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Abstract

Fermentation processes are considered to be essential to decrease our reliance on fossil fuel
based products. However, the scale-up from lab-scale to industrial-scale has proven to be dif-
ficult. Computational Fluid Dynamics (CFD) has the potential to be a tool to optimize the
scale-up and to help engineers understand the relevant hydrodynamics inside such reactors.
However, traditional CFD simulations are computationally intensive and it is not uncommon
that simulations can take several months to compute a few minutes of flow-time. Due to the
recent development of GPU-based hardware, the Lattice-Boltzmann method (LBM) has been
gaining much interest as this meant an orders-of-magnitude decrease of needed computational
time compared to conventional CFD methods. In order to calibrate the models underlying the
simulations, the obtained results of said simulations should be validated against experimentally
obtained data, which is exceptionally scarce for industrial-scaled reactors.

Hence the aim of this thesis is to to investigate the applicability of the LBM in high gas-flow,
industrial sized reactors by studying three benchmark cases. Using Large Eddy Simulations
(LES) and Euler-Lagrangian tracking of bubble parcels, the models provided by M-Star (M-
Star Simulations, LLC) are validated by replicating a small-scale reactor of which the LBM has
already been successfully applied to. The industrial-scaled case consists of the simulation of
the 22m3 industrial reactor located in Stavanger, which is an exception regarding the scarcity
of experimental data for industrial sized reactors. As this data set did not encompass all the
relevant data for aerated stirred tanks, the suitability of the LBM and provided models are
also tested for a smaller scaled tank of which the Bubble Size Distribution (BSD) throughout
the vessel is known. The applicability of the provided models will be tested by comparing the
obtained gas hold-up, BSD and power consumption with experimental data sets.

Although the LBM is suitable for industrial-scaled reactors, the provided models by M-Star are
not sufficient to predict the gas hold-up and power consumption at high superficial gas velocities.
The provided Free Particle drag correlation is not sufficient to describe the dispersion of bubbles
throughout the vessel, leading to a significantly under-estimated gas hold-up. In addition, the
parcel approach leads to the formation of large bubbles in the vessel. And although enforcing
a maximum coalescence diameter does improve the BSD, the gas hold-up is not significantly
influenced by the presence of large bubbles. Furthermore, the Euler-Lagrangian way of modeling
bubble particles did not lead to the formation of gas cavities, which resulted in an insignificant
drop in power consumption. Nevertheless, the current work provides a foundation for subsequent
research.
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1 Introduction

Fermentation processes have been widely used throughout history and are nowadays consid-
ered to be an important technology which will help us to decrease our reliance on fossil fuel
based products[1]. In order to become cost-competitive in the fossil-dominated bulk-markets,
optimization of fermentation processes is of utmost importance to enhance the biological per-
formance of the microbes involved in fermentation[2].

The key performance indicators of bioprocesses are titer, rate and yield[3][4]. These indicators
are dependent on a lot of physical phenomenon present in bioreactors. Figure 1 depicts differ-
ent parameters which can be optimized in order to increase the yield of the product. These
parameters include -but are not limited to- operating conditions, kinetics, and oxygen transfer
rate. Despite there being exceptions (such as bioethanol from glucose), many bioprocesses are
dependent on interphase mass transfer and are thus aerated[5][6]. Most often these processes
are supplied with oxygen functioning as an electron acceptor to make the process become ther-
modynamically feasible[7][8]. Oxygen transfer to the liquid phase is often the rate limiting step
for productivity, and is therefore considered to be an essential step in order to improve the
productivity of the microbial processes[9]. In addition to such aerobic conditions, there has
been much attention for fermentation processes using gaseous substrates such as carbon diox-
ide, carbon monoxide, hydrogen and methane which requires interphase mass transfer from the
substrate to the fluid as well [10][11].

Figure 1: Design parameters which are considered to improve the yield of the bioreactor[12].

The scale-up of (bio)reactors from lab-scale to industrial scale is a major goal for scientist
and engineers [13]. This has proven to be difficult as the hydrodynamics in reactors tend to
change when the volume of the reactor is increased, which results in a lower mass transfer rate
[14]. Rational optimization of industrial bioreactors requires knowledge about the gas hold-up
and bubble size distribution throughout the vessel, which are a direct manifestation of bubble
break-up and coalescence. It is however a great challenge to obtain experimental data about
the local bubble size distribution inside of (industrial-scale) reactors [15][16][17]. Computational
Fluid Dynamics (CFD) can be a tool in order to optimize the scale-up of bioreactors and to
let engineers predict the transfer of oxygen to liquid at conditions applicable on an industrial
scale, at which it is hard to gather experimental data [18][19]. CFD simulations are however
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computationally intensive and it is not uncommon for traditional CFD simulations of multi-
phase reactors, typically conducted on CPUs, to take several months of runtime to simulate a
few minutes of flow-time [20].

The last few years saw a significant development of GPU-based hardware which, in contrast to
CPUs, contain thousands of cores which are developed to be able to execute tasks in parallel
which speeds up said simulations with orders-of-magnitude. Thus, algorithms were developed
in order to exploit the benefits of GPU’s and recently, the Lattice Boltzmann Method (LBM)
has been gaining much interest since its inception in 1988[21]. This is due to its wide range
of applicability in various engineering areas and the numerical structure of the LBM which
makes it highly suitable for computational parallelization, enabling the method to fully exploit
the GPU architecture [22][23]. This led to the establishment of GPU-driven LBM CFD which
transcends conventional CFD approaches by orders-of-magnitude[22][23]. Because of this per-
formance increase, many physics and model simplifications can be revoked and first-principle
transport physics can be called upon, such as transient modelling of the fluid flow instead of a
time-averaged flow field [21].

The results obtained with CFD simulations should be validated with experimental data in order
to calibrate the models underlying the simulations, which is especially scarce for industrial-scale
reactors with high gas flow rates[6]. An exception to the scarcity of experimental data on this
scale to this is a set of experimental data available from an industrial sized 30 m3 bioreactor in
Stavanger located in Norway [6]. This data encompasses the power consumption, gas hold-up,
mixing time, liquid velocities [24] and biokinetic data [25]. Furthermore, this particular case
has already been simulated with conventional CFD tools using a k-ϵ turbulence model and the
multiple reference frame (MRF) model[26].

1.1 Scope

Although the LBM has been successfully implemented to study topics ranging from i.e. heat
transfer, chemical reactions and multi-phase reactors, there have been relatively few studies con-
sidering aerated tanks for industrial applications[27][28]. One of the exceptions is the study of a
160 m3 by Bernauer et al.[29]. In this study, bubbles were modeled using the Euler-Lagrangian
approach, implicating that bubbles are modeled as spherical point particles with neglible vol-
ume. As such, the bubbles had no influence on the fluid level in the simulations[30].

Hence the aim of this thesis is to to investigate the applicability of the LBM in high gas-flow,
industrial sized reactors by studying three benchmark cases. The large-scale case explores the
simulation of the Stavanger industrial reactor. Since the experimental data from Stavanger does
not cover all relevant data of agitated stirred tanks, like the bubble size distribution throughout
the vessel, the suitability of the LBM is also tested for a smaller lab scale reactor for which
such data is available[31]. These simulations are validated by testing the performance of the
LBM of a small reactor of which the LBM has already been applied to[32]. The simulations
are performed using M-Star CFD (M-Star Simulations, LLC) with the Large Eddy Simulations
(LES) turbulence model and Euler-Lagrangian tracking of bubbles which continuously experi-
ence break-up and coalescence events. In addition, the considered bubbles do have an effect on
the liquid level throughout the simulations. Besides testing the applicability of the LBM, the
influence of the physical models provided by M-star is investigated and guidelines are provided
for subsequent research.
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The research objectives hence are:

• Replicate the small-scale reactor simulation by Thomas [32] to use as a validation for the
chosen parameters

• Set up the mid-sized reactor and determine the bubble size distribution and gas hold-up
predicted by the simulations and compare the results with experimental data[31].

• Simulate the industrial-scale reactor of Stavanger and compare the obtained results of gas
hold-up and power consumption with experimental data and previously conducted CFD
research[24][25][26].

The main research question is thus:

• Can the LBM-CFD using Large Eddy Simulations predict the bubble size distribution, gas
hold-up and power consumption at different agitation rates, high superficial gas velocities
and vessel volumes?

1.2 Thesis outline

This thesis is comprised of seven chapters, starting with the introduction. The second and
third chapter cover respectively the physical and LBM theory underlying the simulations. The
computational set-up will be discussed in the fourth chapter. The results of the small-scaled
reactors will be discussed in the fifth chapter, while the sixth chapter provides the results of
the industrial scale fermentor. Finally, the conclusion will be presented in the seventh chapter
together with a set of recommendations for further research.
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2 Theory

The aim of this chapter is to introduce the physical theory which underlies the models used in
the Lattice-Boltzmann method in order to simulate the reactors. At first an overview is given
of the essential transport equations governing fluid flow, whereafter the phenomenon called
turbulence is covered. As this thesis focuses on multiphase reactors, bubble behaviour such as
break-up, coalescence and hydrodynamic regimes present in the vessels are discussed.

2.1 Fluid dynamics

In order to be able to understand and describe what the flow in the fermentor will be, the
physics underlying fluid flow must be understood.

2.1.1 Governing equations

Equation 2.1 and Equation 2.2 are respectively the continuity and the Navier-Stokes equations,
and are the fundamental equations describing the flow of fluids and gases. In these equations ρ
is the density [kg/m3], v is the flow velocity vector field [m/s], t is the time [s], p is the pressure
[Pa], µ is viscosity [ kg

m·s ] and g is the gravity [m/s2]. The continuity equation describes the con-
servation of mass, while the Navier-Stokes equation describes the conservation of momentum.
Together they form a set of equation which are sufficient to describe the flow of fluids. However,
because of the non-linearity of the Navier-Stokes equation, it is not (yet) analytically solvable
except for a few cases. During this research, only turbulent flow is considered and therefore
laminar flow will only be briefly touched upon.

∂ρ

∂t
+ ρ∇ · v = 0 (2.1)

∂ρv

∂t
+ ρ(v · ∇)v = −∇p+ µ∇2v + ρg (2.2)

2.2 Turbulence

Fluid flow will be laminar if the viscosity of the fluid is able to suppress the inertial forces. This
is characterized by fluid particles following a smooth trajectory. However when the velocity is
increased (or the viscosity lowered), the non-linearity of the Navier-Stokes equation will lead
to unpredictable chaotic motion, with even infinitesimal changes to initial conditions leading to
changes in the consequent motion and the fluid flow will be turbulent. This happens when the
viscosity is unable to suppress the instabilities inherent to fluids created by the inertial forces.
These instabilities create eddies, which will break up into smaller eddies. As the eddies break up
they will pass on their inertial energy onto the smaller eddies, until the viscosity can suppress
the inertial forces driving the breakup[33]. This cascade of energy is depicted in Figure 2.
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Figure 2: The energy cascade in turbulence. The largest eddies break up and pass on their ki-
netic energy onto the smaller eddies until the viscosity is able to overcome the inertial forces[33].

The largest eddies in the vessel have a size which is order-of-magnitude consistent with the
tank diameter[34]. These large eddies are called integral eddies, are depicted by ℓ, and are
anisotropic in nature. Kolmogorov’s theory of isotropic turbulence states that, when an eddy
is small enough, the fluctuating components of the velocity can be considered equal, and thus
can be considered as isotropic[35]. Although turbulence itself is not isotropic, the assumption
of local isotropic turbulence may be very useful at small length scales like the bubble diameter,
which will be explained upon later[9][12].

The Taylor microscale is depicted as λ and represents the scale at which the large anisotropic
eddies transition into localized isotropic eddies[32][36]. The length scale at which this transition
takes place is described by Equation 2.3[37]:

λ

ℓ
=

λ

T
≈
√

15

Re
(2.3)

in which T is the tank diameter[m] and Re is the impeller Reynolds number, which is described
by Equation 2.4. In this equation N represents the rotational speed [1/s], D the impeller
diameter [m] and ν is the kinematic viscosity of the fluid [m2/s]:

Re =
ND2

ν
(2.4)

The cascade of eddy decay continues until the eddy size is so small that viscous forces overcome
the inertial forces. The kolmogorov length scales represents these eddies which are the smallest
hydrodynamic length scales in the reactor and is represented as η. The size of these eddies
are directly related to the Reynolds number, and is shown in Equation 2.5, in which T is the
diameter of the vessel[33].

ηk ≈ ℓ

Re3/4
≈ T

Re3/4
(2.5)

As can be seen from Equation 2.3 and Equation 2.5, the Taylor and Kolmogorov length scales
are directly related to the (impeller) Reynolds number and will decrease in size when the
Reynolds number is increased. Within these length scales the largest eddies contribute to bulk
mixing of the fluid while the small Taylor length eddies contribute to micromixing phenomena 1.

1”Predicting Mass Transfer (KLA) in Gasified Bioreactors.” M-Star Simulations, LLC,
docs.mstarcfd.com/tutorials/kLA.html. Accessed 19 Sept. 2022.
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Figure 3: Energy spectrum of the turbulent eddies[38].

Within fully developed turbulence a broad range of eddy sizes exist. For depicting the energy
of those eddies it is common to utilize the wavenumber of the eddy instead of the eddy size[33].
The wavenumber is represented by κ and is inversely correlated to the eddy size, meaning that
a higher wavenumber corresponds with a smaller eddy size. Figure 3 shows the energy spectrum
of the turbulent eddies. It can be seen that energy is generated by the largest eddies present in
the system. The intermediate sized eddies contain the bulk of the kinetic energy, and are also
named the “energy containing eddies”. In the inertial subrange, the kinetic energy is transferred
unto smaller eddies and is dependent to the wave length as κ−5/3. The smallest eddies do not
contribute significantly to the total energy, but they are continuously energized by the larger
eddies while they dissipate their energy in the fluid[12]. The energy dissipation rate is calculated
from:

ϵ ∼ νSijSij (2.6)

where ϵ is the energy dissipation rate (EDR) and has the units of [W/kg], ν is the kinematic
viscosity of the fluid, and Sij is the strain rate tensor. The strain rate tensor is given by
Equation 2.7.

Sij =
1

2
(
∂ui
∂xj

+
∂uj
∂xi

) (2.7)

It can be seen that the energy dissipation rate is thus dependent on gradients in velocity,
and is the largest in area’s where these gradients are the largest. Using Kolmogorov’s theory of
isotropic turbulence, the order of magnitude of the energy dissipation rate can be estimated from
Equation 2.8, where uc is the characteristic velocity of the vessel[12]. The order of magnitude of
the eddy dissipation rate can thus be estimated from the velocity agitated by the turbine, and
the length scale of the vessel. The magnitude of the eddy dissipation rate can vary significantly
throughout the vessel, with the difference between local and average EDR being over three
orders of magnitude[39].

ϵ ∼ u3c
ℓ

(2.8)
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η ∼ ℓRe−3/4 or η = (ν/ϵ)1/4 (2.9)

The eddy dissipation rate ϵ can be made dimensionless (ϵ) by Equation 2.10. This can prove
useful in order to compare eddy dissipation rates at the impeller computed with CFD simulations
with experimental data.

ϵ =
ϵ

N3D2
(2.10)

2.3 Bubbles

In agitated air-sparged reactors, the bubble size plays a crucial role[40]. Small bubbles are
usually preferred as a larger interfacial area leads to an increase of mass transfer to the liquid
phase[40]. However, bubbles occur in a tank with a certain bubble size distribution which is
characterized in the form of a histogram[41]. Knowledge about the bubble size distribution is
vital in order to determine the overall mass transfer to the liquid. Unfortunately it is of great
difficulty to obtain experimental data about the local bubble size in a reactor[31]. In addition
to a small bubble size, a higher gas hold-up is desired in order to maximize mass transfer.

Although the hydrodynamics in a multiphase reactor are very complex, Kolmogorov’s theory
of isotropic turbulence has been succesfully utilized to describe the relevant hydrodynamic
phenomena. Despite this theory being a simplified version of reality, it will lead to models
which are much simpler to adopt, and thus provides an attractive basis for rational design of
bioreactors[12].

Within a multiphase agitated tank, there are typically three variables which have a direct in-
fluence on bubble break-up and coalescence rates and thus the bubble size: the impeller speed,
airflow rate and surfactants which might be present[40].

Bubble break-up is caused by the turbulent eddies generated by the rotating impeller. A
bubble will break when the energy dissipation rate of the fluid exceeds the surface energy of the
bubble[21]. Based on Kolmogorov’s theory of isotropic turbulence, the maximum bubble size
which is stable against break-up is estimated to be[42]:

de = C1
σ3/5

ρ3/5ε2/5
(2.11)

where the constant C1 is determined to be 0.7[12]. From Equation 2.11 it can be seen that the
maximum stable bubble size is dependent on the surface tension, the density of the fluid and
the eddy dissipation rate created by the impeller. It is recognized that the maximum stable
bubble size will decrease when the eddy dissipation rate is increased[32]. However, it must be
stated that Equation 2.11 is based on a dimensional analysis based on first principles turbulence
theory, and therefore is an estimation of the maximum stable bubble size for the specified EDR.
As the EDR varies significantly throughout the vessel, the maximum stable bubble size will also
fluctuate due to the EDR[12].

Although eddies must have enough energy in order to break the bubble, very large eddies will
not cause break-up as they are so large that they will only cause movement of the bubble[15].

Besides bubble break-up, bubbles can also undergo coalescence when bubbles interact with each
other. Bubble coalescence is a complex mechanism which occurs as a three-step process. These
steps can be summarized as follows. Bubbles will approach each others within a range of 10-
100 µm, and a small liquid layer will be confined between the bubbles. Next, the liquid layer
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between the bubbles is drained and will thin to 0.01-0.1 µm. At the last stage, the liquid film
layer will rupture resulting in bubble coalescence. The second and last stage are considered to
be the rate-limiting steps in the bubble coalescence process[12][15][21].

Bubble coalescence is inherently correlated to bubble collisions. Bubble collision mechanism
can be differentiated into collisions rising from turbulence, buoyancy and laminar shear. These
three mechanisms are assumed to be cumulative, but for the present cases turbulent collisions
are assumed to be dominant[9].

Eddies within the integral length scale are predominantly responsible for the transport of large
quantities of bubbles while not contributing significantly to the relative motion between neigh-
bouring bubbles. Meanwhile very small eddies do not carry enough energy to have a significant
impact on the motion of bubbles. Therefore it is customary to assume that eddies within the
inertial scale which are of the same length scale as the bubble size are primarily responsible for
the relative motion between bubbles and are therefore responsible for bubble collisions[9][12].
This assumption is shown in Equation 2.12.

κℓ << db << κη (2.12)

As stated, the rate limiting step in bubble coalescence is that bubbles will need to stay in
contact long enough in order to remove the liquid film layer between the bubbles such that
it can rupture. Because of this temporal restriction, turbulent eddies within the inertial scale
can also separate the bubbles while they are in contact with each other. Therefore, a lot of
collisions will not result in bubble coalescence, especially in areas with a high local turbulent
kinetic energy[15][43].

The approach Reynolds number, Rea is dimensionless number which can predict whether two
bubbles will coalesce. The equation for this number is shown in Equation 2.13, where Ua is the
approach velocity of the two bubbles, dh is the harmonic mean bubble diameter of the bubble
pair and σ is the surface tension.

Rea =
Uadh
σ

(2.13)

It is experimentally deduced that, for bubble coalescence to take place, the approach Reynolds
number should be not exceed 40[44]. When the approach Reynolds number exceeds 40, bubbles
will not coalesce but experience an elastic bounce. What this indicates is that the approach
velocity of two bubbles should not be too high, but also that the mean bubble size should not
be too large. Larger bubbles have a large collision frequency, but they also require a longer
contact time in order to coalesce and thus the probability of eddies separating the bubble pair
is bigger[9].

2.3.1 Bubble size characterization

In a bioreactor, millions of bubbles can be simultaneously present in the system. As these
bubbles come in different sizes, it is hard to obtain the total interfacial area of all bubbles
combined in order to determine the mass transfer rate. There are multiple ways to characterize
the mean bubble diameter. The Sauter mean diameter is one way to express the average size
of all the bubbles present in the system[41][45]:

d32 =

∑N
1 n1 d3i∑N
1 n1 d21

(2.14)
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The Sauter mean diameter, d32 is also called the volume-to-surface area (or the mean surface
diameter)[31]. It is a practical criterion as it provides a way to relate the total interfacial area
with the gas hold-up, shown in Equation 2.15[31]:

a =
6ε

d32
(2.15)

Equation 2.15 shows the formula to calculate the total interfacial area and highlights the relation
between the d32 and the gas hold-up[31]. Another way to characterize the bubble sizes is by
using the d10 criterion which, unlike the d32, is the mean average of all bubbles present in the
system:

d10 =

∑
di
n

(2.16)

The De Brouckere mean diameter d43, also called the volume-weighted mean diameter, charac-
terizes the mean diameter by averaging the particles over volume as, and is thus more susceptible
to bubbles with a larger volume[46].

d43 =

∑N
1 n1 d4i∑N
1 n1 d31

(2.17)

When comparing the values of d10 with d32, it was found that d10 < d32 < d43 as d10 is more
susceptible to the smallest bubbles present in the system[47].

2.4 Hydrodynamic regimes

When looking at an air-sparged agitated tank, it is important to differentiate between the
different bulk flow regimes of the bubbles within the tank as the different regimes have an
impact on the total gas hold-up, scale-up and design of the reactors[48]. Figure 4 shows a
schematic picture of the different bulk flow patterns of the bubbles within an agitated tank.
There are typically three regimes which can be differentiated from each other. The first regime
is the flooded regime where the gas flows through the impeller plane up to the surface of the
liquid. This happens when the impeller does not provide sufficient force to disperse the bubbles
throughout the vessel. When impellers rotate, trailing vortices are generated in the flow field
behind the impeller blades[49]. When the impeller speed is increased, gas cavities form inside
those vortices[50]. The impeller creates enough turbulence in order to disperse the bubbles
above the impeller plane, but not strong enough to create circulation of the bubbles below the
impeller. Complete dispersion, or circulation, is caused when the impeller creates sufficiently
strong turbulence such that the bubbles are circulated below the impeller plane. Whether
impeller flooding or dispersion is achieved thus balances on a trade-off between impeller power
and the gas flow rate. A higher gas flow rate will require a higher impeller power in order for
the bubbles to be dispersed.
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Figure 4: Representation of the different hydrodynamic regimes: (A) flooded, (B) Loaded, (C)
Completely Dispersed[48].

The transition from the flooding to the dispersion regime can be described by a linear rela-
tionship between the dimensionless Froude number (Fr) and the dimensionless gas flow number
(Flg)[51]. The Froude number is the ratio of turbine induced inertia with gravity and is shown
in Equation 2.18. The gas flow number is shown in Equation 2.19, where Qg denotes the
superficial gas flow rate [m3/s].

Fr =
N2D

g
(2.18)

Flg =
Qg

ND3
(2.19)

For the 30 m3 bioreactor, a fluid flow map has been designed which depicts the transions
between the regimes as a function of the Froude and Gas Flow Number. This flow map is
shown in Figure 5.
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Figure 5: Representation of the transition between hydrodynamic regimes for the 22m3

bioreactor[6].

2.5 Power consumption Rushton turbine

The power number Np, also called the Newton number, is a dimensionless parameter used to
relate the power input from the impeller to the fluid properties and rotational speed of the
impeller[52][53]. For a stirred single phase vessel the power number is shown in Equation 2.20,
in which Po is the power input [W], τ is the torque on the impeller [N ·m] and ω is the angular
velocity[1/s].

Np =
Po

ρN3D5
=

τω

ρN3D5
(2.20)

The benefit of correlating the power input with the power number is that the power number
for a given geometrical configuration follows the same dependency on the Reynolds number for
different tank scales[54]. For low Re, the power number is inversely correlated to the Reynolds
number. But when full turbulence has been realized the power number remains constant[55].

In a multiphase reactor with gas bubbles, the power consumption of impellers is lower with
respect to the power consumption at ungassed conditions[56]. A continued trend of power
consumption reduction is observed when the gas flow rate is increased[57].
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3 CFD theory

This chapter covers the theory behind Lattice Boltzmann Equation Method. At first, a brief
overview is given about the fundamental theory underlying the method. For a more detailed
description of the LBM the reader is referred to book ’The Lattice Boltzmann Method - Princi-
ples and Practice’ by Krüger et al.[58]. Hereafter it is discussed how M-Star models turbulence
and bubbles present in the system. For an extensive overview of the way how M-Star models
the LBM the reader is referred to the website of M-Star2.

As stated in section 2, the continuity and the Navier-Stokes equations describe the conversation
of mass and momentum of a fluid. These set of equations are highly non-linear, and only a
few analytical solutions exist under certain circumstances. Therefore it is impossible to directly
solve these equations when the encountered problems can become very complex and are often
transient. Computational Fluid Dynamics methods provide methods in order to approximate
the solutions for the set of equations.

Typically three scales -which are shown in Figure 6- are identified when describing fluids.
Namely the microscopic, mesoscopic and macroscopic scale. When describing fluid flow on
a microscopic level a look is taken at the scale of individual molecules. The macroscopic level
of fluid flow is described by the continuity and Navier-Stokes transport equations which con-
ventional CFD methods discretize in order to approximate the equations. In contrast, the
Lattice-Boltzmann CFD method takes a look on the mesoscopic level. This scale is used to
describe the distributions of collections of molecules[58].

Figure 6: Graphical display of the three scales[59].

3.1 The Boltzmann transport equation

The Lattice-Boltzmann method finds its origin from the kinetic theory of gases[60]. Instead
of describing the movement of individual particles, the distribution of particles is described at
the mesoscopic scale. The particle distribution function f(x, ζ, t) is the fundamental variable

2https://docs.mstarcfd.com/
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which represents the number density of particles with velocity ζ = (ζx, ζy, ζz) at position x

and time t. The particle distribution function f has the units kg s3

m6 . Through its moments,
the mesoscopic distribution function is connected with the macroscopic variables such as fluid
density ρ (Equation 3.1) and fluid velocity u (Equation 3.2).

ρ(x, t) =

∫
f(x, ζ, t)d3ζ (3.1)

ρ(x, t)u(x, t) =

∫
ζf(x, ζ, t)d3ζ (3.2)

The Boltzmann transport equation (Equation 3.3) describes the temporal evolution of the prob-
ability density function. In this equation, K represents an external body force while Ω represents
the collision operator. This operator describes the rate of change in the particle distribution
function due to binary collisions.

∂f

∂t
+ ζ∇xf +K∇ζf = Ω(f, f) (3.3)

Instead of discretizing the continuity and Navier-Stokes equations, like conventional CFD tools
do, the Lattice-Boltzmann method discretizes the Boltzmann transport equation. But in order
to keep the algorithm manageable, the continuous particle distribution function f(x, ζ, t) is
transformed into the discrete-velocity distribution function fi(x, t) by pre-defining a finite set
of velocity vectors. These velocity vectors are transformed into velocity sets by using weighting
coefficients wi and are denoted by DdQq. The number of velocity vectors is q, and d is the
number of spatial dimensions in which the velocity set can evolve[58]. Although there are a
multitude of different velocity sets, the most commonly used one is D3Q19. This is commonly
used for 3D applications as this gives a balanced trade-off between the number of velocities, to
minimise memory and computing requirements, and accuracy[61]. This velocity set is shown in
Figure 7.

Figure 7: Visual representation of the D3Q19 velocity set[58].
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In addition to the pre-defined discrete velocity sets, the discrete-velocity distribution function
fi(x, t) has defined points of x at a square lattice with spacing ∆x. Furthermore, a time step
∆t ensures that fi(x, t) is defined only at certain times. Together, this discretization of the
Boltzmann transport equation in velocity space, physical space and time leads to the lattice
Boltzmann equation, shown in Equation 3.4, where it is noted that the term representing
the external body force has disappeared. For the sake of simplicity the body force term has
disappeared, but when this is needed it can be added to the equation[58]. This equation states
how particles move with a certain speed to a neighbouring point at the next timestep, while
being affected by the collision operator.

fi (x+ ci∆t, t+∆t) = fi(x, t) + Ωi(x, t) (3.4)

The collision operator Ωi models particle collisions by redistributing them among the popula-
tions at each site. There are a multitude of different operators available, but the most simple
and the most commonly used one is the operator by Bhatnagar-Gross-Krook, also called the
BGK operator[62].

Ωi(f) = −
fi − feq

i

τ
∆t (3.5)

The BGK operator is shown in Equation 3.5, and models how the populations of molecules
relaxes towards an equilibrium feq

i . This equilibrium function reflects how the particles repre-
sented by the distribution function will reach an equilibrium state when a sufficiently enough
time has passed. The equilibrium distribution function follows Maxwellian statistics, and the
continuous equilibrium distribution function is shown in Equation 3.6

feq = ρ

(
m2

2πRT

)3/2

e
−(ζ−u)2m2

2RT (3.6)

Under the limit of a low local Mach number, a third-order Taylor expansion can be used to
recast Equation 3.6:

feq =
ρ

(2πRT )3/2
exp(− ζ2

2RT
)

(
1 +

ζ · u
RT

+
(ζ · u)2

2(RT )2
− u2

2RT

)
(3.7)

which for a system of pre-defined discrete velocity vectors becomes:

feq
i = ωiρ

(
1 +

u · ci
c2s

+
(u · ci)2

2c4s
− u · u

2c2s

)
(3.8)

where cs denotes the speed of sound.

3.2 Algorithm: collision and streaming

The LBE can be divided into two distinct parts which take place in succession: collision and
streaming. The full LBGK equation is shown in Equation 3.9 underbracing the collision and
streaming part of the equation.

fi (x+ ci∆t, t+∆t) = fi(x, t)︸ ︷︷ ︸
Streaming

−
fi − feq

i

τ
∆t︸ ︷︷ ︸

Collision

(3.9)

The right hand side of this equation contains the information what is known from the previous
time step, and the left hand side represents what is calculated for the next time step. Figure 8
depicts a schematic representation of the collision and streaming steps on a D2Q9 lattice. On
the lattice, each lattice node contains q populations of fi(x, t). The first slide represents the
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varying fi(x, t) values pointing in different directions. The fi(x, t) values are then redistributed
according to the collision operator, whereafter the populations are propagated towards the next
lattice node. These steps are in principle the same for a D3Q19 lattice. The collision step is an
algebraic local operation, while streaming is linear and exact. As collisions take place locally at
the lattice nodes, this step is suitable for exploiting GPU hardware by parallizing the algorithm.

Figure 8: Graphical representation of the collision and streaming step on a D2Q9 lattice[63].

f∗
i = fi(x, t)−

∆t

τ
[fi(x, t)− feq

i (x, t)] (3.10)

fi(x+ ci∆t, t+∆t) = f∗
i (x, t) (3.11)

The collision step is shown in Equation 3.10 where f∗
i represents the post-collision distribution

function where the distribution function has received the collision contribution from the collision
operator. The streaming step is shown in Equation 3.11, and thus the LBM algorithm is as
follows[58]:

1. Compute moments: fi → ρ,u

2. Compute equilibrium: ρ,u → feq
i

3. Collide locally: fi, f
eq
i → f∗

i

4. Propagate to next neighbours: f∗
i → fi

5. Increment time step & go back to 1

3.3 Satisfying the transport equations

Via the Chapman-Enskog expansion the Navier-Stokes can be retrieved by using a perturbation
expansion about feq[64].

f ≈ feq + ϵf (1) + ϵ2f (2) + ... (3.12)

Where ϵ is small parameter proportional to the Knudsen number (Equation 3.13). The Knudsen
number is a dimensionless number which represents the ration between the mean free path (ℓmfp

of a particle to the representative length scale of the system. The dependency of the LBM on a
small value of Kn through the expansion has the implication that the LBM is only valid when
Kn ≤ 1, meaning that the mean free path between two particles is small compared to the length
scale of the physical system. When Kn≥1 the hydrodynamic equations are no longer valid and
the kinetic theory description of particles must be used.

Kn =
ℓmfp

ℓ
(3.13)
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The Knudsen number can also be related to the Mach (Ma) and Reynolds (Re) number through
the following relationship:

Kn = α
Ma

Re
(3.14)

with

Ma =
µ

cs
(3.15)

In Equation 3.14 and Equation 3.15 α is a numerical constant. When selecting the lattice
spacing (∆x), time incrementation (∆ t) and relaxation time (τ) such that the fluid velocity
is much smaller than cs/

√
3 (and thus Ma≤1), it can be shown through lengthy mathematical

operations that the solutions of the moments of ρ and µ satisfy the Navier-Stokes equation[65].

3.4 Turbulence modelling

Turbulent flow is inherently chaotic due to the non-linearity of the Navier-Stokes equation.
When using Direct Numerical Simulations (DNS) even the smallest turbulent scales are mod-
eled exactly, and as such, the size of the lattice spacing must be smaller than this scale[33]. As
stated in section 2, the size of the smallest eddies decreases as the Reynolds number increases
and thus the amount of lattice units increase significantly at higher Reynolds numbers. There-
fore, it is almost impossible to simulate problems relevant to industry as up to billions of grid
nodes and millions of CPU hours are needed in order to finish these simulation[66]. In order
to solve the turbulent flow field without exactly resolving the Navier-Stokes equations, multi-
ple methods and models are developed in which the smallest scales of turbulence are modeled
instead of directly solved.

Within turbulence the fluid velocity can be decomposed in a time-averaged and fluctuating
component, shown in Figure 9. This is called Reynolds’ decomposition and the subsequent
Reynolds-averaged Navier-Stokes (RANS) turbulence model makes use of this decomposition.

The fluctuating component of the fluid flow gives rise to the turbulent phenomena and is de-
picted in the RANS equation as the Reynolds stress[67]. The Reynolds stress is modelled by a
eddy viscosity model which itself is a function of different parameters. Examples of these are
the k − ϵ and k − ω turbulence closure models, in which k is the turbulent kinetic energy, ϵ is
the eddy dissipation rate and ω is the dissipation rate of the specific turbulent kinetic energy[68].
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Figure 9: The turbulent fluid velocity can be decomposed in a time-averaged and fluctuating
component, taken from 3.

Another method for solving turbulence is Large Eddy Simulation (LES). Unlike RANS, LES
evaluates the mean flow and large, energy containing eddies exactly but in contrast to DNS, it
does not simulate the smallest scales of turbulence. Figure 10 shows a graphical comparison
between DNS, RANS and LES. Where DNS resolves the fluid velocity and subsequent eddies
directly, RANS resolves the Navier-Stokes equation using the time averaged fluid velocity and
models the ensuing eddies. LES on the other hand lies in between DNS and LES by computing
the largest eddies present in the system and modelling the smallest eddies. For this reason LES
is a trade-off between the accuracy of DNS and computational simplicity of RANS[69][70].

(a) Representation of how DNS, RANS and LES
model and compute the turbulent eddies[71].

(b) Comparison of how DNS, RANS and LEs model
the fluid flow velocity[72].

Figure 10: Comparison of DNS, LES and RANS turbulence modelling.

LES resolves the largest eddies while modelling the smallest energy dissipating eddies present

3Ueyama, A. (n.d.). Basic Course of Thermo-Fluid Analysis 18: Chapter 5 Basics of thermo-fluid analyses
- 5.9.1 Reynolds-averaged Navier–Stokes (RANS), 5.9.2 Large eddy simulation (LES). Cradle CFD. Retrieved
January 9, 2023, from https://www.cradle-cfd.com/media/column/a91
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in the system. This is represented in Figure 11, where above a defined wavelength the eddies
are ‘cut’ and not resolved. In this approach, the velocity field is broken down into a filtered
and residual component. The filtered velocity can be interpreted as the mean motion of the
flow plus the large energy containing scales present in the turbulent field by time- and space
averaging, while the unresolved velocity can be seen as the smallest scales present in the system.
By ignoring the smallest scales relevant in the system, the computational burden is lessened
significantly. In order to still model the effect of the unresolved velocity on the filtered velocity,
the molecular velocity is replaced with an effective viscosity (ν∗) within the momentum transport
equations[33].

ν∗ = ν + νt (3.16)

In Equation 3.16, ν is the molecular viscosity of the fluid and νt is the sub-grid eddy viscosity,
which is computed from:

νt = (Cs∆x)
2 S, (3.17)

where Cs is the Smagorinsky coefficient and S is the norm of the filtered strain rate tensor,
shown in Equation 3.18. By comparing DNS and LES results it was shown that setting the
Smagorinsky coefficient to 0.1 delivered the best approximation of DNS when using LES[73].

Sij =
1

2
(∂jui + ∂iuj) (3.18)

where ui,j is the filtered velocity component. This model works well for isotropic turbulence
but has the shortcoming that it is too dissipative near the walls[33].

Figure 11: Visual display of the turbulent wavelengths which are not simulated when a Large
Eddy Simulation filter is used. The smallest eddies below a certain value are not resolved
(visualized by the ‘Bin’), but modeled[33].

As the smallest eddies, which form the bulk of the eddy dissipation rate, are not modeled
explicitly when using the LES model, the EDR is broken down into a resolved and unresolved
component. Equation 3.19 shows the full energy dissipation rate equation, which is broken
down into the resolved (Equation 3.20a) and unresolved (Equation 3.20b) part. As νt itself is
already dependent on the strain rate, the unresolved EDR is related to the third power of the
strain rate.

ϵ = 2 (ν0 + νt)
∑
i,j

SijSij , (3.19)

Page 18



ϵres = 2ν0
∑
i,j

SijSij (3.20a)

ϵunres = 2νt
∑
i,j

SijSij (3.20b)

As most of the energy which dissipates onto the fluid are caused by the smallest turbulence scales
present in the system, the unresolved EDR is for most LES simulations orders-of-magnitude
larger than the resolved EDR.

3.5 Bubble modelling

This section mainly deals with how bubbles are modeled within M-Star, how their trajectories
are determined and how bubbles experience break-up and coalescence events. In M-Star, bubbles
are modeled as spherical Lagrangian particles that can reside between lattice nodes as they move
throughout the geometry, meaning that they are not bound by the discrete nodes of the lattice
as the fluid particles are.

3.5.1 Forces on bubble

The bubbles move throughout the vessel according to Newton’s second law:

mi
dvi

dt
= Ff

i + Fc
i + Fg

i (3.21)

In this equation mi is the mass of bubble i, vi is the bubble velocity vector, F f
i is the fluid-

bubble interaction force, F c
i is a custom user-defined force, and F g

i is the net gravity force
acting on the bubble, including buoyancy effects.

The fluid-bubble interaction force is an addition of multiple forces, shown in Equation 3.22. In
this equation Fp is the pressure force, Fv is the virtual mass force, Fs is the Safmann lift force,
and Fd is the drag force.

Ff
i = Fp + Fv + Fs + Fd (3.22)

Pressure gradient The pressure force experienced by bubbles arises from pressure gradients
in vessel. This includes the effects of buoyancy and gravity[74]. In this equation VP corresponds
with the bubble volume, while ∇p is the experienced pressure gradient.

Fp = −Vp∇p, (3.23)

Virtual mass force The virtual mass force is the force experienced by a bubble as if has an
extra mass generated by the acceleration of the particle[75].

Fm =

(
2.1− 0.132

0.12 +A2
c

)
Vpρf

[
(u̇− v̇)

2

]
, (3.24)

Ac =
(u− v)2

dp
d(u−v)

dt

, (3.25)

Page 19



Saffmann lift force The lift force is the force which acts perpendicularly to the motion of a
particle on a particle[75]. This force is usually intended for particles experiencing a low Reynolds
particle number4.

Fs = 1.61d2pρf

√
νf
|ω|

[(u− v)× ωc] , (3.26)

Drag force The drag that bubbles in motion experience is a force in the opposite direction
of the motion, and plays a key role in bubble migration throughout vessels[76]. In M-Star, the
drag force is modeled as:

Fd =
π

8
CDd

2
pρf |u− v| (u− v) , (3.27)

in which CD is the drag coefficient. There are a multitude of drag coefficient correlations
developed to accurately model the drag force. M-Star provides two different options to model
the drag coefficient, namely the Free Particle and Packed Bed model. The free particle model
is an analytical representation of the drag coefficient developed by Brown and Lawler[77]:

CD =
24

Rep

(
1 + 0.15Re0.681p

)
+

0.407

1 + 8710
Rep

(3.28)

The other option, the Packed Bed model, is the analytical representation of the drag force on
a bubble in a packed bed described by Rong, Dong and Yu[78]:

CD =

(
0.63 +

4.8√
Rep

)
ϵ
(2−β)
f (3.29)

β = 2.65 (ϵf + 1)− (5.3− 3.5ϵf )ϵ
2
fe

−(1.5−logRe2p)
2 , (3.30)

This drag correlation is mostly applicable to fluidized beds. In both correlations, Rep refers to
the particle Reynolds number[30]:

Rep =
ρdb|u− v|

µ
(3.31)

For all these equations, u is the fluid velocity [m/s], v is the bubble velocity [m/s], ρf is the
fluid density [kg/m3], dp is the bubble diameter [m], νf is the kinematic viscosity of the fluid
[m2/s], ω is the fluid vorticity [1/s], and ϵf is the fluid volume fraction [-]

3.5.2 Bubble break-up and coalescence

3.5.3 Bubble representation

There are two algorithms which can be used in order to model the bubbles, discrete and parcel.

Discrete approach In the discrete approach, every bubble is modeled separately and tracked
individually throughout the fluid. Bubble break-up and coalescence is modeled explicitly using
the approach Reynolds number (Equation 2.13). The value of the approach Reynolds number
determines whether bubbles will coalesce (< 40) or bounce off each other. As the amount of
bubbles present in an industrial sized reactor can be over billions of bubbles, this approach is
limited by GPU memory. Although M-Star mentions that 1 GB of GPU RAM can host up to
25 million bubbles5, Thomas et al.[32] mention that approximately 2 million bubbles can be

4(2009) Ansys Fluent 12.0 theory guide - 15.2.1 equations of motion for particles. Ansys, Inc. Retrieved Jan-
uary 5, 2023, from https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node241.htmdisp-saffman-
lift-force

5”Bubbles” M-Star Simulations, LLC, https://docs.mstarcfd.com/physics/bubbles.html. Accessed 10 Jan.
2023
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tracked by using 1 GB of GPU RAM.

Parcel approach With this approach, clusters of bubbles are grouped together inside parcels.
These parcels represent the collective motion of a group of bubble which have the same diameter
and are influenced by the number scale and the characteristic bubble diameter. The number
scale represents the amount of bubbles present in the parcel while the diameter informs the
Newtonian trajectory of the bubble. Together these values give the surface area and volume of
the cluster and ensure that mass is conserved when the characteristic bubble diameter evolves
according to Equation 2.11 instantaneously throughout each time step as the number scale
evolves naturally through Equation 3.33 to preserve mass[32].

Dp = 0.72
σ

3
5

ρ
3
5 ϵ

2
5

(3.32)

N t+∆t
p = N t

p

(
dtp

dt+∆t
p

)3

(3.33)

The parcel approach is only valid when the bubble mean free path is small compared to un-
derlying variations in the flow field, as the parcel approach implicitly assumes that break-up
and coalescence processes are relatively fast compared to the flow field. Through first principles
theory, it can be predicted whether the parcel approach is valid for the given system using
Equation 3.34 which predicts the distance a bubble travels before colliding with another bub-
ble, relative to the underlying flow field. As the collision ratio Rc decreases the parcel approach
becomes more valid.

Rc ≡
ℓm
λ

=

√
Re

1080

(
db
ϕT

)
(3.34)

Within this equation, ℓmfp refers to the mean free path of the bubbles before bubble collision
takes place, λ refers to the Taylor scale of turbulence, db is the mean bubble diameter, T is the
tank diameter and ϕ represents the gas hold-up throughout the vessel[32]. It is recognized that
the validity of the parcel approach increases as the gas hold-up increases, or the ratio of the
mean bubble size with the tank diameter decreases.

3.5.4 Fluid-bubble coupling

Volume coupling

M-star provides the option to couple the fluid level with the bubble volume. If this is turned
off, the fluid level will remain constant throughout the simulation despite an increase in bubble
volume when the tank is aerated. If this option is turned on the bubble volume will have an
effect on the fluid level throughout the simulation, and as such the lattice domain should be
adapted to account for a rise in fluid level.

Bubble force coupling

Furthermore, bubbles present in the system have an effect on the turbulent fluid flow field[18].
In M-star the two-way coupling setting provides two algorithms to reflect how bubbles influence
the fluid dynamics: density and Third Law.
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Density The Density algorithm is the computational easiest way to account for the effect of
bubbles on the fluid flow. This is because the algorithm only considers the effect of buoyancy
as a function of the bubble volume fraction on the fluid voxel. This algorithm is suitable if the
buoyancy effect on the fluid is much higher then the effect of drag force, which is most of the
times realised for bubbles with the size of 1 mm in an agitated tank 6.

Third Law With this approach, all the forces acting on the bubbles is imposed in opposite
to the fluid.

6”Bubbles” M-Star Simulations, LLC, https://docs.mstarcfd.com/physics/bubbles.html. Accessed 10 Jan.
2023

Page 22



4 Computational setup

This chapter introduces the computational set-up used for the simulations. The computer
specifications are stated, the geometry of the three cases is presented and the key parameters
are discussed. For a complete overview of all the chosen simulation parameters the reader is
referred to section 9.

4.1 Computer specifications

The simulations were performed on a desktop computer with an Intel(R) Xeon(R) W-2265
CPU, 3.50 GHz and 64 GB installed RAM capacities. Furthermore, a NVIDIA RTX3090 24GB
GPU is installed. The Lattice-Boltzmann simulations were conducted using M-Star CFD 3.7.64
(M-Star Simulations, LLC).

4.2 Geometry

Three different cases were simulated in order to get insight into the relevant hydrodynamics of
(bio-)reactors. In this study, bubbles are modeled using the parcel approach. The first case is
a replication of the work done by Thomas et al.[32]. This was done in order to check whether
the chosen parameters were a good fit for the next cases. The second case is a computational
study on the experimentally obtained bubble size distribution by Barigou[31]. The last case is
a study on the hydrodynamics of the industrial sized Stavanger bioreactor. The key geometry
sizes are summarized in Table 3, but are elaborated on in the corresponding sections.

Table 3: Geometry of the considered cases

Case number Symbol 1 (Thomas) 2 (Barigou) 3 (Stavanger)

Tank Diameter (m) T 0.76 1 2.09

Tank Height (m) HT 1 1.50 11

Liquid Height (m) H 0.76 1 6.55

Fluid volume (m3) V 0.35 0.79 22

Impeller Diameter (m) D 0.305 0.333 0.697

Impeller Clearing Bottom (m) C 0.234 0.25 1.12

Impeller Spacing (m) dC 0.291 - 1.46

Sparger Clearing (m) 0.13 0.018 0.47

Sparger Diameter (m) 0.23 0.1 0.4

4.2.1 Case 1: validation case

The reactor of the validation case is shown in Figure 12. The tank is cylindrical and has a
diameter of 0.76 m, and a liquid height of 1m, which corresponds to a liquid volume of 0.35 m3.
The bottom of the tank is flat, while the top is open. The tank has four baffles with a width of
0.064 meter and a thickness of 1 mm.

The tank is aerated by a torus-shaped sparger with a clearance of 0.13 m from the bottom of
the reactor with a diameter of 0.23 meter. The bubbles are dispersed by two down-pumping
Hydrofoil turbines (Catalogued as High Solidity Hydrofoil in M-Star). The bottom impeller
has a clearance of 0.234 meter from the bottom, and the top impeller has a clearance of 0.525
meter from the bottom. Both impellers have a diameter of 0.305 meter and rotate with a speed
of 150 rpm. Bubbles are fed to the reactor with a rate of 90 L/min with an initial bubble size
of 1.5 mm.
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Figure 12: The vessel of the validation case by Thomas et al[32].

A grid spacing of 250 lattice points per vessel diameter ensured grid-independent impeller power
number convergence and therefore the results can be considered as independent from grid spac-
ing. The power grid convergence plot can be seen in Appendix C Figure 38. The Courant
number was set to 0.1 which ensured a stable simulation.

4.2.2 Case 2: bubble size distribution

(a) Depiction of the builded tank with con-
trol volumes.

(b) Position of the measurement probes used for the
bubble size distribution experiment in the plane be-
tween two baffles(sizes in mm)[31].

Figure 13: Representation of the cross-section of the tank in between two baffles.

Figure 13a depicts the build geometry for the BSD simulations and Figure 13b shows one half
of the tank with the specified positions of the probes used during the experiment[31]. The
dimensions of the cylindrical tank with a flat bottom are shown in Table 3. The tank was
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agitated by a standard Rushton turbine with six blades, and a torus shaped sparger provided
the aeration. The tank has four baffles on the side ranging from top to bottom with a width of
0.1 m and thickness of 7 mm. As the main task of this case was to investigate the bubble size
distribution, it was chosen to set up 22 Control Volumes (CVs) in order to get the distribution at
the respective locations in the tank. The CVs have sides with a length of 0.095m, corresponding
to a volume of 0.857377 L. The middle of the cube corresponds with the location of the probes
in the experiments. Furthermore, output lines have been set up through the middle of every
row of control volumes, in order to get better insight into the relevant hydrodynamics for the
bubble size distribution. A resolution of 250 lattice points across the vessel diameter and a
Courant number of 0.05 ensured a grid independent impeller power number and stability.
As to compare the suitability of the LBM, and the influence of agitation rate and gas flow
rate on the obtained numerical results, twelve cases which consisted of three different gas flow
rates with varying agitation speeds were performed and compared with the experimentally ob-
tained results of Barigou[31]. The specific agitation rates for the three varying gas flow rates
are shown in Table 4 together with the injection scale. The injection scale is the number of
modeled bubbles which are initially represented by one parcel. It has been shown that, although
the computational burden is lessened significantly, the order-of-magnitude of the injection scale
has no large influence on the amount bubbles modeled if the discrete model was to be used.

If the mean bubble diameter would be 0.5 mm for a gas hold-up of 11.45%, the total amount
of bubbles present in the system would be 172 million. As such, the discrete approach could
potentially be used to simulate this particular case according to M-Star. However, Thomas et
al. mention that, instead of 25 million bubbles, only 2 million bubbles can be tracked with 1
GB of GPU RAM. Even if 1 GB of RAM is capable of tracking 25 million bubbles, the discrete
approach would require a significant amount of computational time to complete, and this was
considered unfeasible for the current case.

Table 4: Specifications of the twelve different cases

Gas Flow Rate Injection Scale RPM RPM RPM RPM

0.00164 [m3/s] 20 100 150 280 250
0.00438 [m3/s] 50 130 180 270 300
0.00687 [m3/s] 75 180 200 285 385

The validity of the parcel approach can be assessed by using Equation 3.34. The parcel approach
becomes increasingly valid as RC decreases. For an agitation speed of 100 RPM, and a GFR of
0.00164m3/s, the experiments indicate a gas hold-up of 1.91%. By estimating a mean bubble
diameter of 3 mm, which is most probably an overestimation, Rc will be 2.07 and thus the mean
free path of the bubble is order-of-magnitude consistent with variations in the turbulent flow
field. For an agitation speed of 385 RPM, and a GFR of 0.00687m3/s, the experiments indicate
a gas hold-up of 11.45%. For RC to reach unity, the mean bubble size should be 4.46 mm. This
is a larger mean diameter than the experimental results indicate, and as a smaller bubble size
would results in a lower RC , the parcel approach is also applicable in this case. By examining
these two cases it is determined that the parcel approach is indeed valid for this simulation.

4.2.3 Case 3: industrial sized Stavanger bioreactor

This case consisted of a cylindrical tank with a flat bottom, agitated by Rushton turbines and
aerated by a torus-shaped sparger. The dimensions and spacing of the impellers and sparger
are shown in Table 8. The tank has four baffles across the walls with a width of 0.1672 m and
thickness of 1 cm. Output lines were placed along every impeller height to gain insight into the
EDR generated by the impeller. A resolution of 240 lattice nodes across the tank diameter and
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a Courant number of 0.04 ensured a converged grid with stability with a reasonable computa-
tional speed.

Figure 14: Geometry of the Stavanger case[26]

Twelve main (sub)cases were simulated with varying gas flow rates and agitation rates. The
four agitation rates are 0, 100, 115 and 133 RPM. The three gas flow rates with corresponding
used injection scales are shown in Table 5. The experimental data indicates that a gas hold-up
of 7.7% is expected for an agitation rate of 100 RPM and a GFR of 2700 L/min. For RC to be
unity, the mean bubble diameter should be 5.88 mm. As such, the parcel approach is valid for
the industrial-scale case.

Table 5: Injection scales used for the parcel approach for the different gas flow rates.

Gas Flow Rate [L/min] Injection Scale

2700 5000
5400 10000
10800 20000

4.3 Universal parameters

All simulations were performed with the free surface fluid model. This model is needed when
simulating multiphase cases. The interface between the liquid and the atmoshpere above the gas
(or headspace) is the free surface. For turbulence modelling the LES model with a Smagorinsky
coefficient of 0.1 was used[73].

Physical Properties The density of the fluid -water, a Newtonian fluid- was set to 1000
kg/m3 with a kinematic viscosity of 10−6[m2/s]. The headspace pressure was set to 101325
[Pa] and a surface tension of 0.072[N/m] was applied between the fluid and bubbles. The
bubbles enter the vessel with a density of 1.2 kg/m3 and an initial diameter of 1.5 mm. The
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hydrostatic effects on the bubble size are not considered as this is not supported for the parcel
approach.

Forces, Break-up and Coalescence As the case of Thomas et al.[32] was used to validate
the current approach, their enabled forces acting on a bubble were used. As such, the gravity,
buoyancy and virtual mass forces were turned on. For the drag force the FreeParticle model
was used and the bubble was two-way coupled with the fluid via Newton’s third law. When
bubbles encounter a solid object, the bounce back option was used. Break-up and Coalescence
were turned on, while the parcel representation was used with the UnifiedModel as Breakup
model. A maximum coalescence diameter of 1 cm was enforced, with a deletion parameter of
10−5. The Third Law Numerical Scaling was kept on the default of 0.5.

Boundary Conditions and Wall Interaction The boundary conditions were set to NoSlip
with the exception being the top of the vessel where the FreeSlip boundary condition was set.

The wall boundary type was set to interpolated, rather than grid-aligned, implying that the
effects of the wall on the fluid particles are extrapolated as a function of distance from the wall.
This approach should be superior when using curved walls. Wall functions can be implemented
to account for the over-estimation of the EDR near walls when using LES simulation[79]. For
simulation stability the wall function was turned off, meaning that no model was used in order
to satisfy the physics near the wall7. The fluid Interaction was turned on such that interactions
between the fluid and wall are enabled. The internal mass of the impellers were neglected when
the forces on the fluid were calculated. It was shown that the ommittance of a wall function
has little impact on simulations by Haringa[80]

4.3.1 Free Ssurface interaction

All bubbles which come in contact with the free surface are removed from the simulation.
However, there was an issue where bubbles became trapped under the free surface, shown in
Figure 15. Because of this, the liquid level kept on rising as more and more bubbles accumulated
in the vessel until a ’breaking point’ was reached where suddenly all the bubbles under the free
surface disappeared and the cycle of accumulation and removal continued. Therefore the bubble
removal volume fraction was set to 0.1 to ensure that bubbles are removed when in contact with
the free surface. This implicates that, when the liquid volume fraction reaches a value of 0.1,
bubbles are removed from the simulation in that specific voxel. However, setting the removal
fraction could have an impact on accumulation of bubbles within the vessel itself.8

7(2020) What is y+(yplus), SimScale, Retrieved: December 27, 2022, from simscale.com/forum/t/what-is-y-
yplus/82394

8The solution of setting a removal factor was recommended by M-star in order to circumvent the accumulation
issue. They had never seen this glitch before and claim that the issue is over with an update of the software.
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Figure 15: Bubble accumulation at the free surface. Instead of leaving the system when reaching
the free surface, the bubbles become ’trapped’ underneath.
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5 Results - validation and bubble size distribution

This chapter covers the results of the validation case and BSD case, while simultaneously dis-
cussing te results. The volume of these cases where of lab-scale.

5.1 Validation case - lab scale

Figure 16 shows the amount of bubbles present in the system as a function of time. As can
be expected, the amount of bubbles fluctuate heavily although on average a steady state is
reached. Although the amount of bubbles present in the system still increases a bit after 45
seconds, the system is considered to be in steady state and it is not expected that it affects the
average of bubbles present in the system significantly. In addition, the gas hold-up does increase
slightly from t = 45s, while the mean bubble diameter decreases slightly. To verify whether the
simulation has indeed reached a steady state, the simulation time was extended. As expected,
the amount of bubbles present in the system dropped again. This is shown in section 10.

Figure 16: Bubble count for the validation case.

The values for the bubble count, mean bubble diameter and gas hold-up are shown in Table 6
and are obtained by time-averaging from t = 30-60 seconds. On average, the amount of bubbles
present in the system after reaching steady state is 496 thousand bubbles (496,922). This is in
line, although slightly lower, than the 503,000 thousand bubbles mentioned in the article when
using the discrete approach. The mean diameter d10 of the bubble size is 1.3mm vs 1.26mm.
The gas hold-up is 0.87% vs mentioned 1%. The chosen parameters and parcel approach give
a slight under-prediction of the gas hold-up and amount of bubbles present in the system, but
it is considered to be in the acceptable range.

Table 6: Comparison between values obtained by the discrete bubble representation and parcel
representation. The values are time-averaged from t = 30-60 seconds. The values for the discrete
representation are taken from Thomas et al.[32].

Discrete (Paper) Parcel (Verification)

Bubble Count (-) 503,000 496,922
Mean Bubble Diameter (mm) 1.2 1.26
Gas Hold-up (%) 1 0.87

A thing to note is that the article does not specify at which time-step they start to average
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the values of the bubble count, bubble diameter and gas hold-up, which could influence the
comparison between the results. For example, if time-averaging was started after 45 seconds,
the average amount of bubbles present would be 558,904, which is an over-prediction compared
to the discrete approach, but almost similar to the the 557,000 bubbles mentioned in the article
when using the parcel approach. Furthermore, the mean diameter of the bubble would be 1.20
mm if time averaged after 45 seconds while the gas hold-up would be 0.89 %. The values of the
gas hold-up and mean bubble diameter are not specified for the parcel approach conducted by
Thomas, so those values cannot be compared to the current work.

5.2 Case 2: lab-scale tank (BSD)

5.2.1 Gas hold-up

The gas hold-up values for the experimentally obtained results and LBM predictions are dis-
played in Table 7. Although the gas hold-up increases as the agitation speed or the GFR is
increased, the predicted values of the gas hold-up are too low compared with the experimental
data. When comparing the gas hold-up for all the cases, it is seen that M-star consequently
predicts the gas hold-up with a factor of 3-5 times too low. And as such, the amount of bub-
bles present in the vessel or the residence time too low. There are multiple reasons why the
residence time could be too low. If the size of the modeled bubbles is too large, they will leave
the vessel faster when compared to smaller bubbles due to buoyancy[81]. The drag force is
another force which plays a key role in the residence time of bubbles[82]. If the drag force is
modeled incorrectly the residence time of the bubbles, and thus the gas hold-up, could deviate
significantly.

Table 7: Gas hold-up comparison for the experimental obtained values and the LB CFD results

GFR (m3/s)

0.00164
RPM 100 150 180 250
Exp 1.91 % 2.56 % 2.97 % 3.65 %
CFD 0.41 % 0.47 % 0.50 % 0.58 %

RPM 130 180 270 300
0.00438 Exp 5.12% 6.10% 6.99% 7.51%

CFD 1.20% 1.29% 1.57% 1.66%

RPM 180 200 285 385
0.00687 Exp 7.72% 7.78% 9.56% 11.45%

CFD 2.02% 2.05% 2.52% 2.90%

5.2.2 Bubble size distribution

Figure 17, Figure 18 and Figure 19 shows the experimentally obtained Sauter mean diameter
and the numerically obtained mean diameter at different positions in the tank for respectively
0.00164 m3/s, 0.00438 m3/s and 0.00687 m3/s with different agitation speeds. What must be
noted in advance is that the experimentally obtained bubble size distribution represents the
Sauter mean bubble diameter d32, while the numerically obtained distribution shows the mean
bubble size characterized d10. Unfortunately M-star does not provide the option to register the
Sauter mean diameter, and therefore it was chosen to represent them in this way. Although in
general the d32 > d10, the differences should not be too large[47]. Nevertheless, if the d32 bubble
size was acquired from the simulations, the over estimation of the mean bubble size would be
larger.
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In line with the experimental data, the smallest bubble sizes are found in the region next to
the impeller. This is due to the generated turbulence which is the highest close to the impeller.
As the agitation speed is increased, turbulent kinetic energy generated by the impeller becomes
larger and the bubbles tend to become smaller at the impeller plane.

(a) Experimental results.

(b) LB-CFD results.

Figure 17: Comparison of the obtained bubble size distribution at a gas flow rate of 0.0164
m3/s. The top row reflects the experimental data, the bottom row the CFD resuls.

When considering the data of Figure 17, the simulation predicts a loading regime for an agitation
speed of 100 RPM as there are no bubbles present in the region underneath the impeller, which
is in line with the experimental data. According to the acquired BSD for an agitation speed of
150 RPM, the bubble are dispersed throughout the vessel, which contradicts the experimental
data. However, this discrepancy could be due to the size of the control volumes which were set
up, while in the experiment a capillary probe was used to determine the size of the bubbles.
While the capillary acquires the BSD at a specific point in the vessel, the CV’s acquire the size
of the bubbles in a volume of 0.86 L which could influence the results.

When focusing on the bubble sizes at the control volumes, it is observed that in the region
next to the impeller the bubble sizes are close to the sizes of the experiment, with the control
volume right next to the impeller predicting a too high bubble size, and the next regions being
marginally smaller than the experimental values. The regions above the impeller show a larger
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offset between the experimental values and the numerical values, with the numerical value be-
ing predicted with a factor of roughly two too high. Bearing in mind that d10 < d32, it can be
deduced that the bubble size distribution in the area above the impeller plane is not predicted
properly when compared to the experimental BSD. However, the offset does diminish as the
agitation speed is increased.

(a) Experimental results.

(b) LB-CFD results.

Figure 18: Comparison of the obtained bubble size distribution at a gas flow rate of 0.0438
m3/s. The top row reflects the experimental data, the bottom row the CFD resuls.

The experimentally and computationally obtained bubble size distributions for a gas flow rate
of 0.00438 m3 are portrayed in Figure 18. For an agitation speed of 130 RPM the CFD results
predict fully dispersed hydrodynamics while the experimental results reflect a loading regime,
but as before this could be due to the size of the control volumes. As before, the BSD in
the impeller plane are closest to the BSD obtained by the experiment while the area above
the impeller plane display bubble sizes larger than experimentally obtained. Furthermore it is
observed that the bubble sizes tend to become smaller as the agitation speed is increased, with
the BSD at an agitation speed for 250 RPM nearing the BSD obtained by Barigou.
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(a) Experimental results.

(b) LB-CFD results.

Figure 19: Comparison of the obtained bubble size distribution at a gas flow rate of 0.0687
m3/s. The top row reflects the experimental data, the bottom row the CFD resuls.

The cases with the highest gas flow rate, 0.00687 m3/s, are shown in Figure 19. These cases
also feature the largest set of agitation rates, with a minimum of 180 rpm and a maximum of
385 rpm. The first thing which is noted is that the dispersion of the bubbles is not properly
predicted for the cases with an agitation rate of 180 rpm and 200 rpm, as it is predicted that the
bubbles are completely dispersed which is not supported by the experimental data. The CFD
bubble sizes at the impeller plane predict bubble sizes which are lower than the experimental
bubble sizes. Keeping in mind that the CFD data reflects the d10 values and the experimental
data the d32 values, this could imply that at a higher gas flow rate the bubble sizes at the
impeller plane are a better fit to the experimental data, although it is impossible to make a
quantitative conclusion based on this observation. When considering the region above the im-
peller, the bubble sizes are still predicted to be too high for the agitation rates of 180, 200 and
285 RPM. Interestingly, the BSD for an agitation rate of 385 RPM is remarkably close to the
experimental data. At almost every position the bubble sizes are predicted to be lower then the
experimental values, with the exception being at the interface between the fluid and the head
space.

The only agitation rate present for the three different aeration rates is 180 RPM. A higher gas
flow rate leads to more coalescence events and thus a higher bubble size, and is supported by
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the experimentally obtained BSD. However, this is is not the case for the obtained BSD by
using the LBM simulations, where the bubble sizes decreases (albeit not significantly) when
the aeration rate is raised at the same agitation speed. Considering an uncertainty in bubble
size determination by using CV’s and the current approach, the aeration rate has no significant
influence on the bubble sizes although increasing the gas hold-up in the vessel. The most
probable reason for the aeration rate having no effect on local bubble size is the usage of the
parcel approach when modelling the bubbles. In this approach, the bubble diameter evolves
instantaneously according to Equation 2.11 as a function of the local eddy dissipation rate ϵ.
As bubble coalescence is temporal restricted, the assumption of instantaneous evolving of the
bubble diameter could lead to a significant deviation.

5.2.3 Eddy dissipation rate

The dimensionless eddy dissipation rate (ϵ) against the normalized diameter of the tank ranging
from tip of the impeller to the wall was measured at the impeller output plane. This is shown in
Figure 20 for an agitation speed of 180 RPM and 385 RPM. The EDR measured at all the output
lines for these cases can be found in section 8. This was done in order to compare the computed
ϵ with the dimensionless analysis of Wu and Patterson[83] and the experimental obtained values
by Ducci and Yianneskis[84]. They obtained experimentally obtained values for ϵ by using laser
Doppler anemometry (LDA) and Particle Image Velocimetry (PIV) measurements[84]. Both
cases show the same profile for ϵ, which is expected. The LES simulation underestimates the
EDR near the impeller when comparing it to the values obtained by Ducci et al.[84], while
it does give a good agreement with the dimensionless analysis of Wu and Patterson[83] at a
further distance from the impeller. The underestimation of ϵ was also mentioned by Hartmann
et al.[85] and Derksen et al.[86] when using LES models with a Smagorinsky coefficient of 0.1.
The underestimation of the EDR at the impeller wake implies that the smallest eddies are not
correctly captured by the model, which could have implications for the equilibrium diameter
of the bubbles as it is correlated to the EDR (Equation 3.6). Studies have shown that setting
the Smagorinsky coefficient to 0.2 could lead to a better agreement of ϵ with experimental
data[87][88].

(a) 180 RPM (b) 385 RPM

Figure 20: Non-dimensionalisation of the eddy dissipation rate. Abbreviations: W.P = Wu
Patterson[83], D.Y = Ducci and Yianneskis[84].

5.2.4 Influence of the maximum coalescence diameter parameter

Three additional simulations were conducted with a maximum coalescence diameter of 5mm
instead of 10 mm, ensuring that the bubble size distribution was more in line with the experi-
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mental data. The BSD for an agitation speed of 180 RPM at different gas flow rates are shown
in Figure 21. When a maximum coalescence diameter of 5 mm is enforced, the bubble size
distribution throughout the vessel agrees better with the experimental data. The gas hold-up,
in contrast, only improves marginally and the effect of the maximum coalescence diameter on
the hold-up is negligible in these cases.

(a) 0.00164 m3/s (b) 0.00438 m3/s (c) 0.00687 m3/s

Figure 21: Comparison of the influence of the specified max coalescence diameter for an agitation
rate of 180 RPM for the three specified gas flow rates. In these cases, a maximum coalescence
bubble size of 5mm was enforced instead of 10mm. Although the bubble size distribution in the
vessel is more in line with the experimental data, the estimated gas hold-up does not improve
with respect to the experimental data.

5.2.5 Contour plots

The contour plot of the gas fraction at an agitation speed of 180 RPM and GFR of 0.00164
m3 is shown in Figure 22. The axis is scaled from 0-2.5% where the red spots indicate regions
with a gas hold-up higher than 2.5%. The bulk of the vessel contains a gas hold-up lower than
1%, which is coherent with the gas hold-up in the vessel being 0.50%. As expected, the bubbles
are weakly dispersed throughout the vessel, with a weak re-circulation pattern underneath the
Rushton impeller. The gas hold-up is the largest at the walls of the tank (when disregarding
the gas hold-up above the sparger).
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Figure 22: Contour plot of the gas fraction for an agitation speed of 180 rpm and GFR of
0.00164 m3/s. The axis is scaled from 0-2.5% gas hold-up. The dark red spots indicate regions
where the gas hold-up exceeds 5%.

A stronger recirculation pattern underneath the impeller plane is acquired when increasing the
agitation speed to 385 RPM. The contour plot for such an agitation rate with a GFT of 0.00687
m3/s is displayed in Figure 23. This axis is scaled form 0-10%, where the dark red spots indicate
a gas hold-up exceeding 10%. As before, the gas hold-up is significantly higher at the tanks
walls then in the bulk of the fluid.

Figure 23: Contour plot of the gas fraction at an agitation speed of 385 rpm and GFR of 0.00687
m3/s. The axis is scaled form 0-10% gas hold-up. The dark red spots indicate regions where
the gas hold-up exceeds 10%.

A probable cause for the insufficient described dispersion of bubbles is the used drag correlation.
Guan et al.[89] studied the effect of four drag models on the gas hold-up throughout the vessel
when using an Eulerian-Eulerian approach on RANS simulations, and demonstrated that the
used drag model is exceptionally important when predicting the gas-liquid flow inside vessels.
In the simulations, they only considered the drag force and neglected all other relevant forces
(which was suggested by Scargiali et al.[90]), and concluded that using DBS-Local and DBS-
Global drag models give a good agreement with experimental data regarding the flow regimes,
liquid flow field and gas hold-up. Furthermore, it was deduced that using the Schiller-Neumann
drag correlation (Equation 5.1), a slight modification of the free particle model (Equation 3.28)
described by Brown et al.[77], gives an overestimation of the gas hold-up near the impellers due
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to an underestimation of the drag force. They also concluded that this drag model gives an
underestimation of the gas hold-up with an increase in radial distance from the impeller.

CD0 =

{ 24
Reb

(
1 + 0.15Re0.687b

)
Re < 1000

0.44 Re > 1000
(5.1)

Zadghaffari et al.[91] simulated this particular case using different drag models with an Eulerian-
Eulerian multiphase k-ϵ model, and compared the obtained gas hold-up with the experimentally
obtained gas hold-up by Barigou et al.[31]. They concluded that the use of the Schiller-Neumann
correlation resulted in a significant underprediction of the gas hold-up when compared with
experimental data. However, when modifying the drag coefficient based on the force on a rising
bubble in stagnant liquid (Equation 5.2) proposed by Scargiali et al.[90], they obtained results
similar to the experiment. In this correlation, the terminal velocity of the bubble is the only
significant contribution to the drag force.

CD =
Vp (ρg − ρl) g

(1/2)ApρlU
2
T

(5.2)

In this equation, UT is the terminal velocity of bubbles in stagnant water. Zadghaffari et al.
modified the terminal velocity correlation (Equation 5.4) by Mendelson et al.[92] by correlating
it to the terminal velocity in an agitated tank, US :

US

UT
= 0.32 tanh

[
19

(
η

db

)(
∆ρ

ρl

)0.5

− 1

]
+ 0.6 (5.3)

UT =

[(
2.14

σ

ρd

)
+ 0.505gd

]0.5
(5.4)

In this correlation, the ratio η/db is the ratio betwen the Kolmogorov microscale (η = (ν3/ϵ)0.25)
and the bubble diameter. When using these correlations, Zadghaffari et. al were able to predict
a gas hold-up which gave good agreement with the experimental results of Barigou and Greaves.

5.3 Velocity distribution in the impeller plane

Despite being outside of the scope of the current work, there is an interesting observation
regarding the maximum velocity reached in the fluid worth mentioning. The maximum velocity
at the impeller plane for an agitation speed of 385 RPM is shown in Figure 24. Despite the
impeller rotating with a speed of 6.71 m/s, the CFD results reflect a maximum velocity of 13
m/s in the impeller wake. This same phenomenon is observed when the agitation rate is lowered
too 180 RPM (3.14 m/s) where the maximum observed fluid velocity is 8.92 m/s. This was
also observed in work done by Shu et al.[93] using the LBM with the highest velocity being
2.2 times larger than the impeller tip velocity. As this observation is outside the scope of the
current study, this is left for further research.
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Figure 24: Contour plot of the fluid velocity at the impeller plane for an agitation rate of 385
rpm and a GFR of 0.00687 m3/s. The axis is scaled from 0-13 m/s, with the red spots indicating
areas reaching a velocity of 13 m/s.
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6 Results - industrial fermentor

This chapter displays the obtained results of the industrial 22m3 reactor of Stavanger, while at
the same time discussing the results. The gas hold-up and power consumption of the (aerated)
impellers are discussed. One case is compared to previously obtained CFD results using the
Finite Volume CFD technique[26]. The experimental results are obtained from Vrábel et al.[24].
The source also contains unpublished results from Rob van der Lans.

6.1 Gas hold-up

The acquired gas hold-up using CFD and experiment is presented in Table 8. The gas hold-up,
as before, underestimated compared to the experimental data set, which is especially prevalent
for the lowest GFR of 2700 L/min. Interestingly, the dissimilarity between the CFD and
experimental values for the gas hold-up diminishes as the GFR is increased, which can be
observed in Figure 25a. The influence of the agitation speed on the gas hold-up can be observed
in Figure 25b.

Table 8: Comparison of the LBM and experimental values for the gas hold-up.

(a) Gas Hold-up for the obtained CFD results
and experimental results of the industrial fer-
mentor.

GFR (L/min)
2700 5400 10800

0 1.80% 3.44% 6.51%
100 3.26% 6.33% 12.34%

RPM 115 3.47% 6.78% 13.09%
133 3.71% 7.23% 14/06%

(b) Experimental results.

GFR (L/min)
2700 5400 10800

0 4.7% 9.1% 12.9%
100 7.7% 12.4% 14.2%

RPM 115 8.4% 13.1% 15.2%
133 8.5% 13.3% 17.1%

(a) Gas hold-up for different agitation speeds as a
function of the GFR.

(b) Gas hold-up for different GFR as a function of
RPM.

Figure 25: Gas hold-up as a function of the RPM and the GFR. The blue color indicates
experimental values, the red color indicates CFD values.

As discussed previously, the used drag correlation is insufficient to describe the dispersion
and residence time of bubbles, leading to a lower gas hold-up in the vessels. It is therefore
interesting that at the highest GFR the gas hold-up shows a significantly improved agreement
with experimental data. A possibility for this increase in accuracy might be the overestimation
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of the bubble swarm effect. As multiple bubbles are present in the system, the drag force will be
influenced by the formed bubble swarms[94]. To account for bubble swarm effects, a correction
needs to be added to the drag coefficient by relating it to the gas hold-up[95]:

CDs = CD(1− αg)
p (6.1)

In which αg is the gas hold-up and p is the correction factor. In the current work, the drag
coefficient was not related to the gas hold-up and swarm effects were thus not accounted for.
This is because the used Free Particle model describes the drag on a single particle in a fluid,
and thus therefore not account for the effect of multiple bubbles on the drag. By incorporating
this correction into the model, the drag coefficient is lowered as the gas hold-up increases.
This explains why at a lower superficial GFR, the gas hold-up deviates more significantly from
the experimental data as the drag coefficient is underestimated. At the highest GFR, the
under estimation of the drag coefficient is balanced with the over estimation regarding the
bubble swarm effects, and thus the CFD results are more in line with experimental data. The
Tomiyama drag correlation[96] could potentially lead to a better predicted gas holdup. This
drag correlation has been commonly used for multiphase flows, and has proven to be an effective
drag model to describe bubble dispersion throughout vessels[97][98]. Furthermore, this drag
correlation has been utilized by Witz et al.[30] and Bernauer et al.[29] for large-scale reactors,
in which the predicted gas hold-up showed good agreament with experimental data. They
applied the Tomiyama drag coefficient for pure systems, as shown in Equation 6.2.

CD0 = max

{
min

[
16

Rep

(
1 + 0.15Re0.687p

)
,
48

Rep

]
,
8

3

Eo

Eo+ 4

}
(6.2)

in which Eo is the Eötvös number:

Eo =
g (ρl − ρg) d

2
b

σ
(6.3)

6.2 Power consumption

The ungassed power consumption (Po) of the impellers are shown in Table 9. As expected,
the resolved power dissipation is orders-of-magnitude lower compared to the power dissipation
due to the unresolved eddies dissipating the bulk of the energy. There is a slight discrepancy
between the observed power consumption of the impellers and the power dissipation. When the
Power number is computed from the power consumption, the single impeller NP ≈ 3.6, which
is an under prediction when compared to experimental data (NP = 4.6-6.0[80]).

Table 9: CFD results for the ungassed power consumption.

RPM
Impeller 1
[W ]

Impeller 2
[W ]

Impeller 3
[W ]

Impeller 4
[W ]

Rotor
[W ]

Power Diss.
[W ]

Resolved Diss.
[W ]

100 2732.879 2829.699 2775.199 2647.509 13.6571 12024.67 108.26
115 4159.578 4332.023 4265.516 4042.246 20.9713 18320.24 143.5223
133 6406.005 6693.768 6622.277 6216.069 32.37857 28198.29 193.1378

The measured experimental power consumption is displayed in Table 10. When comparing the
experimental power consumption with the computed power dissipation, there is a significant
deviation. The most probable cause for the deviation is an under estimated EDR using a
Smagorinsky coefficient of 0.1.
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Table 10: Estimated power consumption of the experiment.

RPM Power Consumption (W)

100 18700
115 29260
133 45100

The normalized EDR outline of the bottom impeller is plotted against the normalized tank
radius as depicted in Figure 26. As with case 2, the computed EDR is too low compared to the
experimental data of Ducci and Yianneskis[84]. When compared with the normalized EDR of
case 2, it is observed that the maximum EDR for this current case is slightly lower.

Figure 26: Plot of the normalized EDR. Abbreviations: W.P = Wu Patterson[83], D.Y = Ducci
and Yianneskis[84].

The ratio of the power consumption at aeration (Pg) with P are shown in Table 11. Where
the experimental data indicates a significant reduction of power consumption when aerated, the
CFD results lack those. At best, the power consumption when aerated has only dropped 3% for
an agitation speed of 115 RPM and GFR of 5400 L/min, while the other cases predict a drop
of 1 and 2%. The observed power reduction in the experimental set is due to the formation of
gas cavities in the impeller wakes[99][100].

Table 11: Pg/P for different aeration rates and agitation speeds.

(a) CFD results.

RPM
GFR (L/min) 2700 5400 10800

100.2 0.98 0.99 0.99
115 0.98 0.97 0.98
133 0.98 0.98 0.98

(b) Experimental results.

RPM
GFR (L/min) 2700 5400 10800

100.2 0.50 - 0.33
115 0.55 - 0.34
133 0.56 - 0.37
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Figure 27a displays the velocity contour at the impeller plane which is the second from bottom
impeller. The red spots indicate trailing vortices behind the impeller blades, which have the
highest velocity. While comparing this with the gas hold-up in Figure 27b, there seems to be
no formation of gas cavities residing in the trailing vortices.

(a) Velocity contour plot. (b) Contour plot of the volume fraction of the bubbles.

Figure 27: Velocity and bubble volume fraction contour plot at the impeller plane.

The Euler-Lagrangian approach of modelling the bubble particles could have implications for
the formation of gas cavities in the trailing vortices. In the current approach, the Lagrangian
bubbles inform the Eulerian flow field via two-way coupling using Newton’s third law. Via
this coupling, the sum of the gravity, buoyancy, virtual mass and the drag forces acting on the
bubble are applied in reverse on the fluid voxel. Via DNS, Oweis et al.[101] indicated how the
pressure gradient arising from vortices attracts small (non-condensable) gas bubble which leads
to a significant increase of gas concentration in said cavities. As the pressure gradient was not
applied in the current work, this will negatively influence the attraction of small bubbles to the
trailing vortices. Cheng et al.[102] also showed how the pressure gradient significantly increases
the gas concentration at the vortices. Furthermore, they argued that the current Lagrangian
bubble tracking is insufficient to describe the formation of gas cavities inside the flow field.
They proposed a cavitation model where the the total bubble presure, vapor pressure and par-
tial pressure of non-condensable gas is redirected to the solver to simulate gas cavities in the
Eulerian flow field.

The fluid density contour and fluid volume fraction contour at the same impeller plane as before
are shown in Figure 28. The bubble particles ensure a decrease of fluid density, however it does
not inform a difference in the fluid volume fraction, which is unity throughout the impeller
plane while there are bubble volumes present, as depicted in Figure 27b. With the proposed
model of Cheng et al. the fluid volume would be affected by the presence of gas cavities in the
Eulerian flow field.
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(a) Fluid density contour plot. (b) Fluid volume fraction contour plot

Figure 28: Contour plots of the density and volume fraction of the liquid at the impeller plane.

In addition, the setting of the bubble removal fraction described in subsubsection 4.3.1 could
influence the formation of cavities. By setting this value to 0.1, representing the liquid fraction,
ensured that bubbles left the tank when in contact with the free surface. However, as gas
cavities are essentially formed by agglomerations of bubbles, it could have an impact on the
removal of bubbles in the trailing vortices if gas cavities are formed. In the software update of
M-star there is a Lagrange-to-Euler conversion, where agglomerations of bubbles are conversed
into empty lattice nodes to model the formation of gas cavities, which is essentially the proposal
of Cheng et al.[102].

6.3 Comparison CFD techniques

The case with an agitation rate of 180 RPM and GFR of 10820 L/min was also performed by
Haringa et al.[26], using a Finite Volume CFD with the k-ϵ RANS approach, and is therefore
compared to the LBM and experimental values. Table 12 show the values of the experimentally
determined gas hold-up, power number. The mean bubble diameter, in addition to the previous
mentioned parameters, also shown for both CFD approaches. As mentioned earlier, there is
an under prediction of the gas hold-up when using the current LBM set-up, which is due to
incorrect modelling of the drag force on the bubble. Experimental data regarding the mean
bubble size is lacking, and as such the mean bubble size (d10) of the current work can only
be compared to the obtained mean Sauter bubble size (d32) obtained by Haringa et al. They
mentioned that the mean bubble size of 8.9 mm is an overestimation of the size when compared
to lab scale studies of Barigou and Greaves[31]. When comparing the obtained mean d10 bubble
size using the LBM, it is a severe underestimation compared to Haringa et al.

Table 12: Comparison of the obtained results for LB-CFD, FV-CFD[26] and experimental
results.

CFD LB CFD FV Exp

Gas Hold-up (%) 14.06 17.6 17.1
NP (gassed) 15.3 9.6 9.2
db(mm) 0.45 8.9 -

The displayed NP reflectes the combined power number of all the present impellers, and is
significantly higher compared with the FV-CFD approach and experimental values. This is
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due to the absence of gas cavities present in the vortex trails, and the non-dependency of the
gas hold-up on the consumed power in the current set-up. It is worth noting that the power
number of the impellers fluctuate significantly under aerated conditions. This is reflected in
Figure 29, where the power number is plotted as a function of time. The most probable reason
for this fluctuation is that the numerical algorithm matches the power number with the power
dissipation as the density of the fluid changes due to the present bubbles.

Figure 29: Power number of the impeller as a function of time.

A comparison between both CFD approaches regarding the gas hold-up is shown in Figure 30.
Both axis are scaled from 0-100%, while it is noted that the color schemes vary for both cases.
The multiple Rushton turbines lead to clear compartmentalization for both approaches. How-
ever, the approach used by Haringa et al. leads to a superior dispersion of the gas fraction
throughout the vessel, which is especially prevalent for the gas hold-up above the top impeller.
They used Fluent’s Universal drag model9, which is established from the drag model of Ishii et
al.[103], which highlights the importance of a correctly modelled drag force.

9(2009) Ansys Fluent 12.0 Theory guide - 16.5.4 Interphase Exchange Coefficients. Ansys, Inc. Retrieved
January 10, 2023, from https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node323.htm
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(a) LB-CFD (b) FV-CFD[26]

Figure 30: Comparison of the gas hold-up between the LB-CFD and FV-CFD for an agitation
rate of 133 rpm and gas flow rate of 10820 L/min. Both axis are scaled from 0-100%, although
the color schemes are different.

As mentioned the obtained mean d10 is very low compared to the mean d32 using FV-CFD.
The histogram in Figure 31 illustrates the amount of parcels present in the system with their
corresponding equilibrium diameter. It is observed that the bulk of the parcels have an equilib-
rium diameter between 4.5-5 mm. As the number scale ensures the conservation of mass as the
equilibrium diameter evolves, the amount of fictious bubbles present in the parcels with a low
diameter are considerably higher then the amount of bubbles represented by the parcel with
a large diameter. This implicates that parcels with a small equilibrium diameter represent a
higher amount of bubbles, and as such the d10 is skewed to a lower mean diameter.
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Figure 31: Parcel size histogram for a maximum coalescence diameter of 5mm.

As an enforced maximum coalescence diameter of 5 mm leads to a disproportionate amount
of parcels with an equilibrium diameter between 4.5-5mm, another simulation was conducted
where the maximum coalescense diameter was 2.5cm. The corresponding histogram is depicted
in Figure 32. The bulk of the parcels have an equilibrium diameter below 5 mm but nevertheless,
a significant amount of particles have a higher corresponding diameter. An enforced maximum
coalescence diameter has a negligible effect on the gas hold-up (14.06%) and mean d10 (0.46
mm). The corresponding mean d43 is 3.6 mm, and seems more reasonable to use when comparing
the mean bubble size with the mean d32 obtained by Haringa et al.[26].
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Figure 32: Parcel Size histogram for a maximum coalescence diameter of 2.5 cm.
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7 Conclusion and Recommendations

In the present work, the LBM CFD approach was used to model three bench mark cases. This
was done by using the models provided with M-star simulations (M-Star Simulations, LLC) and
comparing this to the results obtained by Thomas et al.[32] to verify the set-up. The conclusions
from this analysis provided a way to use the LBM to simulate a small vessel and acquire the
BSD and gas hold-up to compare the results with experimental data of Barigou et al.[31]. The
third case was the simulation of an industrial-scaled reactor located in Stavanger, comparing
the obtained gas hold-up and power consumption with data from Vrábel et al.[24].

The conducted simulations used the LES turbulence model to resolve the turbulent fluid flow,
and Euler-Lagrangian tracking of the bubbles using the parcel approach. These parcels moved
throughout the vessel according to Newton’s second law, experiencing the effects of the virtual
mass force, drag force, buoyancy and gravity. These settings were verified by comparing the
gas hold-up, bubble diameter and amount of bubbles present in the system with the obtained
results of Thomas et al.[32], and were used for the succeeding cases.

The Free Particle drag model is not suitable to describe the drag force acting on the bubbles,
as the gas hold-up was significantly underestimated for both this case and the industrial-scaled
tank. However, an increase of GFR leaded to better agreement with experimental data. This is
probably due to the omittance of the bubble swarm effect, counterbalancing the insufficiently
described drag correlation.

When comparing the BSD with the experimentally obtained results of Barigou et al. it was
found that setting the maximum coalescence diameter to 1 cm leads to an over estimation of the
bubble sizes at the top of the vessel. Using the parcel model implied that the bubble size evolved
as a function of the EDR, implicitly capturing break-up and coalescence events. By modelling
the smallest eddies by setting a Smagorinsky coefficient of 0.1, the EDR was underestimated,
resulting in too large bubbles at the top of the vessel. Setting the maximum coalescence diame-
ter to 5 mm resulted in a BSD which was more agreeable with experimental data, although the
predicted gas hold-up did not improve significantly. Using the discrete approach should lead to
a better bubble size distribution throughout the vessel, as this approach explicitly models bub-
ble break-up and coalescence. However as the parcel approach was valid for the case studies, it
is not expected that the discrete approach would lead to superior agreement with experimental
data regarding the gas hold-up.

The Euler-Lagrangian way of modelling bubble particles did not lead to the formation of gas
cavities in the trailing vortices generated by the impeller, which in turn did not lead to a drop
in power consumption when the tank was aerated. The most probable causes for the absence
of gas cavity formation is the used approach of modeling bubbles, while also neglecting the
pressure gradient.

7.1 Recommendations

Due to time constraints, the implementation of different drag models and the effect of applying
the pressure gradient was not tested. It is recommended to implement varying drag correlations,
such as the Tomiyama drag correlation, which has proven to show adequate predictions for the
gas hold-up for industrial-sized reactors by Witz et al.[30] and Bernauer et al.[29]. Zadghaffari
et al.[91] used a modified drag coefficient based on a rising bubble in stagnant liquid. With this
drag correlation, they were capable of predicting a gas hold-up which was in good agreement
with the data of Barigou and Greaves. It would therefore be beneficial to implement this drag
correlation and verify whether this correlation can be suitable for the currently used parcel
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approach, as it will probably be unfeasible, if not impossible, to use the discrete approach for
industrial-scaled reactors with high gas flow rate. Other drag correlations which could be imple-
mented are the DBS-local and DBS-Global proposed by Guan et al.[89]. Setting the maximum
coalescence to 5 mm leads to reasonable agreement of the BSD with experimental, but setting
the Smagorinsky coefficient to 0.2 could potentially lead to an EDR which will lead to a better
capturing of the EDR in the impeller outflow, resulting in a better captured BSD throughout
the vessel when using the parcel approach.

It is also recommended to test the new update of M-star, which allows for the Lagrangian-
to-Euler conversion of bubbles into empty lattice nodes. This method is also recommended by
Cheng et al.[102], and could lead to the formation of gas cavities in the impeller trailing vortices.
Using this, a more accurate description of power reduction under aeration could potentially be
observed.

Lastly, it is recommended to further test the applicability of the LBM for industrial-scaled
reactors. As experimental data is scarce for such reactors, it is of necessity to fully exploit the
available data for the current bioreactor by Vrábel et al.[24] and Larsson et al.[25].
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[58] Timm Krüger, Halim Kusumaatmaja, Alexandr Kuzmin, Orest Shardt, Goncalo Silva,
and Erlend Magnus Viggen. The lattice Boltzmann method. Graduate Texts in Physics.
Springer International Publishing, 2017.

[59] Gregory Nicholas De Boer, Adam Johns, Nicolas Delbosc, Daniel Burdett, Morgan
Tatchell-Evans, Jonathan Summers, and Remi Baudot. Three computational methods
for analysing thermal airflow distributions in the cooling of data centres. International
Journal of Numerical Methods for Heat & Fluid Flow, 2018.

[60] Xiaoyi He and Gary D Doolen. Thermodynamic foundations of kinetic theory and lattice
boltzmann models for multiphase flows. Journal of Statistical Physics, 107(1):309–328,
2002.

Page 53



[61] Alessandro De Rosis and Christophe Coreixas. Multiphysics flow simulations using d3q19
lattice boltzmann methods based on central moments. Physics of Fluids, 32(11):117101,
2020.

[62] Prabhu Lal Bhatnagar, Eugene P Gross, and Max Krook. A model for collision processes
in gases. i. small amplitude processes in charged and neutral one-component systems.
Physical review, 94(3):511, 1954.

[63] Philipp Neumann, Hans-Joachim Bungartz, Miriam Mehl, Tobias Neckel, and Tobias
Weinzierl. A coupled approach for fluid dynamic problems using the pde framework
peano. Communications in Computational Physics, 12(1):65–84, 2012.

[64] Sydney Chapman and Thomas George Cowling. The mathematical theory of non-uniform
gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in
gases. Cambridge university press, 1990.

[65] Jun Li. Chapman-enskog expansion in the lattice boltzmann method. arXiv preprint
arXiv:1512.02599, 2015.

[66] Jacqueline H Chen. Petascale direct numerical simulation of turbulent combus-
tion—fundamental insights towards predictive models. Proceedings of the Combustion
Institute, 33(1):99–123, 2011.

[67] Khelifa Hami. Turbulence modeling a review for different used methods. International
Journal of Heat and Technology, 39(1):227–234, 2021.

[68] BT Kannan, S Karthikeyan, and Senthilkumar Sundararaj. Comparison of turbulence
models in simulating axisymmetric jet flow. In Innovative Design and Development Prac-
tices in Aerospace and Automotive Engineering, pages 401–407. Springer, 2017.

[69] Stefan Heinz. A review of hybrid rans-les methods for turbulent flows: Concepts and
applications. Progress in Aerospace Sciences, 114:100597, 2020.

[70] Sal Rodriguez. Applied computational fluid dynamics and turbulence modeling. Springer,
2019.

[71] Hampus Tober and Erik Hänninger. Evaluation of openfoam performance for rans simu-
lationsof flow around a naca 4412 airfoil, 2018.

[72] Franck Nicoud. Unsteady flows modeling and computation. LECTURE SERIES-VON
KARMAN INSTITUTE FOR FLUID DYNAMICS, 9:3, 2007.

[73] JJJ Gillissen and HEA Van den Akker. Direct numerical simulation of the turbulent flow
in a baffled tank driven by a rushton turbine. AIChE Journal, 58(12):3878–3890, 2012.
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8 Appendix A

Time averaged EDR measured at the output lines corresponding with the normalized EDR as
depicted in Figure 20.

(a) (b)

(c) (d)

(e) (f)

Figure 33: EDR per output line for the case with an agitation speed of 180 RPM and GFR of
0.00164 m3/s.
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(a) (b)

(c) (d)

(e) (f)

Figure 34: EDR per output line for the case with an agitation speed of 385 RPM and GFR of
0.00687 m3/s.
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9 Appendix B

The selected parameters for the simulations. Note that settings such as: Injection Number
Scale, Impeller size and RPM vary throughout the cases.

(a) (b)

Figure 35: Bubble Settings
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(a) Moving Wall Settings (b) Static Wall Settings

Figure 36: Wall Settings

Figure 37: Free Surface Settings
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10 Appendix C

Figure 38: Grid convegence for the verification case. As dx is increased, the Power number
converges.

Figure 39: By extending the run time of the simulations, it is observed that the amount of
bubbles present in the system is reduced before it is increased.
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