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Forces on Cylinders and Plates in an Oscillating Fluid g
e o T OHS
3 b
. Garbis H. Keulegan and Lloyd H. Carpenter e v'f,-
The inertin and drag cocflicients of cylinders and plates in sitnple sinusoidal currents L
are investignted, The midsection of a rectangular basin with standing waves surging in it is . N
selected as the Joeale of eurrents. The cylinders and plates are fixed horizontally and below
the water surface. The average values of the inertia and drag coefficients over a wuve cyele RN
show variations when the intensity of the enrrent and the size of the cylinders or plates are / N -
changed. These varintions, however, can be correlited with the period paramcier UnT/D, == 277 X S .
where U, is the maximum intensity of the sinusoidal current, 7 is the period of the wave R
and 1) is the diameter of the cylinder or the width of the plate. For the cyvlinders U, T/D :
cqualing 15 is a eritical eondition vielding the lowest value of the inertia cocilicient and the v
Iargest value of the drag coefficient. For the plates the higher values of the drag cocflicient, g
are associated with the smaller vaulues of UxT/D and the higher vahies of the mass coefficient . % ;
with the lnrger values of Uo7/, The variation of the coefficients with the phase of the T -
wave is examined and the bearing of this on the formula for the forces is discussed. The flow e
patterns around the cylinders and plates are examined photograpbically, and a suggestion is I S
advanced as to the physical meaning of the parameter UnT/D. \' '8
, LR
1. Introduction dimensional object immersed in a flow as made up ,f 0
of three parts: SR
In a remarkable paper on the motion of pendulums | - AT 1 ‘ o
Stokes showed that the expression for the force on a F=Aj) y +¢p{15+3 C.DpU U], (1) i
spherc oscillating in an unlimited viscous fluid con- 't < P

sists of two terms, one involving the acceleration of | Ty . - in the directi
the sphere and the other the velocity [1].2 Further- \\llcw.]" 18 t_he. force per unit l¢rn;{tl|. in the (_ule%tlon
wre, the inertia cocflicient involved in the accelera- | ©f flow, £; U the velocity at points far removed b?om
'on term is modified because of viscosity and, the ob]egt; P, the z-component ,,Of the ambient
indeed, is augmented over the theoretical value valid | Pressure in the absenc’c of the body; S, an clc.mencii
for irrotational flow. The drag cocfficient associated | ©F the surface arca; C"i_'. the CU(,‘(I[("“?L of drag; an
with the velocity terin 18 modificd berauso ol The| #» the virtual mass coeﬂu:u"ntv. The dimension of the
accelcration, and its value is greafer (han it would b(,’(l} normaloto t.hc .lﬂ-‘)“ is 1, l:uull <o 5.0 ci‘rcuh(xlr
be 1t The spliere were mnoving with a constaint velocity. ‘]t’.ca-'-.AOTWD'/‘L EO Wi ll('lll lll.c LYl (tl'ul 1‘n.l:)xssl l_s I}ifri .
Subsequent’ to Stokes” studics, the forces on a spherc I bA' Is the CI-‘OSSTN“O“& area o the body, A=rd,
moving in a viscous fluid in an arbitrary manner | 7 P¢INg a ratio, then
were mvestigated by Boussinesq and also by Basset Wi 0
[2, 3]. They found that the force experienced by a §pJZS=P71'1oT/’
sphere_at a given time depends, in_cencral, on the ) t
entire history of its acccleration as well as theinstan- | and  finally
tancous veloaity and acceleration. As an example, Akl 1
il a sphereisTaccelerated, say with a constant accel- F=Ayp L—)ﬁ-/—]-{—-— CiDpUU| .
eration, from a position of rest to a finite velocity dt de ]2
and is then kept at this velocity, the foree during
the intial instants of uniform velocity differs from
the foree occurring at a later time. "Rayleigh has
given the formula for the force for this case [4]. The

e e e o e

In this approach the variability of the mass co-
cflicient, k, 1s implied. Thus, introducing a new
coeflicient £’ such that ‘
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force expression of Boussincsq-Basset contains three dU d o y
‘ terms, one of which is in the form of an integral K’ G d (kU) A
involving the history of acecleration. If the integral . 2 :
evaluated when the acccleration is represented by | #1d putting .. ° ‘ s S
sinusoidal function it then yields the modifications Crn=(k"+r), @ Aoy
of the incrtia and drag coeflicients in Stokes’ formula. ! . ) he ox -, S
One cxpects quantitatively different results when | there is obtained from eq (1),*the expression Vi (s
the oscillating velocitics are large and the flow dU 1 " '.j :
turbulent. As yet a theoretical analysis of the F=C,p4, a7 T3 CDeUU], @ S
problem is dll)ﬂicult and much of the desired informa- : t BT
tion must be obtained cxperimentally. In this | .i:.1 : il oy
A ! > which in fact constitutes a second approach utilized Nl
I'?,Sll)ledf the f.\.:per(lsncntal itudd’?s have been dealt | fr5t "y Morison and coinvestigntoli‘[s) (6, 7. The ' ‘;g
“Iih ‘{",aﬂ,oil_s ¥ " ne n}“'lt Od tllsl di‘.le .to I\ICNOTH form of the expression is in agreement with the I “
a olf [5], who considecre e lorce on a two- Stoles formula, for force on a sphere oscillating in a Wy ¥ .
‘ I Investigation sponsored by the Office of Naval Research. viscous medlum' .Ill a gencral se.nsc 9ne may.st-lll '
? Flgures In brackets indicate the literature references at the end of this paper. | Tegard O, as a kind of mass or inertia coefficient. RERY.
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A third approach was proposed by Iversen and
Balent, who considered the force on an accelerated
disk moving in one direction [8]. Burielly,

F=CpDU?, (5)
where
‘DU D JdU
=Sz w)

Keim has considered the case of accelerated cylinders
[9] and Bugliarello that of aceelerated spheres [10],
all motions being in one direction. Here the resort
is to a single cocllicient €' and attempts Lo separate
the cffects of acceleration and viscosity have not
been shown to be successful.  Accordingly, the
adoption of this method can have a mecamng only
for monotonic motions subject to definite limitations
as to initial and final conditions.

For oscillatory motions, although the forces are
more accurately described either using eq (2) or
eq (4), the latter might be preferred provided the
coeflicients C,, and C; could be predicted with some
precision. The application of the expression to
vertical piling and large submerged objects by Reid
and Bretschneider stresses the neccessity of having
these coeflicients better determined [11].

On the basis of irrolational flow around the cyl-
inder, C, should equal 2, and one may suppose that

 the value of C; should be identical with that applh-

cable to a constant velocity. Morison and coinvesti-
gators have obtained the values of ¢, and C, in
particular cases by considering the obscrved forces
in the phases of the wave cycle where 77 or dL/dt
vanishes.. Such determinations show considerable
variations of ), from the theoretical value and of
C’, from the steady state value at the corresponding
Revnolds number.  Dealing with field studies at

© Caplen, Texas, R. O. Reid found similar variations

in (', and C, [12]. The variations in the coefficients,
however, have not yet been correlated with any
appropriate paramectcr. .

The prescnt investigation was undertaken with the
following two objectives in mind. The first was in
regard to a supplementary function AR that could
be introduced 1n eq (4) for a truer representation of
force when considering the cocficients C,, and C, as
being constant throughout a given wave eycle. The
nccessity for the term AR is associated with the
eventuality that the point values of C, and C,
deviate from their average values. The second
objective was to examine the possibility of correlating
the nverage values of ', and C; with a parameter
U, T/D, where U, is the amplitude of the harmoni-
cally varying velocity, T is the period of the oscilla-
tions, and D is the diameter of a cylinder or the
breadth of a rectangular plate. The mid-cross
section of a large rectangular vessel with standing
waves surging in it was chosen as the field of harmoni-
cally varying current. The cylinders and plates were
held fixed horizontally, totally submerged in water
and cxtending from one side of the vessel to the other
to approximate as closely as possible the condition
of infinite lIength.

2. Fluid Forces on an Immersed Body at
Rest in a Moving Liquid

It would be instructive to consider the momentum
cquations discussed by Murnaghan for the evaluation
of force on objects immersed in a perfeet liquid [13].
The method, however, is now gencralized to apply
to imperfeet liquids.

Consider the case of two-dimensional flow witly 2
horizontal and z vertical. The equation of motion
in the z-direction is

ou ou

ou_ . Ou\_ Opz, Op.
P b_t+u oz T oz Q)

w 0z/)  or

where u and w are the velocity components along
the axes 2 and z, p the density of the liquid, p,, the
normal stress on an elementary surface perpendicular
to z, and p., the tangential stress on an clementary
surfacc normal to z, the stress being in the dircction
of z. Because of the incompressibility of the liquid,

ou , oW
52750 @)

and eq (2) becomes
b_u 2_ 2 _b_ _% apzz
e e (bz wig o)=Ll

Take the immersed cylindrical body of surface S,
asin ficure 1, and draw a surface S’ of arbitrary shape
which encloses the eylinder. Let w be the region
bounded by Sand 8’ and [ and = the direction cosines
of the normal drawn inward into the region. Inte-
grating eq (8) throughout w, and in this making use of
Green's Theoremn, one finds

o [ Dty f u(lu+nw)dS—p f u(lu-tnw)ds’=

—f(lp,,+npz,)dS—f (I ptnps)dS’. (9)

s S3

Fi1Gure 1. Notation diagram for force analysis.
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Over the surface S of the innnersed body lu+nw van-

f (It

ishes because the body is at rest. Also

Pez)IS=F, that is, the z-component of the foree ex-
erted on the solid by the moving liquid. Tt may be
assimed that if S’ is removed sufliciently from the
body- the tangential stress p,, on S’ vanisiies and the
normal stress p., reduces to the hydrostatic pressure
—p. Solving for ¥,

Fe—p f Mt f w(lu-nw)dS’+ f IpdS’.  (10)

The later rclation may be given in another form,
suitable for the present purpose. Select the bound.
ing surfuce S’ as the rectangular strip shown in
figure 1. The planc S; to the left of the cylinder
passes through tl ¢ point z=—z, and the plane S; to
the right passes through z=u,. Denoting the hori-
zontal velocity coniponents at the points P, and P,
with the common elevation 2, by u, and w,, and the
pressurcs by p; and p,, eq (10) now reduces to

o te te
F=—p [ Siot-p |7 =tz 4 | =iz,

. - (11)

which is the momentum equation of familiar form.,

This may he specialized to evaluate the force on a
circular cylinder when the motion is irrotational.
Letting U be the undisturbed velocity and referring
to Lamnb [14],

a? A
u=U[1 +F cos 29]

at .
w=—U;§ sin 26 ' > (12)

§=% r+a7z) sin 9—% (v +w? J

’
where a is the radius of the cylinder, 7 is radial dis-

tance, and ¢ is the angle between a radius vector and
the vertical line 2=0 passing through the center of

cylinder. Clearly, u,=wu, and the momentum
ation, eq (11), reduces to
M «©
F1=—-pf adcu+£ (Pl—pz)dzl. (13)

[ntroducing the values of % and p from eq (12), and
omitting the straightforward but somewhat lengthy
valuations, the result is

F1=27r %azp,

T in terms of the diameter D of the cylinder
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o2 AU

F1=0m 4 (]_rt" (14)

where €,=2.

Next, suppose that the undisturbed velocity is con-
stant and tllmt the body experiences a drag. With the
liquid extending to infinity and ignoring the variation
of pressures from the shedding eddies, or, more prop-
erly, assuming that the surfaces St and S; are far
removed from the cylinder, p,=p,, and cq (11) re-
duces to

+ @
Fy=p f (wi—ud)dz,. (15)

The velocity uy=U, and w,=mU, where m is de-
pendent on z/D and on Reynolds number UD/v.

us,
U

2
Fo=CD (16)

where

+ @
Cd=2£ . (l—mz)d %‘

It appears that in ordinary cases where the flow
departs from irrotationality ‘and becomes unstcady
and eddying, ¢q (11) is still the basis for evalualing
the force, since the first and third integrals niay be
associated with aceeleration and the secoud with
drag. That is, the coefficients C, and C, arc de-
rived from cq (13) and (15) provided the velocities
and pressures can be given.” "The foree of the state.
nient is only academic, since in the flows involving
scparation oud intermittent eddy lormation tha
pressurves and velocities are not known and the
integrations in cq (11), at present, cannot be carried
out.  Nevertheless, experience suggests  that cq
(4) remains useful at least for sinusoidal motions, if
allowance can be made for the variations in Cn
and Cd.

Had onc carried out the integrations in ecq (11)
for an extended plate using the known velocity cx-
pressions derived from the Kirchoff solution for the
unpact on a lamina, definite values for Cn and C,
would have resulted. This would have shown in
principle the existence of g relation between C,
and C; in the absence of eddy formation. In the
Kirchofl' solution the wake is of infinite length and
this is causc for concern. McNown overcomes this
difficulty by considering the case of a closed wake
as between two plates and finds a relation between
k and C; or between C, and C, [15]. This result is
very significant as it points to the path to be fol-
lowed in analytical approaches taking into account
also the cffect of the eddy processes. With cylinders
the changing separation seats are a cause of added
difficulty.

Meanwhile, the tasks of the experimental investi-
gations become more necessary. Not only arc the
necds of the applied arts to be fulfilled, but also
there must be clarifieation as regards the flow pro-

cesses during unsteady flows.
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3. Cylinder in a Field of Sinusoidal Motion

Forces on a eylinder admit an casier representation
when the undisturbed portion of the flow, infinite
in extent, 18 varying hannomcnll\ Let the velocity
be gnvcn by

=—Up, cos dt, amn)

where 17,
the period of the alternations, and o=2x/T. The
force on the eylinder per unit length F is in gencral

F=f1,7,U,,Dpy). (18)
Grouping the variables on the basis of dimensional
reasonmng
‘ f<t UnT T U,D
pU 2D v )
or introducing
: 0=2nt|T, = W €& (19)
r v, r U,D
= nZ, Zm2), 2
pU,%,D f(e, D’ v > (0)

where U, D/v is a R(\\nolds number .md U,T/D
wil be termed the ‘period parameter.”’  Bearing
in mind that F is periodic, and that because of flow

symmetry
FO)=—IF@0+x),
we have
]Y
0T D—Al sin 0+ A4; sin 390+.A; sin 50-+.
+ B, cos 0+B3 cos 30+ B; cos 560+ . . . . (21)
Here the coeflicients A,,A; . . ., and B, B;. . . are

mdependent of 8, and arc at most functions of
U,T/D and U,P/v. A st method of approach
in the analyvsis of the observed force curve 1s to re-
sort to a Fouricr analysis to dctermine the coefli-
cients 4, . . . B, .. ..

o F sin nf y
4 _WJ; pUED a0 22)
and
1 (% I cos no :
—1 — 0
B,=: Jo py . 23)

Ounce the coefficients are obtained, thehr dependence
on U,T/D and U,D/v may be established, provided
the observational data arc of sufficient number and of
large extent. -

The above general and fundamental relation, eq

(21), may be reconciled with eq (4), which is the form |

which Morison and coinvestigators Reid, Bret-
schueider and others, have adopted in their numerous

studies. Introducing U from eq (17) into eq (4)
F T Do C,;
D1 Cpe T, sin 0—— |cos Bjcos 6.  (24)

is the semiamplitude of the cwrrent, 7

By the rule of Fouricr

o

2r
_ f |cos 6]cos 6 cos nddo
|cos Bjcos =17 £°
n=0

2r
f cos? nodo
0

=ao-}a, cos 6-+a; cos 20-+a; cos 30-+. . .,

where

a,=0 for n even,

7_L_+_].
an=(—1) 2 mfor nodd,
8 8 8 -
al—'g’—r) a3—1—57'r: a5——-ﬂ—)5—7r; . (2{))
Introducing this in eq (21), and writing
, B, )
1= o
’ az
B3=B3'—— Bl } (26)
a
B:—,:B5 BIJ
one has
I A, sin 64+ A; sin 36+ A, sin 56+ .
UED 1 sin 0-FA; sin 30+ A; sin 5
-+ Bi| cos 6] cos 6+ B; cos 30+ B; cos 50+ ... . (27)
Now eq (24) and (27) may be compared. One can
write
T Do sin 36 sin 50
r} Cn - U_,,,—A'_I_A3 sin 6 4, smé "
and
Cs_ . pr_ v COS 36 B; cos 50
=B B"’Icosel cosf | coso cosg T T
or
2U0,T,,
C.(0) == [Ai+A4,+A4,+2(A4, 7
+A4;) cos 20-+2A4; cos 40+ . ..] (28)
and .

—B;)+4(B;—B;) cos 20

—4Bicos 46+ ...]. (29

Thus if 4;, 4;, and B;, B; Vamsh the coeflicients -

of mass and drag remain constant for all the phases
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in the wave cyele and

2U0,T 2UT (™ Fsingds -
=% S E D), D (30)
and
3 [ F cos 6d6,
Cy= —2B=— J L - G31)

In the u‘ont that these cocfficients vary with the
phase 0 of the wave cycle, the values given by eq
(30) and (31) arc in a scnse the \VClghLCd averages

| 1 (% .
Co=l f Cin(6)sin? 60 (32)
0
and’
3 2r
(.7,,=-|-Zf C,(8) |cos 6] cos? 6d6. (33)
0

With the above possibilitics in mind, it is prefer-
able to adopt the expressions

pU]::D—A’ sing+ B cos 0 |cos 0]+AR (34)
or
F r Do
U0~ Cn W sin 9—— 7 |cos Bjcos 0--AR, (34&)

where 4,, By, C,, and C; arc constant, and AR las
the value :

AR=A;sin 30+ A;sin 564 133 cos 30+ B; cos 36.  (35)

The function AR will be referred to as the remainder
function, and then tlus remainder function is oh-
tained by subtracting the computed values of A,
sing and Bj[cos 8] cos § from the observed F/pUZLD.
The. remainder thus obtained may be examined in
regard to its Fourier structure and also as to its
ma(fmtudc

)

4. Characteristics of the
Waves

Experimental

The region undcr the nodal area of a standing wave
that may 7 be realized iri a rectangular vessel furnishes
a velocity field of simplc liarmonic motion in the
velocity component U. This circumstance is not
seriously modified c¢ven when the surges are moder-
ately high.

Takmc the z-axis in the plane surface of the un-
dlstmbed water, the z-axis vertical and upwards and

‘the origin at one end of the basin, (see fig. 2), the

surface elevation as reckoned from the undisturbed
level, according to the sccond-approximation theory,
from Miche {16], is

h=a cos kz sinot—}—aa—le cos 2kx—

: a(if N, cos 2kx cos 20t, - (36)

where
_cosh 2kH
sinh 2kH

N _cosh? kH (cosh 2kH+2)
7 sinh? kH sinh kH

Here k=nx/L, L being the length of the basin; o=
27/T, T being the pumd of oscillation; I1 the (](, rth
of water; and @ the scmiwave height, that is, t,hc
mean value of the extreme cnd deflections in a cycle.
The expression for the period is the samce as in the
first-npproxiination theory, that is,

*=gk tanh kH. (37)

and

Focusing attention on the basin end =0, the surface
displacement is

h=asin ot—}—aa—le—a%kNg cos 2¢t; x=0. (38)
Thus, the maximum elevation, occurring at{=m/2q, is
hmoteINANL, GO
and the maximum depression, at t=3r/2¢, is
hn:—a—}—a—[z\,—}—Nz]
The ratio of the elevation to the depression is
p=—(+ i) o- B vag) @0

and accordingly its valuc increases with wave height.
The surface configuration for =0 is

h—-a—[N

L . T=2"/7 .' H

-]
g

Y

L

Ficure 2. Notation diagram for wave profile.
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7, cos 2kix], t=0. (41)
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This represents a positive hump at the center of the
basin and depressions at the ends.  As a result, the
duration of time that the surface of the water at one
end of the basin is found to be above the undisturbed
level is shorter than the duration that it is below,
This matter has a bearing on the manner of fixing the
reference time of the foree cycles studied, and requires
further discussion,

At a small positive time (=7, the clevation & ig
nil, and this is the time when the wave in its upward
surge reaches the undisturbed level.

Sinee o7, is a small angle, sin erg=ar,, and from

cq (38) k . -
a a

‘0""0=(N2 N)— (Nz Np* Nz (.42)

At a later time, t=T/2--7,, once more h=0.
the time when the wave in its downward surge reaches
the undisturbed level. Since o7, is also a small angle,
sin or,=o71,;, and from cq (38)

ori=(Ni—N) B4 LN~ Ny ZE N,

and, thus,
TI=—T1p (43)
Let T, denote the duration of time that the surface
of the water at the end of the basin, z=0, is above
the undlsturbed level, and T, the duration below the
same level. Accordmoly,

T+ To=T,

2(T()—Ti)__‘ _2T1
Lo =o(1-5),

and

By definition

T
‘_§+T1_TO;
and in view of eq (43)
T
T¢=§—2To
or
ETJ—- 1_20’T0
T T

and, thus
2 (TO T{) 40’T0.
- T T x

Jutroducing the value of a7, from cq (42)

2(T,—T H (
( 0]' t) ( Nl) k_i_ (Nz NI)ZNZIJ P/ a

(44)

This is.

If the instant, when the upsurging wave at the end,
=), reaches the level of the undisturbed water is

()])i(‘l ved, this then determimes the instant f=r,
Since 4.1—U=,7’0—T,, the value of 7, may be obtained
from the time durations that the water surface is
below or above the still level.  If on the other hand
these ohservations have not been made, then 7o must
be obtained from eq (42), introducing in it the wave
height a of the observed surge deflections.

The expressions for the particle velocitics within
the order of the approximations considered are from

Miche [16],

__gak cosh k(z+H)
o cosh tH

__3ga’* cosh 2k(z+H)
4 o sinh?kH sinh 2kH
and ‘
__gak sinh k(z+H)
o  coshkH
3g o ‘sinh 2k(z+H)
40 sinh? kH sinh 2L H
At the vertical plane through the midsection of the

basin, that is, at the planc 2=L/2 or kx==/2, the
velocitics are

sin kz cos ot

sin 2kz sin 20 (45)

cos kx cos ot

cos 2kx sin 20¢.  (46)

gzk bs(};’:}gzigl) cos at (47)

and
__3g e sinh 2k(z-+-H)

T 4¢ sinh? kH sinh 2kH

sin 20, (48)

Thus at the chamel midsection, the horizontal
component of the particle velocitics is simple
harmoniec.  The vertical component is also simple
harmonic except that the frequency is twice as
large. The effect of vertieal velocity decreases with
wave height. It is further reduced by lowering the
object in the basin. Denoting the position of the
objcct in the basin by z; and putting

_gak cosh k(z,+H)

Un= e coshkH (49)
the velocity components are - |
" u=—U, cos ot . (50)
and
'w=—i’ kH% HU sin 20¢.  (51)

It is inferred that w becomes less significant wlen
EH is larger than 0.9. This limits the length of the
basin for a given depth of water. For studics of
wave forces in basins of greater length or with water
of less depth the present theory proves inadequate,
All the experiments discussed subsequently were
made in a basin of length L=242 em and water
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depth =70 cm. The objects, cylinders or plates,
were placed 25 e¢m below dlo water surface, that is
z1=—25 cm in the midsection plane 2,==121 cm.

For this condition, IJk=0.908, N;=1.054, and
N.=3.322. From eq (40), the ratio of end deflections
reduces to :

hi___ 140.993 o/H 52)

hy 1—0.993 o/H (
The graph of this equation is shown in figure 3, and
values {from observation are given by circles. The
agreement between theory and observation is satis-
factory for a/II less than 0.3. With this restriction
in mind, the valuc of the semiwave height @ may be
inferred from (39), that is,

b

S =110.993 o/H. (563)

During the tests the elevation k; was most casily
observed. i
¥rom eq (49) the relation between the current semi-
amphitude and the wave height, in cgs units, is
U,=3.43 a. (54)
At z, the horizontal velocity is not uniform in the
vertical direction. In the absence of a cylinder,
with z measured in centimeters,

14U,

U, dz ==0.00685.

Thus, if AU, be the difference in the maximnm
veloaities at two points differing in clevation by D,

then
. AU,
_J;—O'48 D/H.

For- the largest cylinder used in the experiments,
D=7.62 cin, the value of the ratio AU,/U, is 0.052.

The maximum value, during the cycle, of the
vertical velocity component is given ‘by

Wn/Upn=0.38 a/H.

. The majority of the experiments were made with a
less than 10 em. Xor these cases, wn/U, is less
than 0.055. .

From eq (44) the proportion of time that the sur-
face of the water at onc end of the channel is above
or below the undisturbed level is given by

To—Tg_ a_ a\?
-—1—,——0.3281—{ 0‘254<ﬁ>'

The graph of this expression is shown in figure 4 and
values from observation are given by circles. For
the observations, there was introduced into the
basin at cach end a parallel-wire resistance electrode,
the bare parts of the wires heing about 5 ecm long
and placed in a horizontal position just touching the

(55)

surface of waler at rest.  The time that the clectric
cuirent was traversing the electrodes gave the time
that the water surface was above the undisturbed
level, as in figure 5.
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FiGuRE 3. Variation of end deflections with wave height.
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FiGure 4. Difference in the durations of the end elevations and
depressions. .
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5. Dynamometer and Calibration gnard against aceidental changes in the straii-gage !
ehaviot. ‘
The sketeh of the dynamometer assembly is shown
in figure 6. The rigid and massive base 2§ for sup- | -, - -~ b, C— T
porting purposes is firmmly attached to the steel frame ( 265 l f
. of the rocking basin dircetly above the water.  The 42.0 | A 254~ 63
= dynamometer itself consists of a pendular frame to ' l 324 |
which is attached the objeet to be immersed in water, - o
a cvhinder or a rectangnlar plate. The framne is | soz
constructed of brass angles and is strong enongh to T .
resist torsional and flexural deformation.” The pivot S— :
depressions, loeated at the upper cornirs of the T 3 T :
frame, consist of smalt bores of 1 mmn in dimncter in 5 250 '
a brouze bedding. The bores are centered abont | 250
polished steel conical points emerging from the | - _ _ _ O i A R
supporting base. At a lower level two duraluminum
annnlar rings of rectangular cross scction are clainped 70.0 .
to the frame and to the base. ‘
These rings constitnte clastic elements for measur- ' 52.0
ing the forces. To indicate the ring deformations ' |
two pairs of strain gages, SR—4, 120 ohms, are glued )
to cach of the rings, inside and ontside, and at dia- o
metrically opposite points. The four strain gage | Fioure 6. Dynamomeler assembly (dimensions in centimeters).
elements form the bridge which is led to a umiversal
analyser.  The latter is relayed to one of the chan- 3
nels of a two-chaunel magnetic oscillograph. The \ 350
second channel is reserved for timing obscrvations. :

. . . N a0 [ o
A similar connection is adopted for the other ring. / //
By having four strain gages on each ring the sensi- w

tivity is increased and no corrections arc needed for 20
temperature changes. Two different scts of rings
are used for measuring forees of different magni-
tudes.  The method of calibration may be inferred
from the sketch in figure 7. The sum of the forces P .
on the two rings equals 0.625 tiines the load applicd -20 - '
to the frame.  The ring deformations are examined / /

for loads producing tension and compression.  The a0 B '
indications of the ring deformations as read from the -1600 -1200 -800 =-400 __ O 400 800 1200 1600 i
oscillograph record are linear as shown in figure 7. WEIGHT . 9 '
The calibrations were repeated before each rin to Fieure 7. Calibration of the strain gages.
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Ficure 8. An exrample of oscillograph record of forces.
Run 82, UnT/D=15.6. ' '
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6. Record of Forces and the Reduction

An example of two oscillograph records of the
forces. one from cach ring, and of the timing is shown
m figure 8. The nearly sinusoidal traces relate to
the forces acting on the rings; the others, in steps,
give the time sequence.  The incidence of the larger
detleetions indicates the time that the parallel wire
clectrode at the basin end =0 was immmersed; and
the meidence of no deflection indicates the time that
the clectrode was out of the water. The point P
where the greater deflections appear to commence
gives the instant that the upsurging water reached
the undisturbed level.  Thus the point P2 gives the
time t=r,, the value of which was computed from
¢q (58), 4ro=Ty— T, after introducing the semiwave
height of the wave. This value was transferred to
the record to mark the origin of time, t=0, shown by
the line Ad4’. The line BB’ indicates the end of thie
wave cyele and corresponds to t=7. To establish
the correspondence of the records from the two rings,
the timing marks appearing at the lower cdges of
the records were uscd. '

At the time the record of the forces was heing
taken the wave clevation A, was read visually
agamst a paper scalc attached to the end wall of the
basin.  The water surface was readily discernable

through the lucite walls of the basin. The niagni-
. tude of the semiwave height @ was deduced from
eq (53), using the observed value /,. Maximum
current U, was deduced from eq (54).

The sum of the corresponding readings of the
sinusoidal tracings in figure 8 gives the magnitude of
the forces acting on the two rings when the calibration
is applied. Tuking moments about the dvnamom-
cter pivot point, the total force X on the cvlinder is
obtamed. This is divided by the length of the cyl-
inder to give F. The time history of the reduced
force, F/pU,*D, is shown in figure 9.

1.6 T—

ot

-16 1
o] 0.2 0.4 0.6 0.8 1.0
/T

FIcuRe 9. Anexample of a curve of reduced Jorces on a cylinder.
Run 82. UnT/D=15.6.
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7. Inertia and the Drag Coefficients of
Cylinders and Plates

Considering the force data in dimensionless form,
such as shown in figurc 9, the cocflicients A, and B,
of ¢q (34) were determined by the method itmplied in
eq (30) and (31). The desired integrations were
carricd out in the forrn of summations by giving to
the diffcrential multiplier d8 the incremental value
A0=0.057. The valucs of A; and By’ thus found are
entered in table 5 for the cylinders and in table 6 for
the plates.  Tables 1 and 2 contain the diancters of
the cvlinders, or the width of the plates, the values
of the maximum currents and the water tenpera-
turcs.  Next the values of the inertia cocflicient,
Cn, were determined on the basis of eq (30). and the
values of the drag coefficient, C,, on the basis of eq
(31). These results are enterced in table 3 for the
cylinders and in table 4 for the plates. These tables
also contain the Reynolds number U,D/» and the
period parameter U, T/D.

The inertia coefficient C,, varies from the theo-
retical value 2 as the diameter of the cylinder is
changed, or with a given cylinder as the maximum
current is varied. Similar variations occur in the
drag coefficient C,, the changes being in the form
of additions to the valuc experienced in steady flow.
A correlation between the coefficients and Reynolds
number U,D/v does not appcar to exist. On the
other hand, when these coefficients are related to ihe
period parameter U, T/1), definite and regular de-
pendencics are found. This 1s illustrated in figures
10 and 11 for the cylinders, and in figures 12 and 13
for the plates.

TarrLe 1. Cylinders

[T'=2.075 secl

Run | D Un * 0 Run . D
S ! i

1 in cm/sec °C
| PO, 3 36. 2 23.0
2, 3 30,2 22,0
b R 3 277 23.0
[ 3 24.5 2.5
: T 3 21,1 22.5
19.2 22,0
15.8 22,0
13.1 230
1.0 23.0
5 33.1 21.0
2.5 7. 4 24.0
2.5 20.7 24.0
2.5 13.0 21.0
2.5 10.3 240
2 415 210

2 35. 4 24.0 1.75 14.4 22.0

2 27.5 24.0 1.5 28.7 0.5

2 19.1 24.8 1.5 25,2 20,5

2 23.5 28 1.5 20.2 20.5

1.5 53.2 26. 0 1.5 14.6 2005

21 ______ 1.5 43. 4 26.0 0.5 6h. 4 21.0

.5 33. 4 26.0) ] 54. 8 210

1.5 25,7 26, ¢ .5 44.6 21,0

1.5 19.4 26.0 .5 32.6 210

1.25 62.9 24.0 .75 54.0 12,0

1.25 54,5 28.0 75 49.6 12,0

1.25 43. 8 240 75 46.0 12.0

1. 25 35,7 29,2 75 41.0 12.0

1.25 271 29.2 - S ee-
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Tarie 2. Plates For the cylinders, as one passes from the sinall [
| . (Te2.075 sec) values of the period parameter to the larger values, f
y the inertia coeflicient commences to full from the .
: Run D Un P Run D Un P) initinl value 2 to au minimum _value of 1.00 at
' " | U.T/D=15 and then gradually increases to a value
. fn. fempe| - C in. | empec| °C of 2.5 at U,T/D=120. In regard to the coeflicient
| C IR B | e I B R of drag, there is an increase froin the initial value
3 ol BN TR Ay B 0.9 to a maximum value 2.5 at U, T/D=15 and then ,
3 6.4 | 20 || o0 25 | 161 | W5 there is a gradual decrease to the value obtained in ¢
25 | 185 200 || 65 ... 1 a2 | 304 steady flow. 1t appears that for the cylinders the
R R B T | ! R B narrow region around U,T/D=15 is a critical one,
25 | 10.3 gzio 681 18y | 34 As regards the plates, the course of the variations
2. b, 0 | 69 It 7. 30. . L, :
&0 0% 055 | Br1 | w08 of C,, and C; with the pecriod parameter is of a very
2 o I O | (N B GO I different kind. It will be noticed that O, first in-
2 161 | mo | @ Bz s creases, then decreases and finally rises again to a
2 o9 | Zo || Bl 2| 2] e value of nearly 4.5. The most remarkable behavior,
' 15 | a0 | 248 | % s | se0 | 0.0 however, is in regard to C;. The cocflicient of _
Pyl Bo| B I A drag, starting with an unusually large value, 10, .
. . . [ - . . .
decreases rapidly at first and then gradually for
TABLE 3. Cylinders i
. Ruon Cm Ca UnT/D | UnDj» Run Cnm Ca UnT!D | UnDfy ,
111 1.24 9.9 293%10° 1.66 1.09 58.6 227102
1.44 1.14 8.2 239 1.70 1.29 47.9 185
1.49 1.32 7.6 225 . G8 1.40 37.0 143
1.7 1.13 6.7 196 1.64 1.49 20. 4 114
1.88 1.00 5.7 169 1.82 1.10 7.0 167
. 1.95 0.91 5.2 152 1.61 1.19 69. 5 151
. 2.05 1.23 4.3 125 1.63 1.42 58.3 127
2.10 1.01 36 106 1.64 1.45 49.3 107
2.14 0.7 2.7 81 1.84 1. 50 41.5 90
0.74 1.69 10.8 229 2.54 1.07 119.9 116
1.14 1.601 8.9 189 2.35 1.29 07 8 93
1.71 1.36 6.8 143 2.15 1.42 TR 76
2.02 1.15 4.3 40 0.82 1.99 12,9 127
2.06 .12 3.4 71 .84 2.08 11.2 111
0.72 1.73 17.0 230 1.41 2,06 8.3 82 |
.7 1.08 14,5 196 1.7 1.7F 6.7 67
.83 2.18 1.2 152 0.80 2.05 156 100
1.50 1.89 7.8 108 LT8R 2.28 13.7 96
1.10 1.97 9.6 132 .87 236 1.0 g
1.02 1.30 29.0 231 1. 46 2.18 7.9 56
1.02 1.49 N6 188 2.52 1.18 109, 4 85
0.85 1.73 18.2 145 2. 60 1.3 B 5 71
LT 2.15 14.0 112 2.32 1.43 L0 57
.87 2.21 10.6 84 2.26 1. 54 s, 2 42
1.24 o L15 41.1 218 1.82 1.28 58. 8 83 i
1.27 1.23 BLY 206 51.0 7 )
1. 40 1. 46 226 152 50.1 71
1.26 1.52 23.3 138 4.7 63
0.8 175 77 1 |
!
TaBLE 4.  Plates
Cnm Cs | UnTiD| UnDp Run Cn C: | UaTiD| UnDpr
|
- i
. 1.94 8.75 3.8 114%100 || 60 2.51 5.15 7.5 58X10? '
1.7 8.81 3.5 103 (1) O, 2.14 3.25 24.2 142
1.56 9.76 2.7 80 62 . 1.07 3.94 19.3 113
1.51 10.21 2.2 65 L5 S 1.43 4.09 14.3 84
135 | 1155 17 52 4. I 2.25 4.43 105 62
2.28 5.50 6.1 128 2.45 3.13 33.6 131
2.12 7.06 5.2 109 2.10 3.55 8.2 110 !
2.00 8.0L 4.2 90 2.01 3.68 22.4 87
1.91 8. 64 3.4 71 1. 56 4.38 15.4 [j0]
1.57 11. 44 2.1 45 3.17 2.43 62.2 138 I
2.22 521 | 88 128 2.58 2.86 51.2 113 !
2.44 5.48 7.7 n2 2.89 3.06 41. 1 9L 1
2.42 6.31 6.6 95 2.71 3.36 29.9 66
2.17 7.25 5.3 77 4.96 1.81 118. 2 114 '
2,16 8 04 41 59 409 203 | 1040 101 ;
0.95 a1 16.3 127 4.00 2.32 88.3 85 > /fd L :
1.07 4.28 13.6 106 3.58 2.45 74.0 721 X
2.08 4.61 10.3 80 3.70 2.59 58.6 57 !




] . | Loty v A4 1 i
) : A
; : . ) it
TaBLE 5. Cylinders _ TABLE 6. Plates 1
E ’ ih
Run Ay B, Az By As By |UnT/D Run Ay B/ Ay B, Ay By |UaTID i
i
—=0.62 | —0.1t [ —0.04 | —0.03 | —0.08 | 0.9 0.58 | 0.5 0.01 | —0.05 3.8 ol
-5 —06| —o3| —o2| —e8]| &2 54 .47 04| =1t 3.5 -'l_i .
. —. 66| —.08 0 =2 —od| 76 47 40 | —2) =8| 2.7 Vi
—56 | = 03| +.05| —ol| —u3| 67 n s | - | <17 22 il
=50 | —o2| . 05| 00| —03| 57 a3 | a8 ) =02 16| 17 i
—46 | 4.02 06 00| =01 52 7 58 | =% | —03] 6. § i
—62 01 120 ot —02| 43 45 59| ~oa !l —2 ) 52 Qg
—~. 51 03 M| 4.0 0| 36 53 64| =2 | 42 IR
-85 01 o8 | =2 | 02| 27 68 | 52 | 407 | —lo6| 34 Y
-84 =9 —o2| —oa| Zl8) 10.8 61 | .55 0| —| 21 P
-8 —u| —05| —0a| —09| 89 3 | .42 | —05{ 4.02| 88 Dl
—.63| —07| —.02 0 —06! 6.8 31 49 | —06 | —.03( 7.7 IH
-8 40| +.13| 40l | —lor| 43 3% | %6 | —05] -02] 66 il
—. 56 0l 14 L0 4.0 3.4 45 .54 -0 | —03{ 53 [REtE
-9 —.18 00 —04| —.05( 17.0 66 .60 00! —.01 4.1 Foi
-99| —22| —o1| ~o02| —07| 145 -205| .29 | .33 | +.02| +.07] 163 SN
—ro9| =9 —l0s| —lex| — 2| e ~214| 3 | 3 .00 03| 13.6 Lif
—0.95| —14| —loa| —lo2| —11| 78 ~2.31 | ‘29 | 43 | —o8 | 10.3 L
—99| =5| —06| —0t| —nn| 96 —-258 | 30 | s 07 04| 7.5 P
-85 —05| loo| —o1{ —03| 29.0 —re2| 1 | 18 | —los| —.o2| 242 Iy
-l -0 .00 0| —m| 2356 —197| .18 19 | 4.02) +.07 ! 193 N
87| =15 —.05 04| —o7| 182 —204 | 3 6 | —.02 01| 14.3 { 3
—108| —22 —04 00| —.08]. 14.0 -2.22 | 3 45 [ —o6| —lot| 105 !
—110| —20| ~07| le0| -1 106 ~156| .08 13 [ =05 -0t 336
—0.58 0] 401 00} —ot| 411 —177| o9 16 | —o04| —o1| 252
—.62 | —. 01 n 00| —o02] 3506 44 { —1.84 16 19 | —.02| +.03| 22.4 ’
- -0 02| loy| —loz| 28 50| —219 | .32 38 | —.01| .06 154 H
-6 | —.04 o | loo| —lo5| 233 25| —1.21| [0 05 | =021 —lot| 22 |
-8 | —a| =loa| —o7] 177 {143 .06 08 | —o3| —loa 512 i
-85 | 4.02| +00]| o] —01]| 586 35| —1.53 | .08 n | —ot| —ot| 001 } i
PR S
—. 64 02 ot | —o01| —o1| 49 451 —1.68 | .11 13| —03] -0 299 TN
—.70 ol o3l Lo | —le2| 370 21| —0.91 | on 03 | —.01| —031182 g
-7 01 02 .00 =027 204 19 | —1.01 []) 03 -.01 —.03 { 104.0 H
—. 55 03 oL —.01 —.01 7.0 20 =116 05 05 -—.02 —.03 88.3 ‘é
. -~ 60 01 01| —01| —01| 605 24| —r2| 05 05 | —02| —02| 740 il
-7l o1 o2 00| —.o02| 553 7 S 3. -2 | Lor 06 | —.03| —.03| 58.6 fs
-7 o to2| —o1| —of| 493 i
-.75 02 02 0| =0t | 415 aft
—. 54 03 0 o) | —.01 | 119.9 13k
—-165 02 -01 00| —o1| 58 3 HE
0 02 00| —.ot| 75 ?;’ :
— 1B =05 =00 —10]| 129 Wl
—.19 —.02 —.03 —-.12 112 . i
-5 =0 =0 —-.13 8.3 . i
07| —10 w| -] 67 RERAN : .
—.22| —03| —04| —08| 156 R 3%
=21 =l | —m | —e| 1w a T
-8 =05 —o02| -4 1o c ) e | i
-5 —o4 00| =12 7 o IR D ol . .
+.03 [ +.01 L0071 —.01 | 1084 : 2L . T ——— - | .
o - ——— I
02 0l —01| —.01 ok * : 'ﬁ !
01 o2l —01| —.01 b
oL | .04 | 401 | ~.01 o i
0 (113 L0 —. 01 .
02 ol loo| -0 ‘
18 1 02 02| oo 00| 501 B
19 ] 02 02| 00| —lo1| 44.7 0 it
o] 25 50 75 100 125 .
: UnT/D :
3 Ficure 11. Variation of drag coefficient of cylinders. .
Diameter (inches): 3 25 2 195 L5 1.25 1 0.75 0.5 i
- Correspondingsymbol: O A O O @© A W ¢ -+ jitl
N wcreasing period parameter. The final value is e
. 2 almost identical with that found for steady flow. It Jift
: is perhaps important to mention that O’Brien i
Cm and Morison {17] noted equally large values of drag . :
coeflicients for spheres subjected. to the action of pro- :
| -gressive waves. It will be noted that the larger
values of € are associated with the smaller values of i
'm, and the larger values of C, with the smaller i
values of C,. Because the drag coefficient is large s
o _ when U,T/D is small and the variation of C, 1s i
GO 25 T 100 zs | relatively moderate, the wave forces on plates are H
e 10, Variats T ) lind essentinlly due to drag, and the inertia cffects play i}
_F16ure 10. Variation of inertia coefficient cf cylinders. a small role almost independent of the period ML
Diameter (Inches): 3 25 2 175 1.5 1.25 1 0.75 0.5 . P
Correspondingsymbol: O A O O ® A MW ¢ + . parameter. . :
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Froure 12. Variation of inertia coefficient of plafes.

Diameter (Inches): 3 25 2 1.5 1.25 1 0.75 0.5
Correspondingsymbol: O A O @ A W ¢ -+
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¥icore 13, Variation of drag cocflicient of plales.

Diameter (Inches): 3 25 2 1.5 1.25 1 0.75 0.5
Correspondingsymbol: O A 0 @ A B ¢ +

8. Variations of the Remainder Function
and C, and C, During the Wave Cycle

The valunes of C,, and C, given in tables 3 and 4 are
average values for the entire wave cyele, and in some
cases local values may differ from . the average.
Where the inertia and drag cocfficients, €, and (2,
cach have the same constant value at all phascs of the
wave cycle, eq (24) should suffice to describe ade-
quately the magnitude of the forces at every phase.

- On the other hand, should C,, and C; vary with the

different phases, the forces are better represented by
eq (34a). The variations in €, and C; should lead
to the remainder force function AR. The examples
of the remainder function AR are given in figures
14 and 15 where AR is the difference between
FlpUsD— A, sinfand Bjcos 8 | cos 8] in conformity
with eq (34). Once a curve of AR as a function of 8
Is obtained, its structure in Fourier components may
be considered and the coefficients .A4;, 4; . . ., and
B;. B; may be obtained. These determinations
are given in tables 5 and 6 and in figures 16, 17, 18,
and 19. :

Now for the determinations of the local values of
C, and C,, two methods arc available. The first
gives the point values of the coefficients in a wave
cvele as determined from the observed values of
I'jpUZD, using cq (24). Two sets of evaluations

- - .
F .
/V‘\\s.]_ p_U.'.—D - Asing
0.8
) /7 \%r— B8;lcos @l cos 8
0.4 A .

0 /J
-04
08 // 04
> 02

-2 / /
AN LN .
| \// \ / \\/

N ‘ o2

-04
0 Ol 02 03 04 05 06 o7 o8 09 10

v/
Ficure 14. Evaluation of remainder force AR for a cylinder.
Run 82, UnT/D=15.6.
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¥Vicure 15. Evaluation of remainder force AR for a plate.
Run 34, Un7/D=6.6. -
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FIGURE 16. Variation of coefficients of the remainder force of -
. cylinders. cale

Diameter (inches): 3 25 2 L75 L5 125 -
Corresponding symbol: O A ' O ¢ @
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Ficure 17. Varialion of coefficients of the remaindcr force cf
plates.

Diamecter (inches): 3 25 2 1,5 1,25 1 0.7 5
Correspondingsymbel: O A O @ A R ¢ +
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Ficure 18. Variation of coeflicients of the remainder force of
cylinders.

Diameter (inches): 3 25 2 1.9 L5 125 1 0.75 0.5

Correspondingsymbol: O A& O & @ A W ¢ +
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F1cure 19. Variation of cocflicients of the remainder forcc cf

plates. .
Diameter (inches): 3 25 2 L& L2 1 075 0.5
¢ +

Correspondingsymbol: O A O @ A N

were made, the basic suppositions being as follows:
It was assumed in the first cvaluation that for
6 =7/2+a and 6,=7/2—a, where « is an angle less
than #/2, the coeflicients C,, and C; each have equal
values, since these are the phases where the aceelera-
tions, du/dt, are equal, and the currents u, are cqual
in absolute value although of opposing signs. This
i1s true also for 8,=3#x/24+a and 6,=37/2—a. In
the second evaluation, it was assumed that for
§=r+p8 and 6=r—g, where 8 is an angle less than =,

435 - )

the coeflicients (7, und Cy; cach have cqual values,
since thesc are the phases where the currents, u, are
equal and the accclerations, du/dt, are cqual in
absolute value, although of opposing signs.  Also
since we know the values of the cocllicients Ay, s,
A; and By, B, B;, the enrves of ¢, and ( as
function of 8 may he obtained by nsing ¢ (28) and
(29). The latter is the sccond method and is mathe-
matically equivalent to tlie assumptions niade above.

In the cylinder data the agreement hetween the
observed and computed force is satisfactory when
U,T/D is small.  The computation was hased on cq
(24), introdneing the values of G, and ¢, from the
tables. Figurc 20 illustrates this agrcement. The
local values of C,(8) and C4(8) for this case are shown
in figure 21. The first dcterminations discussed
above are shown by circles and squarces, whereas the
curves are determined by the second method. Tt is
scen that €, (8) is independent of the phase ¢/ T and
that the coetlicicnt Cy(8) is constant ¢xcept in short
ranges of the phases ¢/7=0.25 and 0.75. This is
expected, for at these phases the current, 2 vanishes.
The values of €, and €y determined by eq (30) and
(31) are given in the caption.

The sgreement between the obscvved and com-
puted forces is also satisfactory when the period
parameter is large.  This ts illustrated in figure 22.
The local values of the coeflicients for this case are
shown in figure 23, Here again, allowing small devi-
ations, (7, (8) is practically independent of the phase
t/T and differs very little from the value given in
table 3. On the other hand, considerable variations
are obtained between the observed and computed
values of the forees in those cases where the period
parameter is near L, 7/D=135, as shown in ficure 24.
The local values of the coclficients forr this casc are
shown in figure 25, Now (7,(0) varies considerably
with the phase /7. the smaller values oceurring at
¢/ T=0.0, 0.50. and 1, and the Iarger valunes at
t/T=0.25 and 0.75.  Also, C,(8) appears to be con-
siderably augmented at the phases where the velocity
1 vanishes, that is, at ¢/ 7=0.25 and 0.75. The ex-
ample shown is typical for all the cuses where
U,T/D is in the neighborhood of U, T/D=15. In
the example shown in figure 25, C,(0) shows large
negative values at the points ¢/T=0, 0.5, and 1.0.
The significance of this s not clear. It is believed,
however, that the presence of negative values is not
related altogether to the observational mmethods that
were used.

For the plates deviations were alwayvs found be-
tween the observed values of the forces and the values
computed on the basis of eq (24). An example is
given in figure 26. The local values of C,(8) and
C;(0) for this casc arc shown in figure 27.
An additional example is given in figure 28,  VWhat
is shown in these figures is typical for all the runs
made with the plates. The coefficient. ,(8) under-
goes considerable vartation in value for varving ¢/ T,
the greater values ocenrring at t/7=0, 0.5, and 1.0
and the lesser values at t/7=0.25 and 0.75. Further-
more, the increase in Cz(9) at the poiuts t/T'=0.25
and 0.75 i1s very decided, :
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FicurE 20. Comparison of measured and compulced forces on a

cylinder.
Run 9, U.T/D=3.0.
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Ficure 21. An cxample of variation of the inertia and drag
" coeflicicnis of a cylinder during a wave cycle.
Run 9, UnT/D=3.0, Cm=2.14, Cg=0.70.
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Ficurr 22, Comparison of measured and compuled forces on a
cylinder,
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FIGURE 23. An example of variation of the incrtia and drag
coefficients of a cylinder during a wave cycle.
Run 93, UnT/D=44.7, Cu=1.76, Ca=1.54.
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Ficure 24. Comparison of measured and compuled forces on a
~eylinder.,
Run 82, U,T/D=15.6.
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FIGURE 25. An ezxample of variation of the inertia andrdrag

coefficients of a cylinder during a wave cycle.
Run 82; UnT/D=15.8, Ca=0.80, Ca=2.05.

For the cylinder data, aslong as the period parame-
ter is sufficiently small, or sufficiently large, the forces
may be computed on’ the basis of eq (24); the re-
mainder function, AR, is small. For period parame-
ters in the necighborhood of the critical value,
U.T/D=15, the representation of forces is more
exact using eq (34a); the remainder. funciion is of
significance. %‘or the plate data the remainder may

Run 93, UaT/D=44.7,
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not be disregarded, in particular when the period
parameter is small, T
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plate.
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FiGure 27. An example of variation of the inerlia and drag
cocflicients of a plate during a wave cycle.

Run 54, UnT/D=6.6, Cm=2.42, C4=6.31.
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FiGure 28. An czample of variation of the inertia and drag
cocfficients of a plate during a wave cycle.

Run 69, UaT/D=62.2, Cm=3.17, Cd=2.43.

9. Flow Pattern Around Cylinders and Plates

The flow patterns around the eylinders and plates
for varying valucs of U, 7/D were exnmined, because
they may lhave had a bearing on the fact that the
nature of forces during a cycle is significantly affected
by the period paramefer. The flow pattern was
visually examined by introducing a jet of colored
liquid on one side of the immersed object. The
disposition of the liquid close to the object during
the eyclic motion was recorded by a still camera and
also by a motion-picture camera. Some of these
piclwres are shown in figures 29 and 30,

Figure 29, a and b, were taken with the 3-inch
cylinder, the first corresponding to U, T/DD=4, the
sccond to a larger value U,7/D=10. When the
period parameter is small there is no separation of
flow; the liquid near the cylinder clings to the cylin-
der, and the partitioning of flow from above and
below is symmetrical. It will be remembered that at
low period parameter the inertia coeflicient is about
cqual to thie theoretical value 2, and drag is negligible.
As U,T/D is increased there is separation of flow at
the top surface of the cylinder during the relatively
longer time that the flow continues in one direction.

Although not visible in the picture, somewhat later,

but prior to the reversal of current, liquid coming
around the eylinder fromn below moves upward and,
although transforming into an eddy, remains close
to the cylinder.

Figure 29, ¢, illustrates the flow pattern for
U,T/D=17 with the 2-inch cylinder. Note the
complete separation at the upper surface of the
cylinder with the following flow around the lower
surface directed upward with the subscquent eddy
formation.

A completely different picture is obtained for large
period parameter, as shown in figure 29, d, taken
with the ¥-inch cyvlinder, U,T/D=110. Hecre one
is confronted with the regular Karman vortices.
The eddies are separated alternately from above
and helow,

With plates the flow patterns arc decidedly
diffcrent, especially for small period parameter.
Figurc 30, a and b, show the 3-inch plate, the first
corresponding to Un,T/D=1, the second to a larger
value, U,T/D=4. KEddics are formed almost simul-
tancously at the upper and lower cdges of the plates.
For the smaller value of U,T/D thc eddies are
apparently concentratcd nearer the cdges of the
plate. Perhaps the large values of the drag coeffi-
cient for smal{) period parameter are sssociated with
the behavior of the eddies in this case, but the ques-
tion is left open for another occasion.

Figure 30, ¢, illustrates the flow pattern for
U,T/D=15 with the 1}%-iuch plate. Here the eddy
formation is no longer symmetrical, the separation
occurring first at the upper edge of the plate followed
by an cddy formed at the lower cdge, remaining close
to the plate.

Again the Karman vortices arc obtained for large
period parameter as shiown in figure 30d taken with

the X%-inch plate, U,1/D=110.
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The eddy appearances discussed above snggest the
following interpretation as to the physical meaning
of U, TiD.  Tf one defines alength, I, as tho distance
that a fluid particle would move in one direction in
the absence of the eylinder, I==U,T/z. Thus,

UﬂlT - 7T_l
D D’

and accordingly the period parameter is proportional
to the ratio of the distance traversed by a partiele
during a half cycle to the diameter of the eylinder.
Wlien the period parameter equals 15, /D is 4.8.
Perhaps when U, 7/D is smaller than 15, the distance
traveled by a particle is not large cnough to form
complete eddies.  When it equals 15, the distance
suffices to form a single eddy, and when much larger
than 15 the greater distances allow the formation of
numerous vortices of the Karman vortex street.
One can hardly refrain from pointing to the similarity
between the period parameter and the Strouhal
number, and as suggested by McNown and Keulegan
[18], the product of Strouhal and period parameter
numbers furnishes an alternate parameter as service-
able as the period parameter number. If 7, be the
duration for the shedding of a single cddy, then the
Strouhal number fD/U=S may be written as
D/2T,U)=S8, since the number of alternative eddies
shed during a second is 2f and 2fT; cquals 1 second.
One may suppose that the relation is satisfied
approximately also for sinusoidal niotions, provided
U s veplaced by U,/2. Hence, the Strouhal number
for sinusoidal motion is D/(I/,,T,)=S.

Multiply the two sides by the wave parameter
number U, 7/D,

T JU.T

T, D

For cylinders, iguoring the dependence of S on the
Reynolds number,
U,T

T/T,=0.2-%

'

As noted previously for the eylinders, ), attains its
least value, slightly less than unity, at about
U7, T/D=12.5. This corresponds to the condition
that 7/7,=2, nearly, and suggests that during a half
cycle, that is, during a complete motion of fluid
particle in one direction, a single eddy is formed and
is separated (see also the figure 29, b). Obviously,
the process of eddy shedding has a very significant
bearing on the vanations of the so-called coefficients
of mass and drag, and account needs to be taken of
this in the theoretical formulation of the basic
process.

10. Maximum Force During a Wave Cycle

In engincering applications tlie main interest is in
the magnitude of the maximum force cxperienced
during a wave cycle. If the remainder function is
neglected, the expression

FlpUiD=A, sin 8-+ By|cos 6cos 6

instead of the eq (24), may be ntilized to evaluate
the maxinuin force I, and also its phase. If the
niaximnm force Fn/pUED ocenrs at 0=86,, the phase
may be defined as

b=r—80,,.

The maxiinum value of the computed force is given
by

})g—;nD=A‘ sin 6,4 Bi]cos 6,,|cos 6,
m

where 6, satisfies the relation

A,+2B{sin 6,=0, or sin (9,,l=—ill fo 3;

y
2B}

5<0n<

As the coefficients A, and BY are functions of U,,T/D
onlv, then F,/pU2D and & both are functions of
U,T/D. For greater accurucy, the remainder
function AR must be considered, but then the
evaluations become somewhat involved. If these
cvaluations are made, the maximum force and phase
are again functions of the period parameter.

An alternative procedure is the direct establish-
ment of the maximum force and phase by merely
taking these quantities from the reduced force
curves of this investigation. Such readings for the
cylinders are given in figure 31 and for the plates in
figure 32.
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Yicure 31. Variations of the magnitude and phase of the
mazimum force on cylinders.
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FicurE 32. Variations of the magnitude and phase of the
mazimum force on plates.
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TABLE 7.
U~T/D > fs
m (degrees) pU:‘ D
2.5 4,00 §2.0 12.5 .28 —6.8
3.0 3.45 81.2 15.0 15 —6.0
3.5 3.02 £0.8 17.5 03 ~5.0
4.0 2.65 80.0 20.0 .93 -390
4.5 2.34 79.0 25.0 .80 L0
5.0 2.10 78.0 30.0 73 4.0
55 1.83 76.6 35.0 0 6.5
6.0 1. 60 5.0 40.0 .68 8.0
6.5 1.42 72.5 50.0 .66 8.0
7.0 1.30 65.0 60.0 .65 8.0
7.5 1.20 35.0 ’ .63 8.3
8.0 1.20 5.0 63 8.7
9.0 1.25 —3.0 .62 %9
10.0 1.28 —6.0 .62 9.0
TABLE 8.
UnTID ke Fon
m - (degrees) pULD
2.0 24.0 7L 349
2.5 25.6 .44 32.0
3.0 27.0 .25 28.5
3.5 28.2 .10 26.0
4.0 29.5 .96 23.5
45 30.8 7H 1R.3
5.0 32.0 .63 13.6
5.5 33.0 53 1.1
6.0 3.6 45 9.7
7.0 34.9 33 8.9
8.0 35.5 25 8.7
2.0 35.5 18 9.0
________________ 1t 9.5
S ISR [, 1. 06 10.1
_______________ 1.02 10.8

Ifor reference purposes, the data of the curves is
irivcn in tables 7 and 8, and can be used dircctly.
n o future communication the forces on cylinders
held in vertical positions will be computed on the
basis of the data in these tables and will be com-
pared with the laboratory observations alrcady
completed as o matter of concrete illustration.

The authors gratefully acknowledge the suggestions
of Gi. B. Schubauer, the valuable and extensive en-
deavors of J. W. Lowry, a former collecague, in care-
fully examining the force records and preparing the
corresponding charts and the dilicence and resource-
fulness of Victor Brame in carrying out the experi-
ments.
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