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Abstract 
The probabilistic method commonly 
applied to arrive at the ultimate loading is 
as follows: for several different mean wind 
speeds load simulations are performed. 
For each mean wind speed a conditional 
distribution can be fitted to the load 
maxima for that particular wind speed. The 
overall distribution of the load response is 
obtained by a weighted average of these 
conditional distributions taking into 
account the probability of occurrence of 
the wind speed bins (Weibull). 

Two practical issues are addressed: 

• The plotting positions 

• The averaging over the mean wind 
speeds 

The plotting positions (for the m-th ranked 
value out of N) are unique and given by: 

/( 1)m N + . This means that the plotting 
positions do not depend on the particular 
application and/or the anticipated 
distribution function. 
The maximum of the 50 year estimates 
based on the exceedance probability 

( | )short iQ L U is an upper bound of the 
long term 50 year load value L50 . A lower 
bound for L50 is given by the maximum of 
the estimates based on the relative 
exceedance probability 

( | ) ( | )short i short i iR L U Q L U n= ; with ni

the fraction of time for wind speed bin Ui. 
In the situation that load data of just 1 wind 
speed bin is available it is in general not 
possible to determine L50. In case it is 
assumed that the considered wind speed 
bin governs the load, a good estimate 

(lower bound) of L50 is obtained by 
considering Rshort. If it is assumed that the 
load distributions of the other wind speed 
bins are about the same, a good estimate 
is obtained by considering Qshort (upper 
bound). 
Keywords: extreme value analysis, 
extreme external conditions 

1 Introduction 
During the design of a wind turbine the 
fatigue loads as well as the ultimate loads 
have to be considered. For the latter it is 
common to take the load level L50 with a 
return period of 50 years; i.e. this level is 
exceeded on average once every 50 
years.  

The challenge of an extreme value 
analysis is to obtain the 50 year value 
based on a data set which is much shorter 
than 50 years. Commonly the following 
steps are performed in order to estimate 
L50:  

• A number of N load maxima is 
considered, which are taken from 
either measurements or 
simulations. The maxima can be 
determined over any time period 
but usually an interval of 10-min. 
or 1 year is used. It is also 
possible to consider values above 
some threshold. 

• The N load values are ranked to 
order m (m=1 the smallest and 
m=N the largest) and associated 
with a certain (non-exceedance) 
probability (the so-called plotting 
positions). 
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• The ranked values are fitted to 
some distribution function (e.g. 
GEV, GPD, Weibull, etc.). For this 
purpose some method should be 
used (e.g. LSQ, maximum 
likelihood, etc.) 

• By extrapolation the requested 
load value with return period of 50 
year is determined. 

The above procedure involves several 
practical issues. In this paper the plotting 
position will be addressed in Section 2. 

For wind energy applications the 
procedure outlined above is usually 
performed for each mean wind speed bin 
and next the results are combined 
(weighted averaged). Practical issues 
concerning this weighted average are 
discussed in Section 3. 

2 Plotting position 

2.1 Uniform histogram 
As mentioned above, the ranked 
observations should be assigned a certain 
probability. This process is usually referred 
to as the determination of the plotting 
positions, since it is commonly performed 
graphically. In literature a whole range of 
different plotting positions can be found. In 
several recent papers [1, 2, 3] Lasse 
Makkonen has proven that there is only 
one correct plotting position (for the m-th 
ranked value out of N), namely: 

1m
mP

N
=

+
 (1) 

Instead of repeating his derivation, an 
example will be given which substantiate 
Eq. (1). Say, 5000 observations (this can 
be either measurements or simulations) 
are available. These 5000 values can be 
depicted in a histogram, see Fig. 1. In the 
bottom graph just 5 (as example) bins are 
used. One may raise the question how to 
set the borders of these 5 bins in order to 
obtain a uniform histogram. In case the 
distribution F is known this is a 
straightforward task: the probability of a 
value inside each bin should equal 20% so 

the 4 borders are given by: 1
1

1( )5b F −= , 

1
2

2( )5b F −= , 1
3

3( )5b F −=  and 

1
4

4( )5b F −= ; the left border of the first 

bin is minus infinity, the right border of the 
last bin equals infinity. For a Gumbel 
distribution (with location parameter 2 and 
scale parameter equal to 3) the result is 
shown in Fig. 2. 
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Figure 1: An example of a histogram of 
5000 observations. 
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Figure 2: Uniform histogram of 5000 
observations. 

In case the distribution F is unknown, the 4 
borders can be estimated by 4 random 
observations ranked to order: r1, r2, r3 and 
r4 with r1 the smallest value (rank 1) and r4
the largest value (rank 4). Next, 5000 
(new) observations can be binned 
accordingly to these borders. Since it 
concerns a set of 4 random samples, the 
histogram will be different in case the 
procedure is repeated. In Fig. 3 results are 
shown for 4 different sets. 
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Figure 3: Four histograms of 5000 
observations; the borders of the bins are 
based on ranked random observations. 

One may average the results per bin. The 
results for the 5th bin (number of 
exceedances of r4; magenta box in the 
graphs) are presented in Table 1: 

Table 1: the number of exceedances of 
the 4th rank. 

set r4 number of 
exceedances

1 4.50 1758
2 3.64 2221
3 1.97 3203
4 8.91 487

… … …
1000 5.48 1321

average 8.05 970
limit 7.88 1000

The averaged histogram of 1000 sets of 
the 4 borders is shown in Fig. 4. Please 
note that for each set the borders will be 
different (as shown in Fig. 3 and Table 1). 
So, it is not possible to mention load 
values on the horizontal axis. Instead, the 
order of the ranks are given.  
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Figure 4: Averaged histogram of 5000 
observations; the borders of the bins are 
based on ranked random observations. 

In the limit that the number of sets goes to 
infinity, the averaged histogram will 
become uniform like Fig. 2. In that case 
the exceedance probability of r4 equals 
exactly 1/5. By definition, the associated 
return period R of this event equals: 

4

1 5
( )

R
P x r

= =
≥

 (2) 

So, r4 will be exceeded on average once 
every 5 (i.e. not 4) random samples; this 
makes sense since 5 bins are available. 

2.2 Order statistics 
We will now consider the statistics of 
ranked observations in more detail. As 
example the 4th rank (out of 4 random 
samples) will be dealt with. In order to 
distinguish the distributions it is common 
to indicate the ranked values by order 
statistics. In order that r4 is less or equal a 
certain value x all 4 (independent) random 
samples should be less or equal x. Thus: 

4 4

1 2 3 4
4

( ) ( )
( ) ( ) ( ) ( )

( )

F x P r x
P x x P x x P x x P x x
F x

≡ ≤ =
≤ ≤ ≤ ≤ =

 (3) 

with F(x) the parent distribution. 
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Figure 5: Top: density function of 4th order statistics r4; as parent distribution the Gumbel 
distribution is taken (ó=2, ô=3) 

Middle: density function of transformed value z4=F(r4); non-exceedance probability 
Bottom: density function of transformed value y4=R(z4); return period 

The density function f4 is the derivative of 
F4, so: 

3
4 ( ) 4 ( ) ( )f x F x f x=  (4) 

This density is shown in Fig. 5 (top) taking 
the Gumbel distribution again as parent 
distribution. Also the mode, mean and 
median is indicated in the graph. The 
mean value equals 7.88 as already 
mentioned in Table 1. 

The distribution value F (non-exceedance 
probability) associated with a return period 
R is (see also Eq. (2)): 

11F
R

= −  (5) 

Consequently, the load with a return 
period of 5 is given by:  

1
5

4( )
5

l F −=  (6) 

For the example distribution l5=6.5 (see 
also Fig. 2); in Fig. 5 this load level is 
indicated by a red line. It can be seen that 
it not coincides with the mode, mean or 
median. 

Inspired by the analysis in Section 2.1 one 
may consider the transformation of r4 to a 
new random variable z4 through z4=F(r4). 
z4 can be considered as the normalized 
number of non-exceedances (in between 0 

and 1) of the 4th rank. So, it is comparable 
with Table 1 (with the difference that in this 
table the number of exceedances is 
given). In general, a transformation to a 
new random variable is expressed as 
z4=g(r4) with g(x) some given function. The 
density of z4 follows from: 

4
4

( )( )
'( )

f xf z
g x

=  (7) 

So, for our case we obtain (using Eq. (4)): 
3 34

4
( )( ) 4 ( ) 4
( )

f xf z F x z
f x

= = =  (8) 

This density is shown in the middle graph 
of Fig. 5, together with the mode, mean 
and median. The mean value of the 
transformation of the 4th order statistics 
can be determined analytically: 

1 1
4

4 4
0 0

1

0

( ) 4

45
5

14
5

z z f z dz z dz

z

= =

= =


 

 (9) 

The probability connected with a return 
period of 5 is 0.8, Eq. (5). In Fig. 5 this 
probability is indicated by a red dotted line; 
it happens to be equal to the mean, Eq. (9)
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. For completeness, the back transformed 
values of the mode, mean and median of 
z4 are shown by colored stars on the x-
axis of the top graph. Since the 
transformation function F(x) is an 
increasing function the median values of r4
and z4 coincide. 

By means of a next transformation 
y4=g(z4) with g(x)=1/(1-x), see Eq.(2),  the 
accompanying return period of the 4th

order statistics can be studied. Similar as 
for f4(z) the density f4(y) is obtained, see 
the bottom graph of Fig. 5: 

3
4 2

1 1( ) 4(1 )f y
y y

= −  (10) 

The mean value of y4 equals infinity. The 
back transformed values of the mode, 
mean and median of y4 are shown by 
colored circles on the x-axis of the top 
graph. 

Although the order statistics are 
dependent on the parent distribution, Eq. 
(4) and top graph of Fig. 5, the distribution 
of z4 (and y4) is not! So, the obtained result 
of the mean value, Eq. (9) (as well as the 
middle and bottom graphs of Fig. 5) is 
universal. 

2.3 Correct plotting positions 
In the previous section the specific case 
N=4 and m=N is considered. The 
distribution of any m-th order statistics rm
(out of N) is well known and can be found 
in text books on statistics or e.g. [4]. The 
mean value of the random variable 
zm=F(rm) is given by (exact): 

( )
1m m

mz F r
N

= =
+

 (11) 

Again, this result is independent from the 
parent distribution. 

During an extreme value analysis a 
number of N load maxima are taken and 
ranked to order. This can be considered 
as taking N random samples from an 
unknown distribution which are 
subsequently ranked. The accompanying 
non-exceedance probability of the m-th 
rank is given by Eq. (11). This implies that 
the only correct plotting position of the m-
th rank (out of N samples) is indeed given 
by Eq. (1). 

For wind energy application, the above 
can be described as follows. Say, for 
some particular wind turbine at some site 
100 10-min. load maxima (e.g. blade root 
flaping moment or tower base moment) 
are available. Applying the correct plotting 
positions, Eq. (1), a researcher will put the 
100-th rank r100,1 (i.e. the largest of the 100 
maxima) at level F=100/101 (which is 
equivalent with a return period of 101 
times 10-min.). The real average number 
of exceedances (unknown to the 
researcher) in 101 10-min. periods will in 
general not be equal to 1; we will denote it 
as N1. Based on some other set of 100 10-
min. load maxima (of the same turbine at 
the same site) another researcher  will 
obtain some other 100-th rank value r100,2; 
the real average number of exceedances 
of this load level equals N50,2. Say, in total 
K sets of load time series are available 
and K different reseachers obtain K values 
r100,k with real average number of 
exceedances Nk. No preference 
whatsoever can be expressed for any of 
these r100,k estimates. The average of Nk
will approach 1 in case K goes to infinity. 
In fact, the above is demonstrated in the 
example of Section 2.1. 

2.4 Conclusion 
In [1, 2, 3] it is proven by Lasse Makkonen 
that the plotting positions are unique and 
given by Eq. (1). This means that the 
plotting positions do not depend on the 
particular application and/or the 
anticipated distribution function. So, all 
other formulations of plotting positions 
than Eq. (1), which may be based on the 
mode, mean or median of the m-th order 
statistics, are incorrect and should not be 
applied. The same holds for software 
which has implemented these incorrect 
plotting positions. 

3 Averaging over mean 
wind speeds 

3.1 Background 

The long term distribution ( )longF L of 10-
min. load maxima L can be obtained 
through a weighted average (convolution) 
of the conditional short term distributions 

( | )shortF L U per (10-min.) mean wind 
speed U:
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0
( ) ( | ) ( )long shortF L F L U f U dU

∞
= 


 (12) 

with f(U) the probability density function of 
the mean wind speeds (commonly 
described by the Weibull distribution). 

Eq. (12) can be discretised as follows: 

*

1

1

( ) ( | )

1 ( | )

N
long short i ii

N
tot short i ii

F L F L U n

n F L U n
=

=

≈ =

− +

 
 

 (13) 

with 
*

1
N

tot iin n
=

=  (14) 

( )i in f U dU= indicates the fraction of 
time for each wind speed bin. Normally, 
the considered bins are restricted to the 
range in between the cut-in and cut-out 
wind speed (so, assuming that the load 
outside this range is negligible. This is 
indicated by the summation limit N*; the 
total fraction of time between cut-in and 
cut-out is ntot, Eq.(14). Please note that it 
is necessary to consider the fraction of 
time outside this range (e.g. 1-ntot) in order 
to have a correct normalization of the long 
term distribution (i.e. for very large values 
of the load L the non-exceedance 
probability should go to 1). In order to 
avoid this normalization issue one can 
consider the exceedance probability Q
instead. 

*

*

* *

* *

1

1

1 1

1 1

( )
1 ( )

1 (1 ) ( | )

(1 ( | ))

( | )

( | ) ( | )

long

long

N
tot short i ii

N
tot short i ii

N N
tot short i i ii i

N N
short i i short ii i

Q L
F L

n F L U n

n Q L U n

n Q L U n n

Q L U n R L U

=

=

= =

= =

=

− ≈

− − − =

− − =

+ − =

≡

 
 
  

  
 (15) 

where we have introduced a new variable, 
the relative exceedance probability R:

( | ) ( | )short i short i iR L U Q L U n=  (16) 

The load L50 with a return period of 50 
years is given by, Eq. (2): 

7
50

1( ) 3.810
50*365*24*6longQ L −= =

 (17) 

Due to the convolution (weighted average) 
according to Eq. (15) it is in general not 
known which exceedance values of the 
short term distributions ( | )short iQ L U  are 
of relevance. We will investigate this in 
more detail by treating several examples. 

3.2 Examples 
A Weibull distribution with scale parameter 
8 and shape parameter 2 is assumed. As 
cut-in and cut-out wind speed 4 m/s and 
25 m/s resp. are taken. The short term 
distributions ( | )short iF L U  should be 
obtained from load measurements or 
simulations. In order to study the 
averaging process here some distribution 
is simply assumed: a normal distribution. 
For each of the 5 examples considered 
some particular mean values iμ  are taken 
(the standard deviations are always set to 
1). Any other distribution could have been 
taken as well, but this will not change the 
conclusions. 

Example 1 
In example 1 two wind speeds bins are 
considered: 5 m/s (2.5 m/s – 7.5 m/s) and 
10 m/s (7.5 m/s – 12.5 m/s). The fraction 
of time of these wind speed bins is 49% 
and 33% resp. As mean values iμ  of the 
short term distributions, which are 
assumed to be normal, 0.5 and 1.0 are 
taken. For clarity, in this example 

50
1( ) 0.110longQ L = =  is taken instead of 

Eq. (17). The short term distributions 
( | )short iQ L U are indicated by blue lines, 

the long term distribution ( )longQ L , Eq. 
(15), by a red line. Furthermore, the 
relative short term distributions 

( | )short iR L U , Eq.(16), are given by 
dashed green lines. (see Appendix for the 
graphs). 
Due to Eq. (13) a lower bound of ( )longF L
can be determined: 
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*

min 1

min min min

( ) 1
(1 )

N
long tot ii

tot tot

F L n F n
n F F n F

=
≥ − + ≥

− + =
  (18) 

with minF the minimum, for load level L, of 

the short term distributions ( | )short iF L U
Similarly, based on Eq. (15), an upper 
bound of ( )longQ L can be established: 

*

max max max1( ) N
long i totiQ L Q n Q n Q

=
≤ = ≤ 

 (19) 

with maxQ the maximum, for load level L, of 

the short term distributions ( | )short iQ L U
To put the above in other words: in the 
graphs there should be at least one blue 
line on the right (or on top) of the red line. 
For this example, the 50 years load L50
equals 1.90; in the graphs this is indicated 
by a red star. The values corresponding to 
this load level are shown in the bar graph 
as well as in a table (see Appendix). 
Notice that the relative exceedance 
probabilities 50( | )short iR L U , 4th column in 
the table, equals the product of the 
exceedance probabilities 50( | )short iQ L U , 
2nd column, and the fraction of time ni of 
the wind speed bin, 3rd column. 
Furthermore, the summation of the 4th

column equals 50( )longQ L . In the graphs 

50( | )short iR L U are indicated by green 

stars; 50( | )short iQ L U by blue stars. Note: 
in the bar graph the contribution of each 
mean wind speed bin is given: this is the 
ratio of 50( | )short iR L U  and 50( )longQ L , 
see Eq. (16) and (17). Per definition, the 
sum of the contributions equals 100%. 
   

The 50 years load L50 based upon the 
short term distributions 

( | )short iQ L U equals 1.78 and 2.28 resp. 
(blue circles in the graphs; 5th column in 
the table). This means that if 100% of the 
time a mean wind speed of 5 m/s (10 m/s) 
occurs the 50 year load would be 1.78 
(2.28). 
The 50 years load L50 based upon the 
relative short term distributions 

( | )short iR L U equals 1.33 and 1.51 resp. 
(green circles in the graphs; 6th column in 
the table). This means that 1.33 would be 
the 50 year load if 49% of the time (i.e. 

according to the Weibull distribution) the 
mean wind speed equals 5 m/s; in this 
calculation it is also assumed that during 
the remaining 51% of the time the load is 
negligible. A similar explanation holds for 
the result 1.51 for a mean wind speed of 
10 m/s. 
From Eq. (15) it is clear that ( )longQ L is 
larger than (or equal to) each of the 
relative short term distributions 

( | )short iR L U , so the maximum of the 50 
years load values based upon the relative 
exceedance probabilities is a lower bound 
of the overall 50 years load L50. 
As stated above, at least one blue line is 
on the right of the red line. This implies 
that at least one of the 50 years load 
values based upon the exceedance 
probabilities is higher than L50. So, the 
maximum of the 50 years load values 
based upon the exceedance probabilities 
can serve as an upper bound of the overall 
50 years load L50. Indeen, L50=1.90 is in 
between 1.51 and 2.28. 
In this example the value corresponding to 
U=10 m/s, i.e. 2.28, is higher than 
L50=1.90. The other 50 years load value 
(i.e. 1.78 for U=5 m/s) based upon the 
exceedance probability happens to be 
lower than L50. In general, it is not 
necessary that one of the 50 years load 
values based upon the short term 
exceedance probabilities is lower than L50
(see example 2). 

Example 2 
In example 2 the wind speeds from 4 m/s 
to 25 m/s (with a bin width of 2 m/s) are 
considered. As mean values iμ  of the 
short term distributions 1 is taken for all 
bins. The convolution is almost equal to 
the short term distribution; the small 
difference is due to the fact that the 
fraction of time of all wind speed bins is 
87% instead of 100%. The contribution of 
each bin to the 50 year load L50 equals the 
fraction of time according to the Weibull 
distribution (see bar graph). A very good 
estimate of L50 = 5.92 is obtained by the 50 
year value corresponding to the short term 
distribution ( | )shortQ L U : 5.95 (upper 
bound). 

Example 3 
Example 3 is almost similar to example 2 
except the mean value of the short term 
distribution ( |14)shortF L for U=14 m/s is 
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taken as 2. As a consequence L50 = 6.31 is 
governed by this wind speed bin (see also 
bar graph). In other words, a very good 
estimate of L50 is obtained by the 50 year 
value corresponding to the relative short 
term distribution ( |14)shortR L  for this wind 
speed bin: 6.28 (lower bound). 

Example 4 
In example 4 the mean values of the short 
term distributions ( | )shortF L U  are 
assumed to be linear with the mean wind 
speeds: /10Uμ = . The combination of 
this relation and the Weibull distribution 
leads to a mean wind speed of 16 m/s 
contributing most to the 50 year load value 
(see bar graph). The short term 
probabilities of the wind speed bins, for 
L=L50, range from 41.110− to 96.310−

(see 2nd column in the table). These 
probabilities are (far) less or larger than 
the long term exceedance probability 

7
50( ) 3.810longQ L −= . Since L50 is not 

governed by just one wind speed bin, it is 
not possible to estimate in advance these 
short term probabilities. To put it into other 
words: for the overall 50-year load value 
the 2-month value van be relevant for one 
wind speed and for another wind speed 
the 3000-year value. 

Example 5 
Finally, in example 5 the mean values of 
the short term distributions are assumed to 
have the following relation: 

12 :
10
3612 :

20

UU

UU

μ

μ

≤ =

−> =
 (20) 

The above should represent a crude 
estimation of a thrust versus mean wind 
speed relation of pitch regulated wind 
turbines (with rated wind speed: U=12 
m/s). The most contributing wind speed is 
now shifted to 12 m/s. A fair estimate 
(lower bound) of L50 = 5.82 is obtained by 
the 50 year value corresponding to the 
relative short term distribution 

( |12)shortR L  for this wind speed bin: 
5.63. 
The approximation of Eq. (12) by Eq. (13) 
improves by decreasing the bin width. By 
taking a wind speed bin width as small as 
0.01 m/s the calculation of the 50 year 
value does not change (L50 = 5.82). So, it 

is sufficient to take a bin width of 1 to 2 
m/s. 

3.3 Conclusions 
Above, we have introduced the short term 
exceedance probability ( | )short iQ L U as 
well as the relative exceedance probability 

( | ) ( | )short i short i iR L U Q L U n= ; with ni

the fraction of time for wind speed bin Ui. 
The maximum of the 50 year estimates 
based on ( | )short iQ L U is an upper bound 
of the (overall) long term 50 year load 
value L50 . A lower bound for L50 is given by 
the maximum of the 50 year estimates 
based on ( | )short iR L U . 

In the situation that the short term 
distribution ( | )shortF L U  of just 1 wind 
speed bin is available it is in general not 
possible to determine the overall 50 year 
value L50 . Based on the given examples 
one may consider the following three 
cases: 

1) It is assumed that the considered 
wind speed bin governs the load 

2) It is assumed that the load 
distributions of the other wind 
speed bins are about the same 

3) It is assumed that another  wind 
speed bin (or a whole range of 
bins) governs the load 

For case 1) the situation is similar to the 
examples 3 and 5. A good/fair estimate 
(lower bound) of L50 is obtained by 
considering the relative exceedance 
probability Rshort. Since this relative 
exceedance probability depends on the 
fraction of time the width dU of the wind 
speed bin is of importance. A range dU
should be taken over which the load is 
assumed to be about the same level as 
the considered mean wind speed. 
Case 2) resembles example 2. A good 
estimate of L50 is obtained by the 50 year 
value corresponding to the short term 
distribution ( | )shortQ L U . In case the load 
distributions of the other wind speed bins 
are less or equal to the one of the 
considered wind bin, this estimate is an 
upper bound for L50. 
For case 3) no sensible statement can be 
made, except that the 50 year value 
corresponding to the relative short term 
distribution ( | )shortR L U is a lower bound 
for L50. The case that a whole range of 
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wind speed bins governs the load is like 
example 4.  Even in the best case (U=16 
m/s) the estimates 5.70 and 6.55 (based 
on R and Q resp.) are poor with respect to 
the real value for L50 =6.09. 
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