify > Explicate > Minizinc

Figure 4.6: Compiler passes for the RSX compiler. Above each pass, the language of the
generated code in that pass is shown.

has an equivalent correct expression in MiniZinc. The exact typing rules for the language
are shown in Appendix C. The actual type checking of RSX was implemented in Statix [2].

4.6 Transformation

The language concepts that can be described in the RSX language need to be translated into
MiniZinc code by the RSX compiler. To achieve this, we combine a set of rewrite strategies
with a set of rewrite or transformation rules. These strategies and rules are defined in Strat-
ego [5]. This language is designed for program transformations and is part of the Spoofax
Language Workbench. In this section, we will give a general overview of how the program
transformation from RSX to MiniZinc works.

4.6.1 Transformation Structure

The transformation rules are the rules that define each construct in RSX, and how they should
be transformed into MiniZinc constructs. During the implementation of the transformation
rules for our RSX compiler, the focus was on writing transformations that were as simple as
possible. The performance of the compiler was less of a priority. The reason is that it was
expected that the language would change significantly during the development and evalu-
ation sessions as described in Chapter 5. Making the transformations simple and therefore
easy to follow, makes it easier to make changes to these transformations. To make these
transformations as simple as possible, a structure was designed based on the nanopass com-
piler architecture [22]. In this architecture, the compiler uses multiple smaller passes over
the program, which each performs one single small task. The idea behind this is that each
step or stage can be easily tested and that extensions to the source language can be easily
implemented.

For RSX, this meant that during development we could easily extend the language by
adding an extra pass to the existing set of passes, with minimal changes to the existing
passes. The passes that exist in RSX are shown in Figure 4.6. In total there are five dif-
terent passes. The first four passes transform the RSX model into another RSX model. These
passes change the model or add information to the model to make it more straightforward
to generate MiniZinc code in the last pass of the compiler. The five stages of the compiler
each have a specific task, namely:

1. Desugar Removing syntactic sugar from the language.
Instantiate Generate instances for actions used in devices.
Uniquify Make names in the language unique.

Explicate Add explicit definitions to the language.

SR

Generate MiniZinc Transform the RSX code into MiniZinc.

To give more details about each of these compiler passes, we will describe each stage in
the following sections in more detail.
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4.6.2 Desugar

In this first stage of the RSX compiler, syntactic sugar is removed from the language. Syn-
tactic sugar is the syntax that is equivalent to other syntax existing in the language and is
mostly added to make writing these constructs easier. In RSX, this is only used for defining
actions without parameters. Instead of having to write parentheses with no parameters in
between, it is also possible to leave out these parentheses. An example of this difference can
be seen in Figure 4.7. There, it is shown that the abstract syntax tree (AST) of the two actions
is different, even though these two actions are equivalent. An abstract syntax tree is a repre-
sentation of the program which shows the structure of the program in the form of a tree. In
the desugaring stage, the first action will be transformed into the form of the second action.
This way, in the rest of the compiler pipeline, there is no need to define transformations for
the action construct without parameters.

1 action ToExamplel {}
2 action ToExample2() {}

(a) Example of the difference between an action without parameters and an action with zero param-
eters in RSX.

1 RsxModel(

2 [

3 Action("ToExamplel", []),

4 ActionWithParams("ToExample2", []1, [])
5 ]

6 )

(b) Example of the difference between the AST of an action without parameters and the AST of an
action with zero parameters in RSX.

Figure 4.7: Example of the difference between an action without parameters and an action
with zero parameters in RSX and their respective ASTs.

4.6.3 Instantiate

The second stage of the compiler has the task to instantiate the actions in a device. Each
action that is used on a path in a device, can be seen as an instance of that action. It is
the implementation of that action in a device. Instead of directly transforming the action
definitions to MiniZinc, the instantiations of an action will be translated to MiniZinc.

An instance of an action is the same as the action definition, but with a unique name
based on the device it is used in. This way, later in the transformation process, it is possible
to differentiate between the different instances of an action. Figure 4.8 shows an example
of the instantiation of an action in two devices. The ToInstantiate action is used in two
devices, in one of which it is even used twice. This means that there are three instances of
this action. Therefore, in the instantiated version of RSX, there are three definitions of the
ToInstantiate action. Each of these has a unique name, which is based on the device the
instance is used in. Note that the original action definition is removed from the instantiated
version of RSX. This means that when an action definition is never used in a device and
therefore never instantiated, this action will also not be translated to MiniZinc. An example
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is the ToNeveruse action. This action is not used in one of the two devices and therefore not
present anymore in the instantiated version of RSX.

The empty path in a device gets instantiated as well. This empty path is used to denote a
bypass of the device. To instantiate this specific bypass, an extra action is instantiated. This
bypass action does not have any constraints or parameters and therefore does not change
any properties. Therefore, whenever this bypass action is chosen, it is as if the device was
bypassed. An example of such a bypass action can be seen in Figure 4.8.

4.6.4 Uniquify

In the uniquify step, we ensure that all identifiers in the language are unique. This is only
important for action parameters. Because these are scoped by the action they are used in,
different parameters can have the same name in two different actions. However, we do not
have an action scope in the generated MiniZinc code and must therefore ensure that these
names do not overlap. In Figure 4.9 an example of the uniquify step is shown. The two
defined actions both use a parameter unique. In the uniquified RSX model, these parameters
have the name of the action added to them, to ensure that these parameter names are unique.

4.6.5 Explicate

The fourth pass of the compiler is the explicate stage. This pass makes implicit language
constructs explicit in the language. The RSX model always contains a ToSkip action. This
action is required to make sure that a route can have fewer actions than the maximum num-
ber of possible actions. This action does not need to be defined for every RSX model but is
automatically added to the model in the explicate pass.

Another implicit construct is that when a property is not constrained on its output value
in an action, its value should be preserved. This means that the value should be the same
after the execution of the action, as it was before the action. To achieve this in RSX, a preserve
construct is automatically added to an action if it does not reason about an output value of
a property. Figure 4.10 shows an example of the RSX explicate pass. As can be seen there,
the Toskip action is automatically added. Also, the output value of the property preserved
is not constrained in the ToExplicate action. Therefore, a preserve for this property is added
to the action.

4.6.6 Generate MiniZinc

The last stage of the compiler generates the final MiniZinc code. Because of all the earlier
small steps, it is quite straightforward to transform the RSX code to MiniZinc. Every top-level
definition of the RSX model can directly be translated into MiniZinc. Together with a prelude,
these translated definitions form the whole generated MiniZinc code. The following sections
explain how each of these definitions and the prelude are transformed and generated.

Prelude

The MiniZinc prelude is a piece of MiniZinc code that gets added to the generated MiniZinc
code, regardless of the RSX model. It defines common values and types that could be used
in the generated MiniZinc code. The prelude is shown in Figure 4.11. It first defines the
unit type. This type can only have one value and is represented by a MiniZinc enum with
just a single value. This value is the enum value present. This name was chosen because
it lies close to the domain, where this value represents a property that is present. The next
three lines define values that are used throughout a generated MiniZinc model. The fourth
line defines the actions array. This array represents which action is used at which point
in the route. It has the type AcTION, which is an enum type that is generated later in the
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RSX Type ‘ MinicZinc Type

int intMinValue. .intMaxValue
nat 0..intMaxValue

bool bool

unit UNIT

Table 4.12: The RSX types and their corresponding MiniZinc types.

program. The last two lines of the prelude define usability constraints. The first defines
that the last action must always be a ToSkip action. The Toskip action is an action that is
always added to the RSX model in the explication stage of the compiler. Therefore, its actual
definition will be generated later in the program. It is required that this action is always the
last action, due to the way constraints over actions are defined. The second constraint defines
that whenever a ToSkip action is used in the route, the rest of the actions in the route must
also be a Toskip action. This reduces the number of equivalent solutions. If this constraint
would not be added, a Toskip action could be placed in between any two other actions, which
would generate a new solution, which is equivalent to the solution without the Toskip action
in between.

Properties

A property in RSX gets translated into two MiniZinc statements. The first defines a variable
for the property. This is always an array of optional values with a length equal to the max-
imum number of actions. The type of the array is dependent on the type of the property in
RSX. Table 4.12 shows the RSX types and their corresponding MiniZinc types. For integers
and natural numbers, the intMinvalue and intMaxValue parameters are used. These parame-
ters are defined in the prelude of the MiniZinc code that is generated. It was chosen to limit
the range of integers and natural numbers because having restricted domains for these types
increases performance. The MiniZinc UNIT type is also defined in the prelude. The other
MiniZinc item that is added for each property is a constraint. This constraint says that the
value at the first position of the property array is always the absent value. The reason is that
we have to define a starting value for a property, to prevent MiniZinc to choose any value
valid for that type. The absent value is convenient because this value is valid for every type
of property. An example of the translation of RSX properties to MiniZinc, for each of the
different property types, is shown in Figure 4.13.

Actions

Actions are transformed into MiniZinc code by adding the action name to the ACTION enum
and translating its members. The ACTION enum is a type that is added to MiniZinc which
holds all possible actions that can be chosen from.

The rest of the action is translated based on its members. An action can have two possible
members. A constraint or a preserve expression. Constraint expressions get translated into
MiniZinc by translating their expression into a MiniZinc expression. This MiniZinc expres-
sion is then used in a MiniZinc constraint. This constraint says that the expression must hold
whenever the action that the RSX constraint is defined in, is chosen in the route. An example
of this translation is shown in Figure 4.14. It would be redundant to give an overview of how
all RSX expressions get translated to MiniZinc because most translations are straightforward.
However, it is interesting to see how the .in and .out expressions get translated. These ex-
pressions reason about a specific property. For the .in expression, we want to look at the
value of the property at the moment of action. Therefore, this gets translated into the value
of the property at the i-th position. For the .out expression, we want to look at the value of
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the property at the moment after the action. Therefore, we translate this to the value of the
property at position i + 1.

A preserve expression gets translated to a similar constraint in MiniZinc. Here, we say
that the value of the property at the i-th position must be the same as the value at position
i+1. This can also be seen in Figure 4.14, where the property examplePreserved gets preserved
in the ToExample action.

Intent

Intent gets translated similarly as action constraints. The expression that is defining the intent
also directly gets translated into a MiniZinc expression. A constraint is added which says
that this expression must hold at the last position in the route. An example of the intent
translation is shown in Figure 4.15. Note that we have to use an .1in expression in the intent
to ensure that we reason about the property value at the moment of intent.

Devices

The translation of devices into MiniZinc code only consists of the translation of the device
paths. These paths define the order of actions that needs to be followed within a specific
device. The way to model this in MiniZinc is by adding a constraint that states that whenever
an action in a path is chosen, the next action must be the next one in the path. This can be
done using a bi-implication because this also holds in the opposite direction. An example of
this translation can be seen in Figure 4.16. For this specific example, only a single constraint
must be added. The reason is that there is only a single path in the device which has a
constraint on the order of actions. Also note that due to the instantiate pass earlier in the
compiler, the ToExamplel action has two instantiations. This ensures that we can still use the
ToExamplel action in the device, without having to use the ToExample2 action after it. It then
chooses the other instantiation of the action, instead of the instantiation which is restricted
by the constraint.

Inline

The last RSX top-level definition that needs to be translated into MiniZinc is the inline defini-
tion. When two devices are inline, it means that the latest action in a path in the first device
must be followed by the first action in one of the paths in the following device. This can be
translated to MiniZinc by adding a constraint that says that if one of the last actions of the
paths of the first device is chosen in the route, then one of the first actions of the paths of
the following device must be chosen. This can be a bi-implication because this also holds the
other way around. An example of this translation is shown in Figure 4.17. In this example,
one path of the first device has an exit on its path. This means that, if this path is chosen in
the route, there is no need to go to another action in the other device. This can be achieved
because every action in the device is instantiated differently. Therefore, we just add a con-
straint on the action instantiations which do not have an exit. The instantiations that do have
an exit do not get this constraint.

In the example of Figure 4.17, there is also a second constraint added. This constraint
says that the first actions which occur on the paths of the second device, cannot occur in the
tirst position of the route. It is important to generate this constraint because these actions can
only occur after an action of the first device has occurred. Therefore, there is no possibility
that an action of the second device occurs in the first position of the route.
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device
path
path

device
path
path

action

Examplel {

ToInstantiate

Example2 {
ToInstantiate
ToInstantiate -> exit

ToInstantiate {

constraint true

action

ToNeverUse {

constraint false

(a) The RSX model that gets instantiated.

Figure 4.8: Example of how RSX actions get instantiated during the instantiation pass of the

device
path
path

device
path
path

}

action

action

Examplel {
Examplel_ToBypass_0
Examplel_ToInstantiate_0

Example2 {
Example2_ToInstantiate_0
Example2_ToInstantiate_1 -> exit

Examplel_ToBypass_0() {1}
Examplel_ToInstantiate_0() {

constraint true

}

action

Example2_ToInstantiate_0() {

constraint true

}

action

Example2_ToInstantiate_1() {

constraint true

(b) The instantiated actions of the RSX model.

RSX compiler.
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device Example {
path ToUniquifyl
path ToUniquify2

action ToUniquifyl(unique: 1int) {
constraint unique > 2

action ToUniquify2(unique: 1int) {
constraint unique > 2

(a) The RSX model that gets instantiated.

device Example {
path Example_ToUniquifyl_o
path Example_ToUniquify2_60

action Example_ToUniquifyl_0(Example_ToUniquifyl_0_unique: 1int) {

constraint Example_ToUniquifyl_0_unique > 2

action Example_ToUniquify2_0(Example_ToUniquify2_0_unique: 1int) {
constraint Example_ToUniquify2_0_unique > 2

(b) The instantiated actions of the RSX model.

Figure 4.9: Example of how RSX action parameters get uniquified during the uniquify pass
of the RSX compiler.
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property notPreserved: int
property preserved: 1int

device Example {
path ToExplicate

action ToExplicate {
constraint preserved.in < 2
constraint notPreserved.in < 2

constraint notPreserved.out == 4

(a) The RSX model that gets explicated.

property notPreserved : -int
property preserved : 1int

device Example {
path Example_ToExplicate_0

action ToSkip() {
preserves notPreserved
preserves preserved

}

action Example_ToExplicate_0() {
constraint preserved.in < 2
constraint notPreserved.in < 2
constraint notPreserved.out ==

preserves preserved

Figure 4.10: Example of how RSX gets explicated during the explicate pass of the RSX com-

(b) The explicated version of the RSX model.

piler.
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enum UNIT = {present};

int : maxActions = 10;

int : intMinValue = -intMaxValue;

int : intMaxValue = 10000;

array[l..maxActions] of var ACTION : actions;

constraint actions[maxActions] == ToSkip;

constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip -> actions[i + 1]

— == ToSkip);

Figure 4.11: The MiniZinc prelude. This prelude is automatically added to every generated

MiniZinc program.

property exampleInt: 1int
property exampleNat: nat
property exampleBool: bool
property exampleUnit: unit

(a) The RSX properties that get generated in MiniZinc.

array[1l..maxActions] of var opt intMinValue..intMaxValue : examplelnt;
constraint exampleInt[1l] == <>;

array[l..maxActions] of var opt 0..intMaxValue : exampleNat;
constraint exampleNat[1l] == <>;

array[l..maxActions] of var opt bool : exampleBool;

constraint exampleBool[1l] == <>;

array[l..maxActions] of var opt UNIT : exampleUnit;

constraint exampleUnit[1l] == <>;

(b) The generated MiniZinc code for the properties defined in RSX.

Figure 4.13: Example of how RSX properties get translated into MiniZinc code.
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1 property exampleConstraint: 1int

property examplePreserved: dint

action ToExample {
constraint exampleConstraint.in < 3
constraint exampleConstraint.out ==
preserves examplePreserved

0 NN o Ul e W N

(a) The RSX action that gets generated in MiniZinc.

1  enum ACTION = {ToSkip};

3 constraint forall(i in 1..maxActions - 1) (actions[i] == ToExample ->
— exampleConstraint[i] < 3);

4 constraint forall(i in 1..maxActions - 1) (actions[i] == ToExample ->
— exampleConstraint[i + 1] == 3);

5 constraint forall(i 1in 1..maxActions - 1) (actions[i] == ToExample ->
— examplePreserved[i] == examplePreserved[i + 1]);

(b) The generated MiniZinc code for the action defined in RSX.

Figure 4.14: Example of how RSX actions get translated into MiniZinc code. Note that this
example leaves out devices, action instantiation and property translation, in order to give a
better overview of the transformations specific for actions.

1 dntent exampleIntent.in > 2

(a) The RSX intent that gets generated in MiniZinc.

1 constraint forall(i in maxActions..maxActions) (exampleIntent[i] > 2);

(b) The generated MiniZinc code for the intent defined in RSX.

Figure 4.15: Example of how RSX intent gets translated into MiniZinc code. Note that this
example leaves property definitions, in order to give a better overview of the transformations
specific for intent.
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de

ac

ac

ac

vice Example {

path

path ToExamplel

path ToExamplel -> ToExample2
tion ToExamplel {}

tion ToExample2 {}

tion ToExample3 {}

(a) The RSX device that gets generated in MiniZinc.

de

}

ac
ac
ac
ac

vice Example {

path Example_ToBypass_0

path Example_ToExamplel_0

path Example_ToExamplel_1 -> Example_ToExample2_0

tion Example_ToBypass_0( ) {}

tion Example_ToExamplel_0( ) {}
tion Example_ToExamplel_1( ) {}
tion Example_ToExample2_0( ) {}

(b) The instantiated RSX device that gets generated in MiniZinc.

co

—

nstraint forall(i in 1..maxActions - 1) (actions[i] == Example_ToExamplel_1 <->

actions[i + 1] == Example_ToExample2_0);

(c) The generated MiniZinc code for the device defined in RSX.

Figure 4.16: Example of how an RSX device gets translated into MiniZinc code.
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inline Examplel -> Example2
device Examplel {
path ToExamplel -> exit
path ToExamplel
path ToExample2

device Example2 {
path ToExamplel
path ToExample2

action ToExamplel {}

action ToExample2 {}

(a) The RSX inline devices that gets generated in MiniZinc.

O 0 N N Ul k= W N =

e N e
@D = O

inline Examplel -> Example2
device Examplel {
path Examplel_ToExamplel_0 -> exit
path Examplel_ToExamplel_1
path Examplel_ToExample2_0
}
device Example2 {
path Example2_ToExamplel_0
path Example2_ToExample2_0
}
action Examplel_ToExamplel_0() {}
action Examplel_ToExamplel_1() {}
action Example2_ToExample2_0() {}

(b) The instantiated RSX inline devices that gets generated in MiniZinc.

constraint forall(i in 1..maxActions - 1) (actions[i] == Examplel_ToExamplel_1
— actions[i] == Examplel_ToExample2_0 <-> actions[i + 1] ==

— Example2_ToExamplel_0 \/ actions[i + 1] == Example2_ToExample2_0);
constraint not (actions[1] == Example2_ToExamplel_0 \/ actions[1l] ==

— Example2_ToExample2_0);

\/

40

(c) The generated MiniZinc code for the inline devices defined in RSX.

Figure 4.17: Example of how RSX inline devices get translated into MiniZinc code.



Chapter 5

Evaluating RSX

The development of a domain-specific or a general language is not just a question of think-
ing about a solution, building it, and then using it. It involves a whole process of evaluation
as well. Wirth [27] articulates this well in his paper “On the Design of Programming Lan-
guages”. There he says: “...when the project is at its end, carefully reassess it, recognise that
many aspects could be improved, and do it all over again.” This is of course also true for
RSX. We must evaluate the language and see where it can be improved.

5.1 Evaluation Aspects

The language can be evaluated on an almost infinite amount of aspects. Given the limited
resources, we decided to evaluate the language on the three aspects we thought to be the
most interesting given the current state of research. The language is developed completely
from the ground up. Therefore, it is a logical consequence that there is uncertainty about the
choices made in the development of the language. Given that the language is mainly used
in an industrial environment, we needed to make sure that the language can also be used in
this environment and that it indeed solves the routing problem we described in Chapter 2.
We evaluated the following aspects of the language.

Language Coverage The language needs to facilitate the modeling of realistic cases. In this
evaluation, we evaluate whether it is possible to model these cases and which language
aspects can be enhanced to improve the modeling experience. This evaluation is essen-
tially an answer to whether RSX solves the problem described in Chapter 2. Observa-
tions made during this evaluation are denoted as COVERAGE i, where i is the number
of the observation.

Language Accuracy The language needs to be complete and correct. This means that the
language does not say there is no route available when there is, and that the language
does not say there is a route available when there is not. In this evaluation, we evaluate
whether this is the case for RSX. Observations made during this evaluation are denoted
as ACCURACY j, where j is the number of the observation.

Language Performance The language is designed as a proof-of-concept and does not have
specific performance criteria. However, we want to see how this proof of concept per-
forms and if it can be used in an industrial context. This means it should not take a
whole day to come up with a solution. If the total time is in the order of a few seconds,
we consider it to be usable. In this evaluation, we will evaluate the runtime perfor-
mance of RSX by running benchmarks on different cases. Observations made during
this evaluation are denoted as PERFORMANCE k, where k is the number of the obser-
vation.
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During the evaluations of these aspects, some general observations were made, which
are not part of one of these categories. These are denoted as GO I, where [ is the number of
the observation.

5.2 Language Coverage

The goal of a domain-specific language is to model the most prevalent concepts of the domain
as closely to the domain as possible. To ensure that the DSL indeed covers these concepts
correctly, we evaluated the coverage of the language. With the term coverage we mean the
extent in which the concepts that exist in the domain, can be modeled in the language. When
a concept is well covered in the language, it is straightforward to express it in the language.
If a concept is not well covered, it is not possible to express it in the language, or it takes a lot
of boilerplate code to express the concept.

521 Setup

To test the coverage of the language, we used a method called think-aloud co-design sessions
[11]. This method has been used at Canon Production Printing before and has shown to be
successful in evaluating the coverage of a DSL [10]. The first participant in these sessions is
the developer of the language. The second participant in these sessions is a domain expert.
This domain expert has been involved in the development of the language as well. In the last
session, an extra participant joins the session, which is a product expert. The product expert
is a developer of the current control software which was used in the printing systems.

The goal of the sessions is to gather data on the domain coverage of the language. There-
fore, during the sessions, the language is used to implement realistic cases. After implemen-
tation, the process of implementation and the implementation itself were evaluated by the
participants. If required, the developer of the language makes changes to the language in-
tending to improve the implementation of the points discussed. After that, this new iteration
is evaluated in the same way as the previous one and the effectiveness of the improvements
is discussed as well.

Performing the think-aloud co-design sessions can be described using the following pro-
tocol:

1. The domain expert selects one or multiple cases to model in the RSX language. This
expert tries to select a case in increasing order of complexity.

2. The participants perform an iteration in which the developer tries to model the selected
case, guided by questioning the domain expert about the characteristics of the case.

3. If changes were made to the language in the previous iteration, the participants evalu-
ate these changes. This is done by using the features in the language that were changed.

4. The domain expert, the product expert, and the developer write down the decisions
they made during the modeling of the case.

5. The participants evaluate the correctness of the model by running the generated code
in the MiniZinc editor and making any changes to the RSX model if needed.

6. The participants discuss the decisions and observations made and decide whether
there is a need to change the language to make it easier to implement the case.

e If the language needs changes, the developer makes the discussed changes to the
language.

o If the language does not need changes, the participants continue with the process.
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7. The participants repeat the process until the domain expert concludes that a produc-
tion setup is modeled with a level of detail that is sufficient for a prototype of control
software.

5.2.2 Results

In total, six sessions were performed by the participants. In these sessions, a total of five
different cases were modeled. During the evaluation, the language significantly changed
based on the observations made during the sessions. Therefore, some of the concepts which
we presented in Chapter 4 did not exist during the earlier evaluation sessions. We considered
it not useful to present all the individual language versions in this chapter, and we therefore
only define the significant changes to the language.

Session 1

Cases In the first session, the participants started by modeling two different cases. In the
first case, a simple setup was modelled in which there were only three actions: ToPick, To-
orientate and ToTrim. The goal of this first case was to model a route in which the intent
could only be achieved by a combination of the available actions, but with more than one
correct solution. The concept of devices and paths did not exist yet during this evaluation.

In the second case, the participants modeled a set of actions that could produce a simple
product of a stack of printed sheets that were bound by stitches. Such a product is called
loose-leaf. This case was chosen because it is one of the simplest products that can be pro-
duced by a digital printing system.

Observations Each property in RSX gets translated to an array in MiniZinc. This array
holds the value of the property at each step in the route. The problem with this translation
is that for some steps of the route, properties might not have a value. The most obvious
example of this is the value of a property in the first step of the route. No properties have a
value in this first step, because they do not get assigned an initial value in RSX. To model this
absence of a value, each property is modeled as an array of optional values and the initial
value of a property is set to absent. An example of a part of the translation of a property is
shown in Figure 5.1.

1 property example: 1int

(a) Modelling of a property in RSX. The property has the name example and is of type int.

1 array[l..maxActions] of var opt intMinValue..intMaxValue : example;

2 constraint example[1l] == <>;

(b) Part of the generated MiniZinc code for an example property in RSX. The property gets translated
to an array of optional integers, where the initial value is absent.

Figure 5.1: Translation of a single property in RSX to MiniZinc in the first iteration of RSX.
In the domain, properties get a value when an action introduces them. In RSX, this is
modeled by adding a constraint in an action on its output value. We call this the introduction

of a property. Figure 5.2 shows an example of such an introduction in RSX and the translation
of this constraint to MiniZinc.
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property example: 1int

action ToIntroduce() {
constraint example.out == 2

(a) Modelling of the introduction of a property in RSX. In the ToIntroduce action, we specify a value
for the example property.

array[l..maxActions] of var opt intMinValue..intMaxValue : example;

constraint example[l] == <>;
constraint forall(i in 1..maxActions - 1) (actions[i] == ToIntroduce -> examplel[i
-+ 1] == 2);

(b) Translation of the RSX code in MiniZinc. The constraint added to the ToIntroduce action in RSX,
gets translated to a MiniZinc constraint in line 3.

Figure 5.2: Translation of the introduction of a property in RSX to MiniZinc in the first iter-
ation of RSX.

As can be seen in this figure, the translation of the constraint in RSX does not put a re-
striction on the value of property in the i-th position and only a restriction on the value in the
position i + 1. This means that there is no constraint here that prevents the property from
already having a value in the i-th position. This is not correct, because when an action is
introducing a property, the property does not have a value before the action. In this iteration
of RSX it is not possible to model this (COVERAGE 1).

The introduction of properties is not the only aspect of properties that is impossible to
model in RSX. In the domain, some properties might have a value, while after the execution
of an action, this property does not exist anymore. For example, when we trim off a part
of a stack, the stitches in that stack could be removed. This is what we call the removal of a
property. In the constraint model, this could be modeled by setting the value of the property
to be absent in the step after the action. However, in this iteration of RSX it is not possible to
get such a constraint generated in MiniZinc (COVERAGE 2).

Two other observations that the participants made in this iteration were more general.
The first is that RSX generates a MiniZinc model with an unnecessary amount of possible
solutions. The reason is that there is no restriction on the position of the Toskip action in
the generated solution. This means that this action can be put in between any two other
actions, which would generate a new solution. However, this new solution is equivalent in
the domain to the solution without the Toskip action (GO 1).

The other general observation that the participants made is that the way of defining the
intent does not have a natural syntax. An example of the way that intent is described is shown
in Figure 5.3. As can be seen there, to specify the intent of the property example, the in word
needs to be placed behind it. The reason is that this makes the translation of RSX to MiniZinc
easier. However, this is not idiomatic to the concept of intent in the domain (GO 2).

Language Evolution Based on the observations of the first session, we made two changes to
the language before executing a new iteration. The first change was to add an extra constraint
to the place where Toskip actions can occur. This constraint enforces all ToSkip actions to be
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1 property example: 1int
2
3 intent example.in < 3

Figure 5.3: Specification of the intent on a property in the first iteration of RSX.

the last actions of the route. This way, it is no longer possible to place a Toskip action in
between two other actions and therefore create a new equivalent solution. The generated
constraint can be seen on line 1 in Figure 5.4b.

The other change that was implemented, tries to tackle the problem of introducing prop-
erties (COVERAGE 1) and removing properties (COVERAGE 2). To make it possible to let
an action introduce or remove a property in RSX, two new expressions were introduced to
the language. These new expressions are shown in Figure 5.4. The introduce keyword is
used to introduce a property in an action. This expression requires a value to be given to
the property after introduction. The remove keyword is used to remove a property in an ac-
tion. The constraints that are generated from these new concepts are shown in Figure 5.4b
on lines 5-6 and lines 7-8 respectively. This translation happens directly from the RSX model
to MiniZinc. One might expect that we would use a desugaring step for this. However, in
this version of RSX, there was no way to express the presence or absence of a property yet, so
the only way to translate the introduction and removal concepts was by a direct translation
from RSX to MiniZinc.

Session 2

Cases In the second session, the participants tried to remodel the second case of the first
session. In this case, another setup to make loose-leaf products was modeled, this time using
the newly introduced concepts of introducing and removing properties.

Observations The newly introduced concepts allow the actions to correctly model the in-
troduction and removal of a property. However, now that this can be done correctly, it
exposes a problem with properties that the participants had not observed. This problem
occurs when trying to model properties that do not have a specific value. In the domain,
some properties only exist or do not exist on a product and do not hold a value. This cannot
be modeled in this iteration of RSX. One could think that this is achievable using boolean
properties. However, this is not the case. Note that boolean properties in RSX get translated
to an optional boolean array in MiniZinc. This means that every value of the array can have
three possible values: <>, true and false. That is more than the required two possible values,
namely either present or absent (COVERAGE 3).

Another observation made, is that the expressions used to reason about the introduction
and removal of a property in an action, are too restrictive. In some actions, it is possible that
the property is only introduced when not already introduced in a previous action or only
removed whenever the property is present and not already removed in a previous action.
This cannot be expressed in the language using these newly introduced expressions (CO-
VERAGE 4).

Language Evolution After this session, it was decided to change two major aspects of the
language. In the first change, we tried to ensure that the concepts of introduction and removal
of properties are more flexible (COVERAGE 4). To achieve this, we generalized the concepts
of introduction and removal to expressions that describe whether a property is restricted to
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—_

property example: 1int

2

3 action ToIntroduce() {
4 introduce example = 2
5 1

6

7 action ToRemove() {

8 remove example

9 1}

(a) Modelling of the introduction of a property in RSX. In the ToIntroduce action, we specify a value
for the example property.

1  constraint forall(i in 1..maxActions - 1) (actions[i] == ToSkip -> actions[i + 1]
— == ToSkip);

2

3 array[l..maxActions] of var opt -10000..10000 : example;

4 constraint example[1l] == <>

5 constraint forall(i in 1..maxActions - 1) (actions[i] == ToIntroduce ->

< absent(example[i]));

6 constraint forall(i in 1..maxActions - 1) (actions[i] == ToIntroduce -> example[i
o+ 1] == 2);
7 constraint forall(i in 1..maxActions - 1) (actions[i] == ToRemove ->

— occurs(example[i]));
8 constraint forall(i in 1..maxActions - 1)(actions[i] == ToRemove ->
< absent(example[i]));

(b) Translation of the RSX code in MiniZinc. The constraint added to the ToIntroduce action in RSX,
gets translated to a MiniZinc constraint in line 3.

Figure 5.4: Use and translation of the introduction and remove expressions in the second
iteration of RSX.

be absent or present. An example of these new expressions can be seen in Figure 5.5a on
lines 4 to 5 and 9 to 10. These expressions are directly translated into MiniZinc code by using
the built in occurs and absent expressions. An example can be seen in Figure 5.5b lines 4 to
7.

The second change tries to solve the problem in which it is not possible to model proper-
ties without value (COVERAGE 3). The solution to this problem is the introduction of a new
type to the language. This type is called the unit type. In other programming languages,
such a type is used to describe a type that can only have one possible value. The same holds
for the unit type in RSX. This type is used to describe a property that does not hold a value
and can only exist or be absent. The only way that can be reasoned about such a property
is by the newly introduced expressions for the absence and presence of a property. An ex-
ample of this new property type is shown in Figure 5.5. The type is annotated with the unit
keyword and gets translated to an optional MiniZinc enum with just a single value.
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property example: unit

2

3 action ToIntroduce() {

4 constraint example.in.absent

5 constraint example.out.present
6 1}

7

8 action ToRemove() {

9 constraint example.in.present

constraint example.out.absent

(a) Modelling of the introduction of a property in RSX which has a unit type. In the ToIntroduce
action, we do not specify a value for the example property, but merely restrict that the value should
be present.

enum UNIT = {present};
array[l..maxActions] of var opt UNIT : example;

constraint forall(i in 1..maxActions - 1) (actions[i] == ToIntroduce ->
— absent(example[i]));

constraint forall(i in 1..maxActions - 1) (actions[i] == ToIntroduce ->
— occurs(example[i + 1]));

constraint forall(i in 1..maxActions - 1) (actions[i] == ToRemove ->

— occurs(example[i]));

constraint forall(i in 1..maxActions - 1) (actions[i] == ToRemove ->

— absent(example[i + 1]));

(b) Translation of the RSX unit property in MiniZinc. The constraints added to the ToIntroduce action
in RSX, get translated directly to a MiniZinc constraint in line 3.

Figure 5.5: Use and translation of the present and absent expressions in the third iteration
of RSX.

Session 3

Cases In the third session the participants implemented the same case as in the second
session, this time with the newly introduced changes of the unit types and the absence and
presence expressions. The goal was to evaluate whether these changes could indeed solve
the problems that were encountered in earlier evaluation sessions.

Observations The newly introduced unit types work well for modeling properties that do
not have value and using the newly introduced presence and absence expression allows for
idiomatically constraining the presence and absence of those properties (COVERAGE 5).

The absence and presence expressions on properties can be used to define the introduc-
tion and removal of properties. It also provides more flexibility than the earlier used intro-
duction and removal expressions (COVERAGE 6).

However, the participants observed that it would be nice if it was possible to automati-
cally have constraints added to these properties, whenever it is logical to do so. For example,
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if a constraint is added to the value of a property, it follows that the property should also be
present. This now requires the manual work of adding the presence constraint to the model
(COVERAGE 7).

The participants make the observation that some properties could be grouped. They are
defined as different properties but say something about the same part of the product. For
example, the property for stack width and the property for stack height both say something
about the dimensions of a stack. Furthermore, in the domain, these cannot exist without
each other. In the language they are seen as two different, independent properties (COVER-
AGE 8).

Because the implemented case can result in many solutions, which are all valid, the par-
ticipants observe that it is useful to add a minimization target on the number of actions used
in the route. This way, the solver in MiniZinc only returns the route with the fewest number
of actions. Even though this is a simple optimization, the participants observe that this is
often a good solution (COVERAGE 9).

Language Evolution After this session, no changes were made to the language.

Session 4

Cases In this session, a case was modeled for which some actions were inline. This means
that the order of actions is partially fixed. It is common in the domain that some actions
always occur before or after another. For example, there could be a device that makes book-
lets and after a folding action, a stitching action always occurs. In the earlier cases, such
restrictions were not modeled and every action could occur before or after any other action.

Observations To model the fact that some actions should come before others, we used
properties in RSX which modeled the location of an action. A very basic example that shows
how this was done, can be seen in Figure 5.6. In this figure, the ToDo1 action always has to be
chosen before a ToDo2 action can be chosen. The reason is, that the position property is only
set in the first action and required to be set in the second action. If the first action would not
occur, the second action cannot occur either. The observation was made that this is a viable
way to model a fixed order of actions (COVERAGE 10).

Language Evolution After this session, no changes were made to the language.

property position: 1int
action ToDol {
constraint position.in.absent
constraint position.out == 1
}

action ToDo2 {
constraint position.in == 1

constraint position.out.absent

Figure 5.6: Specification of an RSX property which is used to determine a fixed order in
actions.
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Session 5

Cases In this session, the participants implemented a part of a more realistic setup in com-
parison to earlier cases. For this, the domain expert made an overview of a printer with the
possible finishing devices which could be added to it. For each of these devices, the possible
paths of actions were selected. The devices that were then chosen to be modeled are shown
in Figure 5.7. The devices that were chosen are all inline. This means that the order of devices
is fixed. For each of the devices, there is also a set of paths of actions that are possible in the
device. The special actions ToBypass and ToDeliver do not change the product in any way
but are used respectively to model the fact that a device is bypassed and that the product is
delivered. By delivery of a product, we mean that the product leaves the inline setup and
that the product can be physically taken from the device.

1 I v

PIM Puncher High Capacity Stacker Stacker Stapler
TDPiﬁ ;:Slgg::jigtate ToFuneh TDEaTchUer;"ieitaTtneJeTiueP ToBather — ToDeliver
ToCrease ToBypass TcGaE:e;OD—;_L'irggl’Eitch
ToBypass TDPUWEhT;eEE:EhEP -

ToGather — ToStitch —
ToFold — ToDeliver

Figure 5.7: The devices that were modelled in the fifth language coverage evaluation session.

Observations The first observation that was made by the participants, was that in this case,
the actions have less flexibility than in earlier cases. Not only is the order of actions fixed, but
the order of devices and the possible paths is also something that needs to be considered.
Some actions can only be used in a specific device and some actions can be used in multi-
ple devices. The RSX language leaves it up to the writer of the model how to model these
constructs (COVERAGE 11).

The participants tried to implement the restrictions on the actions in the same way as in
the previous session. Using a property to define the position of the product in a device, the
actions could be restricted to only occur in a specific position. Figure 5.8 shows an example
of how this was done for the Toorientate actions. The constraint that is defined on lines 8 to
18, says that the TooOrientate action can occur in two places. As can be seen in Figure 5.7, the
action can occur in the PIM or the High Capacity Stacker. Thisis represented by the property
INLINE_POSITION, which has to have the value 1 or lower than 3. When this property has the
value 1, it has to appear in a specific position in the PIM, which is denoted by the PIM_POSITION
property. When the INLINE_POSITION has a value lower than three, then the action must be
at a specific position in the High Capacity Stacker. This is modeled using another property
HCS_POSITION. Note that each of these properties must define all possible values.

The participants note that it is very tedious to define such constraints for each action. Itis
difficult to reason about the position of an action in this way, and it is easy to make mistakes.
Modelling an inline setup this way is therefore not desirable (COVERAGE 12).

Language Evolution The changes that were made after this session focus on making inline
setups easier to model in RSX. As observed in this session, there is nothing in the language
to explicitly define such restrictions and it is up to the programmer to find a viable solution
(COVERAGE 11). Using this viable solution was tedious for the participants (COVERAGE
12). The participants, therefore, wanted to implement a new concept in the language which
allowed for easier modeling of these restrictions on the order of devices and actions.
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property INLINE_POSITION: -int
property PIM_POSITION: 1int
property HCS_POSITION: 1int

action ToOrientate {

constraint INLINE_POSITION.in == 1
and INLINE_POSITION.out == 1
and PIM_POSITION.in == 1
and PIM_POSITION.out == 2
and HCS_POSITION.out.absent
or INLINE_POSITION.in.present
and INLINE_POSITION.in < 3
and INLINE_POSITION.out == 3
and HCS_POSITION.in.absent
and HCS_POSITION.out == 1
and PIM_POSITION.out.absent

Figure 5.8: Example of how RSX properties can be used to determine a fixed order in actions
and device. Note that the properties which were not used for restricting the position of the
action, are left out for this example.

A starting point for these changes was the fact that the language provided no way to
define which actions could occur in which device. None of the actions were part of a specific
device. Furthermore, restricting the device in which an action could be used, using concepts
that already existed, a very tedious process. Therefore, in the next iteration of the language,
the concept of a device was introduced. An example of how this new concept can be used in
the language is shown in Figure 5.9. For each device, the programmer defines a name and a
set of paths. These paths consist of actions defined in the RSX model. A path can have zero
entries, which represents a bypass of this device.

Next to a fixed order of actions within a device, there can be also a fixed order in devices.
Therefore, the inline concept was introduced. This concept models the fact that some devices
are set up to be inline. Therefore, the actions in these devices are restricted to also follow this
specific order. An example of this new concept can be seen in Figure 5.10. We define two
devices: Examplel and Example2. These devices are inline. Therefore, the device Example2 can
only occur after device Examplel. We describe this as an inline path on line 3. Note that we
also used another expression in a device path of device Example1. The exit keyword is used to
describe a path that can leave the inline setup. This means that after the ToIntroduce action,
the device Example2 does not have to occur in the route. If we left out this path, the TorRemove
action would always have to occur after the ToIntroduce action. An important aspect that
can be derived from this example, is that the inline path and the paths in devices are not
optional. If a device or action occurs in a path, a following device or path must also occur.
The only exception is when a path contains the exit keyword.

Session 6

Cases Inthislast session, the participants modeled the same case as in the previous session.
However, now the newly introduced concepts of devices and inline devices were used. The
participants wanted to evaluate whether these new concepts were indeed a good addition to
the language.

50



O 0 N N Gk W N =

R T e
= W N = O

15

17

O 0 N N G s W N -

=
N R, O

5.2. Language Coverage

property example: 1int

device Example {
path ToIntroduce -> ToRemove
path ToIntroduce
path

action ToIntroduce {
constraint example.in.absent
constraint example.out == 2

action ToRemove {
constraint example.in.present

constraint example.out.absent

Figure 5.9: Example of the device concept introduced in the sixth iteration of the RSX lan-
guage.

property example: 1int
inline Examplel -> Example2
device Examplel {

path ToIntroduce
path ToIntroduce -> exit

device Example2 {
path ToRemove

Figure 5.10: Example of the inline concept introduced in the sixth iteration of the RSX lan-
guage. Note that the action definitions are left out of this example.

Observations The first observation the participants made describes a concern raised by the
product expert participant. In this version of the language, only actions can add precondi-
tions on the product that it performs its changes on. However, it sometimes depends on the
device the action is used in, and what the exact precondition is. For example, an action can
only handle a stack of a certain size. The actual maximum stack size can be dependent on
the device the action is used in. Although it is not possible to define this in the language
at the moment, this can be solved by defining a different action for each device. However,
this negates the advantages of having to define actions with common behavior only once
(COVERAGE 13).

Another observation the participants made, was that defining the paths in devices and
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paths of inline devices is intuitive. They make it easy to describe the capabilities of a device
and the different options in the device (COVERAGE 14).

The developer of the language and the domain expert observe that modeling the case
is easier compared to modeling this case in MiniZinc. A lot of heavy lifting is done by the
language. For example, actions only need to be defined once and are then automatically
instantiated for the path of a device. For devices that have many paths and actions that are
used in many devices, this reduces the time of modeling significantly (COVERAGE 15).

The last observation made by the participants is that the concept of the unit type is not
immediately clear to some participants. The question that arises is what the difference is
with a boolean value (GO 3).

Language Evolution No language changes were made after this session.

5.2.3 Conclusions

We evaluated the coverage of domain features in the language coverage evaluation. During
six think-aloud co-design sessions, the participants observed that the language could indeed
be used to model eight cases. These cases are representative for the context of our industrial
partner. We chose cases with increasing complexity to be able to iteratively improve the
language after each evaluation session.

The participants observed that the language features for devices, actions, and inline de-
vices, help in modeling the problem (COVERAGE 14). The modeling of properties in RSX is
done using only primitive types and does not allow for modeling composite types. This does
not mean composite properties cannot be modeled, but it makes modeling of these properties
more involved (COVERAGE 8).

We evaluated that the use of RSX is an advantage over modeling the problem directly in a
constraint language. Modeling the problem in MiniZinc directly is much more involved than
in RSX, because of the higher level of abstraction in RSX (COVERAGE 15). This is important,
because of the large diversity in devices, users of devices, and existing route constraints.

RSX can provide one or multiple routes to the cases we evaluated. When there is only a
single route for a model, the solution space is small, and it is immediately clear what route to
choose. If there are multiple routes, the solution space is larger, and it is not directly apparent
which route to choose. To aid in this process, the MiniZinc model generated by RSX can be
extended to optimize the solution based on a cost function. The participants observed that
this makes it easier to choose from one of the provided solutions (COVERAGE 9).

5.3 Language Accuracy

The language as described in this thesis is implemented fully in the Spoofax language work-
bench [17]. This implementation needs to be correct and complete. Correct means that what
we specify about the language and the model behind it, must follow from the implementa-
tion. Complete means that the implementation must do everything the specification says it
does. In general, proving the correctness of a software program is a a profession in and of
itself. Also, for our language implementation, providing a proven correct implementation is
not within the scope of this thesis. However, we still want to evaluate the correctness and
completeness of the implementation.

5.3.1 Setup

To evaluate language accuracy, we implemented a test suite for the implementation. In this
test suite, we systematically tested all language features in several categories. These cate-
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Category Number of tests
Parsing 122
Static Semantics 117
Transformation 46
Total 285

Table 5.11: Number of tests per category used to evaluate the RSX language accuracy.

gories test the different parts of the language implementation, but also the implementation
of the resulting MiniZinc code. The categories that we tested are:

Parsing Whether programs in the language that follow the RSX grammar parse correctly
into an AST and whether programs that do not follow the grammar give an error.

Static Semantics Whether programs that follow the static semantic rules defined for the lan-
guage pass the static semantics checking and whether programs which do not follow
the static semantic rules do not pass the static semantic checking.

Transformation Whether programs that follow the grammar and static semantic rules of
the language, get transformed into MiniZinc code correctly.

5.3.2 Results

In total, 285 tests were written, and all passed. The number of tests written per category are
shown in Table 5.11 (ACCURACY 1). Some tests were written during the language coverage
sessions because of bugs in the language. For each bug, a test was added to the test suite
(ACCURACY 2).

5.3.3 Conclusions

We evaluated the language compiler accuracy by using a test suite. The goal was to have
a compiler that is accurate enough to be usable as a prototype. We defined this as that the
language compiler should accurately compile normal use cases. We did not specifically test
edge cases. The tests cover all the language features at least once on every part of the language
compiler, i.e. parsing, static semantics, and transformations of the language.

With a total of 285 tests, we are confident that the language is both correct and complete
up to a level that is usable as a prototype (ACCURACY 1). Bugs were encountered during
the coverage evaluation sessions, which were then covered by writing extra tests (ACCURA-
CY 2). The existence of incorrectness or incompleteness of the language is not something
that we can eliminate by a test suite alone. Moreover, providing full proof of correctness and
completeness is outside the scope of this thesis. For a prototype of a language, the existence
of bugs in the compiler is annoying, but unsurmountable. The focus therefore is not to make
a fully accurate language compiler.

5.4 Language Performance

The last evaluation that we performed was about the performance of the language. The
performance of RSX is determined by two different parts. The first part is the time it takes to
compile the language to MiniZinc. The second part is the time it takes to find a solution for
the problem described in the generated MiniZinc code.

For both the compilation of the language and the solving of the generated MiniZinc
model, we evaluated its runtime performance. We evaluate if we can compile and solve
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RSX models in the order of a few seconds. In the industrial context of Canon Production
Printing, this is considered a usable time.

54.1 Setup

The language performance is evaluated by running benchmarks on four different RSX mod-
els. These models are developed during the language coverage session and differ in size and
use of language features. The models used and their characteristics are shown in Table 5.12.

Benchmark | Session | Nr. Property | Nr. Action | Nr. Device | Nr. Inline
C1 4 4 6 6 0
C2 3 2 4 4 0
C3 5 13 9 9 0
C4 6 9 10 6 1
S1 5 13 9 9 0
S2 6 9 10 6 1

Table 5.12: The different characteristics of the chosen benchmark cases.

For both the compilation and solving benchmarks, we chose models we already modeled
in the language coverage evaluation sessions described in Section 5.2. For the compilation
tests, we selected the models that were valid following the latest RSX specification. The rea-
son we did not use all the cases we implemented in the coverage evaluation, is that some
concepts were removed or changed in such a way that some cases would not compile any-
more. Therefore, it is not possible to get comparable benchmark results using a single RSX
specification.

The solving benchmarks were performed on the largest two cases we implemented in the
language coverage evaluation session. These are the two most realistic cases at our disposal,
regarding the size of these cases. The other cases we modeled, are smaller and model only a
part of the finishers in a realistic production setup.

All benchmarks were run using the JMH framework !. This framework is specifically
built for performance testing of Java applications. All Stratego code compiles to Java, so
we used this framework in combination with the compiled Stratego code. Each step of the
transformation from RSX to MiniZinc was individually timed using this framework. The
benchmarks were run 10 times each, after 10 warm-up iterations. The device used for the
benchmarks was isolated from a network and it only ran the operating system, alongside
the benchmarks. The device has an Intel Core i7-7700 CPU processor with a clock speed of
3.60GHz. It also has 16GiB of DDR4 RAM.

5.4.2 Results

The exact runtimes for each part of the compilation process are shown in Appendix A, in
Table A.1. As can be seen there, the compilation part that generates a MiniZinc string from
the MiniZinc AST has the longest runtime (PERFORMANCE 1).

The average runtimes for the other compiler stages for each case are shown in Figure 5.13.
For clarity, we left out the times for generating a MiniZinc string from the AST. In all four
cases, the parsing times take the longest, followed by the translation of RSX to MiniZinc
(PERFORMANCE 2).

The average runtimes for solving the two different cases are shown in Figure 5.14 and
in Table A.2. The solving times for compilation take significantly more time than the actual
solving (PERFORMANCE 3).

'https://openjdk java.net/projects/code-tools /jmh/
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Compilation time for different stages of the RSX compiler
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Figure 5.13: The compilation times for four different RSX models, split into the different
compiler stages.

The average total time of solving and compilation for both cases is in the order of a few
seconds (PERFORMANCE 4).

5.4.3 Conclusions

We evaluated the runtime of compilation and solving during the language performance eval-
uation. The goal was to evaluate whether the language could do so in the order of seconds.
In this evaluation, we ran benchmarks on the compilation and solving times of different cases
modeled in RSX. These benchmarks show that compiling and solving these cases takes no
more than a few seconds (PERFORMANCE 4). In these cases, compiling takes more time
than solving, and especially generating the MiniZinc string from the MiniZinc abstract syn-
tax tree takes significantly more time (PERFORMANCE 1).
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Compilation and solving time for different RSX models
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Figure 5.14: The compilation and solving times for two different RSX models, split into the

compilation part and the solving part.
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Chapter 6

Discussion

6.1 Language Limitations and Design

Complex Typing The implementation of RSX currently uses only primitive types. User-
defined types or composite types, i.e. types which combine other types, are not supported.
There are cases where it might be useful to have more complex types in the language. For
example, in our domain, a sheet is an often-used type. A sheet can have a width, height,
and color. Currently, in RSX we have to define these properties of a sheet as three separate
properties. There is nothing that binds these properties together. When we want to express
that a sheet is present, we have to add a constraint on each of these three properties separately.
It is easy to forget such a property.

A solution for this would be to construct a new type called sheet, which groups these
properties. An example can be seen in Figure 6.1. There we added a type definition for Sheet
with the three properties of a sheet. In the action, we now only have to define the presence
constraint once for the complete type.

Enumerable Types Apart from complex types, in Figure 6.1 we also show a hypothetical
concept of enumerable types. Currently, these types need to be defined by an integer, and
we have to define constraints to ensure that this integer stays within a certain range. This is
to prevent any invalid values for that type. By defining an enumerable type as an integer, we
also do not have a clear way of expressing the underlying value of that integer.

We could extend the language by adding an enum type which takes care of these issues.
We directly define the underlying values for such a type and the type ensures that we only
use one of these values. An example can be seen in Figure 6.1.

Route Limitations The current constraint model assumes that a route is always linear, i.e.
always a sequence of actions. However, this does not represent all possible routes in the do-
main. Some routes split a product halfway through the route, where one part of the product
continues on a different route than the other part. It is also possible that a route combines
two products into one. An example of this is a perfect-bound book, where the cover sheet
takes a different route before it is combined with the book block.

To model such routes, an array representation in MiniZinc is insufficient. A more complex
data structure, like a graph, has to be used to represent a route. One concern that arises is
that such a data structure increases the size of the solution space. This could negatively
influence the solving performance, and it should be researched whether this influence is
surmountable.

Device Constraints Devices in RSX define a set of constraints on the possible action paths
that can be used within that device. Unlike actions, devices cannot constrain the values of
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property sheetWidth: 1int
property sheetHeight: int
property sheetColor: 1int

action ToTest {
constraint sheetWidth.in.present
constraint sheetHeight.in.present
constraint sheetColor.in.present

constraint sheetColor.in > 0 and sheetColor.in < 5

(a) Modelling of complex types in current version of RSX.

enum Color { Cyan Magenta Yellow Black }
type Sheet {

width: 1int

height: 1int

color: Color

property sheet: Sheet

action ToTest {

constraint sheet.in.present

(b) Hypothetical modelling of complex types in a future version of RSX.

Figure 6.1: Comparison between modelling of complex types in current version of RSX and
hypothetical future version of RSX.

properties in that device. However, in the domain, an action that is used in one device
could have different constraints when used in another device. For example, some devices
can gather 100 sheets on a stack, while others can gather 1000 sheets. Both devices use the
same action, but only with a different amount of maximum sheets.

In RSX, this can be solved by copying the action and making the action specific for the de-
vice. It would be nice to be able to constrain the properties specifically for a device. This can
be done by either parameterizing the action based on the device or by allowing to constrain
properties directly on the device.

6.2 Language Usability

Definition of Intent When defining a model in RSX, you specify the definitions of proper-
ties, devices, and actions in a single file, alongside the definition of the intent. Although this
works fine for demonstrating the language, when using the language in practice this could
become inconvenient. The reason is that intent would be specified at a different moment
and with different intervals than the specification of properties, devices, and actions. Where
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the latter would be defined only once, the intent has to be defined for every individual job.
Therefore, it would be more convenient to define intent separately from the other definitions.
This can be done by allowing an RSX model to be split into separate files, or by changing the
way intent is defined in general. For example, it makes sense to integrate the definition of
intent into the existing control software.

Route Optimization By default, RSX generates a model for which only a satisfactory solu-
tion is expected. MiniZinc then allows us to generate all satisfiable solutions. However, in
some cases, it would be interesting to sort these solutions and find an optimal solution. In
RSX, this cannot be defined at the moment, but MiniZinc allows you to minimize or maxi-
mize a cost function. A simple optimization would be to minimize the number of actions in
a route. However, sometimes it is not as easy to determine the optimal route. For example,
sometimes an operator only wants to use a device if no other option is available. Another
example is that an operator sometimes only wants to combine two jobs and optimize the
total production time of these two jobs combined. It is not trivial for these two examples
to determine a cost function and let the constraint solver optimize that function. Further
research could be performed to determine what would be a good approach to finding an
optimal route in these more difficult cases.

Integration in Workbench RSX is developed in Spoofax. An advantage of this language
workbench is that, alongside providing the tools for defining your language, it also auto-
matically generates an IDE for your language. Our implementation of RSX also has an IDE
generated by Spoofax, which has syntax highlighting, type checking, and reference reso-
lution. However, a runtime environment in which the generated MiniZinc code is run is
missing. This means that the IDE which is generated for RSX can be used to define models
and generate MiniZinc code from it, but the user has to manually run the generated MiniZinc
code. This can be done either from the command line or by copying and pasting the gener-
ated MiniZinc code to the MiniZinc editor. While this approach results in the user being
able to find a solution, it makes the feedback loop of developing an RSX model and getting
a solution quite long. Furthermore, because the solution is given on the MiniZinc level, the
solution needs to be manually mapped back to the level of RSX. We could shorten the feed-
back loop by integrating the solving step directly in Spoofax. Then, while typing a model
in RSX, we could already let the solver run in the background and give immediate feedback
when a model is, for example, unsatisfiable. Furthermore, then it is easier to automatically
map back a solution given by the solver to the RSX level.

6.3 Relation to CSX

RSX can be seen as an extension of CSX. While the two languages are developed separately,
RSX could, in principle, be used for the same purposes as CSX. Both languages can help
in finding a valid or optimized parameter configuration, based on intent. However, CSX
needs to be given a predefined production route, while RSX can find this route by itself.
Although it might seem that RSX is therefore more advanced, it is important to note that
the RSX implementation is basic in comparison to CSX. The focus of the development of
RSX is more on researching a proof-of-concept for flexible route finding than on developing
a usable language for finding a valid parameter configuration. This means that RSX has
coverage gaps in the features required for making detailed models, as we show in Section 6.1.
For example, in that section, we describe that RSX only supports primitive types, whereas
CSX has a much more advanced type system with user-defined composite types, list types,
and enumerable types. Also, CSX has the possibility of defining constraints on many levels,
where RSX only allows putting in- and output constraints on actions. Furthermore, CSX is
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interactive, because the solver is integrated in the language and solutions are automatically
mapped back to the level of CSX. In general, CSX can be seen as a much more developed
language in terms of usability than RSX.

The question that arises is whether we could make use of both the advanced features of
CSX and the flexible route finding of RSX. Two options for this could be:

1. Combine the languages of RSX and CSX into a pipeline, where a route that is found by
RSX can be used as input for a configuration model in CSX.

2. Combine the languages of RSX and CSX into one language, which makes use of both
the advanced features of CSX and the flexible routing features of RSX.

The first option would require the modeling of a high-level production setup in RSX.
Based on this model, a route can be found which serves as a basis for a model in CSX. This
CSX model can then be used to get a detailed configuration. Using this approach, there is no
need for defining a very detailed model in RSX. This means that it is not required to extend
RSX with language features that are already covered by CSX. However, this assumes that a
high-level model can be used to find a valid route. In this thesis we only evaluated small cases
and determining whether such a high-level representation is sufficient, must be researched
further.

The other option of combining the two languages into one does allow the user to model
just a single model to find both a route and a configuration based on a single intent. This is
nice from a user’s perspective because only a single model has to be created, but it requires
more work on language development. All language features of CSX need to be transformed
in such a way that they can be used in a constraint model where there is no fixed route.
Furthermore, the language features of RSX need to be transformed so that they can be used
with the more advanced modeling capabilities of CSX. Further research has to be performed
to see whether this is possible.

6.4 Threats to Validity

It is common for software engineering research that uses empirical methods to be vulnerable
to threats of validity [1]. Our thesis is no exception. Therefore, in this section, we will address
these threats one by one.

6.4.1 External Validity

This thesis was written in cooperation with an industrial partner. All our research was done
together with this partner and was not validated at other companies. This raises questions
about the generalizability of our approach. Would our approach of using a domain-specific
language and constraint solving also be possible to implement in other contexts? Our eval-
uation cannot answer this question. Especially the evaluation of the language coverage is
specific to the context of our industrial partner. To counter this threat, we tried to set up
our evaluation in such a way that the approach can easily be replicated. The protocol for the
evaluation of the language coverage could in theory be repeated in a different context.

6.4.2 Internal Validity

The language coverage evaluation was done by the author of this thesis and a domain expert
who was also involved in the development of our approach. This raises the question whether
there is a bias in the evaluation of the language. To counter this threat, in the last evaluation
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session we also involved two developers of the software that is currently implemented to de-
termine the route in a production plan at our industrial partner. In the future, this evaluation
could be repeated with other stakeholders, to ensure that the bias of evaluation is removed.

6.4.3 Construct Validity

To measure the accuracy of RSX, we have written a test suite. These tests can be inaccurate
themselves. To counter this, we took time to validate the expectation of each test individually.
Furthermore, the benchmarks for the performance tests can be influenced by factors outside
the implementation of our language. To counter this threat, we took an average of 10 mea-
surements for each benchmark. Moreover, the benchmarks were run on a device that, apart
from the benchmarks, had the operating system running. This device was not connected to
a network either.
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Chapter 7

Related work

In this chapter, we discuss other work related to our research. We focus on a few works that
we encountered during our research. The topics include constraint solving in manufacturing,
the use of constraint solving as a backend to a DSL, and the work on CSX.

The use of constraint-solving in manufacturing is not new. The use of an expert system for
production planning was reviewed by Kusiak and Chen [19]. An expert system is a system
that can be consulted to help in making a decision. Moreover, in the area of factory planning,
constraint solving is used for finding a factory layout for flexible production systems [16].
Both the use of constraint solving in production planning and factory planning touch on the
area of the research in this thesis. However, both cases are not concerned with the routing
of an actual production job. Factory planning concerns the planning of a factory layout.
Production job scheduling could make use of a generated route, but it only tries to find an
efficient time and device allocation for a set of jobs based on their production route and other
factors. Factory planning could involve the process of finding the best possible layout, such
that certain production routes are possible. However, the actual routing configuration for a
job is not something factory planning is involved in.

Another area of manufacturing where constraint solving is generally used, is the area
of CAD/CAM software, which stands for Computer-Aided Design (CAD) and Computer-
Aided Manufacturing (CAM). Integrating such software with the production properties also
requires the solving of configuration parameters and routing sequences [7, 15, 21]. A differ-
ence between the integration of CAD/CAM software and RSX is that the number of devices
and the variability of devices is different. The integration of CAD/CAM software mostly
involves the configuration of paths within a single, constant device. The configuration and
pathfinding in this device might not be trivial and requires constraint solving. On the other
hand, RSX is designed to find a route which is a combination of multiple devices and paths
between these devices.

Constraint solving as a backend for a DSL is also researched in other works. In other
areas than manufacturing, languages have been developed which are comparable to RSX in
their conceptual design. Keshishzadeh, Mooij, and Mousavi [18] use a constraint-solving
backend for a DSL to detect faults early, before compilation. AlleAlle is a language that
translates to SMT constraints for defining relational and non-relational models for a wide
range of problems [24]. At DATEV, a domain-specific language is developed for efficiently
implementing payroll calculations [26]. These can be validated using an integrated SMT
solver. All these related works provide an abstraction over a constraint model such that it is
easier to express domain-specific concepts as constraints. This is the same approach and idea
behind RSX. The difference to RSX is the specific domain and the application of the solver
and language.

The closest related work to RSX is the work on CSX [9]. It is already mentioned several
times in this thesis and RSX was inspired by it. CSXis a DSL for defining finishers in digital
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printing systems. These definitions can then be used for the configuration space exploration
of these finisher devices. CSX has many commonalities with RSX. The two languages share
the domain of digital printing systems and share the same compilation target language. Fur-
thermore, both languages were developed using Spoofax. The main difference between CSX
and RSXis that RSX focuses on routing space exploration, while CSX only supports config-
uration space exploration based on a predefined route. In Section 6.3 we went deeper into
the differences and commonalities between CSX and RSX.
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Chapter 8

Conclusion

The work presented in this thesis is a case study into use of domain-specific language using
a constraint solving backend to assist in decision-making for the routing problem for digital
printing systems as described in Chapter 2. The challenges of this problem are the complexity
of finding a solution, the variability of different problem instances, due to the vast variety
of finishing devices, and the searchability of the solution space, due to potentially multiple
routes being valid. Currently, these challenges are tackled by hard-coding several routes
for inline devices, based on common products. However, deviations from these products or
these hard-coded routes require manual route finding.

In our case study, we researched a different approach and wanted to answer whether
the challenges of this problem can be tackled by a domain-specific language and constraint
solving. We did this with the design and implementation of RSX. The main objective for
this language was to let a user model realistic domain cases and by doing so, reduce the
challenges of solving the routing problem for these cases. Inspired by the earlier research
and implementation of CSX, RSX makes use of constraint modeling and a generic constraint
solver to achieve this.

We modeled the problem in the constraint programming language MiniZinc first. This
model was then used as a basis for how we transform RSX into MiniZinc. We developed RSX
in the Spoofax language workbench. In this workbench, we built a syntax and static seman-
tics definition for RSX and transformations for RSX to MiniZinc. From this specification of
RSX, we could automatically derive an IDE, containing syntax highlighting, type checking,
and name resolution. Automatic generation of MiniZinc code from the program is also part
of this IDE. This MiniZinc code has to be manually fed to a constraint solver, which provides
us with one or multiple solutions on the level of the MiniZinc code.

We evaluated our implementation on three different evaluation aspects: language cov-
erage, language accuracy, and language performance. In the language coverage evaluation,
we conclude that RSX can be used to model realistic instances of the routing problem in the
domain of digital printing systems. However, we can only model routes that can be modeled
using a linear sequence of steps. Furthermore, the language coverage can be improved by
adding composite types. We found that the compilation and solving of these instances can
be done in the order of seconds. Moreover, we concluded that the implementation at this
moment is accurate for use as a proof of concept of the use of RSX in solving the routing
problem.

The implementation of RSX presented in this thesis can be seen as a proof of concept for
the use of a DSL in combination with constraint solving for tackling the routing problem
in digital printing systems. It shows that the principle of modeling a route as constraints
and using this as a basis for a DSL is possible. However, its implementation is not usable
in practice at the moment. There are a few aspects of the implementation that could be
researched or engineered further to be able to use the language in practice.
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One important aspect of using the language in practice is the integration into the work-
flow of using digital printing systems. The usage of the language is now mainly for showing
the capabilities of the language. However, when using it in practice, its usage will most
likely be different. We therefore suggest that future research should focus on improving the
usability of the language. For example, the language currently requires manually feeding
a constraint solver with the MiniZinc model. The results of the constraint model are then
expressed in terms of the MiniZinc model. Further research could focus on automating this
process and mapping the solution back to high level RSX terms. Furthermore, the specifica-
tion of devices, actions, and properties should be done at a different time than the specifi-
cation of intent. Where devices, actions, and properties do not change regularly, the intent
will change for each printing job. Currently, both intent and device, action, and property
specifications are defined in the same RSX file. It is interesting to research whether intent
should indeed be declared at the same time as the more static aspects of the model.

Another aspect we recommend future work should focus on is the combined use of the
RSX and CSX languages. Currently, they are two stand-alone languages with different im-
plementations for parsing, static semantics checking, and transformation. However, they
are complementary implementations. Where RSX can be used to find a route of devices and
specific actions in these devices, CSX can find a valid and optimized parameter configura-
tion for a specific route. Using both these languages to create a full production plan could
be the next step. Combining the two languages into one language is also possible. Then, the
flexibility in routing of RSX would be added to the CSX language. This would introduce the
concepts of pre- and postconditions, device path constraints, and inline device constraints to
CSX. The fact that both languages compile into MiniZinc could aid in the integration of the
languages.

Overall, we think that by designing and implementing RSX we have shown that it is pos-
sible to make use of a domain-specific language to assist in finding a route in digital printing
systems. Further research can potentially ensure that this approach is also used in practice
by operators in digital printing industry.
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AST abstract syntax tree

CAD computer aided design

CAM computer aided manufacturing
CSX configuration space exploration

DSL domain-specific language

IDE integrated development environment

RSX routing space exploration
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Performance Benchmark Results
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174

Average Runtime (ms)

Benchmark Total Parse | Desugar | Instantiate | Uniquify | Explicated | MiniZinc AST | MiniZinc String
C1 0.204-10% | 1.97 | 0.0167 0.347 0.0523 0.0469 0.683 0.201 - 10?
C2 0.0808 - 10% | 0.983 | 0.00917 0.247 0.0272 0.0262 0.303 0.0792 - 10°
C3 1.81-10° 9.14 0.0524 0.353 0.158 0.177 2.63 1.80 - 103

C4 1.48-10% | 4.21 0.0345 1.29 0.162 0.181 2.87 1.47-10°

Table A.1: Compilation times of the different benchmark cases.

Average Runtime (ms)

Benchmark | Compilation | Solving
S1 1.81-10° 298
S2 1.47-10° 231

Table A.2: Total compilation and solving times of the different benchmark cases.
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B. RSX GramMMAR

ID
model

definition

path

member

param

type

expr

76

[a-zA-Z][_a-zA-Z0-9]x*

[de finition]*

property ID : type
intine ID[ -> ID]*

device ID { [path]* }
action ID { [member]* }

Identifier
Model

Property
Inline
Device
Action

action ID ( [param[,param]*]’ ) { [member]* 3 Action with parameters

intent exp
path [ID] -> ID]*]*

constraint expr

preserves ID
ID : type

int
nat
bool

unit

true

false

i

ID

ID.in
ID.out
e.present
e.absent
expr and expr
expr or expr
expr == expr
expr ‘= expr
expr < expr
expr > expr
expr <= expr
expr >= expr
expr + expr
expr - expr
expr x expr
expr [ expr
expr % expr
not expr
-expr

( expr )

Figure B.1: Grammar of RSX.

Intent
Path

Constraint
Preserve

Action parameter

Integer type

Natural number type
Boolean type

Unit type

True

False

Integer

Variable
Variable in
Variable out
Present

Absent

And

Or

Equal

Not equal

Less

Greater

Less or equal
Greater or equal
Addition
Subtraction
Multiplication
Division
Modulo
Boolean negation
Numeric negation
Brackets
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C. RSX TyriNG RuLEs

C.1 Environments

The typing rules make use of four different environments. This first environment is denoted
by A, which holds the set of defined actions in the RSX model. The second environment is D,
which holds the set of defined devices in the RSX model. The third environment is P, which
is only set when evaluating the members of an action. It holds a mapping of all parameters of
the action by their name. The last environment is £, which holds a mapping of all property
types by their name.

When we declare an action with parameters we denote the mapping of parameters in P
as P[p,;/T;], which means that in that action, the parameter p, has type T, and therefore
P(p;) = T, holds. In cases where no parameters can be assigned, we denote the absence of
the P environment using the | symbol.

C.2 Rules

The typing rules of RSX are described in Figure C.1, Figure C.2, Figure C.3 and Figure C.4.

E(ID)=T A, D,1, E+ e: bool
PRrROPERTY INTENT

A/ D, 1 E+ property ID:T A, D, 1, E} dintent ¢

Figure C.1: Typing rules of properties in RSX.

n=1
dieD doe D d,eD
INLINE
A D, 1 E+dnline d; -> do > ... -> d,
IDeD
A,D,J_,E}—pl
A,D,J_,El—pg
A D, 1 . E+ p,
n=0
Device
A, D, 1,E |- device ID { p1,p2,...,Pn }
n=0
a1 € A as € A an € A
Patn
AD, 1, Etpath { ap -> as -> ... -> a, }

Figure C.2: Typing rules of devices in RSX.
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C.2. Rules

IDe A
AD, 1. E+m
A,D 1. E+ mo

A D, 1L E+m,
n=0

ActiON
A, D,1,E+ action ID { my,mo,...,m, }
IDe A
A, D,P,E+ my
A, D, P,E+ msy
A D ,P,E+m,
n=0 k=0
Plp1/Th][p2/T2] - - - [pr/Tk]
ActioN-WiTHPARAMS
A/ D, L E+ action ID( p1:T1,p2:To,...,pm T Y{ mi,mao,...,my }
A,D,P,E |- e: bool E(ID)=T
CONSTRAINT PRESERVE
A,D, P E |- constraint ¢ A,D P, FE |- preserve ID

Figure C.3: Typing rules of actions in RSX.
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C. RSX TyriNG RuLEs

Boor-FaLse

Boor-True

A, D, P, E - true : bool A, D, P, E | false : bool

i is an integer literal P(ID)=T
— InT ParRaM-READ
AD P E\i:int A D PE-ID:T
E(ID):T E(ID)=T
ProPERTY-IN PropPerTY-OUT
AD PE+ID.out:T

A D,P,E-ID.in: T

ADPERe:T
A,D, P E |- e.present : bool

PROPERTY-PRESENT

A, D, P, E el : bool
A,D,P,E |~ €2 : bool
XE {and,or, ==, !=}

A, D P E I el xe2: bool

BoorL-ComMPARE

AD,PEt+e:T
A, D,P FE | e.absent : bool

PROPERTY-ABSENT

A, D,P Et+ el :int
A, D,P,E e2:int
E {+, -, *, /,%}

A,D,P E el :int
A/ D,P,E+e2:int

ME {<,>, <=, >=, == 1=}
INT-COMPARE — INT-ARITH
A,D,P,E + el = e2 : bool A/ D,PE el xe2:int
A,D,P,E e : bool A D,P,E - e:int
INT-NEG

Boor-NEG -
A,D,P,E \— not ¢ : bool A/ D,P,E -e:int

Figure C.4: Typing rules of expressions in RSX.
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