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A B S T R A C T

Humans and other biological bipedal walkers are extraordinarily agile and robust.
This is especially apparent when certain features of the environment are unknown
such as unexpected downsteps (for example, suddenly walking off the side-walk or
not expecting the last stair when descending). Humans can negotiate these down-
steps —both expected and unexpected— with remarkable agility and ease. The con-
tributions from active compensation, passive dynamics, and reflexes that humans
employ to overcome these downsteps are however not inherently present in bipedal
robots. This motivates us to assess whether externally observed behavior can be
used to achieve the same capabilities in bipedal robots. One of the challenges with
this proposal is the morphological differences between humans and robots. Taking
the bipedal robot Cassie as an example, these differences predominantly constitute
to overall- and segment mass, leg morphology, and a lack of an upper body. The
observed behavior from the human should subsequently be scaled to represent an
appropriate nominal and compensatory behavior of the robot.

This thesis aims to systematically study the translation of this human behavior to
bipedal walking robots, regardless of the morphology of the walkers. We start
from human experimental data where nominal walking, expected downstep, and
unexpected downstep trials were conducted. The human data is analyzed from the
perspective of a reduced-order representation of the human. The reduced-order rep-
resentation encodes the center of mass dynamics and contact forces. An equivalent
reduced-order model is used to represent the bipedal robot, which allows for the
translation of the nominal walking and downstep behaviors between human and
robot. The morphological differences between the human and the robot are there-
fore resolved by realizing dynamically equivalent behavior which is embedded into
the full-order dynamics of a bipedal robot via optimization-based controllers. The
results demonstrate traversing expected and unexpected downsteps in simulation
on the underactuated 3D walking robot Cassie.
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1 I N T R O D U C T I O N

The field of bipedal robotics has experienced tremendous progress in the last decades.
Realizations have grown from conservative fully-actuated walking to agile and ver-
satile dynamic walking with compliance and underactuation. However, even in
fully known environments, the agility and robustness of mechanical bipeds has not
matched their biological counterparts. We argue that this is due to a lack of online
motion planning, an absence of reflex-like control, and disadvantageous passive
dynamics, which biological systems employ to overcome disturbances. The robust-
ness and adaptiveness can most notably be seen when considering significant un-
expected changes in stepping height. For example, the running gait of a guinea
fowl over expected and unexpected downsteps [1] highlights the advantageous re-
flexive behavior and passive properties of the leg. These allow the birds to, contrary
to intuition, be more successful in navigating unexpected downsteps compared to
expected downsteps. These downstep scenarios have received great attention in
human running [2; 3] and walking [4; 5; 6; 7; 8; 9] which focus on a muscular-level
and whole-body-level analysis of the human compensatory gait. While there have
been efforts to achieve similar downstep behavior in the context of robotic running
[10; 11], they have yet to be realized on walking robots with different morphologies.
Therefore, this thesis aims to translate the deliberate and reflexive behavior present
in humans to morphologically different bipedal robots.

1.1 perspectives on realizing robotic walking
The nonlinear control and biomechanics communities have traditionally pursued
the study of bipedal robot locomotion from different perspectives. The control
theorist is mainly concerned with realizing stable and robust locomotion with for-
mal guarantees—even if the resulting walking does not directly share commonality
with human walking. Methods such as offline trajectory optimization with Hy-
brid Zero Dynamics [12; 13], closed-form reduced-order model stepping methods
[14; 15; 16], offline reduced-order model gait generation [17], and Model-Predictive
Control [18; 19; 20] all require a varying degree of model knowledge and have been
successfully utilized to achieve a varying degree of dynamic walking behaviors ex-
perimentally on underactuated robots. The biomechanist typically focuses on the
methods of actuation and activation [21; 22; 23] and human morphology [24; 25].
Although formal notions of biologically-inspired walking [26; 27] and walking imita-
tion on morphologically similar bipeds [28] exist, the intersection of these distinct
fields has received less focus than expected from the significant similarities between
analyzing biological bipedal locomotion and realizing robotic bipedal locomotion.
These methods are in contrast to the work presented in this thesis, where we are es-
pecially interested in employing human data for realizing bipedal robot walking on
morphologically different bipeds. Additionally, while there have been approaches
to benchmarking human likeness [29; 25] it has not yet been addressed how to
achieve human-like behaviors on walking robots.
Existing methods of traversing significant expected and unexpected changes in
ground height have been realized with finite-state machines and offline trajectory
optimization [30; 31], flexible gait adaptations from offline optimization [32], heuris-
tic rules [33] or relied on the underlying robustness of the controller [34; 35]. How-

1



1.2 scope of the thesis 2

Figure 1.1: The human measurement data (a) mapped to a representative skeletal model of
the test subject in OpenSim (b), towards realizing walking over the same down-
steps on Cassie (c). Changes occur in step-time, step-length, forward walking
velocity, desired contact forces, and vertical CoM trajectories.

ever, observations from biological walkers have not yet informed morphologically
different bipedal robots in the traversal of unexpected changes to the ground height.

1.2 scope of the thesis
This thesis presents a method for translating downstep behaviors, both expected
and unexpected, from humans to walking robots. We consider specifically the 3D
bipedal robot Cassie [36], which is substantially morphologically different from a
human. To achieve this, we first collect data from human walking downsteps and
abstract this behavior to a reduced-order model (RoM) that captures the essential
components of this behavior: the kinematics of the Center of Mass (CoM) and
the ground reaction forces (GRF). We then realize a stable nominal and downstep
walking realization of this RoM via the actuated Spring-Loaded Inverted Pendulum
(aSLIP) model. We stabilize the vertical state and realize force-embedding with the
Backstepping-Barrier Function framework [37] and stabilize the horizontal state via
step-size adaptation of the Hybrid Linear Inverted Pendulum (H-LIP) using its lin-
ear Step-to-Step (S2S) dynamics [35]. For the 3D implementation, we assume a rigid
model of the biped where the output dynamics are stabilized using a Task-Space
Controller (TSC), and force-embedding is realized as a linear constraint. The result
of this approach is downstep behaviors on the 3D model of Cassie in simulation.
We, therefore, can start from human data for downstepping and, through a princi-
pled abstraction of the key elements of locomotion, arrive at robotic downstepping
regardless of morphological similarities. Figure 1.1 gives a schematic overview of
this translation. Human motion capture measurement data is presented in a mus-
culoskeletal model [38] after which Center of Mass and Ground Reaction Forces
are dynamically scaled towards a reduced-order representation of Cassie. This re-
alizes 3D walking over expected and unexpected downsteps for different downstep
heights.

This thesis will subsequently demonstrate that the human nominal and compen-
satory gait data can introduce desirable compensatory behavior on morphologically
different bipedal walkers. It is furthermore argued that this principled abstraction
of key elements of nominal and downstep locomotion and scaling towards mor-
phologically different bipeds can be widely applicable to follow-the-leader scenarios,



1.3 structure 3

where the robot observes humans traversing the environment and infers informa-
tion for its own motion planning, to overcome a wide variety of walking environ-
ments by informed mimicking of the human on an equivalent Reduced-order Model
level.

1.3 structure
The structure of this thesis is as follows. First, in Chapter 2 we will address prelimi-
nary theory on principles of human and robot locomotion. In Chapter 3 we describe
the human downstep experiments, data abstraction, and corresponding data anal-
ysis. Chapter 4 uses the human locomotion data, coupled with a RoM analysis, to
generate walking on SLIP models. We describe the human-to-robot motion synthe-
sis in Chapter 5 which is embedded onto the full-order dynamics of 3D robot in
Chapter 6. We describe the main contribution of this thesis, 3D walking on Cassie
for flat-ground, expected, and unexpected downsteps, in Chapter 7. We conclude
the thesis with a discussion and conclusion in Chapter 8 and 9 respectively.



2 P R E L I M I N A R I E S

This chapter will introduce background theory on biological and bipedal robot lo-
comotion. First, we introduce the principles of bipedal walking in biology and its
relation to bipedal walking in robotics. We introduce how we can mathematically
model bipedal robots and how they can be controlled using nonlinear control meth-
ods.

2.1 bipedal walking
Bipedal locomotion addresses a complex yet straightforward task: to transport one-
self from the current position to the desired position. This task is most often per-
formed by either walking or running. Walking consists of an inverted pendulum-
like (IP) gait where the body of the walker vaults over a stance leg. The walking
gait consists of alternating single support phases (SSP), where one leg is in contact
with the ground, and double support phases (DSP), where both legs are in contact
with the ground. Running consists of alternations of SSP and in-air phases. With an
eye to the day-to-day operation of both humans and bipedal robots, we specifically
consider the walking gait in this thesis.

2.1.1 Human Walking

This section will consider the nominal walking of humans and describe some of its
core characteristics. Downstep walking (which is the focus of this thesis) is explic-
itly addressed in Chapter 3.

A macro-analysis of human walking concerns two significant theories. First pop-
ularized is the six determinants of gait theory [39] which proposes that a set of six
kinematic features1 reduce the sagittal and coronal displacement of the CoM. It is
assumed that displacing the CoM in directions that are not necessary for enabling
a forward motion is energetically costly and subsequently reduced by the inner
walking mechanisms and muscular control of the human. Conversely, the inverted
pendulum theory [40; 41] proposes that having the CoM travel over the stance leg in
a constant-length pendulum fashion is more energetically efficient. These theories
are subsequently in conflict, yet both theories have merit [42]. The six determinants
of gait theory explains the step-to-step impact but fails to address the energy con-
servation. The theory of dynamic walking [42] has shown the validity of the inverted
pendulum theory for energy conversation and six determinants of gait for CoM redi-
rection.

In human walking, additional phases within SSP and DSP can be identified. After
the initial contact with the ground at heel-strike, the heel is a momentary rotation
point. This heel-roll, also known as the contact phase, starts at the Loading Re-
sponse (DLR) and occurs until the foot is fully in contact with the ground (Opposite
Toe-Off). This introduces the Early Stance (DES), the first half of the SSP, which

1 The six determinants of gait; 1: Pelvic rotation, 2: Pelvic obliquity (unconfirmed contribution), 3: Knee
flexion during stance (not significantly contributing), 4: Foot rockers, 5: ankle muscles, 6: Narrowing
walking base

4



2.1 bipedal walking 5

Figure 2.1: Different phases for the nominal human walking gait, consisting of the Loading
Response DLR, Early Stance DES, and Late Stance DLS

transitions into the Late Stance phase (DLS), the second half of the SSP, by the Mid-
Stance event. The Late Stance starts the heel lift from the ground while the sole
and toes remain in contact. This specific roll phase is identified as the toe-roll or
propulsive phase. The stance phase subsequently consists of two underactuated (in
the sagittal plane) roll phases and a fully actuated (in the sagittal plane) flat-footed
phase2. For bipedal robotics, the introduction of these additional underactuated
phases could lead to an increase in energy efficiency [24]. Figure 2.1 displays the
phases of human walking.

Although foot-roll phases in bipedal robotics have had many implementations, es-
pecially when intending to realize bio-inspired walking gaits [43; 44; 45; 27], this
exceeds the current capabilities of Cassie. Subsequently, and with the goal to gen-
eralize the implementation to any walking platform, in this thesis, only flat-footed
walking is realized on the robot. However, this results in a displacement of the
horizontal CoM that cannot be realized due to the changes in foot size and location
of the Center of Pressure (CoP). We address this difficulty in Chapter 5.

The full dynamics of the human are challenging to analyze during a nominal and a
compensatory walking motion, yet the human gait is well-described by so-called Re-
duced Order Models (RoMs), or template models. We will see in Chapter 4 that the
full-order dynamics of the human during nominal and compensatory gait can be
abstracted towards the actuated Spring-Loaded Inverted Pendulum Model (aSLIP),
that facilitates a more straightforward comparison between the observed walking
motion of the human and the desired walking motion of the bipedal robot.

2.1.2 Robotic Walking

Bipedal human walking and bipedal robotic walking understandably have signif-
icant similarities. In both cases, the walker moves via two feet that alternate in
contact with the ground, and the feet are extended and retracted via joint-level
actuation. Most common robotic bipeds are humanoids, named after their com-
parative morphology to the human, yet, early mechanisms of locomotion such as
McGeer’s passive dynamic walker [46] take a much more fundamental approach
to the design of (in this case passive) walking mechanisms. Figure 2.2 shows some
representative examples of historic bipeds that paved the way toward the current
state-of-the-art of bipedal robotics.

2 One could regard the human as overactuated as there are more actuators (muscles) than degrees of
freedom for many of the joints. However, underactuated is stated because the contact point between
ground and foot during the roll phases is not actuated, and subsequently, there are more degrees of
freedom than actuated joints.
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Figure 2.2: Examples of historic bipedal robots (from left to right): Biper-3 [54], McGeer’s Pas-
sive Dynamic Walker [46], Honda Humanoid Robot [50], Cornell Passive Biped
[47], Cornell Biped [55], and Denise [49]

As the field progressed, the bipedal robots, and their motion planning and control,
changed from passive [46; 47], minimally actuated [48; 49], or statically stable [50]
bipeds towards actuated dynamically stable realizations (although it could be stated
that the understanding shown in these earlier passive and minimally actuated im-
plementations is often lost). Figure 2.3 illustrates examples of modern bipeds where
Cassie, the robot considered in this thesis, is shown in the center.

Cassie is capable of unsupported walking in 3D. The physical model additionally
has structural compliance via knee and heel leaf springs, and is underactuated in
the coronal plane. We assume underactuation in the sagittal plane by not using the
ankle torque for the following reasons; the ankle actuation is weak (the maximum
available torque is 10% of the knee- and hip-motors’ maximum available torque),
and ankle underactuation is a particular case of fully actuated walking. Fully ac-
tuated walking is therefore always realizable with the methods discussed here by
including an additional trackable output of the horizontal CoM position.

Unlike Atlas by Boston Dynamics [51], most bipedal robots are actuated by con-
ventional electrical torque motors. The potential similarities in pneumatic and mus-
cular actuation, for bipedal robots such as Pneumat-BB [52] and the human, are
outside of the scope of this thesis; readers are referred to [53]. Although bipedal
robots that are morphologically similar to humans allow a more straightforward
human-to-robot motion synthesis, the focus on morphologically different bipeds in
this thesis allows generalizability between the human and any bipedal robot. The
phases under consideration are SSP and DSP (flat-footed walking), without foot-roll
occurrences that are apparent in the human gait. Figure 2.4 shows the alternation
of the considered walking phases of Cassie.

Figure 2.3: Examples of modern bipedal robots (from left to right): ATRIAS [34], DURUS [44],
Cassie [36], Atlas [51], Valkyrie [56], and Digit [36]. ATRIAS, DURUS, Cassie,
and Digit all have structural compliance in their designs.
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Figure 2.4: Different phases for the nominal Cassie walking gait, consisting of Double Sup-
port Phase (DSP) and Single Support Phase (SSP). The walking direction is indi-
cated with the dotted arrow and highlights that Cassie has inverted knees.

2.2 mathematical models of bipedal robots
A (rigid) bipedal robot is a series of links, possibly with loops, that are either con-
nected to the ground by one foot, two feet, or no feet. This first leads to the defi-
nition of the dynamical model of a biped as a floating body where foot contact is
enforced using holonomic constraints. While this thesis considers Agility Robotics’s
Cassie biped, which has compliant joints, we first assume a general rigid biped. We
write down the potential and kinetic energy of the model, which can be encapsu-
lated by the Lagrangian

L(q, q̇) = Ekin(q, q̇)− Epot(q), (2.1)

where Ekin(q, q̇) is the kinetic energy, Epot(q) is the potential energy, and q is the
set of generalized coordinates of the robot q = [qT

j , pT
b , ϕT

b ]
T ∈ SE(3) × Rn with

qj ∈ Rn the body coordinates of the robot and pb ∈ R3 and ϕb ∈ SO(3) the position
and orientation of the base in a fixed world frame respectively. After applying the
method of Lagrange, we can write the dynamical model of the free-floating biped
as

D(q)q̈ + H(q, q̇) = Bu, (2.2)

where D(q) is the inertia matrix, H(q, q̇) is the Coriolis and gravity terms grouped
into a single vector H(q, q̇) = C(q, q̇)q̇+G(q), B is the actuation matrix3, and u ∈ Rm

is the vector of actuator torques applied between two links of the biped. At this
point, the model of the biped in Equation (2.2) assumes no contact with the ground
surface.

2.2.1 Holonomic Constraints and Ground Contact

To describe the behavior in SSP or DSP, we need to realize ground contact for the
model in Equation (2.2) and add holonomic constraints of one or two feet respec-
tively that constrain the movement of the feet. For 3D walking, we wish to ensure
at all times that

• the horizontal contact forces remain within the friction cone to prevent slip-
page (dry friction is represented by the Amontons-Coulomb model),

• the vertical contact force remains positive (the ground exerts a positive, up-
wards force) as the ground is assumed non-sticky and the foot should refrain
from lifting from the ground,

3 As Cassie contains rotational torque actuators and the generalized coordinates are similarly of joint
rotations, B is constant.
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• the moments around the horizontal axes should be limited such that no rota-
tion around the edges of the feet occur.

We write these constraints respectively as





0 < F f z
st

− µ√
2

F f z
st < F f x

st <
µ√
2

F f z
st

− µ√
2

F f z
st < F f y

st <
µ√
2

F f z
st

−wbF f z
st < Fmx

st < waF f z
st

−lbF f z
st < Fmy

st < laF f z
st

, (2.3)

where Fi
st indicates a force or moment of the ground contact wrench

Fst =
[

F f x
st F f y

st F f z
st Fmx

st Fmy
st Fmz

st

]
, (2.4)

as f z indicates a force in the z-direction, mx indicates a moment around the x-axis,
and wa, wb, la, and lb are defined by the geometry of the foot according to Figure 2.5.
The moment around the z-axis would prevent rotation, yet this constraint depends
on the unknown force distribution on the surface of the foot and is therefore often
neglected. The third and fourth constraints in Equation (2.3) are known as the Zero
Moment Point (ZMP) constraints [57] and prevent the foot from rotating around its
edges during flat-footed standing or walking. The roll phases apparent in human
walking from Chapter 2.1.1 intentionally violate these constraints. We will see that
the ground contact constraints in Equation (2.3) are affine4 in the holonomic forces
which themselves are either decision variables in the Quadratic Program (QP) Con-
troller or affine in the control torques u. Subsequently, in both scenarios the ground
contact constraints can be enforced via a linear constraint on the decision variables
of the QP. As for the first case, we can write the ground contact constraint specifi-
cally for the line-segment foot of Cassie as




0 0 −1 0 0
1 0 − µ√

2
0 0

−1 0 − µ√
2

0 0
0 1 − µ√

2
0 0

0 −1 − µ√
2

0 0
0 0 −la 0 1
0 0 −lb 0 −1
0 0 −laµ 1 0
0 0 −lbµ −1 0




︸ ︷︷ ︸
AGRF




F f x
st

F f y
st

F f z
st

Fmy
st

Fmz
st




︸ ︷︷ ︸
FGRF

≤ 0[9×1], (2.5)

where, due to the line-segment feet assumption of Cassie as shown in Figure 2.5,
the moment around the x-axis is zero and 0[9×1] indicates a column array with zeros
of size nine.

In the second scenario, the feet in contact with the ground can be ensured static
by constraining its kinematics according to

4 An affine control system is defined as a control system in which the control input appears linearly in the
equations, e.g. when considering the form y = Ax + b, the system is said to be affine in x
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Figure 2.5: The ground exerts a wrench on a general foot and the line-segment foot design
of Cassie. Due to this line-segment representation, no moment around the x-axis
is exerted. The reference frame is located at an arbitrary point on the foot.

ci = pi = 0,
∂pi
∂q

q̇ = Ji q̇ = 0,

∂pi
∂q

q̈ +
∂

∂pi
∂q

∂t
q̇ = Ji q̈ + J̇i q̇ = 0,

(2.6)

where ci and pi indicate a constraint and the position of i, some part of the biped
in consideration (e.g. the mid-foot, heel, or toe). For SSP, we define the constraint
matrix for a single foot according to Equation (2.6) but consider not only the posi-
tion of the mid-foot but also the rotation of the foot, defined via a simplified foot-
pitch pz

heel,i − pz
toe,i. In DSP we consider these constraints for both feet as shown in

Equation (2.7). Additionally, if we wish to consider a rigid model (as opposed to
the compliance presented in the knee and tarsus springs of Cassie) we can apply
joint-level holonomic constraints which we can denote by ϕjointlevel. Details on the
inherent compliance of Cassie are presented in Chapter 6 yet for now we combine
all the holonomic constraints as

cSSP =




px
midfoot,i

pz
midfoot,i

pz
heel,i − pz

toe,i
ϕjointlevel


 cDSP =




px
midfoot,i

pz
midfoot,i

pz
heel,i − pz

toe,i
px

midfoot,j
pz

midfoot,j
pz

heel,i − pz
toe,j

ϕjointlevel




, (2.7)

from which we straightforwardly define the Jacobian Jhol(q) and time-derivative of
the Jacobian J̇hol(q, q̇). Now, let us define the holonomic forces which are explicitly
dependent and affine in the control torques u. For simplicity, we drop any depen-
dencies on q or q̇. The projection of the inertia matrix into the holonomic constraints
can be written as

M = Jhol DJT
hol , (2.8)

and the holonomic forces are obtained according to

Fhol = −M−1(Jhol D−1Fvec + J̇hol q̇)︸ ︷︷ ︸
fF

+−M−1 Jhol B︸ ︷︷ ︸
gF

u. (2.9)

The ground contact wrench is therefore directly obtained via the projection of the
holonomic constraints upon the equations of motion. This ground contact wrench
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is affine in the control torques u. The equations of motion with the holonomic
constraints can then be obtained in a familiar affine form

q̈ = D−1(Fvec + JT
hol fF)︸ ︷︷ ︸

fq̈

+ D−1(B + JT
hol gF)︸ ︷︷ ︸

gq̈

u, (2.10)

where fq̈ and gq̈ represent the autonomous and controlled parts of the differential
equation. The state space form can be presented as

ẋ =

[
q̇
fq̈

]

︸︷︷︸
f (x)

+

[
0n×m

gq̈

]

︸ ︷︷ ︸
g(x)

u, (2.11)

where x = [q q̇]T ∈ X ⊆ Rn is the set of states, u ∈ U ⊆ Rm is the control input,
and f and g are locally Lipschitz continuous functions.

2.2.2 Impact Mapping

It is now possible to forward integrate equations of motion of the model for a given
phase (SSP or DSP) and compute control torques that realize desired behavior for
a single phase. However, a feature of bipedal walking is the switching of ground
contact with either one or two feet, and the dynamics of the biped are subsequently
governed by equations of motion of their respective phases. The switching behavior
from SSP to DSP and DSP to SSP can be described by detecting intersections with a
switching surface and mapping the state with a reset map ∆. The transitions from
SSP to DSP and from DSP to SSP are respectively detected by the switching surfaces

SSSP→DSP = {x1 ∈ X1|pz
swing foot(x1) = 0, ṗz

swing foot(x1) < 0},
SDSP→SSP = {x2 ∈ X2|Fz

stance foot(x2) = 0, Ḟz
stance foot(x2) < 0},

(2.12)

where xi is the state in domain i, pz
k is the vertical position of body k with respect to

the stance foot, and Fz
k is the vertical ground reaction force of body k. The switching

surfaces indicates that the SSP event takes place when the swing foot reaches zero
height with a negative velocity, and that the DSP event takes place when the GRF
of the stance foot reaches zero force with a negative time derivative. Based on the
assumption that the both legs remain flat footed and in its current position during
the transition from SSP to DSP, we can constrain this on a velocity level according
to

pimp(q) = 0 −→ ∂pimp(q)
∂q

q̇+ = Jimp(q)q̇+ = 0, (2.13)

where pimp indicates the constrained position before and after the impact. Combin-
ing this with a rigid impact model [58], which introduces a contact impulse into the
dynamic model. By integrating this over over the impact duration, we can obtain
the impact equation

D(q−)(q̇+ − q̇−) = Jimp(q)T Fimp, (2.14)

The post-impact configuration constraint in Equation (2.13) can be combined with
the impact equation to obtain the post-impact velocities q̇+ and the impulsive forces
Fimp. The two equations result in the linear system with a square and invertible
matrix according to

[
D −JT

J 0

] [
q̇+

Fimp

]
=

[
Dq̇−

0

]
. (2.15)

The transition from DSP to SSP is smooth and might only involve a relabeling
matrix R, mapping the joints of the right leg to the left leg and vice-versa, to use
the symmetry of the walker.
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2.3 feedback control of nonlinear systems
The control of bipedal robotic locomotion is a complex task. In general, the chal-
lenges lay in the nonlinearities of the system, the hybrid nature of the dynamics,
and the potential underactuation of the biped from point-foot walking [59] or com-
pliance [60]. We can define the system as a Hybrid Control System

HC = Σ = (Γ,X ,U ,S , ∆,F ), (2.16)

in which Γ is a directed graph indicating the alternation between walking phases
(see Figure 2.1 and 2.4), X is the state manifold which is an open connected subset
of Rn, U is the actuator manifold which is an open connected subset of Rm, S is the
switching surface from Equation (2.12), and F is the flow on the state manifold X
according to Equation (2.10). For clarity, considering a single phase and disregard-
ing the hybrid nature of the system, the resulting non-hybrid Control System can
be written as

C = Σi = (Xi,Ui,Fi). (2.17)

Different methods exist to compute the required control signal for these control sys-
tems. First, we will explain Feedback Linearization, which yields convergence in
the output dynamics using a closed-form solution. This method is used extensively
in the tracking of offline optimized gaits with, for example, Hybrid Zero Dynam-
ics [12; 13; 27; 61]. This method will be used in the Backstepping Barrier Function
(BBF) framework [37] for RoM walking in Chapter 4. Afterward, we will explain
the optimization-based (Rapidly) Exponentially Stable Control Lyapunov Function
((R)ES-CLF) [62; 63] which is a convex quadratic program (QP) formulation that
yields theoretical guaranteed exponential convergence in the output dynamics of the
system. The RES-CLF will find application in the BBF framework in Chapter 4.
Lastly, we will address the Task-Space Controller QP, which, although without for-
mal guarantees, can stabilize output dynamics and has some advantages compared
to the CLF-QP regarding the implementation. Subsequently, the TSC is utilized in
the 2D and 3D Cassie walking simulations. Other control methods such as (Partial)
Hybrid Zero Dynamics [12; 27], and high-level control with biologically inspired
musculoskeletal walking and reflex control walking [64; 65] are outside of the scope
of this thesis and, as such, will not be explicitly addressed in this section, but more
on these topics can be read in [53].

2.3.1 Feedback Linearization

Feedback linearization is a straightforward yet powerful approach toward control-
ling nonlinear systems. It relies on two operations; a nonlinear change of the coor-
dinates and a nonlinear state feedback [66]. This results in a transformation of the
nonlinear system into a linear system through the change in coordinates and the
closed-form computed control input. With regards to bipedal robot control, feed-
back linearization is closely tied with the notion of Hybrid Zero Dynamics [12; 13].
Furthermore, human-inspired walking with HZD is realized in [27] where the tra-
jectories of the joint angles from the nominal human gait are also used in the cost
function of the offline gait optimization.

Considering the dynamical system of the form in Equation (2.2), we define a system
that is to track desired outputs

y(x) = ya(x)− yd(x), (2.18)

where ya : X → Rm indicates the actual outputs, and yd : R×Ra → Rm indicates
the desired outputs. Assuming that the outputs have vector relative degree k5 (RDk)

5 Vector Relative Degree is defined as the number of differentiations needed to take on the output to have
it directly be affected by the control input.
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we can define the derivatives of the outputs along the controlled and autonomous
part of the state equations

yk(x) = Lk
f y(x) + LgLk−1

f y(x)u, (2.19)

where L f y(x) denotes the Lie derivative of y(x) along the vector field of f (x) and
LgLk−1

f y(x) is the decoupling matrix which is invertible. Subsequently, if the system
is feedback linearizable, we can directly compute the control signal

u(x) = (LgLk−1
f y(x))−1(−Lk

f y(x) + v)⇐⇒ yk = v, (2.20)

where v is the auxiliary feedback control signal. If the feedback linearized control
signal is applied to the system in Equation (2.2) for relative degree 2 outputs,y2, we
obtain a linear system for the output dynamics

η̇ =

[
ẏ2
ÿ2

]
=

[
0 I
0 0

]
η +

[
0 0
0 I

]
v = Fη + Gv. (2.21)

As we wish to control the actual outputs towards the desired outputs, we can define
a choice of the auxiliary feedback control signal v as

v = ÿ2 = −KPy2 − KD ẏ2, (2.22)

where KP and KD are the proportional and derivative control gains. Although this
controller yields convergence to η → 0, it cannot leverage the natural dynamics
of the system and cannot incorporate actuator and feasibility constraints. Subse-
quently, a solution from feedback linearization is not necessarily valid. For offline
gait trajectories, where actuator constraints can be included in the offline whole-
body trajectory optimization, these constraints are assumed to be satisfied during
nominal walking. Although feedback linearization cannot incorporate actuator and
feasibility constraints, it is still a powerful tool and will be used in the Backstepping
Barrier Function controller for stabilizing the underactuated RoM.

2.3.2 Control Lyapunov Functions

Given the shortcomings of feedback linearization with regards to an inability to
leverage the natural dynamics of the system and the incorporation of actuator and
feasibility constraints from Chapter 2.2.1, other optimization-based control meth-
ods are used in the control of bipedal robots. The Exponentially Stable Control
Lyapunov Function (ES-CLF) [62] and the Rapidly Exponentially Stable Control
Lyapunov Function (RES-CLF) [63] frameworks are methods of achieving theoreti-
cally guaranteed convergence and stability in the output dynamics of a controlled
system. The framework relies on a Control Lyapunov Function6 V(η) : Rm → R.
Consider the Lyapunov Function

V(η) = ηT Pη, (2.23)

where P is from the solution of the continuous-time algebraic Riccati equation

FT P + PF− PGGT P + Q = 0, (2.24)

where Q = QT > 0 and P = PT > 0. The derivative of Equation 2.23 is defined as

V̇(η, v) = LFV(η) + LGV(η)v, (2.25)

where the Lie derivatives of V along the vector fields of F and G are defined as

LFV(η) = ηT(FT P + PF)η, (2.26)

LGV(η) = 2ηT PG, (2.27)

6 The Lyapunov function conditions apply: continuously differentiable, positive definite, and radially
unboundedness
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which follows straightforwardly from Equations (2.21) and (2.23). With our desire
to realize exponential convergence, a constraint on the CLF can be formulated that
guarantees that the derivative of the output dynamics imposes a minimum rate of
decrease in V(η). Subsequently, if there exists some constant λ (convergence rate)
such that

V̇(η, v) + λV(η) ≤ 0, (2.28)

then the Lyapunov function V(η) is said to be an ES-CLF and any η is exponentially
stabilizable to zero. This formulation is a convex optimization problem that can be
solved in real-time. The constraint in Equation (2.28) leads to an optimization-based
control law formulation

min
u
||u||2 (2.29)

s.t. L f V(x) + LgV(x)u + λV(x) ≤ 0 (ES-CLF)

umin ≤ u ≤ umax. (torque limit)

In practice, additional constraints are introduced to ensure a feasible solution on
the biped. The collection of these constraints can make the ES-CLF QP infeasible.
To ensure that at least an approximately optimal solution exists, we introduce a
slack variable δ that allows relaxation of the ES-CLF constraint. If we additionally
introduce the constraints for bipedal walking from Chapter 2.2.1, we obtain the
complete ES-CLF QP formulation

min
u,Fh ,q̈

||u||2 + pδ2 (2.30)

s.t. Dq̈ + C = JT
h Fh + Bu (EOM)

L f V(x) + LgV(x)u + λV(x) ≤ δ (ES-CLF)

Jh q̈ + J̇h q̇ = 0 (holonomic)

umin ≤ u ≤ umax (torque limit)

AGRFFGRF ≤ 0, (friction cone)

where p weights the relaxation of the CLF constraint with respect to the actuation.
As long as the slack variable δ is not too large for too long, approximate exponential
convergence can be achieved in practice.

2.3.3 Task Space Control

Another approach to track desired output trajectories on nonlinear systems is Task
Space Control (TSC)7. As the CLF constraint is relaxed in practice with an additional
decision/slack variable δ, the TSC and the CLF-QP can obtain identical performance
[35]. However, an advantage of the TSC is the decreased number of tuning parame-
ters and a more intuitive gain tuning.

If we again consider RD1 and RD2 outputs for an affine control system, we can
define affine relationships for the derivative of the outputs w.r.t. the control input
as well

Ẏ1 = Ji︸︷︷︸
A1

q̈ + J̇i q̇− Ẏd
1︸ ︷︷ ︸

b1

Ÿ2 = Jj︸︷︷︸
A2

q̈ + J̇j q̇− Ÿd
2︸ ︷︷ ︸

b2

,
(2.31)

which can be combined in a system according to

Ÿ = Au + b =

[
A1
A2

]
u +

[
b1
b2

]
, (2.32)

7 Task Space Control is also known in the literature as whole-body control and operational space control.
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which indicate the actual accelerations of the output. For RD1 and RD2 outputs,
we can then define the desired accelerations that stabilize the system with the use
of P and PD control respectively and ensure that the outputs stabilize themselves
according to a second order system. According to the definition of a second-order
system, the first time derivative of RD1 outputs is affine in the control input, so we
use a Proportional gain. The second time derivative of RD2 outputs is affine in the
control input so we use a Proportional and a Derivative gain.

Ÿd
=

[
Ẏd

1
Ÿd

2

]
=

[ −Kp,1Y1
−Kp,2Y2 − Kd,2Ẏ2

]
. (2.33)

As we now have an expression for the actual and the desired output of the system
in terms of PD control, we can minimize the error between the two and formulate a
Quadratic Program (QP) to find the optimal applied torques subjected to feasibility
constraints

min
u,Fh ,q̈

||Ÿ− Ÿd||2 (2.34)

s.t. Dq̈ + C = JT
h Fh + Bu (EOM)

Jh q̈ + J̇h q̇ = 0 (holonomic)

umin ≤ u ≤ umax (torque limit)

AGRFFGRF ≤ 0. (friction cone)

Additional constraints such as contact force embedding to ensure kinematic similar-
ity between the human and the robot will be addressed in later chapters.

The background information on bipedal walking, robot modeling, and nonlinear
control allows us to continue with our human walking analysis and implementa-
tions of robotic walking on reduced-order models and full-order 3D walkers.



3 H U M A N W A L K I N G O N D O W N S T E P S

Many bipedal walkers in nature prove themselves as versatile, efficient, and robust
in a wide variety of environments. This robustness is most apparent in the abil-
ity to overcome unexpected perturbations in the ground surface height, and the
biomechanics community has analyzed this behavior in much detail. The initial
inspiration of this thesis [1] highlights the extraordinary capabilities of the guinea
fowl when running over unexpected downsteps (similar to those considered in this
thesis). The observation that guinea fowls are more successful in traversing unex-
pected downsteps than expected downsteps seems counter-intuitive and reveals the
extraordinary reflex behavior and passive (or uncontrolled) dynamics of the system.
These properties have advanced over millennia of evolution but are not apparent in
bipedal robotics. On the contrary; the passive dynamics of a bipedal robot are often
not explicitly taken into account in the design and control. It could therefore be
beneficial to map this reflexive behavior and resulting passive dynamics explicitly
onto bipeds.

We will address human behavior when walking over expected and unexpected
downsteps in this chapter. This scenario has been researched at a muscular-reflex
level [5; 6; 7] and whole-body level [67; 68; 9; 8]. Pre-impact reflexes during unex-
pected downsteps, such as those in the stance ankle [6], are difficult to analyze and
even more difficult to map to morphologically different bipeds (especially the ones
that are not driven by muscle-like actuation). In this chapter, we will perform an
analysis of the CoM behavior and the resultant GRFs. Additionally, we will consider
the angular momentum around the stance leg as an important metric for stability.
We will first explain the measurement setup and the experimental trials, then we
will perform the analysis of the CoM, GRFs, and the angular momentum around
the stance leg. We will finalize with measurement data processing to be applicable
towards RoM walking in Chapter 4. The morphological differences between the
human and the robot prevent the applicability of a joint-level analysis that has been
addressed in literature [67; 9; 8].

3.1 data collection
To understand the human response to walking over expected and unexpected down-
steps, we analyzed experiments conducted at the Lauflabor lab at Technische Uni-
versität Darmstadt. Human subjects walked on a platform 2 meters wide and 6

meters long shown in Figure 3.1. A variable height walking platform is located at
the center of the platform, which can quickly control the vertical position of a sin-
gle step-tile using electric motors, as shown in Appendix B. Three force plates are
present: before (9287C, Kistler, Switzerland), on (9260AA, Kistler, Switzerland), and
after (9287C, Kistler, Switzerland) the variable height platform. These force plates
measure the ground reaction forces at 1 kHz. Full body movement is recorded by a
motion capture system (Qualisys, Sweden) consisting of 26 markers and 16 cameras
that run at 240 Hz. Eight trials are conducted for each downstep height at 0.0 cm,
-2.5 cm, -5.0 cm, -7.5 cm, and -10.0 cm for both expected- and unexpected situations.
For the unexpected trials, the downstep platform is lowered when the swing foot
is approaching the ground, which is detected by the interruption of a laser beam.

15
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Figure 3.1: The experiment setup for data collection of human walking. Force plates are
installed beneath the platform.

Both expected and unexpected downstep trials therefore allow complete vision of
the walking platform. The experiment consists of nine experimental conditions:
four known downstep heights, four unknown downstep heights, and nominal flat-
ground walking. For each experimental conditions, eight trials per subject were
performed. The data of 3 subjects were analyzed. Inverse Kinematics (IK) and In-
verse Dynamics (ID) optimization was performed in OpenSim [69; 70]. Differences
between nominal walking and downstep compensation in the coronal plane were
regarded to be small and insufficiently affected by the downsteps. Subsequently,
we limit our focus to the results in the sagittal plane.

3.2 kinematics and kinetics analysis
With the Inverse Kinematics, we optimize the pose of the model that best matches
the the coordinate data of the markers for each time frame. By assigning weights to
the markers and unprescribed coordinates (Q = SE(3)×Qjoints), we obtain the flow
q and q̇ of the coordinates for all time frames. Using the time evolution of the human
subject and the approximately correct mass and limb length from a scaled OpenSim
musculoskeletal model [38], we can compute the center of mass kinematics. Gait
tiles for an expected and unexpected 10 centimeter downstep trial are shown in Fig-
ure 3.2 and 3.3, respectively. Unsurprisingly, we observe a larger pelvis angle with
respect to the stance leg for the unexpected 10 centimeter downstep compared to
the expected 10 centimeter downstep. Additionally, the up-step1 stepsize is signif-
icantly larger, which is caused by the comparatively small down-step stepsize for
the unexpected 10 centimeter downstep. These results will be more apparent in the
angular momentum analysis around the stance leg. As one of the main objectives
of perturbed walking is to keep the whole body upright, it was shown that also
the direction of the GRFs from the CoP point slightly upwards of the CoM, which,
according to the Virtual Pivot Point model [71], realizes this upper-body stability
[4]. It was also shown that this observed principle is not visible during unexpected
downsteps due to the stumbling behavior as a result of the small step size.

1 The complete downstep trial is divided into three steps; down-step: the step from the nominal walking
platform upon the downstep platform, over-step: the step from the nominal walking platform upon the
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Figure 3.2: Gait tiles of the human subject in OpenSim walking over an expected 10 cm
downstep.

A powerful abstraction for a full-body analysis of the human gait is the consid-
eration of the CoM kinematics. Although the human subjects have an upper body
with arms (which are not present on Cassie), the point-mass dynamics can capture
the contributions towards changes in angular momentum. Figure 3.4 shows a poly-
nomial fit to the normalized mean vertical CoM position and the GRFs, normalized
by Body-Weight (BW), for the nominal and downstep trials. The analysis is per-
formed from the Vertical Leg Orientation (VLO) before the downstep and ends at
the VLO after the downstep. Subsequently, two complete steps are considered in
the analysis. For example, if we consider a left stance leg during downstep detec-
tion, the analysis is from the moment of the CoM passing the left foot on the raised
pre-downstep platform until the moment of the CoM passing the left foot on the
raised post-downstep platform.

The within-subject variance is deemed sufficiently low, max(std(zCoM)) < 0.018cm,
to permit polynomial fits for analysis and further application. From Figure 3.4, we
observe that the CoM position is significantly lowered for both scenarios. This is
more significant for expected downsteps where the lowering of the CoM height
starts before the swing leg penetrates the flat-ground platform height. The lowest
point of the CoM for an expected 10 centimeter drop is 17% of the CoM height at
VLO (0.0074 SD) and 12% (0.0024 SD) for an unexpected 10 centimeter drop. For

nominal walking platform of the stance leg not subjected to the downstep, up-step: the step from the
downstep platform upon the nominal walking platform.

Figure 3.3: Gait tiles of the human subject in OpenSim walking over an unexpected 10 cm
downstep.
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Figure 3.4: Average vertical CoM position and vertical GRF for walking over flat ground,
expected, and unexpected downsteps. The GRFs start at the VLO before the
downstep, switch to the swing leg experiencing the downstep, and end at the
original stance leg when the downstep has been overcome.

the nominal walking condition, the lowering of the CoM height is only 6% which is
in accordance with other findings in literature [4].

For these expected downsteps, the lowering of the CoM produces a reduced im-
pact force of the swing leg experiencing the downstep. However, for unexpected
downsteps, the change in vertical CoM height during downstep is predominantly
caused by the passive pendulum properties of the stance leg, and the peak of the
GRF is significantly higher compared to the expected downsteps. With the subjects
being instructed to ‘continue’ walking, an essential metric regarding stability is the
angular momentum around the stance contact location. This metric culminates hu-
man behavior regarding the horizontal and vertical CoM position with the resulting
forward walking velocity. The angular momentum around the ground contact of
the current stance leg can be computed as

Lst =
Nsegments

∑
i=0

ri ×mi ṙi + Ii θ̇i, (3.1)

where Nsegments is the number of body segments, ri is the position of the CoM of
segment i in the stance-foot frame, and mi, Ii, and θ̇i are the mass, inertia, and
rotational velocity around its own CoM respectively. The trajectory of the angular

Figure 3.5: Averaged trajectories of the angular momentum around the contact point for
walking on flat-ground, expected, and unexpected downsteps (with 10 centimeter
depth). Blue boxed regions indicate the DSP.
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momentum around the ground contact point of the current stance leg is shown in
Fig 3.5. These results indicate that angular momentum is much more constrained
towards the flat-ground walking condition for expected trials. This smaller devia-
tion in the angular momentum compared to unexpected downstep trials is caused
by the reduced vertical CoM position and the smaller change in horizontal CoM
velocity. An increase in down-step stepsize causes changes to the nominal step-
lengths in unexpected downstep trials that were governed by the passive dynamics
of the swing leg instead active swing leg positioning. We will later see that these
differences in step length for expected and unexpected trials can be remedied by
the H-LIP walking in Chapter 4.

3.3 human data interpolation
In order to abstract the human data to a representation that can be used in the Re-
duced Order Model (RoM) realization in Chapter 4 and 6, we create an interpolated
surface. The creation of this surface is supported by the smoothness of the results for
different downstep heights (for both expected and unexpected downsteps) which
has been made apparent in Figure 3.4. Subsequently, from the measurement data,
we create C1 (continuously differentiable) surfaces for the vertical CoM position and
the desired GRFs shown in Figure 3.6 and 3.7. For the vertical CoM position, we
pose a Bézier polynomial optimization for the three compensatory steps according
to

min
α

3

∑
i=1
||zd

CoM,i(τ)− zBézier
CoM,i(τ, αi)||2 (3.2)

s.t. zBézier
CoM,1(0, α1) = z(0) (IC)

żBézier
CoM,1(0, α1) = 0

zBézier
CoM,3(1, α1) = z(0) (FC)

żBézier
CoM,3(1, α3) = 0

zBézier
CoM,i(1, αi) = zBézier

CoM,i+1(0, αi+1), k ∈ {1, 2} (Continuity)

żBézier
CoM,i(1, αi) = żBézier

CoM,i+1(0, αi+1), k ∈ {1, 2},

where α is the set of Bézier polynomial parameters for all three steps, i is the step
(1: down-step, 2: over-step, or 3: up-step), τ is the phasing variable τ ∈ [0, 1], IC
indicates the initial condition at the VLO before the downstep, FC indicates the final
condition at the VLO after the downstep, and Continuity indicates the continuity
constraints between the steps i and subsequently realizes the C1 surface. The total
step-time or duration is implicitly constrained as the Bézier polynomials are fitted
onto the normalized stepping time range t̄ ∈ [0, 1] in the walking implementations
in Chapter 4 and 6. The Bézier polynomials are defined as

z(τ, α) =
Nα

∑
j=0

αj
Nα!

j!(Nα − j)!
τ j(1− τ)Nα−j, (3.3)

where Nα is the order of Bézier polynomial. A similar optimization problem is con-
structed for each curve of the GRFs. The continuity is enforced between Double
Support and Single Support Phases of the respective steps i. In our analysis from
pre-downstep to post-downstep VLO, three legs are in contact with the ground; the
initial stance leg on the nominal walking platform, the initial swing leg that impacts
the downstep platform, and the initial stance leg when it impacts the nominal walk-
ing platform after the downstep platform impact. Subsequently, three surfaces are
created. In Figure 3.6 and 3.7, interpolation surfaces of the vertical CoM trajectory
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Figure 3.6: The desired vertical CoM trajectory zd
CoM and the GRF in SSP parameterized by

time (t) and the downstep height h for expected downsteps.

Figure 3.7: The desired vertical CoM trajectory zd
CoM and the GRF in SSP parameterized by

time (t) and the downstep height h for unexpected downsteps.

and the vertical GRF of the initial swing leg on the downstep platform are shown.
These figures also highlight the C1 curves are traversed during an expected and
unexpected downstep. For the expected downstep, the trajectory of the vertical po-
sition of the CoM is adapted from the moment of the VLO before the downstep, as
it is known that the subsequent step will be subjected to a change in walking height.
The vertical CoM and the vertical GRF are equal at the VLO after the downstep and
the VLO of nominal walking. This continuity enables the smooth transition from
downstep behavior to nominal walking behavior. For the unexpected downsteps,
the trajectory may only be adapted when the swing foot detects the downstep (pene-
trates the virtual ground surface). The red trajectory in Figure 3.7 changes direction
after the nominal walking surface penetration. The swing foot travels through the
downstep height until it reaches the downstep platform while the position of the
vertical CoM is guided to the desired height which corresponds with the currently
detected downstep height. After impact, the downstep height is known to the biped
(human or robot), and the trajectory of this downstep height h is followed for the
remaining compensatory behavior.



4 H U M A N W A L K I N G M O D E L R E D U C T I O N

The complex underlying principles of locomotion, such as interactions between
the biped and the environment, overactuated joint-level motion generation, high-
dimensionality, and nonlinear hybrid dynamics, make a full-body analysis of hu-
man locomotion a daunting task. However, these principles can often be abstracted
towards a simple model that resolves the redundancy by exhibiting the targeted
behavior of the walker with the least number of variables and parameters possible
[72]. For example, bipedal organisms that differ in overall morphology, such as
humans, birds, and even kangaroos, can all be represented by a decoupled spring-
mass-damper inverted pendulum model in the sagittal- and coronal plane [73] that
exhibit the targeted CoM kinematics and GRFs. Analyzing the motion of the hu-
man for application towards morphologically different robots therefore promotes
the abstraction towards an equivalent template model (or Reduced Order Model).

The template and anchor framework [72] has been key in developing a thorough
understanding of abstraction methods for bipedal locomotion. Although the spring-
mass properties in human locomotion has already been known since the 17th cen-
tury [74], its abstraction remains vital in both the analysis of the human gait and
the development [34; 36] and control [75; 17; 76; 77] of bipedal robots. However,
it was also observed that the canonical Spring-Loaded Inverted Pendulum (SLIP)
model shown in Figure 4.1 could not accurately describe the vertical and horizon-
tal kinematics while simultaneously representing the observed GRFs. The foot-roll
phases as addressed in Chapter 2.1.1 necessitates the introduction of actuation and
damping into the system. We consider an actuated SLIP model, which has been
successful in offline trajectory optimization for Cassie [17; 78], and as the descriptor
of the human nominal and compensatory motion. The reason for introducing this
aSLIP is threefold;

• Contributions of muscle activation (either intentional, as a reflex, or as a pre-
flex [79]1) and changes to posture alter the dynamic behavior of the human
walking over expected and unexpected downsteps. The subsequent analysis
would be high dimensional.

• The raw measurement data presented using IK is noisy and is only to an
assumed extent representative of a point-mass model.

• The aSLIP can accurately describe the compliant Cassie model for gait gener-
ation.

In order to obtain a tractable analysis of the dynamics, which is a closer repre-
sentation of the RoM, we abstract the human towards the actuated Spring-Loaded
Inverted Pendulum (aSLIP) model from [17; 78] with optimized system parameters
using Direct Collocation optimization. We initialize the solution of the optimiza-
tion with the polynomial fits of the human measurement data and solve using the
non-convex solver IPOPT [80].

1 Muscular reactionary behavior from the passive force-length and force-velocity properties of the muscle.

21
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Figure 4.1: Inverted Pendulum (IP) and Spring-Loaded Inverted Pendulum (SLIP) reduced
order models and their respective simulated GRFs in the vertical and horizontal
direction.

4.1 the actuated spring-loaded inverted pendu-
lum model

The dynamics of the aSLIP model are described in Appendix C which contain an
SSP and DSP with an impact map from SSP to DSP (the transition from DSP to SSP
is smooth). Figure 4.2 presents a schematic overview of the aSLIP model in SSP and
DSP. For a polynomial expression of the stiffness and damping of the leg spring,
the force in the spring is equal to the GRF. This force is computed as

Fs = K(L)s + D(L)ṡ, (4.1)

where s = L− r is the compression of the leg spring with L as the uncompressed
length and r as the compressed or real length as indicated in Figure 4.2. The aSLIP
walker is subsequently an underactuated point-foot walker with compliance. Dur-
ing SSP, the inertia of the swing leg is ignored, and the step-length of the nominal
and compensatory gait can always be realized. Although Chapter 3 has shown that
the ankle torque plays a role in both the nominal and the compensatory downstep
gait, this ankle actuation is not introduced in the RoM. The simultaneous control of
the CoM kinematics with the leg and ankle actuation would lead to an ill-posed op-
timization problem where the trade-off between tracking and energy expenditure
would lead to vastly different solutions. The contribution of the ankle torque is
therefore realized via the control of the uncompressed length of the spring.

Figure 4.2: aSLIP model in SSP (at VLO) and DSP.
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4.2 reduced order model fitting
We construct a non-convex optimization problem for fitting the behavior of the hu-
man to the aSLIP model. With the introduction of the actuation, we will jointly
optimize a leg-length dependent stiffness and damping for nominal walking and
acceleration of the rest-length of the leg spring. The changes to the representative
stiffness of the human leg are therefore encaptured by the change in the physical
length and the rest-length of the leg spring. We consider the compensatory behavior
to be between the pre- and post-downstep VLO and jointly optimize 5 phases: the
initial SSP at VLO, the touch-down on the downstep platform introducing DSP, the
over-step during the second SSP, the touch-down on the nominal walking platform
of this leg introducing the second DSP, and the lifting of the leg from the downstep
platform until the final VLO during the third SSP. We wish to fit the reduced-order
model both as an analysis tool and for obtaining the leg-length dependent stiffness
of the representative leg from the ground-contact point to the CoM. We are subse-
quently requiring the model to exhibit the kinematic and kinetic behavior of the
human in nominal walking and walking over expected and unexpected downsteps.
We pose the optimization problem in which we define the cost by tracking the ver-
tical CoM position and the energy expenditure of both legs. Soft constraints on
the duration of the downstep ensure the horizontal CoM kinematics. The Direct
Collocation optimization is formulated as

min
5

∑
i=1

(||za − zd||2 + w(||L̈1||2 + ||L̈2||2)) (4.2)

s.t. faSLIP + gaSLIP L̈ = 0 (dynamics constraints)

xi = xi+1 (state continuity)

x0 = x5 (VLO to VLO continuity)

Fz,k(t) ≥ 0, ∀k, ∀t (positive GRFs)

Fz,sw(0) = 0∧ Fz,st(t f ) = 0, ∀k, (smooth transitions)

where

• i indicates a phase of the walking gait,

• w ∈ R is a scaling parameter on the cost,

• L̈j is the acceleration on the rest-length of leg j,

• faSLIP and gaSLIP represent the equations of motion of the aSLIP model in
either SSP or DSP,

• xi indicates the full state of the system at phase i,

• Fz,k is the vertical GRF at phase k, and

• Fz,st and Fz,sw are the vertical GRFs of the current stance and new stance leg
respectively.

From the optimization, we also obtain the leg length-dependent stiffness, for which
we assume a second-degree polynomial as shown in Figure 4.3, and a constant
damping coefficient. Higher degrees of parameterizations of the stiffness and damp-
ing were evaluated in the same optimization framework, which did not show an
improvement on lowering the cost. The optimization is solved using IPOPT [80]
with 20 nodes per phase.
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Figure 4.3: Abstraction of the human kinematics and kinetics towards the reduced order
aSLIP model of walking. We optimize a quadratic stiffness that minimizes Equa-
tion (4.2).

4.3 reduced order model walking realization
We wish to realize closed-loop walking that exhibits the observed kinematic and
kinetic behavior with the leg stiffness and damping from the optimization. To this
end, we employ the Backstepping Barrier Function (BBF) [37] and the Step-to-Step
(S2S) dynamics of the Hybrid Linear Inverted Pendulum (H-LIP). The vertical state
is tracked using a backstepping controller with CLFs (Chapter 2.3.2) for vertical
tracking and realization of the GRFs using Control Barrier Functions [81; 82]. The
horizontal state is stabilized using a closed-form stepping formulation using H-LIP
RoM, which relies on a constant CoM height that makes the step-to-step S2S dy-
namics of the model linear [78; 35].

The stiffness and damping of the leg spring from the direct collocation optimiza-
tion are used as the parameters in the walking model of the aSLIP. The following
section closely follows [37].

4.3.1 Vertical CoM Tracking

For the vertical state, we define the control objective to drive the vertical CoM po-
sition to follow the desired trajectory from Figures 3.6 and 3.7. These output def-
initions prescribe the vertical CoM kinematics for flat-ground walking and during
expected and unexpected downsteps. The output is defined as

η =

[
zCoM − zd

CoM(t)
żCoM − żd

CoM(t)

]
, (4.3)

where superscript d indicates the desired time dependent vertical trajectory from
the human data. The output dynamics are

η̇ =

[
żCoM − żd

CoM(t)
z̈CoM − z̈d

CoM(t)

]
=

[
żCoM − żd

CoM(t)
−g− z̈d

CoM(t)

]

︸ ︷︷ ︸
fη

+

[
0
1
m

]

︸︷︷︸
gη

FP
z , (4.4)

where FP
z is the net vertical force on the CoM for each domain P (SSP or DSP). The

GRF is related from the spring forces in the leg; e.g., during the SSP, the vertical
component of the GRF and its first order time derivative is in accordance with
Equation (4.1),

FSSP
z = (K(L)s + Dṡ) cos(βst), (4.5)
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ḞSSP
z = (

∂K(L)
∂L

L̇s + K(L)ṡ) cos(βst)− K(L)s sin(βst)β̇st+

Ds̈ cos(βst)− Dṡ sin(βst)β̇, (4.6)

where βst is the stance leg angle from Figure 4.2. The time derivative of the vertical
component of the GRF is affine in the control input L̈ as s̈ = L̈− r̈. We can define
the affine control system for which the state is the input to the system in Equation
(4.4)

η̇ = fη + gη FP
z (4.7)

ḞP
z = fz + gz L̈, (4.8)

where L̈ is thus the acceleration of the rest-length of the aSLIP. As this system
is in strict-feedback form, we can apply a control Lyapunov function version of the
canonical backstepping to stabilize the dynamics of both systems. For the system
in (4.7), a feedback linearizing controller can be synthesized

F̄z =
1

gη,2
(− fη,2 + KFLη), (4.9)

where KFL = [KP, KD] is the feedback gain matrix, and subscript 2 indicates the
second element of the vector. The closed-loop stable system is rendered

η̇ = fη + gη F̄P
z = Aclη. (4.10)

We can define a Lyapunov function on the closed-loop dynamics to realize τz that
stabilizes η with the augmented Lyapunov equation [66] according to

V(η, Fz) = ηT Pη +
1
2
(Fz − F̄z)

2. (4.11)

More details can be seen in [37]. Given that we want to supply the controller with
additional constraints concerning the GRFs, we use a CLF-QP from Chapter 2.3.2
which states that as long as the CLF constraint is satisfied, the controller guarantees
exponential convergence of η (the vertical CoM kinematics) to 0.

4.3.2 Contact Force Embedding

We also want to enforce the desired GRF from human walking to ensure dynamic
similarity between the human and the RoM. Since the time derivative of Fz is affine
in the control input L̈ we can realize contact force embedding with Control Barrier
Functions (CBF) [82; 81] based on the constraint

(1− c)Fd
z + ∆F ≤ Fa

z ≤ (1 + c)Fd
z − ∆F, (4.12)

where c ∈ (0, 1) is a relaxation parameter and ∆F is an additional bound such
that the permissible set at the boundary of DSP is nontrivial [37]. A schematic
representation of this constraint is shown in Figure 4.4. This force-embedding is
included in both the SSP and the DSP as linear constraints in the CLF-QP. In SSP,
we define a single CBF that ensures the GRF of the robot remains in a relaxed tube.
In DSP the former stance foot has a GRF that goes to zero while the former swing
foot has a GRF that goes from zero to the initial GRF of the following SSP. During
the downstep, we use the interpreted GRF trajectories from Figure 3.6 and 3.7 as
the desired Fd

z . The CLF-QP is formulated as

min
L̈st/sw ,δ

L̈2
st/sw + pδ2 (4.13)

s.t. L f V(x) + LgV(x)L̈st/sw + λV(x) ≤ δ (ES-CLF)

L f h(x) + Lgh(x)L̈st/sw ≥ −α(h(x)). (CBF)

Friction cone constraints are subsequently not explicitly considered but the embed-
ding of the vertical GRF ensures that the horizontal components are reasonable and
not expected to exceed the constraints from Equation (2.5).
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Figure 4.4: Force embedding representation for DSP and SSP indicating the relaxation (1+ c)
and the additional bound ∆F according to Equation (4.12). Notice that Fd

z,sw is a
slice of the desired GRF in Figure 3.6 or 3.7 at h = 0.

4.3.3 Horizontal stabilization

The horizontal state is stabilized using the S2S dynamics approximation via the
Hybrid Linear Inverted Pendulum (H-LIP) [78; 35]. Using a constant height as-
sumption on the vertical CoM during SSP and DSP (which is an approximation due
to the tracking of the human vertical CoM behavior), the S2S dynamics of the sys-
tem can be described in closed-form. The horizontal dynamics of the H-LIP model
are described by

p̈

{
p̈ = λ2 p if SSP
p̈ = 0 if DSP

, (4.14)

where p is the horizontal position of the CoM with respect to the stance foot and
λ =

√
g/z0 with g being the gravity constant and z0 being the nominal walking

height. The S2S dynamics (from the end of SSP of step k to the end of SSP of step
k + 1) of the H-LIP are step-size and step-time dependent according to

x−SSPk+1 = eASSPTSSP

[
1 TDSP
0 1

]

︸ ︷︷ ︸
A

x−SSPk + eASSPTSSP

[−1
0

]

︸ ︷︷ ︸
B

uk, (4.15)

where uk is the step-size, TSSP and TDSP are the duration of the SSP and DSP respec-
tively, and ASSP originates from the state-space representation of the SSP dynamics

d
dt

[
p
ṗ

]
=

[
0 1

λ2 0

]

︸ ︷︷ ︸
ASSP

[
p
ṗ

]
. (4.16)

As mentioned previously, in reality we have a non-constant vertical CoM posi-
tion from the aSLIP nominal gait and compensation optimization p̈ = λ2 p =
gp/zCoM(t), yet the contribution of this deviation contributes to model difference
between the H-LIP and the system (human or robot) according to

xk+1 = Axk + Buk + w, (4.17)

where the disturbance w represents the model difference between the H-LIP and
the aSLIP RoM walker. The stepsize for flat-ground walking is determined by

ud
k = uH-LIP

k + K(xaSLIP − xH-LIP), (4.18)

where uH-LIP
k is the nominal step-size of the H-LIP, K is the deadbeat gain (i.e. (A +

BK)2 = 0) which stabilizes the H-LIP model to the desired post-impact state in
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Figure 4.5: H-LIP walking on flat terrain and on a slope of θs radians.

one step, and xaSLIP is the horizontal state of the aSLIP walker. More details of
the H-LIP stepping can be found in [35]. For the downstep scenarios, the H-LIP
is taking the slope of the walking surface into account. For the expected downstep,
the slope is altered at the VLO before the downstep based on the previous step-size
and the known downstep height. For the unexpected downstep, the slope is altered
continuously based on the current step-size and the penetration of the swing foot.
In accordance with Figure 4.5, θs is defined as

expected





θs = arctan( −h
uk−1

) if step = down-step

θs = arctan( h
uk−1

) if step = over-step

θs = 0 if step = up-step

,

unexpected





θs = arctan(−zsw
uk−1

) if step = down-step

θs = arctan( h
uk−1

) if step = over-step

θs = 0 if step = up-step

,

(4.19)

where zsw is the vertical position of the swing foot with respect to the stance foot,
uk−1 is the step-size before the VLO of the initial down-step, and h is the downstep
height. The desired post-impact state of the H-LIP is therefore stated as

xd
H-LIP =

ẋd
H-LIP

σ
+ z0 sin(θs), (4.20)

where ẋH-LIP is the desired walking velocity, σ is the orbital slope of the periodic
orbits for a specific SSP duration according to

σ := λ coth(
TSSP

2
λ), (4.21)

where TSSP is the predefined SSP duration. The desired post-impact state adapta-
tion negates the influence of the vertical CoM deviation from the H-LIP nominal
height z0 when the walker is walking over the downsteps. Details on the orbit char-
acterization of the H-LIP, including Period-1 and Period-2 orbits for sagittal walking
and coronal stabilization respectively, can be found in [35].

4.3.4 Control Structure

The RoM walking realization is able to simultaneously traverse expected and un-
expected downsteps. Both scenarios consist of three steps; the partial step from
either VLO before the downstep or the virtual ground penetration until the down-
step platform impact, the full step from original stance leg take-off until original
stance-leg impact on the recovery platform, and the partial step from the downstep
swing leg take-off until the VLO after the downstep. As such, a count keeps track
of the numberof steps that have been taken during the compensatory behavior. The
offline generated surfaces from Figure 3.6 and 3.7 are applied in an online feedback
motion planning methodology. The H-LIP stepping directly determines the swing
leg position and the human CoM
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Figure 4.6: Simulation results of the aSLIP walking over the expected downstep with 10

centimeter depth: (a) the vertical mass trajectories of the desired ones and the
actual ones, (b) the horizontal velocity of the mass, (c) the GRF profile with its
bounds, and (d) the step-lengths

4.4 results
Figures 4.6 and 4.7 show the simulation results of the aSLIP walker for expected
and unexpected downsteps for a 10 centimeter downstep height respectively. The
gait tiles of the aSLIP walker for these conditions are shown at the bottom of the
respective figures with a capture interval of 0.2 seconds. Figure 4.8 shows the cou-
pling of the trajectory generation and the BBF control structure.

We observe that both scenarios track the vertical CoM position to a desirable ac-
curacy. For the unexpected downstep, the descent according to the surface in Fig-
ure 3.7 is clearly visible. The post-VLO trajectory is equal to the nominal walking
trajectory until the swing foot penetrates the ground (and the DSP would begin
under nominal walking conditions). This realizes a desirable lowering of the verti-
cal CoM position in the limited duration of swing foot travel and the first half of
the DSP. The forward walking velocity expectantly oscillates around the desired ve-
locity. For the expected downstep scenario, the compensatory behavior minimally
affects the forward walking velocity. This aligns with our observations from the
human experiments in Figure 3.5. The forward walking velocity significantly de-
creases during the unexpected downstep, predominantly during the up-step. The
reason for this is the mass-less swing leg which can instantaneously be set to the
desired position during the penetration swing phase. The stabilization of the for-
ward walking velocity is additionally affected by the deviation of the vertical CoM
position from the H-LIP nominal walking height.

For the expected downstep scenario, for which the vertical CoM position is low-
ered more significantly than for the unexpected downstep scenario, the difference
between the H-LIP RoM and the aSLIP walker is amplified. This results in a less
conservative step length. Regardless, the H-LIP on flat ground and under the down-
, over-, and up-step conditions from Equation (4.19) excellently stabilizes towards
the desired walking velocity post-downstep. From Figures 4.6 and 4.7 it can also be
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Figure 4.7: Simulation results of the aSLIP walking over the unexpected downstep with 10

centimeter depth: (a) the vertical mass trajectories of the desired ones and the
actual ones, (b) the horizontal velocity of the mass, (c) the GRF profile with its
bounds, and (d) the step-lengths

seen that the vertical GRFs lay within the relaxed tube of the force-embedding. The
BBF realization requires a relaxation factor of 0.4 during downstep behavior. For
nominal walking, this factor can be reduced to 0.2. An additional difficulty in real-
izing human-like behavior in the forward walking direction is the coupling of the
control of the horizontal and vertical CoM position. Under a non-zero leg angle β,
the horizontal position of the CoM is also affected by the vertical stabilization with
the CLF-QP. This affects the horizontal velocity of the CoM and therefore affects the
step size.
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Figure 4.8: Trajectory generation based on the reduced-order model analysis and the feed-
back control structure of the Backstepping Barrier Function walking realization
on the aSLIP model.



5 R O B OT W A L K I N G S Y N T H E S I S

The outputs from the human, such as the desired vertical CoM kinematics, the de-
sired GRFs, the step-time, and the forward walking velocity, cannot be applied to
morphologically different bipeds as it will not necessarily result in realizable walk-
ing on a robot with different natural dynamics. As we wish to ensure dynamic
similarity between the robot and the human, this walking behavior and these pa-
rameters should be scaled towards the representative aSLIP of Cassie from [78]. In
this chapter, we present our human-to-robot walking synthesis for Cassie [36], with
significant morphological differences compared to humans.

5.1 output definitions
Initial work was conducted on a representation of Cassie, which was fully actuated
in the sagittal plane (with the use of ankle torque actuation). Full actuation requires
a forward walking output for which the forward CoM velocity ẋCoM was chosen
(an RD1 output). The outputs were phased with the forward CoM position with
respect to the stance leg xCoM. The step-sizes of the biped were determined offline.
Although this proved to be successful in 2D walking in MATLAB, it proved to be
difficult in realization in 3D (in a physics-based simulator as opposed to forward
integrating and directly controlling the equations of motion of Cassie in Equation
(2.2)). Later improvements for underactuated walking with the H-LIP stepping con-
troller from Chapter 4.3.3 removed this requirement to phase with the horizontal
CoM position and instead allowed us to determine a mean (or nominal) walking
velocity and phase the outputs with time.

Additionally, initial work on the deviation of the vertical CoM kinematics was based
on findings of human walking in literature for which relationships between verti-
cal CoM oscillation, step-size, and walking velocity were determined [83; 84; 85].
These relationships were then applied to scale the trajectories from the human to
Cassie. This resulted in a less robust walking realization. Furthermore, the human
relationships were based on a full-order model instead of our assumed RoM, which
convinced us to state a different walking synthesis. The results of that are presented
in the next section.

5.2 human inspired trajectory synthesis
Before we translate the observed motion and dynamics of the human to a bipedal
robot, we first emphasize several differences between the two systems; the human
and the robot.

• Cassie has a different mass distribution and does not have an upper body or
arms. The abstraction towards the CoM assumes whole-body behavior during
walking is primarily captured by the CoM dynamics.

• Cassie has an overall lower CoM position during nominal walking.
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• Cassie has different [78] or no leg compliance compared to the human test
subject for which the representative leg stiffness was determined from the
aSLIP direct collocation optimization in Chapter 4.2.

• Cassie is assumed to have point feet, limiting the realizable behaviors such as
the foot rolling motion on humans.

To be general, we do not consider the compliance in the robot or complex foot
rolling behaviors on the robot for the walking synthesis. Cassie has only been em-
ployed as a flat-footed walker and as such, the foot roll phases apparent in the
human gait have not been realized.

Based on the RoM characterization of the human walking, we want to transfer the
CoM kinematics and the GRF profile from the human to the robot Cassie. Firstly,
the nominal virtual leg length of Cassie (as defined by the distance between the
ground contact point and the CoM instead of the ankle and the hip) is a decision
variable that determines the scaling of the other gait parameters. For a chosen aver-
aged leg length over a step, we assume the SSP duration of Cassie is related to that
of the human by the passive pendulum properties of the swing phase in nominal
walking

TS,C =

√
L̄C/g√
L̄H/g

TS,H , (5.1)

where TS,C and TS,H are the SSP durations of Cassie and human respectively, and
L̄C and L̄H are the averaged leg length of Cassie and the human respectively. This
results in an observed SSP duration from the measurement data of 0.39 seconds
and a scaled SSP duration for Cassie of 0.34 seconds approximately. For realizing
flat-footed walking on Cassie, we remove the horizontal displacement of the CoM
caused by the foot-roll phases in the human gait

xCoM,C =
1− xroll

Ls,H
xCoM,H , (5.2)

where xCoM,C is the scaled horizontal displacement of the CoM for Cassie, xroll is
the horizontal displacement of the CoM during the heel and toe roll phases from
the human nominal walking trial, Ls,H is the leg length of the human, and xCoM,H
is the horizontal displacement of the CoM of the human. The DSP duration of
Cassie, TD,C, is based on the relative duration of the SSP and DSP of the human
after removing the duration of the roll-phase. Combining the total step-time, TC =
TS,C + TD,C, with the horizontal displacement allows us to redefine the nominal
walking velocity for Cassie as

˙̄xCoM,C =
xCoM,C(t f )− xCoM,C(t0)

TC
, (5.3)

where t0 and t f are the start and end-time of a step. This significantly reduces
the nominal walking velocity for Cassie from 1.22 to 0.82 meters per second. This
change is necessitated by the smaller CoM height and the lack of foot roll phases
of Cassie with respect to the human. An identical Froude number [86; 87] Fr =
˙̄xCoM/

√
gL̄ theoretically ensures dynamic similarity between walkers, yet the differ-

ences in the walking phases prevents the application of this dimensionless quantity.

The desired ground reaction forces are scaled with the mass fraction of the robot
and the human according to

Fz,C =
mC
mH

Fz,H , (5.4)

where Fz,C and Fz,H are the vertical GRFs of Cassie and the human respectively and
mC and mH are the total masses of Cassie and the human respectively. The vertical
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Parameter Human Cassie
Mass (kg) 66.5 33.0
Mean CoM height (m) 0.87 0.79

Step time SSP (s) 0.41 0.39

Step time DSP (s) 0.10 0.08

Forward walking velocity (m/s) 1.67 0.82

Table 5.1: Walking parameters from human data and Cassie from the human-to-robot walk-
ing synthesis.
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Figure 5.1: Phase portraits of the center-of-mass kinematics of the human and Cassie from
the human-to-robot walking synthesis.

CoM trajectory is scaled by the fractional change in virtual leg length of the human
and removing the contribution of the roll phases to the stance leg angle. First we
define the horizontal and vertical CoM position in a polar coordinate system in
accordance to Figure 4.2

LC =
L̄C

L̄H
LH , (5.5)

zCoM,C = LC cos(βH). (5.6)

The phase portraits of the human from observation and of Cassie from scaling are
shown in Figure 5.1. The resulting outputs can be embedded onto the aSLIP repre-
sentation obtained in [17]. For the scaled data, similar multi-parameterized surfaces
as shown in Figure 3.6 and 3.7 are available for Cassie. RoM walking results for an
expected and unexpected 10cm downstep are shown in Figure D.3 and D.4 in Ap-
pendix D.

The nominal and downstep step-times, the vertical CoM kinematics, the forward
walking velocity, and the vertical GRFs are employed in the next chapter to realize
3D underactuated walking on Cassie.



6 3 D R O B OT I C W A L K I N G R E A L I Z AT I O N

In this chapter, we will present the autonomous 3D bipedal walking for nominal and
downstep compensation via human-to-robot motion synthesis. We will first present
Cassie in more detail and comment on prototyping of the 2D implementation, in
which we have considered fully actuated and compliant walking realizations. We
will then present details on the walking implementation with Task-Space Control.

6.1 the bipedal robot cassie
The bipedal robot under consideration, as both a representative RoM in Chapter 5

and a full-order 3D walker, is Agility Robotics’ Cassie [36] as shown in Figure 6.1.
This full-scale biped and its predecessors MABEL [88], and ATRIAS [34], is modeled
to closely resemble the SLIP model with the mass mostly concentrated at the pelvis,
compliance, and agile lightweight legs. These legs are designed as closed kinematic
chains with stiff leaf springs at the knee and the tarsus, as shown in Figure 6.2. This
figure also indicates the passive, compliant, and actuated joints. The change in leg
length is realized via changing the shape of the compliant kinematic chain.

Each leg of Cassie has five conventional torque actuators. Three actuators are lo-
cated at the hip, which realize the pitch (flexion/extension), roll (abduction/adduc-
tion), and yaw (lateral/medial rotation) of each leg. One actuator is located at the
knee, which realizes the change in leg length, and one actuator is located at the
ankle, which realizes ankle flexion and dorsiflexion. The ankle toe actuator is lo-
cated at the tarsus to ensure a low inertia of the swing leg. The compliance in the
kinematic chain is relatively low with a joint stiffness of 2300 and 2000 Newton-
meters per radiant for the knee and the tarsus springs, respectively. Cassie can
have underactuation in different ways; firstly, no ankle torque can be exerted on
the ground around the forward axis, making Cassie underactuated in the coronal
plane, secondly, the compliance of Cassie introduces underactuation in the control

Figure 6.1: The underactuated and compliant Cassie biped with a schematic representation
of the side- and front-view.
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Figure 6.2: The compliant and actuated sagittal joints (left) and the degrees of freedom (right)
of the Cassie biped.. Figures in courtesy of Jenna Reher [89].

of the leg length. Lastly, the ankle torque can be disregarded [17; 60; 15; 16] due to
the generalization of the resulting walking method.

Although the compliance is present in the RoM walking via the abstraction towards
a representative SLIP leg stiffness from the contact point to the CoM position [78],
in this chapter, we will see how both a compliant and a rigid Cassie is considered
where the leaf springs at the knee and tarsus are considered compliant and non-
compliant respectively.

6.2 2d prototyping
Initial work was conducted on a compliant 2D walking simulation in MATLAB with
a corresponding Task-Space Controller. For a compliant model, the joint torques at
the compliant joints can be computed as

{
τshin = Ksqs + Dsq̇s

τtarsus = Ktqt + Dtq̇t
, (6.1)

where Kt and Dt are the joint stiffness and damping of the compliant tarsus joint.
The stiffness parameters are provided by the manufacturer [36], the damping is an
informed decision variable based on the fiberglass material of the leaf springs. This
is in contrast to the rigid model assumption which would introduce the joint-level
holonomic constraints on the shin- and heel spring and the tarsus- and knee joint
according to





qs = 0

qt + qk = 13 deg

qhs = 0

, (6.2)

which removes the compliance from Figure 6.2; the shin and heel-spring angle are
enforced to be zero radians, and the kinematic chain (the tarsus and knee joints) is
enforced to be a rigid. The Jacobian of the holonomic constraints is

Jh =

[
Jst

Jachilles

]
, (6.3)
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where Jst represents the Jacobian of the ground contact modelling and Jachilles is the
Jacobian of the holonomic constraint representation of the achilles rod from Figure
6.2. The rigid model holonomic Jacobian, Js, is considered separately for clarity.
The TSC can be constructed where, building upon the definition in Chapter 2.3.3,
we introduce additional cost terms of a slack variable, and the difference between
the desired (from joint properties) and actual (from the optimization) joint forces.

min
u,Fh ,Fs ,q̈,δ

||ÿa − ÿd − ÿt||2 + ||δ||2 + ||Fs − F∗s ||2 (6.4)

s.t. Dq̈ + C = JT
h Fh + Bτ (EOM)

Jh q̈ + J̇h q̇ = 0 (holonomic)

Js q̈ + J̇s q̇ = δ (compliant model)

τmin ≤ τ ≤ τmax (torque limit)

AGRFFGRF ≤ 0 (friction cone)

(1− c)Fd
z − ∆F ≤ FFE ≤ (1 + c)Fd

z + ∆F, (force embedding)

where

• F∗s are the torques in the compliant joints from Equation (6.1),

• δ is a vector of slack variables δ ∈ R4 for relaxation of the holonomic con-
straints to realize compliance (two compliant joints per leg),

• FFE are the vertical components of the contact forces to realize force embed-
ding according to Figure 4.4,

• yd is the desired output,

• ya is the actual output, and

• ÿt = −Kp(ya − yd)− Kd(ẏa − ẏd) where Kp, Kd are the feedback PD gain ma-
trices.

The compliant TSC realizes the structural compliance in the controller by forcing the
holonomic forces in the tarsus and heel spring in the optimization towards the esti-
mated forces from the joint stiffness and damping. The slack variables in δ therefore
allow the deviation of the rigid model holonomic constraint to the extend that the es-
timated joint torques require. The resulting TSC is used to realize nominal walking
with human-inspired trajectories and force-embedding in 2D MATLAB simulation.
However, it was not able to reliably realize downstep behavior to the extend that
the human could (downsteps of up to 10 centimeter). As such, a rigid description
of Cassie with a corresponding rigid TSC was considered for embedding the down-
step behavior. The joint-level holonomic constraints are now explicitly satisfied as
mentioned in Chapter 2. The rigid TSC is stated as

min
u,Fh ,q̈,δ

||ÿa − ÿd − ÿt||2 (6.5)

s.t. Dq̈ + C = JT
h Fh + Bτ (EOM)

Jh q̈ + J̇h q̇ = 0 (holonomic)

Js q̈ + J̇s q̇ = 0 (rigid model)

τmin ≤ τ ≤ τmax (torque limit)

AGRFFGRF ≤ 0 (friction cone)

(1− c)Fd
z − ∆F ≤ FFE ≤ (1 + c)Fd

z + ∆F, (force embedding)

The TSC-QP is solved using quadprog in MATLAB. With this QP description, we
realized expected and unexpected downstep behavior via a translation of the output
definitions from Chapter 4 via the motion synthesis in Chapter 5. The 3D walking
realization is also realized on a rigid model of Cassie.
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6.3 robot walking output construction
As we want to control the full-order dynamics of Cassie, we are not only concerned
with vertical CoM tracking with force-embedding and horizontal stabilization, we
also need to control the additional degrees of freedom of Cassie. Subsequently, the
outputs of the three-dimensional Cassie model in SSP are defined as

yd
SSP =




αpelvis
βpelvis

γst
γsw

zd
CoM(t, zsw, nds)

xsw(t, θ)
ysw(t, θ)

zsw(t, nds)
αsw




, (6.6)

where

• αpelvis, βpelvis indicate the pitch and roll of the pelvis,

• γst and γsw indicate the yaw of the stance and swing leg respectively,

• nds indicates the downstep step; the down-step, the over-step, and the up-step,
and

• αsw indicates the pitch of the swing foot toe.

All the desired pitch, roll, and yaw angles are represented by a Bézier polynomial
smoothly guiding the current angle to zero radians. The swing foot positions in the
horizontal plane originate from a decoupling of a Period-1 H-LIP for the sagittal
plane and a Period-2 H-LIP for the coronal plane [14]. The vertical position of the
swing foot tracks a pre-defined Bézier spline with unique formulations for the over-
step and up-step for the downsteps scenarios, addressed in the next section. In DSP,
the swing leg outputs are not tracked which allows us to state the effective outputs
as

yd
DSP =




αpelvis
βpelvis

γst
γsw

zd
CoM(t, zsw, nds)




, (6.7)

In the implementation, the SSP output from Equation (6.6) is used for both SSP and
DSP. During DSP the desired swing leg outputs are set equal to the actual swing leg
outputs. The foot contact constraints ensure that neither foot slips, rotates around
its edges, or prematurely lifts from the walking surface.

6.3.1 Force Embedding

In contrast to the aSLIP representation of Cassie, in which the complex leg structure
from Figure 6.1 is replaced by a single spring, the ground reaction forces of the
rigid 3D model of Cassie are not equal to the forces in the compliant joints. The
representation from Equation (2.9), in which the ground contact is modeled as a
holonomic constraint, is used for the approximation of the ground reaction forces.
The force-embedding can therefore be realized as a linear constraint in the TSC-QP

(1− c)Fd
z,SSP/DSP − ∆F ≤ FFE ≤ (1 + c)Fd

z,SSP/DSP + ∆F, (6.8)
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Bézier for Bézier polynomial coefficients
B smooth transition [0, 0, 1, 1, 1]
Bz,nw nominal walking [0, zmax

sw I4, 0, zneg
sw ]

Bz,os over-step [h, zmax
sw + hI4, 0, zneg

sw + h]
Bz,us up-step [−h, zmax

sw I4, 0, zneg
sw ]

Table 6.1: Bézier polynomial coefficients for nominal walking and compensatory steps. I4
indicates a four-column row vector of ones. The Bézier polynomials are shown in
Figure 6.3.

where FFE is the selection of vertical components of the ground contact wrench of
the legs that are in contact with the ground via Equation (2.9). The desired GRFs
are parameterized similarly to the vertical CoM trajectories

Fd
z,SSP/DSP = Fd

SSP/DSP(t, zsw, nds). (6.9)

6.3.2 Swing Foot Trajectory Construction

The desired swing foot trajectory is decomposed in the x, y, and z direction. For 3D
walking, the forward swing leg trajectory xsw is governed by the H-LIP stepping
controller of the sagittal plane, the side-ward swing leg trajectory ysw is governed
by the H-LIP stepping controller of the coronal plane, and the vertical swing leg
trajectory zsw is governed by a constructed Bézier polynomial that realizes a desired
maximum swing foot height and ensures a foot penetration of the nominal walking
platform. Based on the H-LIP step-sizes and step-velocities for Period-1 and Period-
2 orbits for the sagittal and coronal stepping respectively, the desired swing foot
position, velocity, and acceleration can be constructed as





{x, y}d
sw = (1−B(t)){x, y}a

sw + B(t){x, y}d
H-LIP

{ẋ, ẏ}d
sw = −Ḃ(t){x, y}a

sw + Ḃ(t){x, y}d
H-LIP + B(t){ẋ, ẏ}d

H-LIP

{ẍ, ÿ}d
sw = −B̈(t){x, y}a

sw + B̈(t){ẋ, ẏ}d
H-LIP + 2Ḃ(t){ẋ, ẏ}d

H-LIP

, (6.10)

where B(t) is a Bézier polynomial that smoothly transitions from zero to one over
the course of the SSP duration (t = 0→ t = TSSP). The vertical swing foot trajectory
is differently constructed for nominal walking, the over-step, and the up-step (the
downstep is equal to the nominal walking trajectory).





zd
sw = Bz(t)

żd
sw = Ḃz(t)

z̈d
sw = B̈z(t)

, (6.11)

where the Bézier coefficients are shown in Table 6.1. The resulting Bézier poly-
nomials of the smooth transition from Equation (6.10) and the vertical swing foot
trajectories are shown in Figure 6.3.

6.4 contact force embedded task space control
To realize the proposed trajectory synthesis on the bipedal robot, we apply the task
space controller (TSC) for output tracking. The force embedding can be realized
via a linear constraint on the holonomic forces, which are optimization variables in
the TSC. We directly specify a linear constraint on the vertical GRF to realize the
force-embedding.

(1− c)Fd + ∆F ≤ SFh ≤ (1 + c)Fd − ∆F, (6.12)
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Figure 6.3: Bézier polynomials of the smooth transition to guide actual to desired trajectories
and nominal and compensatory vertical swing foot trajectories. Notice that the
maximum swing foot height with respect to the height of the impact surface
remains approximately equal.

where Fd = Fd(t, zsw, nds) and S is a selection matrix to select the vertical compo-
nent of the ground contact wrench in Equation (2.4).

The final quadratic program with the equation of motion (EOM) constraint, holo-
nomic constraints, contact force constraints is formulated as:

min
u,Fh ,q̈

(ÿa − ÿd − ÿt)TW(ÿa − ÿd − ÿt) + uTWregu (6.13)

s.t. Dq̈ + C = JT
h Fh + Bτ (EOM)

Jh q̈ + J̇h q̇ = 0 (holonomic)

Js q̈ + J̇s q̇ = 0 (rigid model)

τmin ≤ τ ≤ τmax (torque limit)

AGRFFGRF ≤ 0 (friction cone)

(1− c)Fd + ∆F ≤ SFh ≤ (1 + c)Fd + ∆F, (force embedding)

where yd is the desired output, ya is the actual output, ÿt = −Kp(ya− yd)−Kd(ẏa−
ẏd) with Kp, Kd being the feedback PD gain matrices, W is the weight matrix and
Wreg is the regularization matrix for the control inputs. The QP is solved using
OSQP [90] at 2 KHz in the Mujoco physics simulator [91]. During SSP and DSP,
each constraint in the QP considers one or two feet in contact with the ground re-
spectively. A time-based domain switching determines the number of feet in contact
with the ground. When the QP fails in the DSP due to early lift-off or late ground
contact, a SSP controller is used as a backup controller. Additionally, if the foot
penetration does not suffice to bring the swing foot to the downstep height in the
duration of the SSP, a DSP controller is used instead and the swing foot follows a
passive trajectory. To prevent hitting the walking platform during the up-step, we
ensure the horizontal position of the swing foot xsw remains constant for the first
0.1 seconds of the up-step swing phase while the vertical position zsw is unaffected.

The control structure, including the abstraction of the human towards a RoM, the
offline gait trajectory generation, and the TSC feedback loops, are shown in Figure
6.4. Appendix E present the PD gain matrices, the output weights, and the con-
trol loop algorithms. These algorithms present how the downstep detection, the
step count, and the synthesis of the desired outputs are realized for the expected
and the unexpected downsteps separately. These algorithms can straightforwardly
be combined to realize the human-to-robot synthesized locomotion on Cassie. In
the next chapter, we will present and analyze results of the nominal walking and
walking over downsteps.
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Figure 6.4: Trajectory generation based on the reduced-order model analysis and human-to-
robot motion synthesis, and the feedback control structure of the 3D walking
realization on Cassie with a Task-Space Controller.



7 R E S U LT S

The methodology presented in this thesis, and specifically the RoM trajectory syn-
thesis from human data, was applied to the aSLIP model and the robot Cassie to
walk over expected and unexpected downsteps. The results of the realization on
the aSLIP model were addressed in Chapter 4. This section will focus on the pre-
sentation and analysis of the 3D walking realization.

7.1 3d cassie downstep navigation
Expected and unexpected 10 centimeter downstep results are presented in Figure
7.2 and 7.3. The gait tiles of Cassie for these conditions are shown at the bottom of
the respective figures with a capture interval of approximately 0.2 seconds.

The simulation results demonstrate the successful translation of human RoM data
to the realization of downstep behaviors on Cassie in 3D simulation. The 10 cen-
timeter downstep on Cassie is an even more significant disturbance compared to the
human. The mean desired CoM height is lower for Cassie and as such, the downstep
height is a larger percentage of the overall virtual leg length. The accurate tracking,
combined with the force-embedding with a relaxation factor of c = 0.3, ensures the
dynamic similarity between the robot and the human on a reduced-order model
level. In work on fully actuated walking in Chapter 6, it was already highlighted
that it was challenging to realize locomotion as tuning becomes a trade-off between
tracking the horizontal and vertical CoM kinematics. This issue permeates to the
underactuated walking. Now, the tracking of the vertical CoM when the walker is
not at VLO (the stance leg is not perpendicular to the ground) affects the horizontal
CoM kinematics. A critical observation between the results for expected and un-
expected downstep navigation is that the increased oscillation of the vertical CoM
position for expected downsteps increasingly affects the horizontal CoM velocity
(shown in Figure 7.2.b), which in turn results in significant deviations in the step-
sizes during the compensatory behavior. This is supported by the periodic orbits
of the expected and unexpected 10cm downstep in Figure 7.1 which portray the
phase portrait of the CoM kinematics in the sagittal (Period-1 H-LIP stabilization)

Figure 7.1: Period-1 and Period-2 orbits of 3D walking for expected and unexpected down-
steps with 10cm depth. Blue and red indicate the Period-1 and Period-2 orbits
respectively.

41



7.1 3d cassie downstep navigation 42

Figure 7.2: Simulation results of 3D walking for Cassie over the expected downstep with
10cm depth: (a) the vertical mass trajectories of the desired ones and the actual
ones, (b) the horizontal velocity of the mass, (c) the GRF profile with its bounds,
and (d) the step-lengths. The blue dot indicates the down-step step.

and coronal (Period-2 H-LIP stabilization), respectively. The successful navigation
of downsteps is concluded from the return of the deviation in horizontal velocity
to the nominal walking velocity. The more significant deviation from the nominal
periodic orbits in Figure 7.1 makes apparent that the stability of the horizontal CoM
dynamics (in both the sagittal and the coronal plane) is more affected under the un-
expected downstep conditions.

An additional difficulty in achieving great tracking performance is the trade-off
between tracking the vertical CoM kinematics and force embedding. In Figures
7.2 and 7.3 we see decreased tracking performance for the unexpected downstep
scenario as the recovery behavior exceeds the one step required for the expected
scenario. This becomes especially apparent for the unexpected downstep scenario,
in which the vertical CoM position of the step after the up-step is tracked to a de-
sirable accuracy. We argue that this is predominantly due to inaccuracies in the
desired GRFs from the human measurements with regards to the changes in the
horizontal CoM velocity. From the TSC-QP formulation in Equation (6.13) it is ap-
parent that the tracking of the vertical CoM kinematics is enforced in the cost of the
optimization while the force-embedding is realized as an explicit, although relaxed,
constraint. Further relaxing the force-embedding constraint does not necessarily im-
prove the tracking of the vertical CoM kinematics. The relaxation allows the GRF to
persist in a region that is only locally optimal in realizing desired tracking behavior.
As such, continuing the accurate tracking performance might become infeasible as
the GRFs that realize this are not achievable due to the underlying dynamics of the
system. asdfasdfasdfasdfasdfasdfasdfasdfasdfasdf asdfasdfasdfasdfasdfasdfasdfas-
dfasdfasdf asdfasdfasdfasdfasdfasdfasdfasdfasdfasdf
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Figure 7.3: Simulation results of 3D walking for Cassie over the unexpected downstep with
10cm depth: (a) the vertical mass trajectories of the desired ones and the actual
ones, (b) the horizontal velocity of the mass, (c) the GRF profile with its bounds,
and (d) the step-lengths. The blue dot indicates the down-step step.

The control of the swing leg and vertical CoM for humans is mostly governed by
the passive dynamics of the system when experiencing unexpected downsteps. For
the robot, the vertical swing foot behavior is explicitly controlled at all times ac-
cording to Figure 6.3, which prevents an immediate impact velocity and, with the
requirement of lowering the CoM, results in a decreased GRF during the downstep.
This lies at the core of the human-to-robot translation of desired dynamics. The
accuracy of the robot in portraying the desired kinematics and kinetics may only
be as good as the underlying assumption of the equivalent reduced-order model
representation of the human and the robot, coupled with the realized step-sizes.

The improved controllability of Cassie with respect to the human means that in both
scenarios—expected and unexpected downsteps—the increase of the forward CoM
velocity is significantly reduced. Thus, both downstep scenarios can be traversed
more effectively, and motion planning based on the sensing of the environment via
the kinematics (the foot penetration of the walking platform) can help traverse un-
expected changes in walking height and explicitly plan motion when exceeding the
nominal step-time.

7.2 energy efficiency
The human to robot synthesised trajectory also have effect on the energy efficiency
during nominal walking. Compared to state-of-the-art approaches [35] in which the
vertical CoM position is explicitly being kept constant, we compare canonical H-LIP
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Unit Canonical H-LIP Human Synthesized SLIP
Pt Nm/s 536.98 388.45

Pp Nm/s 1256.10 799.42

Ppn Nm/s 1975.23 1210.39

CoTmt,t − 1.25 0.97

CoTmt,p − 2.94 1.99

CoTmt,pn − 4.61 3.02

Table 7.1: Supplied power and the mechanical Cost of Transport of the canonical H-LIP walk-
ing [35] and the human synthesized SLIP walking presented in this thesis. A
walking duration of 15 seconds is considered with a forward walking velocity of
approximately 0.81 meters per second.

walking with human synthesised SLIP walking. In bipedalism, the energy efficiency
can be quantified with the Cost of Transport metric

CoT =
Power

Weight ·Distance
(7.1)

However, to distinguish between efficiency of the mechanical system and actuators,
and the control system the specific energetic cost of transport CoTet, which considers
the total energy consumed by the system, and the specific mechanical cost of transport
CoTmt which considers only the positive mechanical work of the actuators [55] can
be used. In simulation, the overall energy supplied by the virtual battery, the current
through, and the voltage over the individual motors is not known. As such, the
mechanical cost of transport is considered in Table 7.1. For the supplied power
actuator, we consider [92; 93]

• the total power Pt = regen(uq̇) where the regeneration function regen(uq̇) =
[uq̇]+ − C[uq̇]+ accounts for the regeneration loss when the supplied torque
and the rotation of the joint are in opposite direction,

• the positive-only power Pp = [uq̇]+, and

• the positive and negative power Ppn = |uq̇|

where u and q̇ are the joint torque and rotational velocity for an actuated joint re-
spectively. In theory, without frictional- and impact losses and joint- and linkage
damping, locomotion is energy conservative if all energy supplied by the braking is
regenerated. The total power Pt therefore assumes the negative power is perfectly
regenerated if C = 1. The positive-only power Pp disregards any energy generation
during breaking and the positive and negative power Ppn considers the harvested
energy as a supplied energy.

The results shown a decrease in energy consumption and a subsequent decrease
in the CoT for all the power consumption definitions. The actuation is realized by
brushless DC servo motors that do not have perfect regenerative properties assumed
by Pt. However, the positive and negative power definition Ppn assumes no regen-
eration at all. As such, all presented results are an approximation of the real system.

The main contribution to the decrease in the CoT is the pendulum-like stance phase,
in line with the inverted pendulum theory [40; 41] from Chapter 2. This theory, which
is realized by the human-to-robot motion synthesis, keeps the length of the leg ap-
proximately constant and as such requires less knee torque. The constant height
assumption of the H-LIP does not use this advantageous property apparent in bi-
ological bipedalism. The CoT metrics of different autonomous bipedal robots are
reported in [60; 53] yet the simulation-only nature of the metrics in this thesis pre-
vent a one-to-one comparison.



8 D I S C U S S I O N

The presented human-to-robot motion synthesis successfully allows Cassie to over-
come similar scenarios to those observed from human experiments. The transla-
tion of motion capture data to a musculoskeletal model for abstracting center of
mass (CoM) kinematics allows the fitting of a reduced-order model. The resulting
reduced-order model not only allows walking realization on the aSLIP for nomi-
nal walking and (un)expected downstep behavior, it also substantiates the dynamic
scaling of the human towards the robot. The successful realization of walking high-
lights the power of scaling output kinematics and kinetics when the underlying
they can be represented by equivalent reduced-order models.

8.1 human walking
The analysis of the human motion capture and ground reaction force (GRF) mea-
surement data has given insight into the whole-body compensatory behavior of
the human walking over expected and unexpected downsteps from 2.5 to 10 cm.
We have observed that for the unexpected downsteps, the changes in vertical CoM
height only occur after the swing leg impacts the down-step surface. In addition,
we have observed that the passive trajectory of the swing leg, and its resulting step-
size, in the unexpected downstep scenario causes a significant increase in horizontal
CoM velocity after the ground impact.

8.2 reduced order model walking
The abstraction of the human CoM kinematics and ground contact kinetics in Chap-
ter 3 and 4 have given us insight into the preflexive, reflexive, and active compen-
sation of the human walking over downsteps. We have shown that the unexpected
downstep requires more overall actuation of the leg in order to stabilize towards
the nominal gait compared to the expected downstep. The realization of walking
on the aSLIP model has proven to be an excellent tool in better understanding the
human gait on a reduced-order model abstracted level. A shortcoming is that the
step-sizes of the Hybrid Linear Inverted Pendulum (H-LIP) stepping stabilization
can directly be realized (as we neglect swing leg inertia), and subsequently, the hor-
izontal stabilization behavior is too accurate compared to the human. Especially in
the case of the unexpected downstep scenario, where we have seen that the step
size is mainly governed by the passive dynamics of the swing leg, the step-sizes are
not necessarily representative of the human compensatory gait. This shortcoming
and potential future work to remedy this effect are mentioned in the next chapter.

8.3 3d robotic walking
The robot walking synthesis in Chapter 5 scales the walking outputs of the human
to a reduced-order model representation of the considered bipedal robot. The 3D
walking realization highlights the power of abstracting key human motion charac-
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teristics and can subsequently embed active and passive reactive behavior of the
human onto a morphologically different bipedal robot. The results in Figure 7.2
and 7.3 have shown this successful downstep navigation with approximately equiv-
alent dynamics as those observed in the human. It has highlighted that the princi-
pled abstraction of motion characteristics could further improve the state-of-the-art
of bipedal robot robustness and agility in which human compensation is explicitly
embedded in an online motion parameterization by the swing leg platform penetra-
tion. Additionally, improvements in efficiency are highlighted in comparison to the
constant walking height thus far realized in the implementations of H-LIP stepping.
Although the constant walking height decreases the error between the robot and
the H-LIP reduced-order model, it leads to an inefficient nominal walking gait. The
human-to-robot walking synthesis therefore already has advantages for this nomi-
nal walking behavior.

It is clear that the deviation of the CoM height from the assumed nominal walking
height of the H-LIP affects the stabilization in the compensatory gait. The increased
deviation under expected downsteps, as shown in Figure 3.4, amplifies the differ-
ence between the robot and the H-LIP RoM and subsequently affects the stepping
optimal stepping behavior. The indication of the step sizes affecting the forward
walking velocity in nominal walking and walking over downsteps in Figure 7.2 and
7.3 support this conclusion. The effect of this approach to stepping stabilization
with human-to-robot tracking and force embedding can be seen in the supplemen-
tary video of this thesis [94]. Existing realizations of traversing unexpected down-
steps either rely on the underlying robustness of the controller or on more heuristic
approaches to the swing-leg and vertical CoM trajectories. The human-to-robot mo-
tion synthesis facilitates a more principled approach to the downstep behavior that
could be readily applicable to other walking behavior such as stair walking. Lastly,
it is the current hypothesis that the principled abstraction of the key human motion
characteristics realize explicit compensatory behavior which allows the state of the
system to be in a more robust region of the state-space.



9 C O N C L U S I O N

We have demonstrated that the specific walking responses of humans to the changes
in the environment can be embedded in morphologically and dynamically different
robotic bipedal systems. By scaling the outputs of the human in the motion synthe-
sis and embedding the contact forces in the low-level control, the dynamic similar-
ity between models is realized on the closed-loop systems. The proposed method
has been successfully realized on the actuated Spring-Loaded Inverted Pendulum
(aSLIP) and 3D simulated Cassie to overcome expected and unexpected downsteps
with similar responses to those found in the human gait.

The presented framework expands upon state-of-the-art approaches for realizing
flat-ground walking [78; 35] on bipedal robots and reduced-order model abstrac-
tions [11; 1] from observations in biology. A connection between observations and
application in robotics has been established, and human-to-robot motion synthe-
sis is presented with an approach to integrate the morphological differences be-
tween the human and the robot. This builds upon concepts of dynamic similarity
in bipedal locomotion [29; 25].

Although the presented framework has enabled Cassie to successfully navigate ex-
pected and unexpected downstep scenarios in a dynamically similar manner as the
human, the considered model of Cassie, the motion synthesis, and the controller
structure are subjected to shortcomings in accurately portraying a reduced-order
model representation of the human walker. Together with the assumption on the
equivalent reduced-order model representation of the human and the robot, this
prevents true dynamic similarity of the generated trajectories and ground reaction
force profiles.

9.1 future work
We present concrete improvements to achieving dynamic similarity and to further
establish the underlying framework of employing human data in the motion syn-
thesis of morphologically different bipedal robots.

9.1.1 Vertical Center Of Mass Dynamics

Firstly, the oscillation of the vertical Center of Mass position affects the horizon-
tal stabilization capabilities of the H-LIP stepping as mentioned in Chapter 8. The
power of the H-LIP stepping method is its closed-form step-to-step dynamics, which
ensure a closed-form step size solution on the full-order robot. Small oscillations,
such as those present in the nominal walking gait, can accurately be stabilized by
the H-LIP without any tedious gain- and parameter tuning. However, the signifi-
cant lowering of the Center of Mass, especially for the expected downstep scenario,
significantly affects the stabilization. As such, a better understanding of the effect
of these deviations on the H-LIP step-to-step dynamics could allow the realization
of more agile behavior without the loss of the closed-form strengths of the current
stepping implementation.
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9.1.2 Systems With Non-Trivial Compliance

Secondly, the current 3D model of Cassie is assumed rigid. The human muscu-
loskeletal system contains significant compliance and uses this to its advantage to
increase efficiency and robustness. Although compliant bipedal robots have success-
fully been controlled, the translation of these advantageous properties is not yet
well-understood. However, it could significantly improve general bipedal robotic
walking and the current framework to more closely dynamically mimic the active
and passive compensatory behavior of the human.

9.1.3 3D Fully Actuated Walking

The 3D walking implementation in Chapter 7 is underactuated in the sagittal plane,
yet, the observations from human data in Chapter 3 indicates that the ankle is
an important stabiliser in the compensatory gait. Work was conducted on fully
actuated walking in 2D and 3D with pre-determined step-sizes scaled from human
data. It was deemed that this method could not reliably reproduce the downstep
compensation observed in the human. A promising direction could be to consider
the ankle actuation in the sagittal plane with the current 3D implementation with
H-LIP stepping stabilization. This requires dynamically scaled trajectories of the
forward CoM kinematics, which we already obtained in Chapter 5, and include the
forward CoM velocity as a Relative Degree 1 output in the Task-Space Controller in
Equation 6.13.

9.1.4 Follow-The-Leader

The presented work currently focuses on a specific downstep scenario. Future work
will consider a general framework of transferring versatile human locomotion to
dynamic bipedal robot behaviors, which could lead to impressive feats such as
follow-the-leader traversal of stepping stones and walking over stairs. In these scenar-
ios, the robot could monitor the human, abstract the observed joint kinematics to a
representative reduced-order model, and traverse the stepping stones or stairs in a
dynamically similar fashion with desired kinematics and kinetics that apply to the
reduced-order model representation of the robot in question. To achieve this prov-
able applicability of the observed kinematics and kinetics, a deeper understanding
of the closed-loop dynamics of walking is required. Future work will focus on this
generalized human motion abstraction.
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An Activated SLIP Model of Human Walking

Captures the Response to Expected and

Enexpected Downsteps

Joris Verhagen, Guoping Zhao, Ajay Seth

1 Introduction

How animals and humans handle unexpected changes in terrain during locomotion is not yet fully
understood. While spring-loaded inverted pendulum (SLIP) models are used to explain the dynamics
of downsteps during running, their extension to downsteps for human walking has not been explored.
We hypothesize that an activated, aSLIP, model [1] can capture how humans successfully negotiate
downsteps and provide an intuitive and more applicable understanding.

2 Methods

We measured human kinematics and kinetics walking over flat ground with expected and unexpected
downsteps using optical motion capture and force-plates where only one leg experienced a downstep.
Both conditions considered 2.5, 5.0, 7.5, and 10.0 cm downsteps. We computed the center of mass
(CoM) kinematics. We fit the aSLIP model from [1] with quadratic stiffness (with respect to leg
length) and damping obtained from nominal gait and specified the activation as the acceleration of
the rest length. This activation relates to leg length and muscle forces according to the equilibrium
point hypothesis [2]. We formulated a direct collocation problem where the cost function consists of
energy expenditure and the error between simulated and experimental CoM position. We included
continuity constraints and soft bounds on the duration of the phases and on GRF peaks. For each of
the eight trials with experimental conditions, we optimized over two strides, starting from vertical leg
orientation (VLO) before the downstep until the first VLO afterward, using IPOPT [3]. The process
was considered successful if the activated SLIP model could track the experimental CoM trajectory
under 1 cm RMS.

3 Results

The resultant aSLIP models matched experimental CoM trajectories within 8mm RMS. Stance leg
rest length actuation, rest length, CoM position, and GRFs for selected experimental conditions are
presented in Figure 1.

4 Discussion

Our activated SLIP model accurately captures the kinematics and kinetics of human walking over
expected and unexpected downsteps. The increased actuation for unexpected downsteps indicates
that the effective stiffness of the leg increases after impact and that this effect also increases with
larger downsteps. The results from our aSLIP model reveal that humans are more compliant when
the downstep is known and make more effective use of passive dynamics, as seen by the decrease

1



in actuation. We have shown that the simple actuated SLIP model provides insight into active and
passive changes of the leg when subjected to expected and unexpected downsteps. These findings
could be applied to bipedal robotics to negotiate downsteps in a way similar to humans.
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From Human Walking to Bipedal Robot Locomotion:
Reflex Inspired Compensation on Planned and Unplanned Downsteps

Joris Verhagen1, Xiaobin Xiong2, Aaron D. Ames2 and Ajay Seth1

Abstract— Humans are able to negotiate downstep
behaviors—both planned and unplanned—with remarkable
agility and ease. The goal of this paper is to systematically
study the translation of this human behavior to bipedal
walking robots, even if the morphology is inherently different.
Concretely, we begin with human data wherein expected and
unexpected downsteps are taken. We analyze this data from the
perspective of a reduced-order template model representation
of the human, encoding the center of mass (CoM) and contact
forces, which allows for the translation of these behaviors into
the corresponding reduced-order model of a bipedal robot. We
embed the resulting behaviors into the full-order dynamics of
a bipedal robot via nonlinear optimization-based controllers.
The end result is the demonstration of planned and unplanned
downsteps in simulation on an underactuated walking robot.

I. INTRODUCTION

Bipedal robotics has experienced tremendous progress in
the last decades. Yet, even in fully known environments,
the agility and robustness of mechanical bipeds has yet
to match their biological counterparts. We argue that this
due to a lack of online motion planning, an absence of
reflex-like control, and non-advantageous passive dynamics,
which biological systems employ to overcome disturbances.
This can most notably be seen when considering significant
unexpected changes in stepping height. For example, [1]
describes the behavior of guinea fowls subjected to an
unexpected downstep in a running gait. Similarly, these
(un)expected downstep scenarios have been the focus in
human running [2], [3] and walking [4], [5]. While there
has been efforts to achieve similar behaviors in the context
of robotic running [6], [7], they have yet to be realized on
robots with different mythologies. The goal of this paper,
therefore, is to translate the reflex behavior present in humans
negotiating both planned and unplanned downstep behaviors
to morphologically different bipedal robots.

The nonlinear control and biomechanics communities have
traditionally pursued the study of bipedal robot locomotion
from different perspectives. The control theorist approach is
mainly concerned with realizing stable and robust locomo-
tion with formal guarantees—even if the resulting walking
does not directly share commonality with human walking.
Methods such as offline trajectory optimization with Hy-
brid Zero Dynamics [8], [9], closed-form template-model
stepping methods [10] require a varying degree of model

1Authors are with the Faculty of Mechanical, Maritime, and Materi-
als Engineering (3ME) and with the faculty of Biomechanical Engineer-
ing, Delft University of Technology, 2628 CD Delft, The Netherlands
j.p.m.verhagen@student.tudelft.nl

2Authors are with the Faculty of Civil and Mechanical Engineering,
California Institute of Technology, Pasadena, CA 91125, USA

Fig. 1. The human measurement data in OpenSim mapped to a representa-
tive skeletal model of the test subject, compared to 3D Cassie subjected to
the same downstep height. Changes occur in step-time, step-length, forward
walking velocity, desired contact forces, and vertical CoM trajectories.

knowledge, but have been successfully utilized to achieve
dynamic walking behaviors experimentally on underactuated
robots. The biomechanist approach typically focuses on the
methods of actuation, human morphology, and activation.
Although formal notions of ’biologically-inspired walking’
exist [11], the intersection of these distinct fields has received
less focus than one might expect from the significant similari-
ties between analyzing biological bipedal locomotion and re-
alizing robotic bipedal locomotion. Additionally, while there
have been approaches to benchmarking human likeness [12]
this does not address how to achieve human-like behaviors
on walking robots. In this work, we identify similarity be-
tween human and robotic walking via reduced-order models
(RoMs) and use this to embed human walking behaviors—
and specifically downstepping—on walking robots.

This paper presents a method for translating downstep
behaviors—both planned and unplanned—from humans to
walking robots. Specifically, the 3D bipedal robot Cassie
[13] which is substantially morphologically different from a
human. To achieve this goal, we first collect data from human
walking downstep experiments and abstract this behavior
to a reduced-order model (RoM) that captures the essential
components of this behavior: the kinematics of the center of
mass (CoM) and the ground reaction forces. We then con-
sider the dynamics associated with this RoM via the Spring-
Loaded Inverted Pendulum (SLIP) model and generated
nominal downstep compensation. We stabilize the vertical
state and realize force-embedding with the Backstepping-
Barrier Function framework developed in [14] and stabilize
the horizontal state via step-size adaptation of the Hybrid
Linear Inverted Pendulum (H-LIP) via the linear Step-to-Step



Fig. 2. The experiment setup for data collection of human walking. Force
plates are installed beneath the platform.

(S2S) dynamics. For the 3D implementation, a rigid model
is assumed where the output dynamics are stabilized towards
the desired trajectories using a Task-Space Controller (TSC)
and force-embedding is realized as a linear constraint. The
end result of this approach is the ability to generate downstep
behaviors in simulation on the 3D model of Cassie. We,
therefore, are able to start from human data for downstepping
and, through a principled abstraction of the key elements of
locomotion, arrive at robotic downstepping even when the
morphologies of the human and robot differ dramatically.

The structure of this paper is as follows. In Section II we
describe the human walking on downsteps and corresponding
data analysis; specifically related to the CoM and ground
reaction forces. Section III uses the collected human walking
data, coupled with RoMs of locomotion, to generate walking
on SLIP like models. This walking on reduced-order models
is embedded into the full-order dynamics of the 3D robot
in Section IV. Finally, the results of the paper are described
in Section V wherein the 3D walking achieved on Cassie
for downstep behaviors—both planned and unplanned—is
described.

II. HUMAN WALKING ON DOWNSTEPS

A. Data Collection

To understand (un)expected downsteps in humans we
analyzed experiments conducted at the Lauflabor lab at
Technische Universität Darmstadt. Human subjects were
instructed to walk on a platform 2 meter wide and 6 meters
long shown in Fig. 2. At the center of the platform, a
variable height walking platform is located. Three force
plates are present, before, on, and after the variable height
platform, which record the ground reaction forces at 1 kHz.
Full body movement was recorded by a motion capture
system consisting of 26 markers and 16 cameras at 240
Hz. Eight trials were conducted for each downstep height
at 0.0 cm, -2.5 cm, -5.0 cm, -7.5 cm, and -10.0 cm for
both expected and unexpected situations1. A total of nine

1All trials allow full vision of the walking platform. Unexpected trials
are performed by suddenly lowering the walking platform when the swing
foot approaches the ground

Fig. 3. Average vertical CoM position and vertical GRF for flat-ground,
expected, and unexpected downsteps. The GRFs start at the VLO before the
downstep, switch to the swing leg experiencing the downstep, and ends at
the original stance leg when the downstep has been overcome.

experimental conditions were tested; four known downstep
heights, four unknown downstep heights, and nominal flat-
ground walking.

Inverse Kinematics (IK) optimization was performed in
OpenSim [15], [16] to obtain the joint angles and Center
of Mass (CoM) positions and velocities of the human.
Differences in behavior in the coronal plane were to be small
and insufficiently affected by the downsteps. Subsequently,
we limit our focus to the results in the sagittal plane.

B. Kinematics and Kinetics Analysis

A powerful abstraction for a full-body analysis of the
human gait is the consideration of the CoM behavior. Al-
though the human subjects have an upper body with arms
(which are not present on Cassie), the contributions towards
changes in angular momentum can be captured by the point-
mass dynamics. Fig 3 shows a polynomial fit to the mean
vertical CoM position for the nominal and downstep trials
and the GRFs. The analysis is performed from the Vertical
Leg Orientation (VLO) before the downstep and ends at
the VLO after the downstep 2 The within-subject variance
is low. From Fig 3, we observe that the CoM position is
significantly lowered both before swing foot impact which
is especially the case for expected downsteps. For these ex-
pected downsteps, the lowering of the CoM is accompanied
with a reduced impact force of the swing leg experiencing the
downstep. For unexpected downsteps, the change in vertical
CoM height during downstep is predominantly caused by
the passive pendulum properties of the stance leg and the
peak of the GRF is significantly higher compared to the
expected downsteps. From the measurement data, we create
C1 surfaces for the vertical CoM position and the desired
GRFs shown in Fig. 4. With the subjects being instructed
to ‘continue’ their gait, an important metric with regards to
stability is the angular momentum around the stance leg.

2Two full steps are considered. If we consider a left stance leg during
downstep detection, the analysis is from the moment of the CoM passing
the left foot on the raised pre-downstep platform until the moment of the
CoM passing the left foot on the raised post-downstep platform.



Fig. 4. The desired vertical CoM trajectory zdCoM and the GRF in
SSP parameterized by time (t) and the downstep height h for expected
downsteps. Similar regressions are applied for the walking on unexpected
downsteps

Fig. 5. Averaged trajectories of the angular momentum around the contact
point for walking on flat-ground, expected, and unexpected downsteps (with
10cm depth). Blue boxed regions indicate the DSP.

The stance-foot angular momentum is shown in Fig 5.
These results indicate that the angular momentum is much
more contained towards the flat-ground walking condition for
expected trials. This is caused both by the reduced vertical
CoM position and the smaller change in horizontal CoM
velocity. The latter is caused by an increase in step-size as
it was noticed that changes to the nominal step-lengths in
unexpected downstep trials were governed by the passive
dynamics of the swing leg.

C. Human Walking Model Reduction

The contributions of muscle activation (either deliberate or
reflexive) and changes to posture alter the dynamic behavior
of the human when subjected to expected and unexpected
downsteps. The subsequent analysis would be high dimen-
sional. Additionally, our results from the raw measurement
data using IK are noisy, do not explicitly contain the accel-
eration, and are only to an assumed extend representative of
a point-mass model. In order to obtain a tractable analysis of
the dynamics which is a closer representative of the RoM,
we abstract the human towards the actuated Spring Loaded
Inverted Pendulum (aSLIP) model from [17], [14] which
contains actuation on the rest-length of the spring.

We construct a non-convex optimization problem of fitting
the behavior of the human to the aSLIP model. With the
introduction of the actuation, we will jointly optimize a

leg-length dependent stiffness and a damping for nominal
walking, and acceleration of the rest-length of the spring. The
changes to the representative stiffness of the human leg are
therefore encaptured by the change in the physical length and
the rest-length of the spring. The optimization is formulated
as:

min
5∑

i=1

(||za − zd||2 + w(||L̈1||+ ||L̈2||2)) (1)

s.t.faSLIP + gaSLIPL̈ = 0 (dynamics constraints)
xi = xi+1 (state continuity)
x0 = x5 (VLO)
Fz,k(t) ≥ 0,∀k, ∀t
Fz,sw(0) = 0 ∧ Fz,st(tf ) = 0,∀k

where i indicates a phase of the walking gait, w ∈ R is a
scaling parameter on the cost, L̈j is the acceleration on the
rest-length of leg j, faSLIP and gaSLIP represent the equations
of motion of the aSLIP model in either SSP or DSP, xi

indicates the full state of the system at phase i, Fz,k is the
vertical GRF at phase k, and Fz,st and Fz,sw are the vertical
GRFs of the current stance and new stance leg respectively.
As we consider the analysis from pre-downstep VLO to post-
downstep VLO, we jointly optimize 5 phases2. Agreement
in the horizontal velocities is enforced with soft bounds on
the step duration as to not over-constrain the dynamics of the
RoM. From the optimization, we also obtain the leg length-
dependent stiffness, for which we assume a second degree
polynomial as shown in Fig. 6, and the damping, which
is assumed constant. Higher degrees of parameterizations
of the stiffness and damping were evaluated in the same
optimization framework, which is not showing significant
improvement on lowing the cost.

III. WALKING REGENERATION ON A REDUCED-ORDER
MODEL OF HUMANS

Given the kinematics and kinetics data of human walking,
we first want to re-generate the motion via feedback control
on the optimized aSLIP model that represents human walk-
ing dynamics. We apply the Backstepping-Barrier Function
(BBF) controller with the step-to-step (S2S) dynamics ap-
proximation approach developed in [14]. The backstepping
component in the BBF based quadratic program (BBF-QP)
allows the tracking of the vertical state of the point mass,
which is underactuated due to the spring in the leg; the
control Barrier function in the BBF-QP allows the GRF stays
in a range of desired GRF profile of human walking. The S2S
dynamics approximation provides stepping stabilization that
addresses the point-foot underactuation of walking.

A. Vertical CoM Tracking
For the vertical state, we define the objective as driving the

vertical CoM position to follow a desired trajectory during
nominal walking and during (un)expected downsteps. The
output is defined as:

η =

[
zCoM − zdCoM(t)
żCoM − żdCoM(t)

]
, (2)



Fig. 6. Abstraction of the human kinematics and kinetics towards the
reduced order aSLIP model of walking. We optimize a quadratic stiffness
which minimizes Eq. (1)

where superscript d indicates the desired time dependent
vertical trajectory from the human data. The output dynamics
is:

η̇ =

[
żCoM − żdCoM(t)
−g − z̈dCoM(t)

]
+

[
0
1
m

]
FP
z = fη + gηF

P
z , (3)

where FP
z is the net vertical force on the CoM for each

domain P (SSP or DSP). The GRF is related from the spring
forces in the leg; e.g., during the SSP, the vertical component
of the GRF is:

F SSP
z = (K(L)s+D(L)ṡ) cos θst,

where θst is the stance leg angle, and s = L−L0 is the spring
deformation. Taking the derivative of the vertical GRF w.r.t.
time results in the affine control system for which the state
is the input to the system Eq. (3):

η̇ = fη + gηF
P
z (4)

ḞP
z = fz + gzτz (5)

where τ = L̈ is the acceleration of the rest-length of the
aSLIP. As this system is in strict-feedback form, we can
apply a control Lyapunov function version of the canonical
backstepping approach to stabilize the dynamics of both
systems with the augmented Lyapunov equation V (η, Fz) =
ηTPη + 1

2 (Fz − F̄z). More details can be seen in [14].
We also want to enforce the desired GRF from the human

walking in the controller. Since the time derivative of Fz

is affine in the control input L̈ which allows contact force
embedding with Control Barrier Functions (CBF) based on
the constraint

(1− c)F d
z +∆F ≤ F a

z ≤ (1 + c)F d
z −∆F , (6)

where c ∈ (0, 1) is a relaxation parameter and ∆F is an
additional bound such that the permissible set at the boundary
of DSP is nontrivial [18]. This can be included in both the
SSP and the DSP as linear constraints in the CLF-QP. In
SSP, we define a single CBF which ensures the robot’s GRF
remains in a relaxed tube. In DSP the former stance foot
has a GRF that goes to zero while the former swing foot
has a GRF that goes from zero to the initial GRF of the
following SSP. During the downstep, we use the interpreted
GRF trajectory from Fig. 4 as the desired F d

z .

B. Horizontal stabilization

The horizontal state is stabilized using the S2S dynamics
approximation via the Hybrid Linear Inverted Pendulum (H-
LIP). Using a constant height assumption on the vertical
CoM during SSP and DSP (which is relaxed due to the
tracking of the human vertical CoM behavior), the S2S
dynamics of the system can be described in closed-form.
In SSP, the horizontal dynamics of the H-LIP model are
described by p̈ = λ2p, where p is the horizontal position of
the CoM w.r.t. the stance foot and λ =

√
g/z0 with g being

the gravity constant and z0 being the nominal walking height.
In DSP, we assume a constant horizontal CoM velocity. The
S2S dynamics (from the end of SSP of step k to the end of
SSP of step k + 1) of the H-LIP are step-size and step-time
dependent according to

x−
SSPk+1 = eASSPTSSP

[
1 TDSP
0 1

]
x−

SSPk+

eASSPTSSP

[
−1
0

]
uk, (7)

where uk is the step-size, TSSP and TDSP are the duration of
the SSP and DSP respectively, and ASSP originates from the
state-space representation of the SSP dynamics

d

dt

[
p
ṗ

]
=

[
0 1
λ2 0

] [
p
ṗ

]
:= ASSP

[
p
ṗ

]
. (8)

As mentioned previously, in reality we have a non-constant
vertical CoM position from the aSLIP nominal gait and
compensation optimization p̈ = λ2p = gp/zCoM(t), yet the
contribution of this deviation contributes to model difference
between the H-LIP and the system (human or robot) accord-
ing to

xk+1 = Axk +Buk + w (9)

The stepsize for flat-ground walking is determined by

ud
k = uH-LIP

k +K(xaSLIP − xH-LIP) (10)

where uH-LIP
k is the nominal step-size of the H-LIP, K is

the deadbeat gain (i.e. (A + BK)2 = 0), and xaSLIP is the
horizontal state of the aSLIP walker. More details of the H-
LIP stepping can be found in [14], [10]. For the downstep
scenario’s, the H-LIP is taking the slope of the walking
surface into account. For the expected downstep, the slope
is altered at the VLO before the downstep based on the
previous step-size and the known downstep height. For the
unexpected downstep, the slope is altered continuously based
on the current step-size and the penetration of the swing foot.

IV. 3D ROBOTIC WALKING REALIZATION

We now present our human inspired walking synthesis
on a 3D bipedal robot. We use the robot Cassie as an
example, which is a bipedal walking system with significant
morphological differences compared to human.



A. Human Inspired Trajectory Synthesis

Before we translate the observed motion and dynamics
of the human to a bipedal robot, we first emphasize several
potential differences between the two systems. A robot may
have a different distribution of mass and it may not have
an upper body or arms. The robot Cassie has a much lower
CoM. The abstraction towards the CoM assumes whole-body
behavior during walking is primarily captured by the CoM
dynamics. A robot may have different or no leg compliance
compared to the human test subject. The robot may not
have actuated feet or may have point feet, which limits the
realizable behaviors such the foot rolling motion on human.
To be general, we do not consider the compliance in the
robot or complex foot rolling behaviors on the robot.

Based on the RoM characterization of the human walking,
we want to transfer the CoM trajectory and the GRF profile
from the human to the robot Cassie. Firstly, the nominal
leg length of Cassie (as defined by the distance between
the contact pivot and the CoM rather than the hip) is a
decision variable which determines the scaling of the other
gait parameters. For a chosen averaged leg length over a
step, we assume the step SSP duration of Cassie is related
to that of the human by the passive pendulum properties of
the swing phase in nominal walking

TS,C =

√
L̄C/g√
L̄H/g

TS,H , (11)

where TS,C and TS,H are the walking period of Cassie and
human respectively, and L̄C and L̄H are the averaged leg
length of Cassie and the human respectively. For the flat-
footed walking, we remove the horizontal displacement of
the CoM caused by the foot-roll phases

xCoM,C =
1− xroll

Ls,H
xCoM,H (12)

where xCoM,C is the scaled horizontal displacement of the
CoM for Cassie, xroll is the horizontal displacement of
the CoM during the heel and toe roll phases, Ls,H is the
leg length of the human, and xCoM,H is the horizontal
displacement of the CoM of the human. This allows us to
redefine the nominal walking velocity for Cassie as

˙̄xCoM,C = (xCoM,C(tf )− xCoM,C(t0))/TS,C , (13)

where t0 and tf are the start and end-time of a step.
The desired ground reaction forces are scaled with the mass
fraction according to

Fz,C =
mC

mH
Fz,H , (14)

where Fz,C and Fz,H are the vertical GRFs of Cassie and
the human respectively and mC and mH are the total masses
of Cassie and the human respectively. The vertical CoM
trajectory is scaled by the fractional change in virtual leg
length of the human and removing the contribution of the
roll phases to the stance leg angle. The resulting outputs can
be embedded onto the aSLIP representation obtained in [17].

For the scaled data, similar multi-parameterized surfaces as
shown in Fig. 4 are available for Cassie.

As we want to control the full-order dynamics of Cassie,
we are not only concerned with vertical CoM tracking with
force-embedding and horizontal stabilization, we also need
to control the additional degrees of freedom of Cassie.
Subsequently, the outputs of the walking are defined as

yd =




[
αpelvis βpelvis γst γsw

]T
zdCoM (t, zsw, nds)

xsw(t, θ)
ysw(t, θ)
zsw(t, nds)

αsw



, (15)

where α, β, and γ indicate pitch, roll, and yaw respectively
which are represented by Bézier splines guiding the trajec-
tory to 0 angle, and nds indicates the downstep step. The
swing foot positions in the horizontal plane originate from
a decoupling of a Period-1 H-LIP for the sagittal plane and
a Period-2 H-LIP for the coronal plane as shown in [10].
The vertical position of the swing foot tracks a pre-defined
Bézier spline with unique formulations for the over-step
and up-step for the downsteps scenarios. The desired GRFs
are parameterized similarly to the vertical CoM trajectories
F d(t, zsw, nds).

B. Contact Force Embedded Task Space Control

To realize the proposed trajectory synthesis on the bipedal
robot, we apply the task space controller (TSC) for output
tracking. The force embedding can be realized via a linear
constraint on the holonomic forces, which are optimization
variables in the TSC. We directly specify a linear constraint
on the vertical GRF to realize the force-embedding.

(1− c)F d +∆F ≤ SFh ≤ (1 + c)F d −∆F , (16)

where F d = F d(t, zsw, nds) and S is a selection matrix to
select the vertical component of the GRF from Fh (the vector
of all the holonomic forces).

The final quadratic program with the equation of motion
(EOM) constraint, holonomic constraints, contact force con-
straints is formulated as:

min
u,Fh,q̈

||ÿa − ÿd − ÿt||2 (17)

s.t. Dq̈ + C = JT
h Fh +Bτ (EOM)

Jhq̈ + J̇hq̇ = 0 (holonomic)
τmin ≤ τ ≤ τmax (torque limit)
AGRFFGRF ≤ 0 (friction cone)

(1− c)F d +∆F ≤ SFh ≤ (1 + c)F d +∆F

where q is the configuration, D is the mass matrix, C is
the Coriolis and gravitation term, Jh is the Jacobian of the
holonomic constraints, B is the actuation matrix, τ is the
input torque, and AGRF is a constant matrix that specifies
the friction cone constraints. ya is the actual output, and
ÿt = −Kp(y

a − yd)−Kd(ẏ
a − ẏd) with Kp,Kd being the

feedback PD gain matrices.



Fig. 7. Simulation results of the aSLIP walking over the expected (1) and unexpected (2) downstep with 10cm depth: (a) the vertical mass trajectories
of the desired ones and the actual ones, (b) the horizontal velocity of the mass, (c) the GRF profile with its bounds, and (d) the step-lengths

Fig. 8. Simulation results of Cassie walking over the expected and unexpected downsteps with 10cm depth. Individual subfigures are explained in Fig. 7.

The QP is solved using OSQP [19] at 2 KHz in the
Mujoco physics simulator [20]. During SSP and DSP, each
constraint in the QP considers one or two feet in contact
with the ground respectively. A time-based domain switching
determines the number of feet in contact with the ground.
In case when the QP fails in the DSP due to early lift-off, a
SSP controller is used as a backup controller.

V. RESULTS

The methodology presented in the paper, and specifically
the RoM trajectory synthesis from human data, was applied
to the aSLIP model and the robot Cassie to walking over
expected and unexpected downsteps.

A. aSLIP Walking

We first apply the proposed approach to the aSLIP model.
As the aSLIP model assumes a massless swing leg, the
desired swing-leg behavior can directly be set and does not
affect the dynamics of the system. Subsequently, the H-LIP
step adaptation from Fig. 1 does not affect the difference
step-sizes between the expected and unexpected downsteps.
Although the vertical CoM behavior and the GRFs obtained
form the human are successfully embedded onto the aSLIP
walker, this fact prevents an accurate representation of the
step-sizes of the human. We do see that due to the changes in

vertical CoM position, the periodic orbits occur outside the
orbital lines. For the expected case, this seems to increase the
walking velocity during downstep while for the unexpected
case, this leads to a decrease. This is contrary to what we
observe in the human data.

B. 3D Cassie Walking
The main simulation results of the paper demonstrate the

successful translation of human RoM data to the realization
of downstep behaviors on Cassie (illustrated in Fig. 9). To
achieve 3D walking, we are additionally concerned with
stabilizing the coronal plane which is successfully achieved
with P2 orbits of the H-LIP regardless of the deviations to
the nominal walking height. Here tracking becomes more
difficult and the trade-off between tracking and force embed-
ding becomes apparent. In Fig. 8 we see decreased tracking
performance for the unexpected downstep scenario as the
recovery behavior exceeds the one step required for the
expected scenario. We argue that this is predominantly due
to inaccurate desired GRFs from the human measurements.
The control of the swing leg and vertical CoM for humans
is mostly governed by the passive dynamics of the system
when experiencing the unexpected downstep. For the robot,
the vertical swing foot behavior is explicitly controlled at
all times which prevents a fast impact velocity and, with



Fig. 9. Gait tiles (associated with the plots in Fig. 8) of Cassie walking down an expected downstep (left) and an unexpected downstep (right).

the requirement of lowering the CoM, results in a minimum
GRF during the downstep.

The improved controllability of Cassie w.r.t. the hu-
man means that in both scenarios—known and unknown
downsteps–the increase of the forward CoM velocity is
significantly reduced. Thus both known downsteps and un-
known downsteps can be traversed more effectively, and
controllers based on foot penetration can help traverse un-
expected changes in walking height and can explicitly plan
motion when exceeding the nominal step-time.

VI. CONCLUSION AND FUTURE WORK

We have successfully shown that the walking responses
of human to the environment can be embedded on morpho-
logically and dynamically different robotic bipedal systems.
By scaling the outputs of the human in the motion synthesis
and embedding the contact forces in the low-level control,
dynamic similarity between models is realized on the closed-
loop systems. The proposed method has been successfully
realized on the aSLIP and 3D simulated Cassie to overcome
expected and unexpected downsteps with similar responses to
those found in the human gait. The presented work currently
focuses on a specific downstep scenario. Future work will
consider a general framework of transferring versatile human
locomotion to dynamic bipedal robot behaviors.
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B H U M A N E X P E R I M E N T S

Figure B.1: Motion capture markers on the human subject. 1: Right toe tip, 2: Right ankle
lateral, 3: Right ankle medial, 4: Right heel, 5: Right knee lateral, 6: Right knee
medial, 7: Anterior superior iliac spine, 8: Right Acromium, 9: Right elbow, 10:
Right wrist lateral, 11: Right wrist medial, 12: C7, 13: Sacral. On the right is the
perturbation platform.
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C A C T U AT E D S P R I N G LOA D E D
I N V E R T E D P E N D U L U M M O D E L

the aSLIP model [17; 78] describes the equations of motion of a point-mass model
with stiffness and damping. The actuation is on the second time derivative of the
rest-length of the spring. The equations for the SSP and DSP are respectively

SSP:





r̈st =
Fst

m
− g cos(βst) + rst β̇

2
st

β̈st =
1

rst
(−2 ˙βst ṙst + g sin(βst))

s̈st = L̈st − r̈st

DSP:





r̈st =
Fst + Fsw cos(δq)

m
− g cos(βst) + rst β̇

2
st

β̈st =
−2β̇st ṙst + g sin(βst)− Fsw

m sin(δq)

rst

s̈st = L̈st − r̈st

r̈sw =
Fsw + Fst cos(δq)

m
− g cos(βsw) + rsw β̇2

sw

β̈sw =
−2β̇swṙsw + g sin(βsw)− Fst

m sin(δq)

rsw

s̈sw = L̈sw − r̈sw

(C.1)

where δq = β1 − β2 and L̈1/2 are the inputs and the second derivatives of the leg
length of the springs.
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D B A C K S T E P P I N G B A R R I E R F U N C T I O N
R E S U LT S

The multi-parameterized vertical CoM and GRF surfaces for Cassie, as presented
for the human in Figure 3.6 and 3.7, are shown in Figure D.1 and D.2. The surfaces
have great similarities but differences in the deviation of the vertical CoM position,
the mean vertical CoM position, the total step-time, and the height of the GRF
surface as explained in Section 5.

Figure D.1: The desired vertical CoM trajectory zd
CoM and the GRF in SSP parameterized by

time (t) and the downstep height h for expected downsteps for Cassie.

Reduced-order Model walking results of the aSLIP representative of Cassie with
the outputs scaled in accordance with Section 5 are shown in Figure D.3 and D.4.
The results of RoM walking for Cassie are similar to those of RoM walking for the
human which substantiate the claim of permissible scaling with the goal of dynamic
similarity.

Figure D.2: The desired vertical CoM trajectory zd
CoM and the GRF in SSP parameterized by

time (t) and the downstep height h for unexpected downsteps for Cassie.
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backstepping barrier function results 62

Figure D.3: Simulation results of the aSLIP walking over the expected downstep with 10cm
depth: (a) the vertical mass trajectories of the desired ones and the actual ones,
(b) the horizontal velocity of the mass, (c) the GRF profile with its bounds, and
(d) the step-lengths

Figure D.4: Simulation results of the aSLIP walking over the unexpected downstep with
10cm depth: (a) the vertical mass trajectories of the desired ones and the actual
ones, (b) the horizontal velocity of the mass, (c) the GRF profile with its bounds,
and (d) the step-lengths



E 3 D R O B OT W A L K I N G C O N T R O L

For the 3D implementation, the PD gain matrices and the weights for the outputs

yd
SSP =




[
αpelvis βpelvis γst γsw

]T

zd
CoM(t, zsw, nds)

xsw(t, θ)
ysw(t, θ)

zsw(t, nds)
αsw




, (E.1)

are given as

KP = diag(
[
1000 1000 1000 1500 3000 1000 4000 4000 5000 4000

]
)

(E.2)

KD = diag(
[
50 50 100 200 50 250 50 250 250 50

]
) (E.3)

W =
[
150 100 400 1000 1000 50000 1000 4000 1000 4500

]
(E.4)

where we notice a relatively large weight on the swing foot trajectories in order to
guarantee close tracking of the swing foot. The next page presents the algorithms
for the expected and the unexpected downsteps in Algorithm 1 and 2 respectively.
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Algorithm 1 Human-to-robot TSC-QP controller for expected downsteps

Require: Behavior: zCoM(t, h, nds), Fz(t, h, nds), TSSP, TDSP, nds = 0, h
Control: KP, KD, W, Wreg
while Simulation do

if new step then
if VLO and step=downstepStep then

nds ← 1
else if nds = 1 or nds = 2 then

nds ← nds + 1
else

nds ← 0
end if

end if
zd

CoM ← zCoM(t, h, nds)

Fd
z ← Fz(t, h, nds)

if SSP then
Desired step size← H-LIP in Eq. (4.18)
Desired horizontal swing foot position← Eq. (6.10)
Desired vertical swing foot position← Eq. (6.11)
yd ← Eq. (6.6)

else
yd ← Eq. (6.7)

end if
u← TSC-QP in Eq. (6.13)

end while

Algorithm 2 Human-to-robot TSC-QP controller for unexpected downsteps

Require: Behavior: zCoM(t, zsw, nds), Fz(t, zsw, nds), TSSP, TDSP, nds = 0
Control: KP, KD, W, Wreg
while Simulation do

if new step then
if zsw < 0 and isDownstep = f alse then

h← zsw
nds ← 1
isDownstep← true

else if nds = 1 or nds = 2 then
nds ← nds + 1

else
nds ← 0

end if
end if
zd

CoM ← zCoM(t, h, nds)

Fd
z ← Fz(t, h, nds)

if SSP then
Desired step size← H-LIP in Eq. (4.18)
Desired horizontal swing foot position← Eq. (6.10)
Desired vertical swing foot position← Eq. (6.11)
yd ← Eq. (6.6)

else
yd ← Eq. (6.7)

end if
u← TSC-QP in Eq. (6.13)

end while
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