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High performance flight control systems based on the nonlinear dynamic inversion (NDI)
principle require highly accurate models of aircraft aerodynamics. In general, the accuracy
of the internal model determines to what degree the system nonlinearities can be canceled;
the more accurate the model, the better the cancellation, and with that, the higher the per-
formance of the controller. In this paper a new control system is presented that combines
NDI with multivariate simplex spline based control allocation. We present three control
allocation strategies which use novel expressions for the analytical Jacobian and Hessian of
the multivariate spline models. Multivariate simplex splines have a higher approximation
power than ordinary polynomial models, and are capable of accurately modeling nonlinear
aerodynamics over the entire flight envelope of an aircraft. This new method, indicated as
SNDI, is applied to control a high performance aircraft (F-16) with a large flight envelope.
The simulation results indicate that the SNDI controller can achieve feedback linearization
throughout the entire flight envelope, leading to a significant increase in tracking perfor-
mance compared to ordinary polynomial based NDI.

Nomenclature

Ax, Ay, Ax specific forces along the body X/Y/Z axis [m/s2]
C dimensionless coefficient
H smoothness matrix
I inertia matrix
J total number of simplices
J cost function
S wing area [m2]
Sr
d spline space of degree d and continuity order r

T triangulation
V airspeed [m/s]
X regression matrix
Y observation vector
b wing span [m]
b(x) barycentric transform of point x

c̄ mean aerodynamic chord [m]
q̄ dynamic pressure [Pa]

d̂ total number of valid permutations
c B-coefficient vector
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u input vector
x state vector
l,m, n aerodynamic moment around the body X/Y/Z axis
p, q, r roll, pitch and yaw rate around the body X/Y/Z axis [rad/s]
ps static pressure [Pa]
tj simplex j
u, v, w velocity components along the body X/Y/Z axis [m/s]

Subscripts

a, e, r, lef aileron, elevator, rudder, leading edge flap

Symbols

α, β angle of attack and sideslip angle [rad]
ǫ residual vector
ν virtual input
τ virtual input
δ control surface deflection [rad]
κ multi-index
φ, θ, ψ roll, pitch and yaw angle [rad]
ρ air density [kg/m3]

I. Introduction

Nonlinear dynamic inversion (NDI) is a physical control approach in which the control law is explicitly
defined in terms of an internal model [1]. The internal model for the system and input dynamics is used to
cancel the nonlinearities after which a single linear controller can be used to control the system. A major
advantage of NDI is that gain scheduling is avoided through the entire flight envelope. Furthermore, the
simple structure of NDI allows easy and flexible design for all flying modes and is therefore a popular method
for aircraft flight control [2,3]. The NDI controller can be augmented with a control allocation (CA) module
in the case that an aircraft has redundant or cross-coupled control effectors [4]. In this case the command
variables are the three desired aerodynamic moments, while the actual control effector displacements are
determined from the desired moments together with the effector constraints in a constrained optimization
problem [4]. It is this particular form of NDI that is the subject of study of this paper.

Since the NDI control law is explicitly defined in terms of the internal model, NDI is sensitive to modeling
errors. The accuracy of the internal model determines to what degree the system nonlinearities are canceled;
the more accurate the model, the better the cancellation, and with that, the higher the performance of the
flight controller. Some of these model inaccuracies can be handled by applying robust control techniques
such as structured value (µ) synthesis [1,5] or incremental NDI [6]. However, significant modeling errors will
still lead to unwanted control system behavior.

Currently, most NDI controllers use polynomial structures for the system and input dynamics. It is well
known that polynomial models have limited approximation power, which is directly proportional to their
degree. As a result, many attempts have been made in the past to increase the accuracy of the onboard
models, using for example neural networks [7–9]. In this paper a new approach is presented for increasing
the accuracy of onboard models using multivariate simplex spline approximators.

A simplex spline approximator is an analytical function that consists of polynomial basis functions which
are each defined on a simplex [10, pp. 18-25]. Any number of basis polynomials can be combined with
predefined continuity by combining simplices into a geometric structure called a triangulation. The approx-
imation power of simplex spline functions therefore is not only proportional to the polynomial degree, but
also to the size and density of the underlying triangulation. The most significant advantages of simplex
splines over other function approximators like neural networks is their linear-in-the-parameters property,
their numerical stability, their transparency, and the ease with which they can be integrated into standard
parameter estimation routines [11].

Multivariate simplex splines have recently been used in a framework for aerodynamic model identification
[12–14], where it was shown that they can more accurately approximate both local and global scale system
nonlinearities than methods based on ordinary polynomials. The proven advantages of the simplex splines as
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powerful, numerically stable, and transparent nonlinear function approximators makes them well suited to
replace current onboard models, thereby improving the performance and robustness of nonlinear model-based
flight control systems.

Until now, however, no attempt has been made to design a flight controller that uses onboard simplex
spline models. As it turns out, integrating a multivariate simplex spline based aerodynamic model into
an inversion based flight control system is not trivial. The basis polynomials of the simplex splines are
defined locally on each simplex in terms of barycentric coordinates instead of globally in terms of Cartesian
coordinates [10, pp.18-25]. A direct consequence of this is that the simplex spline basis polynomials are
non-affine in the control inputs, requiring a special coordinate transformation scheme to relate them to the
aircraft states and control inputs [15]. See also Appendix B for an example of the non-affinity of the simplex
basis polynomials.

The main contribution of this paper is a new nonlinear control scheme, indicated as SNDI, that combines
nonlinear dynamic inversion with control allocation based an onboard simplex spline models. This contri-
bution requires the development of new CA strategies that can be applied to simplex spline models that
are non-affine functions of the aircraft states and control inputs. In this paper, three new CA strategies for
simplex spline models are presented; a linear, a successive linear, and a fully nonlinear strategy.

The SNDI control method is demonstrated using a high fidelity F-16 simulation with which a number
of high amplitude maneuvers are performed in nonlinear regions of the flight envelope. It is shown that
SNDI results in higher reference tracking performance than ordinary polynomial NDI, in particular when
performing high amplitude maneuvers in nonlinear regions of the flight envelope such as the high angle
of attack and high angle of sideslip regions. While the current SNDI focuses primarily on reducing static
aerodynamic modeling errors, it should be seen as the first step towards a forthcoming spline based adaptive
nonlinear flight control system of the sort presented in [8, 9].

The paper has the following outline: In Sec. II, the aircraft model used in this study is described. In
Sec. III a preliminary on multivariate simplex splines is given. In Sec. IV an overview is given of the SNDI
control approach, which is the augmentation of NDI with control allocation based on the onboard spline
model. The NDI flight control design is given in Sec. V. In Sec. VI the F-16 aerodynamic model is identified
using both simplex splines and polynomial model structures. In Sec. VII the three new approaches to control
allocation based on the onboard spline model are presented. Finally, in Sec. VIII the spline based controller
is evaluated and compared with a polynomial based controller followed by conclusions in section IX

II. Aircraft Model

In this section the simulation model that will be used in the remainder of this work is introduced. The
aircraft to be controlled is a model of the F-16 fighter aircraft from NASA which is based on a set of data
tables based on wind tunnel measurements [16]. This model is used to generate simulated aerodynamic force
and moment measurements which are used to estimate the multivariate spline based aerodynamic models
in Sec. VI. The model has the traditional aerodynamic control surfaces: elevator, ailerons and rudders for
pitch, roll and yaw control. In addition, the leading edge flap is scheduled with angle of attack and q̄

ps
to

optimize performance and has the following relationship [16]:

δlef = 1.38
2s+ 7.25

s+ 7.25
α− 9.05

q̄

ps
+ 1.45 (1)

Models for the actuators are included in the form of first order lags:

u̇ =
1

τ
(ucom − u) (2)

In which the commanded input is bounded by umin ≤ ucom ≤ umax and the deflection rate is bounded
by |u̇| ≤ u̇lim. The time constants and actuator limits are listed in table 1 [16] and [17, pp.633-664]. For
simulating the response and for flight control design the flat earth, body axis six degree of freedom equations
of motion are used [17, pp. 107-116]. No external disturbances like wind gusts are added to the models
and the sensor information is considered as not contaminated. All simulation are performed with a sample
frequency of 100Hz.
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deflection limit rate limit time constant

Elevator ±25.0o 60o/s 0.0495 s lag

Ailerons ±21.5o 80o/s 0.0495 s lag

Rudder ±30.0o 120o/s 0.0495 s lag

leading edge flap 0o − 25o 25o/s 0.136 s lag

Table 1. Actuator model [16], [17, pp.633-664]

III. Preliminaries on Multivariate Simplex Splines

This section serves as introduction to the general theory of multivariate simplex splines and the techniques
that can be used for aerodynamic model identification using simplex splines. These techniques are based on
the work presented in [11] and [18]. For a more in-depth coverage of simplex spline theory we refer to the
work by Lai and Schumaker [10]. Additionally, a practical example of the use of multivariate simplex splines
for scattered data approximation is presented in Appendix A.

A. Simplex Spline Functions and Spline Spaces

A simplex spline function consists of a set of basis polynomials of degree d, each defined on an individual
simplex with predefined continuity between the simplices tj :

s(x) = δ1(x)p
t1(x) + δ2(x)p

t2(x) + · · ·+ δj(x)p
tj (x) =

J
∑

j=1

δj(x)p
tj (x) (3)

with J the total number of simplices and with δj(x) a membership function that relates data point x to the
simplex in which it is defined:

δj(x) =

{

1 if x ∈ tj

0 if x /∈ tj
(4)

The approximation power of spline functions is partly determined by the triangulation structure. A trian-
gulation is a partitioning of a domain into a set of J non-overlapping simplices:

T :=

J
⋃

j=1

tj , ti ∩ tj ∈ {∅, t̃}, ∀ti, tj ∈ T (5)

with the edge simplex t̃ a k-simplex with 0 ≤ k ≤ n − 1. The use of spline spaces provide a convenient
notation for stating the degree, continuity and triangulation structure of a spline solution without having to
specify individual spline functions [10, pp.127-141]:

Sr
d (T ) := s ∈ Cr (T ) : s|t ∈ Pd, ∀t ∈ T (6)

with s the n-variate simplex spline function of degree d and continuity order r on the triangulation T and
with Pd the space of all polynomials of total degree d.

B. Barycentric Coordinates

The individual basis polynomials of the spline function in eq. (3) are defined on simplices and expressed in
terms of barycentric coordinates: pt(b(x)). The n-simplex t is defined as the convex hull of a set of n+1
unique, non-degenerate points in n-dimensional space:

t = 〈v0,v1, · · · ,vn〉 (7)

The barycentric coordinate system is a local coordinate system with respect to the n-simplex t. Every point
x = (x1, x2, · · · , xn) can be described in terms of a unique weighted vector sum of the vertices of simplex t:

x =

n
∑

i=0

bivi,
∑n

i=0 bi = 1 (8)
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Using these properties the barycentric coordinate b(x) = (b0, b1, · · · , bn) of x with respect to the n-simplex
t can be explicitly calculated with:













b1

b2
...

bn













=
[

(v1 − v0) (v2 − v0) · · · (vn − v0)
]−1

(x− v0) = Λ (x− v0) (9)

and

b0 = 1−
n
∑

i=1

bi (10)

C. The B-form

Each polynomial ptj (b(x) in eq. (3) is expressed in the B-form:

ptj (b(x)) =
∑

|κ|=d

ctjκ
d!

κ!

n
∏

i=0

bκi

i =
∑

|κ|=d

ctjκ B
d
κ(b(x)) (11)

with cκ the B-coefficient and κ the multi-index defined as:

κ := (κ0, κ1, · · · , κn) ∈ N
n+1 (12)

The multi-index has the following properties:

|κ| = κ0 + κ1 + · · ·+ κn = d (13)

κ! = κ0!κ1! · · ·κn! (14)

The elements of the multi-index are sorted lexicographically [19]:

κ ∈ {(d, 0, 0 · ·, 0), (d− 1, 1, 0 · ·, 0), (d− 1, 0, 1, ··, 0), · · · · , (0, ··, 0, 1, d− 1), (0, ··, 0, 0, d)} (15)

The total number of valid permutations of κ, and therefore total number of individual basis polynomials, is
d̂:

d̂ =

(

d+ n

n

)

=
(d+ n)!

n!d!
(16)

Eq. (11) can also be written in vector form [11]. Define the vector of basis polynomials as:

Bd
tj
(b(x)) :=

[

Bd
d,0,··,0(b(x)) Bd

d−1,1,··,0(b(x)) · · · Bd
0,··,0,d(b(x))

]

=
[

Bd
κ(b(x))

]

|κ=d| ∈ R
1×d̂ (17)

and the vector of B-coefficients:
ctj := [ctjκ ]|κ|=d ∈ R

d̂×1 (18)

With these definitions the per-simplex B-form in vector formulation is:

ptj (b(x)) = Bd
tj
(b(x))ctj (19)

D. The Regression Model using B-form Polynomials

This section presents the linear regression model structure from [11] for spline functions using the B-form
polynomials. Using eq. (3) and eq. (19), the B-form polynomials can be used as regressors for a new
observation pair (x(i), y(i)) as follows:

y(i) =

J
∑

j=1

δj(x(i))B
d
tj
(b(x(i)))ctj + ǫ(i) (20)
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To improve readability the following shorthand notation is used for eq. (20):

y(i) =

J
∑

j=1

δj(i)B
d
tj
(i)ctj + ǫ(i) (21)

These shorthand notations are used through the rest of the paper. Eq. (21) can be restated in matrix form.

First define a per simplex d̂× d̂ diagonal data membership matrix for observation i:

Dtj (i) = [(δj(i)q,q]
d̂

q=1 (22)

The block diagonal full triangulation data membership matrix D for a single observation is a matrix with
Dtj blocks on the main diagonal:

D(i) =
[

(Dtj (i)j,j
]J

j=1
(23)

Using the per simplex vector of B-form basis polynomials from eq. (17), the full triangulation basis function
vector Bd(i) for observation i is defined as:

Bd(i) :=
[

Bd
t1
(i) Bd

t2
(i) · · · Bd

tj
(i)

]

=
[

Bd
tj
(i)
]J

j=1
∈ R

1×J·d̂ (24)

Using the per simplex vector of B-form basis polynomials from eq. (18), the full triangulation vector of
B-coefficients is constructed as:

c =
[

ctj
]J

j=1
∈ R

J·d̂×1 (25)

With the definitions in eqs (23), (24) and (25), eq. (20) can be written as:

y(i) = Bd(i)D(i)c+ ǫ(i) = X(i)c+ ǫ(i) (26)

which for all observations results in a linear regression scheme for multivariate simplex splines:

Y = Xc+ ǫ (27)

E. Spline Model Estimation

Eq. (27) can be solved using an equality constrained ordinary least squares (LS) estimator. The LS problem
needs to be constrained in order to guarantee continuity between the simplices. The B-coefficients can be
estimated by solving the constrained least squares problem:

min
c

1

2
(Y−Xc)T (Y−Xc) subject to Hc = 0 (28)

with H the smoothness matrix to guarantee continuity between the simplices. Using Lagrange multipliers,
this leads to the following LS estimator:

[

ĉ

λ̂

]

=

[

XTX HT

H 0

]+ [

XTY

0

]

=

[

C1 C2

C3 C4

][

XTY

0

]

(29)

The estimated B-coefficients can be calculated as follows:

ĉ = C1X
TY (30)

The smoothness matrix is computed using de Boor’s continuity equations. The formulation in [20] and [10,
pp.133-135] is used for the continuity equations for degree r between the edges of two neighboring simplices
ti and tj :

cti(κ0,··· ,κn−1,m) =
∑

|γ|=m

c
tj
(κ0,··· ,κn−1,0)+γ

Bm
γ (v∗), 0 ≤ m ≤ r (31)

with γ = (γ0, γ1, · · · , γn) a multi-index independent of κ and v∗ the out of edge vertex of simplex tj . Using
the valid permutations for the multi-indices κ and γ and combining the continuity equations for all edges
the continuity equations can be written in vector form:

Hc = 0 (32)

with H ∈ R
R·E×J·d̂, R the number of continuity conditions per edge and E the number of edges in the

triangulation.
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IV. Spline Based NDI Control: Component Overview

The approach used for spline based NDI control is the augmentation of NDI with control allocation based
on the onboard aerodynamic spline model. The control diagram is shown in figure 1. All aircraft control
laws based on NDI can be written in terms of required control moments when controlling the attitude using
aerodynamic control surface deflections or in terms of control forces when controlling the airspeed using
the throttle. The control forces and moments can be seen as a virtual control input τ which have to be
translated into actuator settings. This is also known as the process of control allocation [4]. When the NDI
control law is defined in terms of the aircraft stability and control derivatives, the NDI control algorithm
automatically involves some form of control allocation [4, 21]. By using polynomial models affine in the
control input, the actuator settings can be calculated directly. However, when using non-affine simplex
spline based aerodynamic models in terms of local barycentric coordinates, the actuator setting cannot be
calculated directly and the NDI structure requires a separate control allocation module. See also the example
in Appendix B for an illustration of the non-affinity of spline models. The separation of the control allocation
task from the NDI control laws allows the development of general spline model based allocation strategies
which are discussed in Sec. VII. This section focuses on the combined control structure, the formulation of
the control allocation problem and existing solution methods.

Figure 1. Combined control structure: NDI inner loop and linear control outer loop combined with control
allocation.

A. Nonlinear Dynamic Inversion

Consider the aircraft state equations in the input affine form:

ẋ = f(x) + g(x)τ (33)

τ = Φ (x,u) . (34)

with x ∈ R
n the state vector, u ∈ R

m the control input vector and τ ∈ R
l the virtual controls assumed to

be a nonlinear function of the aircraft state and control input. The crux of NDI is to solve for the input τ
by introducing an outer loop control input ν:

τ req = g−1(x)(ν − f(x)) (35)

Which results in a closed-loop system with a decoupled linear input-output relation:

ẋ = ν (36)

NDI is based on the assumption that the internal model is exactly known such that the model is fully
linearized. However this assumption is not realistic in practice and there will also be an inversion error
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related to the feedback linearization. In this case the closed-loop system is given by:

ẋ = ν +∆ (37)

with ∆ the inversion error. The required virtual control input τ req is either the required moment for
rotational control or the required force for translational control. For example, consider the aircraft rate
control problem:

ω̇ = I−1M− I−1
ω × Iω (38)

Applying NDI results in the following control law for the required control moment:

Mreq = I
(

ν + I−1
ω × Iω

)

(39)

The required control moment has to be translated into control surface deflections based on the onboard
model for M. The accuracy of the onboard model determines to what extent the nonlinearities are canceled:
the more accurate the model, the smaller the inversion error ∆, and with that, the higher the controller
performance.

Instead of using the frequently used polynomial model structures, the model forM of the F-16 is identified
using simplex splines (see section VI). Simplex splines provide a significant increase in modeling accuracy
compared to polynomials. In this paper the effect of the increased model accuracy on the NDI controller
performance is investigated.

B. Control Allocation

The mapping in eq. (34) maps the physical control inputs to the virtual controls:

τ = Φ (x,u) : Rm → R
l (40)

The control allocation problem considers the inversion of this mapping:

u = Φ−1 (x, τ ) : Rl → R
m (41)

The control allocation problem can be stated as: Given a virtual command τ , determine u satisfying the
actuator position and rate constraints, such that τ = Φ (x,u). The input will be determined based on
the onboard spline model for Φ (x,u). Control allocation problems are often formulated as optimization
problems with a least squares objective function subject to actuator constraints. With optimization based
methods a cost function that relates control effort and the required demand is minimized. In [22, 23] three
formulations are given:

1. Error minimization problem:
min

u≤u≤u

J = ‖Φ (x,u)− τ req‖ (42)

2. Control minimization problem:

min
u≤u≤u

J = ‖u‖ s.t. Φ (x,u) = τ req (43)

3. Mixed optimization problem

min
u≤u≤u

J = ‖Φ (x,u)− τ req‖+ ǫ‖u‖ (44)

The controls are constrained by their minimum (u) and maximum(u) values.
Most existing methods derived for over-actuated systems (l < m) for solving eqs. (42)-(44) consider

linear effector models of the form:
τ = Φ (x,u) = Gu (45)

with G an l ×m matrix. See [22, 23] for a survey on optimization based control allocation approaches for
linear effector models. A popular and efficient solution for real-time control allocation is the pseudo inverse
solution, see e.g. [21,24,25] for applications. When the actuator constraints are dropped, the solution to the
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l2 norm control effort minimization problem in eq. (43) using the linear effector model in eq. (45) has a
pseudo inverse solution:

u = G+
τ (46)

with the pseudo inverse calculated as:

G+ = GT
(

GGT
)−1

(47)

Because GGT can become singular it has to be replaced with the regularized matrix GGT + ǫI. In [26, 27]
a redistribution scheme is used to account for the actuator limits in which all actuators that violate their
bounds in the pseudo-inverse solution are saturated and removed from the optimization. Then, the problem
is resolved with the remaining actuators as free variables. The procedure is repeated until all components
have reached their limits, or until the solution of the reduced least-squares problem satisfies the constraints.

V. NDI Flight Control Design

Two inversion loops have been implemented using a time-scale separated design [1]: an inner rate control
loop and an outer aerodynamic angle control loop. The control setup is shown in figure 2. The controlled
variables are the roll angle φ, angle of attack α and sideslip angle β. With this control setup maneuvers
can be performed with zero sideslip. Furthermore it can be used to operate at a constant nonzero sideslip
angle to compensate for the asymmetry in the case of crosswind or in the case of an asymmetric failure.
To avoid unachievable commands due to the actuator constraints first order lag prefilters are used for the
command variables: Hpf = 1

σs+1 . The prefilter time constants are chosen such that fast tracking is achieved
while avoiding command saturation as much as possible. Only proportional control is used for feedback on
the roll, pitch and yaw channels. The controller gains and prefilter time constants are listed in table 2. The
inner and outer loop control laws are described in the next two sections.

Figure 2. Control setup. An inner rate NDI loop combined with an aerodynamic angle outer NDI loop

Table 2. Prefilter time constants and controller gains

σφ = 0.2 kφ = 2 kp = 10

σα = 0.4 kα = 2 kq = 10

σβ = 0.2 kβ = 2 kr = 10
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A. Body Angular Rate Inner Loop

In the inner loop the system is influenced by commanding the moments of the aircraft. The inner loop
quantities are the body angular rates:







ṗ

q̇

ṙ






= I−1







l

m

n






− I−1







p

q

r






× I







p

q

r






(48)

Rewriting the aircraft dynamics into the form of eq. (35) gives:







Cl

Cm

Cn






=

I
1
2ρV

2S







b 0 0

0 c̄ 0

0 0 b







−1















νp

νq
νr






+ I−1













p

q

r






× I







p

q

r























(49)

B. Aerodynamic Angle Outer Loop

The inner loop NDI, combined with the dynamics of the aircraft are now considered as one system that can
be influenced by commanding the angular rates. The outer loop quantities are the roll angle φ, angle of
attack α and sideslip angle β. The dynamics are expressed in terms of required body angular rates. For the
roll angle this results in:

φ̇ =
[

1 sinφ tan θ cosφ tan θ
]







p

q

r






(50)

= gφ(x)ω (51)

For the angle of attack:

α̇ =
d

dt

(

tan−1 w

u

)

=
uẇ − wu̇

u2 + w2
(52)

=
1

u2 + w2
[u (Az + g cos θ cosφ)− w (Ax − g sin θ)] +

[

−uv
u2+w2 1 −vw

u2+w2

]







p

q

r







= fα(x) + gα(x)ω

and for the sideslip angle this gives:

β̇ =
d

dt

(

sin
v

V

)

=
V v̇ − vV̇

V
√
u2 + w2

(53)

=
1√

u2 + w2

[−uv
V 2

(Ax − g sin θ) +
(

1− v

V 2

)

(Ay + g sinφ cos θ)− vw

V 2
(Az + g cosφ cos θ)

]

+
[

w√
u2+w2

0 −u√
u2+w2

]







p

q

r







= fβ(x) + gβ(x)ω

Combining eqs. (50), (52) and (53) and rewrite into the form of eq. (35) gives:







p

q

r






=







gφ(x)

gα(x)

gβ(x)







−1











νφ

να

νβ






−







fφ(x)

fα(x)

fβ(x)












(54)
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VI. Identification of the F-16 Aerodynamic Model

In this section methods from [11,13,14] are used to identify the F-16 aerodynamic model using multivariate
splines and ordinary polynomials. The data used to identify the aerodynamic models is generated with a
high-fidelity wind tunnel dataset of the F-16. This wind tunnel dataset should be seen as the ’real’ F-
16 aerodynamics, which are approximated with the multivariate spline and polynomial models. The two
identified models are used for the performance assessment in Sec. VIII.B in which the spline based NDI
controller is compared to a polynomial based NDI controller.

The required variables to be estimated are the moment coefficients Cl, Cm and Cn. In Sec. B the model
is identified with simplex spline structures and polynomial structures using a training dataset consisting of
60000 scattered points which is generated with the wind tunnel model. In Sec. C the polynomial and spline
model are compared and validated using a validation dataset consisting of 10000 scattered points.

A. Simulated Measurement Data

The NASA wind tunnel data tables are used to generate simulated measurement data. The training and val-
idation datasets are obtained by randomly generating scattered datapoints within the following independent
variable ranges:

−10o ≤ α ≤ 45o 50 m/s ≤ V ≤ 300 m/s

−30o ≤ β ≤ 30o −21.5o ≤ δa ≤ 21.5o

−90o/s ≤ p ≤ 90o/s −25.0o ≤ δe ≤ 25.0o

−90o/s ≤ q ≤ 90o/s −30.0o ≤ δr ≤ 30.0o

−90o/s ≤ r ≤ 90o/s 0o ≤ δlef ≤ 25.0o

(55)

This results in a 10 dimensional dataset for the independent variables which is used to compute the dependent
variables Cl, Cm and Cn through the NASA wind tunnel model. The complete dataset may include physically
infeasible data outside the operating region. However, this will not affect the identified model within the
valid flight envelope.

B. Model Identification

The following model structures were assumed for the moment coefficients:

Cm(α, β, q̃, δe, δlef ) = Cm(α, β, δe) + Cmδlef
(α, β)δlef + Cmq

(α)q̃ + Cmqδlef
(α)δlef q̃ (56)

Cl(α, β, p̃, r̃, δa, δr, δlef ) = Cl(α, β) + Clδlef
(α, β)δlef + Clδa

(α, β)δa + Clδr
(α, β)δr + (57)

Clr (α)r̃ + Clrδlef
(α)δlef r̃ + Clp(α)p̃+ Clpδlef

(α)δlef p̃

Cn(α, β, p̃, r̃, δa, δr, δlef ) = Cn(α, β) + Cnδlef
(α, β)δlef + Cnδa

(α, β)δa + Cnδr
(α, β)δr + (58)

Cnr
(α)r̃ + Cnrδlef

(α)δlef r̃ + Cnp
(α)p̃+ Cnpδlef

(α)δlef p̃

where
p̃ = pb/2V, q̃ = qc̄/2V, r̃ = rb/2V

Each modeling function in eqs. (56), (57), (58) is estimated using simplex splines and polynomials over
the independent variable ranges in eq. (55) The objective is to make the best possible polynomial model
such that a valid comparison between the polynomial based NDI controller and the SNDI controller can
be made. In [28] a polynomial model is created from a slightly simplified version [17, pp.633-664] of the
original wind tunnel database using a modeling technique based on orthogonal modeling functions [29]. The
regression structures of this polynomial model are used as initial model structures to estimate the database
after which more regressors are added to further improve the model. The resulting polynomial structures
for each modeling function are listed in the third column of table 3.

For estimating the polynomial model, all observations are combined in the observation matrix Y, and
the regressors are combined in the regression matrix X resulting in the standard regression form (eq. (27)).
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Using an ordinary least squares estimator for the model parameters gives:

C =
(

XT
p Xp

)−1
XT

p Y (59)

with Xp the regression matrix for the polynomial model. For the multivariate spline model each sub-function
is estimated with a spline function. For the pitch moment coefficient Cm this results in:

s(α, β, q̃, δe, δlef ) = s1(α, β, δe) + s2(α, β)δlef + s3(α)q̃ + s4(α)δlef q̃ (60)

with:
s1 ∈ Sr1

d1(T ), s2 ∈ Sr2
d2(T ), s3 ∈ Sr3

d3(T ), s4 ∈ Sr4
d4(T ) (61)

The selected spline spaces for each modeling function are listed in the second column of table 3. Using eq.
(26) the model structure for Cm in eq. (60) can be written in linear regression form as follows:

y(i) =
[

Bd1

1 (i)D1(i) Bd2

2 (i)D2(i)δlef (i) Bd3

3 (i)D3(i)q̃(i) Bd4

4 (i)D4(i)δlef (i)q̃(i)
] [

cT1 cT2 cT3 cT4

]T

= X(i)c (62)

which for all observations results in the standard regression form (eq. (27)). The B-coefficient vectors c1 to
c4 for this regression problem can be solved using the constrained least squares estimator from eq. (30). To
guarantee continuity between the simplices, a global smoothness matrix needs to be defined to combine the
continuity conditions for all four spline regressors. The global smoothness matrix in this case is [12]:

Hg =











H1 0 0 0

0 H2 0 0

0 0 H3 0

0 0 0 H4











∈ R

∑
4

i=1
Ri·Ei×

∑
4

i=1
Ji·d̂i (63)

with H1 to H4 the smoothness matrices for the spline functions s1 to s4 respectively. Substitution of eq.
(62) for Xc and eq. (63) for H in eq. (29), gives the following estimator for the combined B-coefficients:











c1

c2

c3

c4











= C1X
TY (64)

with C1 as in eq. (30). The spline model for the roll and yaw moment coefficients Cl and Cn are estimated
using the same approach.

C. Model Validation and Comparison

The polynomial and spline based aerodynamic models are compared to the original wind tunnel model and
validated against the validation dataset. The results from the model validation are listed in table 4. Since
the true model is known from the NASA wind tunnel data tables, a direct comparison can be made which is
shown in figure 3. From this figure the nonlinearities of the moment coefficients can be observed. The spline
model has a higher approximation power and is better able to model these nonlinearities at a global scale
compared to the polynomial model. This can also be seen from RMS values of the model error. For example,
the spline model for Cm has a relative error RMS of 2.72% while the polynomial model has a relative error
RMS of 11.15%.
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Table 3. Aerodynamic Model Structures for estimating the F-16 wind tunnel database

Function Spline Model Structure Polynomial Model Structure

Cm(α, β, δe) S1
6(T48)

a0 + a1α+ a2αβ
2 + a3α

2β + a4α
2β4 + a5α

3+

a6α
5 + a7β

2 + a8δe + a9αδe + a10αβ
2δe+

a11α
2β2δe + a12α

3δe + a13α
3β2δe + a14β

2δe+

a15δ
2
e + a16αδ

2
e + a17α

2δ2e + a18α
3β2δ2e + a19β

2δ2e + a20δ
3
e

Cmδlef
(α, β) S1

5(T8) b0 + b1α+ b2α
2 + b3α

2β + b4α
3β + b5α

4 + b6α
4β

Cmq (α) S0
5(T4) c0 + c1α+ c2α

2 + c3α
3 + c4α

4 + c5α
5

Cmqδlef
(α) S0

3(T4) d0 + d1α+ d2α
2 + d3α

3

Cl(α, β) S1
5(T32)

e0β + e1αβ + e2α
2β + e3α

3β + e4α
4β + e5β

3+

e6αβ
3 + e7α

2β3 + e8α
3β3 + e9α

4β3

Clδlef
(α, β) S1

5(T8) f0α
2 + f1α

4 + f2α
6 + f4β

Clδa
(α, β) S1

4(T8) g0 + g1α+ g2β + g3α
2 + g4αβ + g5α

2β + g6α
3

Clδr
(α, β) S1

4(T8) h0 + h1α+ h2β + h3αβ + h4α
2β + h5α

3β + h6β
2

Clr (α) S0
5(T4) i0 + i1α+ i2α

2 + i3α
3

Clrδlef
(α) S0

3(T4) j0 + j1α+ j2α
2

Clp(α) S0
3(T4) k0 + k1α+ k2α

2 + k3α
3 + k4α

4 + k5α
5

Clpδlef
(α) S0

3(T4) l0 + l1α+ l2α
2

Cn(α, β) S1
5(T32)

m0β +m1αβ +m2α
2β +m3α

3β +m4β
3+

m5αβ
3 +m6α

2β3 +m7α
2 +m8α

3

Cnδlef
(α, β) S1

4(T8) n0α
2β + n1α

4β + n2α
6β

Cnδa
(α, β) S1

3(T8)
o0 + o1α+ o2β + o3αβ + o4α

2β + o5α
3β

+o6α
2 + o7α

3 + o8β
3 + o9αβ

3

Cnδr
(α, β) S1

5(T8) p0 + p1α+ p2β + p3αβ + p4α
2β + p5α

2 + p6β
2

Cnr (α) S0
4(T5) q0 + q1α+ q2α

2 + q3α
3 + q4α

4 + q5α
5

Cnrδlef
(α) S0

3(T4) r0 + r1α+ r2α
2 + r3α

3

Cnp(α) S0
3(T4) s0 + s1α+ s2α

2 + s3α
3 + s4α

4 + s5α
5

Cnpδlef
(α) S0

1(T2) t0α

Table 4. Model validation performance parameters

Spline Model Polynomial Model

Performance Parameter error RMS relative error RMS* max error RMS error RMS relative error RMS max error RMS

Cl validation 0.0029 6.86% 0.0232 0.0085 19.95% 0.0744

Cm validation 0.0042 2.72 % 0.0350 0.0172 11.15% 0.1186

Cn validation 0.0043 7.83% 0.0236 0.0097 17.50% 0.0471

*The relative error RMS is defined as: RMSrel(ǫ) =
RMS(ǫ)

RMS(Yv)
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(a) Cm surface plots (q̃ = 0.04, δe = 5o, δlef = 15o)

(b) Cl surface plots (p̃ = 0.0106, r̃ = 0.0106, δa = 5o, δr = 5o, δlef = 15o)

(c) Cn surface plots (p̃ = 0.0106, r̃ = 0.0106, δa = 5o, δr = 5o, δlef = 15o)

Figure 3. Model comparison
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VII. Spline Model based Control Allocation

This section contains the main contribution of the paper. It discusses the process of control allocation
for system models based on multivariate splines that are not affine in the inputs. The use of non-affine
aerodynamic spline models requires the augmentation of the NDI structure with a separate control allocation
module. This augmented structure was introduced in the Sec. IV. All NDI flight control laws can be written
in terms of required forces or moments which can be seen as a virtual input τ :

τ req = g−1(x)(ν − f(x))

This required demand has to be translated into control surface deflections based on the onboard spline
model. The model for τ is assumed to be a nonlinear function of the aircraft state and control input and is
approximated with a spline function:

τi = Φ(x,u) ≈ s(x,u) (65)

For example, the virtual controls for the control setup in figure 2 are the moment coefficients for which the
model has been estimated by spline functions in the previous section:

τ1 = Cl ≈ s(α, β, p̃, r̃, δa, δr, δlef ), τ2 = Cm ≈ s(α, β, q̃, δe, δlef ), τ3 = Cn ≈ s(α, β, p̃, r̃, δa, δr, δlef )

The control allocation problem for spline based aerodynamic models can be stated as: Given a virtual
command τ , determine u satisfying the actuator limits, such that τ = s(x,u). This section presents a
control allocator that is formulated in terms of analytical expressions for the Jacobian and Hessian of the
spline model. This allocator requires the analytical derivation of the gradient and Hessian of a B-form
simplex polynomial and is presented in Sec. A. In Sections B - D the analytical expressions are used to
formulate three control allocation strategies that can be specifically applied to spline models; two linear
strategies and one nonlinear strategy. See also appendix A for a control allocation example. The advantages
of having an analytical expression over a numerical approximation is that it is exact and computationally

more efficient to calculate. For example, the central difference approximation of the second derivative ∂2f
∂xi∂xj

requires four evaluations of function f compared to one evaluation of the second derivative when having an
analytical expression [30, pp.884].

A. Gradient and Hessian of the B-form Simplex Polynomial

In this section two theorems are provided for the gradient and the Hessian of a B-form simplex polynomial
ptj(b(x)) with respect to the spline state x. In the following sections an expression for the barycentric
coordinate b(x) = (b0, b1, · · · , bn) as an affine function of the spline state x is required.

The barycentric coordinates (b1, · · · , bn) given by eq. (9) can be expressed as an affine function of x is
derived as follows::













b1

b2
...

bn













= Λ(x− v0) = Λx− Λv0 = Λx+ kn (66)

with kn = −Λv0. And the component b0 as follows:

b0 = 1−
n
∑

i=1

bi = 1−
[

1 1 . . . 1
]













b1
b2
...

bn













= −
[

1 1 . . . 1
]

Λx+
(

1−
[

1 1 . . . 1
]

kn

)

(67)

= Λ0x+ k0
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Combining (66) and (67) results in:













b0
b2
...

bn













=

[

Λ0

Λ

]

x+

[

k0

kn

]

= Ax+ k (68)

Eq. (68) is used to derive the first and second partial derivatives of a B-form basis polynomial Bd
κ(b(x)).

The first partial derivative is given by the following lemma.

Lemma 1. Let the barycentric coordinate b(x) = (b0, b1, · · · , bn) of x with respect to the n-simplex t be an
affine function of x given by:

b(x) =
[

a1 a2 · · · an

]

tj













x1

x2
...

xn













+ k = Atjx+ k (69)

In that case the partial derivative of a B-from basis polynomial Bd
κ(b(x)) with respect to xi is given by:

∂Bd
κ(b(x))

∂xi
= a

T
i ∇bB

d
κ(b(x)) (70)

with ∇bB
d
κ(b(x)) the gradient of the B-form polynomial with respect to the barycentric coordinate b:

∇bB
d
κ(b(x)) =

[

∂Bd
κ(b(x))
∂b0

∂Bd
κ(b(x))
∂b1

· · · ∂Bd
κ(b(x))
∂bn

]T

(71)

Proof. This proof uses the multi-variable chain rule:

∂Bd
κ(b(x))

∂xi
=

∂Bd
κ(b(x))

∂b0

∂b0(x)

∂xi
+
∂Bd

κ(b(x))

∂b1

∂b1(x)

∂xi
+ · · ·+ ∂Bd

κ(b(x))

∂b0

∂bn(x)

∂xn
(72)

Eq. (72) can be written in vector form:

∂Bd
κ(b(x))

∂xi
=

[

∂b0(x)
∂xi

∂b1(x)
∂xi

· · · ∂bn(x)
∂xi

] [

∂Bd
κ(b(x))
∂b0

∂Bd
κ(b(x))
∂b1

· · · ∂Bd
κ(b(x))
∂bn

]T

(73)

= a
T
i ∇bB

d
κ(b(x)) (74)

with ai the i-th column of Atj .

The second partial derivative of a B-form basis polynomials is given by the second lemma.

Lemma 2. Let the barycentric coordinate b(x) = (b0, b1, · · · , bn) of x with respect to the n-simplex t be an
affine function of x given by:

b(x) =
[

a1 a2 · · · an

]

tj













x1

x2
...

xn













+ k = Atjx+ k (75)

In that case the second partial derivative of a B-from basis polynomial Bd
κ(b(x)) with respect to xi, xj is given

by:
∂2Bd

κ(b(x))

∂xi∂xj
= a

T
i ∇2

b
Bd

κ(b(x))aj (76)
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with ∇2
b
Bd

κ(b(x)) the Hessian of the B-form polynomial with respect to the barycentric coordinate b:

∇2
b
Bd

κ(b(x)) =











∂2Bd
κ(b(x))

∂b2
0

· · · ∂2Bd
κ(b(x))

∂b0∂bn

...
. . .

...
∂2Bd

κ(b(x))
∂bn∂b0

· · · ∂2Bd
κ(b(x))
∂b2n











(77)

Proof. It is shown that
∂2Bd

κ(b(x))
∂xi∂xj

= a
T
i ∇2

b
Bd

κ(b(x))aj :

∂2Bd
κ(b(x))

∂xi∂xj
=

∂

∂xj

∂Bd
κ(b(x))

∂xi
=

∂

∂xj
a
T
i ∇bB

d
κ(b(x) (by Lemma 1)

= a
T
i









∂
∂xj

∂Bd
κ(b(x))
∂b0
...

∂
∂xj

∂Bd
κ(b(x))
∂bn









= a
T
i











∂2Bd
κ(b(x))

∂b2
0

∂b0
∂xj

+ · · ·+ ∂2Bd
κ(b(x))

∂b0∂bn

∂bn
∂xj

...
∂2Bd

κ(b(x))
∂bn∂b0

∂b0
∂xj

+ · · ·+ ∂2Bd
κ(b(x))
∂b2n

∂bn
∂xj











(Chain rule)

= a
T
i











∂2Bd
κ(b(x))

∂b2
0

· · · ∂2Bd
κ(b(x))

∂b0∂bn

...
. . .

...
∂2Bd

κ(b(x))
∂bn∂b0

· · · ∂2Bd
κ(b(x))
∂b2n



















∂b0(x)
∂xj

...
∂bn(x)
∂xj









= a
T
i ∇2

b
Bd

κ(b(x))aj

with ai and aj the i-th and j-th column of Atj .

The lemmas for the partial derivatives are now used the derive the gradient and the Hessian of a B-form
simplex polynomial ptj (b(x)). The first theorem provides the gradient:

Theorem 1 (Gradient of a simplex polynomial in terms of Cartesian coordinates ). Let the barycentric
coordinate b(x) = (b0, b1, · · · , bn) of x with respect to the n-simplex t be an affine function of x given by:

b(x) =
[

a1 a2 · · · an

]

tj













x1

x2
...

xn













+ k = Atjx+ k (78)

In that case the gradient of the B-form simplex polynomial ptj (b(x)) of degree d with respect to the spline
state x is given by:

∇xp
tj (b(x)) = AT

tj
∇bB

d
tj
(b(x))ctj (79)

with ∇bB
d
tj
(b(x)) the vector of B-form polynomial gradients given by:

∇bB
d
tj
(b(x)) =:

[

∇bB
d
d,0,··,0(b(x)) ∇bB

d
d−1,1,··,0(b(x)) · · · ∇bB

d
0,··,0,d(b(x))

]

=
[

∇bB
d
κ(b(x))

]

|κ=d| ∈ R
n+1×d̂

(80)
and with c

tj the vector of B-coefficients given by eq. (18):

c
tj := [ctjκ ]|κ|=d ∈ R

d̂×1

Proof. This proof starts by showing that ∂p
tj (b(x))
∂xi

= a
T
i ∇bB

dctj

∂ptj (b(x))

∂xi
=

∂

∂xi

∑

|κ|=d

ctjκ B
d
κ(b(x)) =

∑

|κ|=d

ctjκ
∂

∂xi
Bd

κ(b(x)) =
∑

|κ|=d

ctjκ a
T
i ∇bB

d
κ(b(x)) (by Lemma 1)

= a
T
i

∑

|κ|=d

ctjκ ∇bB
d
κ(b(x)) (81)

17 of 36

American Institute of Aeronautics and Astronautics



Using the definitions in eq. (80) and eq. (18), eq (81) can be written in vector form:

∂ptj (b(x))

∂xi
= a

T
i ∇bB

d
tj
(b(x))ctj (82)

Combining the partial derivatives for all xi gives:

∇xp
tj (b(x)) =















∂p
tj (b(x))
∂x1

∂p
tj (b(x))
∂x2

...
∂p

tj (b(x))
∂xn















=













a
T
1

a
T
2
...

a
T
n













∇bB
d
tj
(b(x))ctj = AT

tj
∇bB

d
tj
(b(x))ctj (83)

which proves the theorem.

The following theorem provides the Hessian of a B-form simplex polynomial ptj (b(x))

Theorem 2 (Hessian of a B-form simplex polynomial in terms of Cartesian coordinates). Let the barycentric
coordinate b(x) = (b0, b1, · · · , bn) of x with respect to the n-simplex t be an affine function of x given by:

b(x) =
[

a1 a2 · · · an

]

tj













x1

x2
...

xn













+ k = Atjx+ k (84)

In that case the Hessian of the B-form simplex polynomial ptj (b(x)) of degree d with respect to the spline
state x is given by:

∇2
x
ptj (b(x)) = AT

tj





∑

|κ|=d

ctjκ ∇2
b
Bd

κ(b(x))



Atj = AT
tj
ΓtjAtj (85)

Proof. This proof start by showing that: ∂2p
tj (b(x))

∂xi∂xj
= a

T
i

(

∑

|κ|=d c
tj
κ ∇2

b
Bd

κ(b(x))
)

aj :

∂2ptj (b(x))

∂xi∂xj
=

∂2

∂xi∂xj

∑

|κ|=d

ctjκ B
d
κ(b(x)) =

∑

|κ|=d

ctjκ
∂2

∂xi∂xj
Bd

κ(b(x))

=
∑

|κ|=d

ctjκ a
T
i ∇2

b
Bd

κ(b(x))aj (by Lemma 2)

= a
T
i





∑

|κ|=d

ctjκ ∇2
b
Bd

κ(b(x))



aj = a
T
i Γtjaj

Combining the second partial derivatives for all xi, xj gives:

∇2
x
ptj (b(x)) =









∂2p
tj (b(x))
∂x2

1

· · · ∂2p
tj (b(x))

∂x1∂xn

...
. . .

...
∂2p

tj (b(x))
∂xn∂x1

· · · ∂2p
tj (b(x))
∂x2

n









=









a
T
1 Γtja1 · · · a

T
1 Γtjan

...
. . .

...

a
T
nΓtja1 · · · a

T
nΓtjan









(86)

=









a
T
1
...

a
T
n









Γtj

[

a1 · · · an

]

= AT
tj
ΓtjAtj (87)

Which proves the theorem.
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B. Strategy 1: Linear Control Allocation

With this strategy the control allocation problem is solved for a linear approximation of the onboard spline
model. Consider the spline structure given by eq. (3):

s(x) = δ1p
t1(b(x)) + δ2p

t2(b(x)) + · · ·+ δjp
tj (b(x)), 1 ≤ j ≤ J

With δj = 1 if x ∈ tj and δj = 0 if x /∈ tj . Suppose that the current state x0 is located within simplex
tj . Then by linearizing the local polynomial ptj (x) around the current state, the linearized model becomes
the global representation for the original spline model. At the current state x0, each spline function can be
represented by a single simplex polynomial:

τi = ptj (x), x0 ∈ tj (88)

Consider the affine formulation of the barycentric coordinates b(x) = (b0, b1, · · · , bn) given by eq. (68):

b(x) = Atjx+ k (89)

Let the spline state x consist of n aircraft states and m control inputs:

x =
[

x1 x2 . . . xn u1 u2 . . . um

]T

=
[

xT
a uT

]T

(90)

Since the Cartesian to barycentric coordinate system transformation is a linear, one-to-one transformation,
the barycentric coordinates b(x) = (b0, b1, · · · , bn) can be parameterized as an affine function of the control
input u for a fixed aircraft state xa:

b(u) =
[

Axa,tj Au,tj

]

[

xa

u

]

+ k

= Au,tju+Axa,tjxa + k

= Au,tju+ k̃ (91)

With Axa,tj ∈ R
n×l and Au,tj ∈ R

n×m the partitions of Atj . Using this parameterization the simplex
polynomial can be expressed as a function only dependent on the control input u: ptj (u). By theorem 1 the
gradient of the simplex polynomial with respect to the control input is given by:

∇up
tj (u) = AT

u,tj
∇bB

d
tj
(u)ctj (92)

The linearized model around the current control input u0 for the complete effector model becomes:









τ1
...

τi









=









p1(u0)
...

pi(u0)









+









∇T
u
p1(u0)
...

∇T
u
pi(u0)

















∆u1
...

∆um









(93)

which can be written in vector form:
τ = p(x0,u0) +G∆u (94)

The linearized model is directly related to the aircraft control input and any linear control allocation method
can now be applied such as the redistributed pseudo-inverse solution [26,27] or constrained linear program-
ming techniques [31]. The approach elaborated here is based on the pseudo-inverse solution. Using the
linearized model in eq. (94) the error between the model and required output can be written as:

e = p(x0,u0) +G∆u− τ req (95)

= G∆u− τ̃ req

with
τ̃req = τreq − p(x0,u0) (96)
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The control minimization problem (eq. (43)) can now be formulated as:

min
∆u≤∆u≤∆u

J = ‖∆u‖ s.t. G∆u = τ̃ req (97)

By dropping the actuator constraints, the incremental control input can be calculated using the pseudo-
inverse solution in eq. (46):

∆u = G+
τ̃ req (98)

Actuator constraints can then be taken into account by applying the redistribution scheme from [26,27]. By
linearizing the spline model and computing the optimal solution at each time step the new control input
vector becomes:

u(t+ 1) = u(t) + ∆u (99)

C. Strategy 2: Successive Linear Control Allocation

The approach discussed in the previous section may produce inaccurate solutions in the case of highly
nonlinear effector models. In this case the linearized model might be inaccurate resulting in large allocation
errors. In this section a successive linear approach is presented to account for the nonlinearities in which the
control allocation problem is solved for a sequence of linear approximations of the onboard spline model. In
the previous section the spline model was linearized around current input u(t0) for which the pseudo-inverse
solution is applied. Solutions with better accuracy can be obtained by successively calculating the pseudo-
inverse solution for several initial conditions in the feasible set for u and selecting the one that yields the
lowest value for the control allocation error. This approach consists of four steps: First define a feasible
subset Ω for u:

Ω = {u ∈ R
m|u ≤ u ≤ u} ⊂ R

m (100)

Where u and u are lower and upper bounds. Second, define a tuple consisting of k initial conditions in the
feasible subset:

V1 := (u01 ,u02 , · · · ,u0k) ∈ Ω (101)

Third, linearize the spline model around each initial condition (x0,u0k) to obtain the formulation in eq. (94)
and calculate the incremental control input ∆u for all trials k through eqs. (98) and (99) to obtain a set of
optimal solutions:

V2 = (u01 +∆u1,u02 +∆u2, · · · ,u0k +∆uk) = (u∗
1,u

∗
2, · · · ,u∗

k) (102)

Fourth, calculate the control allocation error based on the onboard spline model:

V3 = (||Φ (x0,u
∗
1)− τ req||, ||Φ (x0,u

∗
2)− τ req||, · · · , ||Φ (x0,u

∗
k)− τ req||) (103)

and select the input that yields the lowest value for the control allocation error. The solution is iterated
by repeating these steps at each sample instant. This approach requires a definition of the feasible set Ω
and the number of trials k. The upper and lower bounds in eq. (100) should not only be determined by
the actuator position constraints, but should rather be given by small deviations around the current control
signal:

u(t+ 1) = max {u(t)− ε, umin} (104)

u(t+ 1) = min {u(t) + ε, umax} (105)

The deviation ε should be determined based on the knowledge of the control actuators. For example, for
model given by eq. (2) a good choice would be ε = τ u̇lim such that maximum deflection can be achieved
within the subset Ω.

D. Strategy 3: Nonlinear Control allocation

In this section a nonlinear solver for the control allocation problem is presented that minimizes the sum of
square errors between the onboard aerodynamic spline model and the required demand:

min
u≤u≤u

= ‖s(u)− τ req‖22 =

N
∑

i=1

(

si(u)− τreqi
)2

=

N
∑

i=1

ei(u)
2 (106)
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This is a constrained nonlinear optimization problem which usually requires a large number of iterations and
function evaluations to solve. A common approach to avoid complex programming routines is to drop the
actuator constraints and to linearize the model at each sample instant as was shown in the previous sections.
The main disadvantage of this approach is that it results in large allocation errors in case of significant
nonlinear models. In that case nonlinear solvers can provide more flexibility in handling nonlinearities. The
solver suggested here emphasizes a combination of both: an efficient nonlinear solver that can be implemented
analytically by matrix computations and which requires a small number of iterations to converge to a solution.
With the analytical expressions for the gradient and Hessian derived in the previous section any second
order optimization method, such as a sequential quadratic programming approach [32, 33], can be applied
to solve the control allocation problem. The solver presented here is based on the Levenberg-Marquardt
algorithm [34]. Consider the spline model representation given by eq. (3):

s(x) = δ1p
t1(b(x)) + δ2p

t2(b(x)) + · · ·+ δjp
tj (b(x)) =

J
∑

j=1

δjp
tj (x) (107)

With b(x) the barycentric coordinate of x with respect to the n-simplex tj . Let x consist of l aircraft states
and m control inputs:

x =
[

x1 x2 . . . xn u1 u2 . . . um

]T

=
[

xT
a uT

]T

Consider the parameterized barycentric coordinates as a function of u given by eq. (91):

b(u) = Au,tju+ k̃

With Au,tj ∈ R
n×m. Using this parameterization the spline function can be expressed as a function only

dependent on the control input u:

si(u) =

J
∑

j=1

δjp
tj (u) (108)

By theorem 1 the gradient of the spline function with respect to the control input is given by:

∇usi(u) =
J
∑

j=1

δjA
T
u,tj

∇bB
d
tj
(u)ctj (109)

and by theorem 2 the Hessian is given by:

∇2
u
si(u) =

J
∑

j=1

δjA
T
u,tj

ΓtjAu,tj (110)

with Γtj as given in (85). Let the Jocabian of the complete spline model s(u) be defined as:

∇s(u) =









∂s1(u)
∂u1

· · · ∂s1(u)
∂um

...
. . .

...
∂sN (u)
∂u1

· · · ∂sN (u)
∂um









=









∇T
u
s1(u)
...

∇T
u
sN (u)









(111)

Then the gradient and Hessian of the objective function J are given by:

∇J (u) = 2∇T
u
s(u) (s(u)− τ req) (112)

∇2J (u) = 2∇T s(u)∇s(u) + 2

N
∑

i=1

∇2
u
si(u)

(

si(u)− τ reqi

)

(113)

Consider the second order order approximation of the least squares objective in eq. (106) at u(t0) = u0:

J (u) ≈ J (u0) +∇T
u
J (u0)(u− u0) +

1

2
(u− u0)

T∇2
u
J (u)(u− u0) = J̄ (u) (114)
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A good estimate for the solution of the unconstrained optimization problem is obtained by setting ∂J̄
∂u

and
solving for u. This results in:

u∗ = u0 −
(

∇2J (u0)
)−1 ∇J (u) (115)

To improve the result, the procedure can be repeated to obtain Newton’s algorithm:

uk+1 = uk −
(

∇2J (uk)
)−1 ∇J (uk) = uk + d

(n)
k (116)

With d
(n)
k the Newton search direction. A property of the least squares objective function in eq. (106) is

that if the error is small, i.e. uk is close to u∗, the Hessian of the objective function can be approximated
by:

∇2J (u) ≈ 2∇T
u
s(u)∇s(u) = ∇̄2

u
J (u) (117)

Substituting eq. (117) in eq.(116) results in the Gauss-Newton algorithm:

uk+1 = uk −
(

∇̄2J (uk)
)−1 ∇J (uk) = uk + d

(gn)
k (118)

Although an analytical expression for the Hessian of the spline function ∇2
u
si(u) is available, using the

approximation in eq. (117) avoids its evaluation making the solver more efficient. Furthermore, the Gauss-
Newton Hessian matrix ∇̄2

u
J (u) is always positive definite and therefore guarantees that the search direction

d
(gn)
k is a decent direction. The advantage of Gauss-Newton’s algorithm is that it shows good local conver-

gence, i.e. when the initial solution u0 is chosen close to the optimal solution u∗. This is often the case
for the control allocation problem. For example, suppose that the global optimal solution u∗(t0) at time
t = t0 is found. Then when using a small step size ∆t it is likely that the optimal solution u∗(t0 + ∆t)
at time t0 + ∆t, is located in the neighborhooda N of u(t0). When this assumption is valid, the optimal
solution at t0 + ∆t can be found quickly using the Gauss-Newton algorithm with u∗(t0) as initial feasible
solution. However, the Gauss-Newton algorithm shows poor convergence when the initial solution: u0 is far
from u∗ and might diverge. Furthermore, the algorithm may not be defined when the Hessian is singular.
The Levenberg-Marquardt algorithm [34] overcomes this problem and increases the robustness by adaptively
varying between the Gauss-Newton search direction and the steepest descent search direction:

uk+1 = uk −
(

∇̄2J (uk) + ηkI
)−1 ∇J (uk) = uk + d

(lm)
k (119)

Where ηk controls both the magnitude and direction of dk. When ηk is zero, the search direction d
(lm)
k

is identical to the Gauss-Newton search direction d
(gn)
k . If on the other hand ηk goes to infinity, the

search direction tends towards the steepest descent direction, with magnitude tending to zero: ηk → ∞,

d
(lm)
k → −∇J (uk)/ηk. The steepest decent direction shows fast initial progress when the initial solution is

far from the optimum. So in case of divergence, ηk must be increased by a factor υ such that:

J (uk+1) < J (uk) (120)

In [34] it is proved that a sufficient large ηk exist such that eq. (120) holds. The Levenberg-Marquardt
algorithm does not take the actuator limits into account. A frequently used approach to handle actuator
limits is to add a barrier function to the objective function [35]. Barrier functions keep the iterates away
from the boundaries. However, in case of actuator saturation, the optimal solution to the control allocation
problem is often on the boundaries and thus, the use of barrier functions can result in less accurate solutions.
For this reason, the limits are incorporated by clipping the components of the control vector that exceed
their limits at their allowable values.

The nonlinear control allocation algorithm can be summarized as: Let uk = u(t0), ηk = η0, υ > 1:

1. Try an update: utry = uk −
(

∇̄2J (uk) + ηkI
)−1 ∇J (uk)

2. Saturate controls: utry = min {max {utry,u} ,u}

3. Evaluate the objective: J (utry) = ‖s(utry)− τ c‖22
4. Update solution:

aThe neighborhood of point u(t0) could be defined as an open ball with center u(t0) and a small radius ǫ
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• if J (utry) <= J (uk) accept solution: uk+1 = utry, ηk+1 = ηk/υ

• if J (utry) > J (uk) retract the update: uk+1 = uk, ηk+1 = ηkυ

Choosing a small initial value for η0, e.g. 0.005, leads to fast convergence when the initial solution u0 is close
to the optimal solution u∗. This is a reasonable assumption as described above. The choice of υ is arbitrary,
but a value of 10 has been found to be a good a choice.

VIII. Evaluation of the Spline Based NDI Controller

In this section the spline based NDI controller is evaluated. In Sec. A the control allocation strategies
are evaluated and in Sec. B a performance assessment is made by comparing the SNDI controller with a
polynomial based NDI controller.

A. Evaluation of the Control Allocation Strategies

In this section the three control allocation strategies are applied to the F-16 simulation model. The allocation
of the control input for a required demand Clreq , Cmreq

and Clreq is based on the spline models identified in
Sec. VI. Consider the spline model structures for the moment coefficients given by eqs. (56) -(58):

Cl(α, β, p̃, r̃, δa, δr, δlef ) = s11(α, β) + s12(α, β)δlef + s13(α, β)δa + s14(α, β)δr + (121)

s15(α)r̃ + s16(α)δlef r̃ + s17(α)p̃+ s18(α)δlef p̃

Cm(α, β, q̃, δe, δlef ) = s21(α, β, δe) + s22(α, β)δlef + s23q̃ + s24(α)δlef q̃ (122)

Cn(α, β, p̃, r̃, δa, δr, δlef ) = s31(α, β) + s32(α, β)δlef + s33(α, β)δa + s34(α, β)δr + (123)

s35(α)r̃ + s36(α)δlef r̃ + s37(α)p̃+ s38(α)δlef p̃

The leading edge flap δlef is scheduled as a function of the angle of attack to optimize performance. At
each sample instant the required moment coefficients Clreq , Cmreq

and Cnreq
have to be translated into an

actuator settings δa, δe and δr such that:

C̃lreq = s13(α, β)δa + s14(α, β)δr (124)

C̃mreq
= s21(α, β, δe) (125)

C̃nreq
= s33(α, β)δa + s34(α, β)δr (126)

with

C̃lreq = Clreq − [s11(α, β) + s12(α, β)δlef + s15(α)r̃ + s16(α)δlef r̃ + s17(α)p̃+ s18(α)δlef p̃] (127)

C̃mreq
= Cmreq

− [s22(α, β)δlef + s23(α)q̃ + s24(α)δlef q̃] (128)

C̃nreq
= Cnreq

− [s31(α, β) + s32(α, β)δlef + s35(α)r̃ + s36(α)δlef r̃ + s37(α)p̃+ s38(α)δlef p̃] (129)

The F-16 lateral dynamics are affine in the control input, and so are the spline approximations for Cl and
Cn. Therefore, the control allocation strategies are evaluated by performing a number of high amplitude
angle of attack maneuvers using the control structure in figure 2. Feedback on the roll and yaw channel
is only used for stabilization. The angle of attack response for the three allocation strategies is shown in
figures 4, 5 and 6. The plots contain three simulations starting at different trim conditions for the angle of
attack: α = 5o, α = 15o and α = 25o. In addition, figure 6 contains a subplot with the number of iterations
performed by the algorithm at each time step. To reduce the computational load the maximum number of
iterations is set to 10. For the successive linear method five initial conditions uniformly distributed in the
feasible set for δe are used. The approach described in Sec.VII.B is used for defining the the feasible set.
The plot shows the angle of attack response for the three strategies starting at α = 15o. The performance is
evaluated by comparing the allocation error, which is the error between the required moment delivered by
the NDI controller and the actual moment delivered the control allocator:

∆Cm(t) = Cmreq
(t)− Cm(t) (130)
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The RMS values and maximum error for the three strategies are listed in table 5 and the MATLAB executions
times are listed in table 6

At moderate angles of attack, the performance of the linear strategy is comparable to the successive
linear and nonlinear strategies. At higher angles of attack, the nonlinearities cause large allocation errors
which in turn results in a poor tracking performance and possibly unstable system, see the lower left plot of
figure 4. Maneuverability at higher angles of attack can be improved by using the successive linear or the
nonlinear control allocation method.

The nonlinear allocation strategy is the benchmark algorithm for coping with nonlinear aerodynamics as
it results in significant lower allocation errors in the high angle of attack regions. However, the nonlinear
optimization techniques may be too costly computationally for online applications. Although the average
computational load for the nonlinear strategy is lower than for the successive strategy, during maneuvering
the number of required iterations for the algorithm to converge increases as can be seen from figure 6.b. In
turn, this results in high maximum computation loads as can be seen from table 6, while the computational
load of the successive strategy is fixed by design, i.e. the selection of the trials k. The successive linear
strategy is a performance optimization with respect to complexity and computational efficiency; full enve-
lope tracking can be achieved while nonlinear optimization is avoided. However, it requires careful selection
of the initial conditions and number of trials.

Table 5. Performance assessment of the control allocation techniques for SNDI

Condition α0 = 5o α0 = 15o α0 = 25o

Parameter RMS∆Cm
* Max|∆Cm| RMS∆Cm Max|∆Cm| RMS∆Cm Max|∆Cm|

Linear 0.0222 0.1667 0.2453 1.0451 5.4956 13.4828

Suc. linear 0.0225 0.1669 0.2666 1.0452 1.1355 3.9967

Nonlinear 0.0223 0.1671 0.2125 1.0466 1.0957 3.9160

*The inversion error is defined as: ∆Cm(t) = Cmreq (t)− Cm(t)

Table 6. MATLAB execution times

Condition α0 = 5o α0 = 15o α0 = 25o

average maximum average maximum average maximum

time [ms] time [ms] time [ms] time [ms] time [ms] time [ms]

Linear 14.5 17.4 14.8 18.3 14.7 17.1

Suc. linear 32.0 34.3 32.9 35.1 32.6 40.1

Nonlinear 17.6 80.1 19.4 80.0 22.3 94.9
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Figure 4. SNDI with linear control allocation

Figure 5. SNDI with successive linear control allocation
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Figure 6. SNDI with nonlinear control allocation

(a) Angle of attack responses

(b) Number of iterations performed by the nonlinear control allocation algorithm

Figure 7. SNDI with nonlinear control allocation
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B. Performance Assessment

In this section the spline based NDI controller is evaluated. In order to evaluate the controller properly, its
performance is compared with a polynomial based NDI controller using the models identified in section VI.
To make a fair comparison, nonlinear control allocation is applied for both controllers. The control effort
and required demand for the roll, pitch and yaw channels are combined in one least squares objective:

min
δe,δa,δr

J = ‖







Cl(α, β, p̃, r̃, δa, δr, δlef )− Clreq

Cm(α, β, q̃, δe, δlef )− Cmreq

Cn(α, β, p̃, r̃, δa, δr, δlef )− Cnreq






‖ (131)

for which the nonlinear control allocation algorithm is applied.
The performance assessment is conducted with two maneuvers which cover a large part of the flight

envelope:

Maneuver 1: Roll command (φcom = 40o) and angle of attack command (αcom = 15o) performed si-
multaneously with constant sideslip command βcom = 5o: See figure 8 and table 7.

Maneuver 2: Roll command (φcom = 15o) and high angle of attack command (αcom = 40o) with zero
sideslip. The outer loop controller gains are decreased to: kφ = 1, kα = 1.5, kβ = 1 figure 9 and table 8.

Each figure shows a comparison between the tracking response, the control inputs, the control allocation
error given by eq. (130) and the model error between the true and estimated moment coefficients:

ξC(t) = C(t)− Ĉ(t) (132)

An assessment of the performance is made based on the RMS values of the model errors and control allo-
cation errors which are listed in the corresponding tables. The flight trajectories of the four maneuvers are
shown in figure 10.

Maneuver 1 is conducted in the low angle of attack region which contains moderate nonlinear aerodynam-
ics. The spline model is better able to accurately model these nonlinearities as compared to the polynomial
model, resulting in lower model errors and in turn lower control allocation errors. Oscillations can be ob-
served in the sideslip angle response which are caused by the actuator limits and coupling effect between the
control axis due to the allocation errors.

Maneuver 2 is performed in the high angle of attack region which is very nonlinear compared to the low
angle of attack region. In this region the controls saturate quickly and therefore the controllers gains are
decreased. Furthermore, by decreasing the gains the effect of the model error on the controller performance
can be better observed. Actuator saturation might actually mask this effect. In this maneuver a large part
of the angle of attack region is traversed. In this region the nonlinearities have increased to the point that
the polynomial based controller is unable to track the commanded angle of attack, while the spline based
controller still shows adequate tracking performance. From figure 9 it can be observed that the polynomial
based NDI controller is better able to stabilize the roll and sideslip angle compared to the spline based NDI
controller. The actuators for the rudder and aileron of the SNDI controller saturate more quickly, resulting
in larger control allocation errors, and in turn large oscillations for the roll and sideslip angle. It must be
noted, however, that the polynomial based NDI controller fails to track the angle of attack reference of 40o,
and as a result is operating at much lower angle of attack than the SNDI controller (i.e. 15o vs. 40o for
the SNDI controller). In fact, the significant difference between the trajectories for Maneuver 4 in figure 10
clearly illustrates the capability of the SNDI controlled F-16 to out-maneuver the polynomial NDI controlled
F-16.

From these results it can be concluded that when operating in the linear part of the flight envelope,
the use of SNDI does not provide a significant increase in tracking performance compared to polynomial
NDI. However, in the operating region with significant nonlinear aerodynamics, SNDI provides a significant
increase in controller performance resulting in improved maneuvering capabilities.

27 of 36

American Institute of Aeronautics and Astronautics



(a) Command variables

(b) Control deflections

(c) Model errors and control allocation errors

Figure 8. Results maneuver 1: Roll command (φcom = 40o) and angle of attack (αcom = 15o) command
performed simultaneously with constant sideslip command βcom = 5o

Table 7. Performance parameters maneuver 2

performance parameter RMS ξCl RMS ξCm RMS ξCn RMS ∆Cl RMS ∆Cm RMS ∆Cn

spline 0.0005 0.0025 0.005 0.0055 0.0748 0.0102

polynomial 0.0021 0.0088 0.0028 0.0115 0.1135 0.0106
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(a) Command variables

(b) Control deflections

(c) Model errors and control allocation errors

Figure 9. Results maneuver 2: Roll command (φcom = 15o) and high angle of attack command (αcom = 40o)
with with zero sideslip. The outer loop controller gains are decreased to: kφ = 1, kα = 1.5, kβ = 1

Table 8. Performance parameters maneuver 4

performance parameter RMS ξCl RMS ξCm RMS ξCn RMS ∆Cl RMS ∆Cm RMS ∆Cn

spline 0.0020 0.0047 0.0027 0.0718 1.1883 0.1181

polynomial 0.0028 0.0212 0.0018 0.0061 4.7248 0.0130
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(a) Flight trajectories spline NDI controller

(b) Flight trajectories polynomial ND controller

Figure 10. Flight trajectories of the four maneuvers

IX. Conclusions

High performance flight control systems based on the nonlinear dynamic inversion (NDI) principle require
highly accurate models of aircraft aerodynamics. In this paper a new nonlinear control method, indicated
as SNDI, is presented that combines NDI with multivariate spline model based control allocation. The goal
of SNDI is to improve the tracking performance of current NDI based flight controllers by improving the
accuracy of their on-board aerodynamic models. This is achieved by replacing current aerodynamic model
implementations with multivariate simplex splines, a powerful type of function approximator.

Three new CA strategies are presented for the simplex spline approximators; a linear, a nonlinear, and a
successive linear strategy. The linear CA strategy is computationally efficient, but can result in significant
allocation errors in nonlinear regions of the flight envelope. The nonlinear approach produces the smallest
allocation errors at the cost of having to solve a computationally expensive nonlinear optimization problem.
The successive linear approach aims to strike a balance between computational efficiency and allocation
error; it calculates the control input at a number of local linearization points and then selects the input
resulting in the smallest allocation error. The choice of CA strategy depends on the available computational
resources. On platforms with limited resources, the successive linear approach should be used. When
sufficient computational resources are available, the nonlinear strategy is the preferred strategy.

The SNDI method is demonstrated with a number of simulated maneuvers using a high fidelity F-16
simulation. The tracking performance of SNDI is compared directly with NDI based on ordinary polynomial
models in four high amplitude maneuvers flown with the F-16 simulation. The results show that SNDI
provides a significantly improved tracking performance, especially in nonlinear regions of the flight envelope
such as the high angle of attack and high angle of sideslip regions.
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Appendix A Tutorial on data approximation with multivariate simplex splines

In this appendix a simple 7-step tutorial example is presented of using multivariate simplex splines to
approximate a 2-dimensional scattered (i.e. non-gridded) dataset. This dataset consists of the measurement
locations x, which are chosen arbitrarily as follows (see also figure 11):

x = [x1,x2]

=

[

0 0.3 0.5 0.6 1.0 1.0 0 0.2 0.6 0.8

1.0 0.5 0.9 0.8 0 1.0 0 0.1 0.2 0.7

]T

,

this dataset can be seen as independent measurements made on some aircraft states. The dependent mea-
surement values are generated with a sine function as follows:

y(x) = sin(x1 + x2)

=
[

0.841 0.717 0.985 0.985 0.841 0.909 0 0.296 0.717 0.997
]T

,

which can be seen as the values calculated for a force or moment coefficient. The aim is to approximate
y(x) with a bivariate simplex spline function of degree 2 and continuity order 1, that is, the spline function
s(x) ∈ S1

2 (T ) that minimizes ||s(x)− y(x)|| on the triangulation T .

Step 1: Define the triangulation. In this case, a Delaunay triangulation is created of the convex hull of
x, resulting in a triangulation consisting of 2 triangles t1 = 〈v0,v1,v3〉 and t2 = 〈v1,v2,v3〉, see figure 11.

Step 2: Explicitly define the spline model structure in the form of (3). In this case, the spline model
structure is as follows:

s(x) = δ1(x)p
t1(x) + δ2(x)p

t2(x)

= δ1(x)B
2
t1
(x)ct1 + δ2(x)B

2
t2
(x)ct2 . (A.1)

The structure of the individual B-form polynomials B2
tj
(x)ctj in (A.1) is found by first determining the

set of multi-indices κ using (15) and the fact that d = |κ| = 2:

κ ∈ {(2, 0, 0), (1, 1, 0), (1, 0, 1), (0, 2, 0), (0, 1, 1), (0, 0, 2)}

Clearly, there are 6 (i.e. d̂ = 6) valid multi-indices, resulting in B-form polynomials consisting of 6
individual basis functions B2

κ(b(x)). Using this result with (17) the vectors of per-triangle basis polynomials
B2(x) for both triangles can then be constructed as follows:

B2
tj
(x) =

[

B2
2,0,0(b(x)) B2

1,1,0(b(x)) B2
1,0,1(b(x)) B2

0,2,0(b(x)) B2
0,1,1(b(x)) B2

0,0,2(b(x))
]

, j = 1, 2

=
[

b20 2b0b1 2b0b2 b21 2b1b2 b22

]

, j = 1, 2

the corresponding global vector of basis functions is:

B2(x) =
[

B2
t1
(x) Bt2(x)

]

The vectors of per-triangle B-coefficients ctj then are:

ct1 = [ct1200 ct1110 ct1101 ct1020 ct1011 ct1002]
T

ct2 = [ct2200 ct2110 ct2101 ct2020 ct2011 ct2002]
T

and the corresponding global B-coefficient vector is:

c = [ ct1 ct2 ]T
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Figure 11. A triangulation consisting of 2 triangles with a 2-dimensional scattered dataset (left), and (right)
the

Step 3: Assign measurement data to simplices, and calculate respective barycentric coordinates. The
following data assignment is made:

xt1 = x(i) ∈ t1 : i = 1, 2, 3, 4, xt2 = x(i) ∈ t2 : i = 5, 6, 7, 8, 9, 10

that is, t1 and t2 contain respectively 4 and 6 data points. Note that while data points x(6) and x(7) located
respectively at vertices v1 and v3 are assigned to t2, they could also have been assigned to t1 or to both t1
and t2. Using (9) and (10) to calculate the barycentric coordinates of xt1 and xt2 results in:

b(xt1) =











1.0 0 0

0.2 0.3 0.5

0.4 0.5 0.1

0.2 0.6 0.2











, b(xt2) =





















0 1.0 0

1.0 0 0

0 0 1.0

0.1 0.1 0.8

0.2 0.4 0.4

0.7 0.1 0.2





















Note that Matlab provides the built-in function tsearchn which calculates both data membership and
barycentric coordinates of a given dataset and triangulation.

Step 4: Formulate the B-form regression matrix. Using (26) the following regression model structure is
found for a single observation i:

y(i) = B2(i)D(i)c+ ǫ(i)

= X(i)c

for example, for the third (i = 3) observation x(3) = (0.5, 0.9) (and b(x(3)) = (0.4, 0.5, 0.1)) the regression
model is:

0.985 =
[

B2(3) B2(3)
]

D(3)c+ ǫ(3)

=
[

B2(3) B2(3)
]

[

I6×6 06×6

06×6 06×6

]

c+ ǫ(3)

=
[

b20 2b0b1 2b0b2 b21 2b1b2 b22 01×6

]

c

=
[

0.16 0.4 0.08 0.25 0.1 0.01 01×6

]

c+ ǫ(3)
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The complete regression matrix X for the given set of 10 observations is:

X =







































1.0 0 0 0 0 0 0 0 0 0 0 0

0.04 0.12 0.2 0.09 0.3 0.25 0 0 0 0 0 0

0.16 0.4 0.08 0.25 0.1 0.01 0 0 0 0 0 0

0.04 0.24 0.08 0.36 0.24 0.04 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1.0 0 0

0 0 0 0 0 0 1.0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1.0

0 0 0 0 0 0 0.01 0.02 0.16 0.01 0.16 0.64

0 0 0 0 0 0 0.04 0.16 0.16 0.16 0.32 0.16

0 0 0 0 0 0 0.49 0.14 0.28 0.01 0.04 0.04







































Step 5: Formulate the smoothness matrix using the theory from [11]. The continuity conditions for the
given triangulation are formulated using (31) which must be adapted for the currently used triangulation in
the sense that the location of the ’0’ and the ’m’ in the multi-index is determined by the non-zero value in
the multi-index of the B-coefficient located at the respective out-of-edge vertices, see [11] for more details.
In this case the general continuity conditions for continuity between t1 and t2 are found by reformulating
(31) into:

ct1(m,κ0,κ1)
=
∑

|γ|=m

ct2(κ0,0,κ1)+γ
Bm

γ (v0) = ct2(κ0,0,κ2)

The C0 continuity conditions (i.e. m=0) of t1 with respect to t2 are:

ct1(0,κ0,κ1)
=
∑

|γ|=0

ct2(κ0,0,κ1)
B0

γ(v0) = ct2(κ0,0,κ2)

The C1 continuity conditions (i.e. m=1) of t1 with respect to t2 are:

ct1(1,κ0,κ1)
=
∑

|γ|=1

ct2(κ0,0,κ1)+γ
B1

γ(v0)

for example, the C1 continuity condition for the coefficient ct11,1,0 is:

ct1(1,1,0) =
∑

|γ|=1

ct2(1,0,0)+γ
B1

γ(v0)

= ct22,0,0B
1
1,0,0(v0) + ct21,1,0B

1
0,1,0(v0) + ct21,0,1B

1
0,0,1(v0)

= ct22,0,0 − ct21,1,0 + ct21,0,1

where it should be noted that b(v0) = (1,−1, 1). The complete smoothness matrix is constructed by
formulating the continuity conditions for all continuity orders and for all edges, moving all term to the right
hand side. The smoothness matrix for C1 continuity between t1 and t2 then is:

H =















0 0 0 −1 0 0 1 0 0 0 0 0

0 0 0 0 −1 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0 0 0 0 1

0 −1 0 0 0 0 1 −1 1 0 0 0

0 0 −1 0 0 0 0 0 1 0 −1 1















where the first three rows correspond to the C0 conditions, and the last two rows to the C1 conditions.

Step 6: Formulate parameter estimation problem. The LS estimator for the B-coefficients can now be
formulated these results with (29). In this case, the following values for the B-coefficients are estimated:

ĉ =
[

0.842 1.1 0.626 0.926 1.23 −0.0192 0.926 1.05 1.23 0.841 0.581 −0.0192
]T
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Step 7: Model validation. The approximation accuracy of the simplex spline function can now be
determined by evaluating the spline function at specific test points. For example, if the current spline
function is evaluated at x the following set of function outputs is found:

s(x) = X ĉ

=
[

0.842 0.737 0.979 0.975 0.841 0.926 −0.0192 0.315 0.719 0.975
]T

Appendix B Example: non-affine spline models in control allocation

This example illustrates the non-affine nature of spline models and the practical implementation of the
control allocation strategies in Sec. VII. Consider the following spline model for τ :

τ(x) = δ1p
t1(b(x)) + δ2p

t2(b(x)) + · · ·+ δjp
tj (b(x)), 1 ≤ j ≤ J

Each basis polynomial is defined on an individual simplex tj (see also figure 11) in terms of local barycentric
coordinates (b0, b1, · · · , bn). The Cartesian to barycentric coordinate transformation is a linear one-to-one
transformation given by eqs. (9),(10). Let τ(x) be a bivariate spline function (n = 2) with b(x) = (b0, b1, b2)

and with the spline state x consisting of one aircraft state and one control input: x = [xa u]
T
. The first

step is to select the basis polynomial ptj in which the current state (xa(t0), u(t0)) is defined for the control
allocation process:

ptj (b(x)) =
∑

κ

ctjκ
d!

κ!
bκ0

0 bκ1

1 bκ2

2 , (xa, u) ∈ tj (B.1)

In the right hand side of eq. (B.1) the explicit representation for the B-form polynomial ptj given by eq.
(11) is used. The next step is to parameterize the B-form polynomial in terms of the control input u for a
fixed aircraft state xa. Let simplex tj be given by:

tj = 〈(v0,v1,v2)〉 = 〈
([

0

0

]

,

[

1

0

]

,

[

1

1

])

〉

Using eq. (9) and (10) it follows that the barycentric components of [xa u]
T are given by:

[

b1

b2

]

=

[

1 −1

0 1

][

xa

u

]

(B.2)

b0 = 1− b1 − b2 = 1− xa (B.3)

Combining eqs. (B.2),(B.3) and writing as an affine function of the spline state gives:






b0

b1
b2






=







−1 0

1 −1

0 1







[

xa
u

]

+







1

0

0






=
[

a1 a2

]

tj

[

xa
u

]

+ k (B.4)

At the current aircraft state xa(t0) the barycentric coordinates can be parametrized as an affine function of
u as follows:







b0
b1

b2






=







0

−1

1






u+







1− xa(t0)

xa(t0)

0






= a1u+ k̃ (B.5)

By substituting the parameterizations in eq. (B.5) for b0, b1 and b2 in eq. (B.1), the simplex polynomial can
expressed as a function only dependent of u:

ptj (u) =
∑

κ

ctjκ
d!

κ!
(1− xa(t0))

κ0 (−u+ xa(t0))
κ1 uκ2 (B.6)

=
∑

κ

ctjκ B
d
κ(u)
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By theorem 1 the gradient of the basis polynomial ptj with respect to u is given by:

∇up
tj (u) =

ptj (u)

∂u
= a

T
2

∑

κ

ctjκ ∇bB
d
κ(u)

=
[

0 −1 1
]







∑

κ

ctjκ
d!

κ!







κ0 (1− xa(t0))
κ0−1

(−u+ xa(t0))
κ1 uκ2

(1− xa(t0))
κ0 κ1 (−u+ xa(t0))

κ1−1
uκ2

(1− xa(t0))
κ0 (−u+ xa(t0))

κ1 κ2u
κ2−1













= a
T
2 ∇bB

d
tj
(u)ctj (B.7)

With the parameterization of the simplex polynomial and the derivation of the gradient the three control
allocation strategies in Sec. VII can be applied. For example, applying the linear strategy the incremental
control input for a required demand τreq is given by:

∆u =
(

∇up
tj (u(t0))

)−1 (
τreq − ptj (u(t0)

)

(B.8)

With the nonlinear strategy this process is repeated and the solution is iterated through the Levenberg-
Marquardt algorithm.
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