
TemporalMaxer Performance in the Face of Constraint: A Study in Temporal
Action Localization

A Comprehensive Analysis on the Adaptability of TemporalMaxer in Resource-Scarce Environments

Teodor-Gabriel Oprescu1

Supervisors: Dr. Jan van Gemert1, Robert-Jan Bruintjes1,
Attila Lengyel1, Ombretta Strafforello1

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 25, 2023

Name of the student: Teodor-Gabriel Oprescu
Final project course: CSE3000 Research Project
Thesis committee: Dr. Jan van Gemert, Ombretta Strafforello, Robert-Jan Bruintjes, Attila Lengyel, Dr.-Ing. Petr Kellnhofer

An electronic version of this thesis is available at http://repository.tudelft.nl/.

Abstract

This paper presents an analysis of the data and com-
pute efficiency of the TemporalMaxer deep learning model
in the context of temporal action localization (TAL), which
involves accurately detecting the start and end times of spe-
cific video actions. The study explores the performance and
scalability of the TemporalMaxer model under limited re-
sources and data availability, focusing on factors such as
hardware requirements, training time, and data utilization,
thus contributing to the advancement of efficient deep learn-
ing models for real-world video tasks. Through a literature
review of temporal action recognition models, evaluation
of learning curves for data efficiency, and development of
metrics to assess the compute efficiency, the study provides
insights into the performance trade-offs of the Temporal-
Maxer model. Experiments conducted on the widely used
THUMOS dataset further demonstrate the model’s gener-
alizability with limited data, achieving significant accuracy
performance with only 50% of the training data. Notably,
TemporalMaxer exhibits superior compute efficiency by sig-
nificantly reducing the number of Multiply-Accumulate op-
erations (MACs) compared to other state-of-the-art models.
However, alternative models like TriDet and TadTR outper-
form TemporalMaxer in training time-constrained scenar-
ios. These findings shed light on the model’s practical ap-
plicability in resource-constrained environments, offering
insights for further optimization and study.

1. Introduction

Temporal action localization (TAL) is a crucial task in
video analysis, aiming to detect and localize specific ac-
tions within a video sequence. It has extensive applica-
tions in various domains, including video surveillance [1],
video summarization [2], skill assessment [3], and action re-
trieval [4, 5], thus receiving widespread attention from both
the academia and the industry in recent years. With the rise
of deep learning techniques, TAL models have witnessed
significant advancements, which excel at learning hierarchi-
cal representations from video data.

Despite considerable advancements, TAL still presents
substantial challenges posed by the complex spatiotemporal
backgrounds, ambiguous temporal boundaries, and signifi-
cant variations in people’s appearances, camera viewpoint,
and action duration [6]. Moreover, one key challenge is
the demand for large-scale labelled video datasets needed
to train these models effectively. Collecting and annotating
these datasets is time-consuming, costly, and often limited
by resource availability and expertise [7]. However, train-
ing deep neural networks also requires substantial compu-
tational resources and time. This situation restricts the ac-
cessibility of state-of-the-art (SOTA) TAL models to a lim-
ited number of well-funded entities. While the straightfor-
ward solution might seem to be simply adding more data to
the model’s training to counter these issues, this approach
quickly becomes unfeasible since it only increases the al-

ready high computational costs and time requirements. To
address this issue, the THUMOS [8] initiative has emerged
as a vital contributor, gaining widespread adoption within
the TAL community and becoming a benchmark dataset.

In the Temporal Action Localization (TAL) field, sev-
eral approaches have been proposed to achieve high perfor-
mance in identifying and localizing actions within video se-
quences. Some of the most-performing approaches include
those that use complex self-attention mechanisms [9], trans-
former architectures [10], and long-term temporal context
modelling [11]. One of the state-of-the-art (SOTA) mod-
els in TAL is ActionFormer [10], which follows a mini-
malistic design of sequence labelling, where each moment
is classified, and the corresponding action boundaries are
regressed. It employs a transformer-based architecture to
capture long-term dependencies and temporal context in the
video clips [10].

Taking inspiration from ActionFormer [10], the Tempo-
ralMaxer method is introduced [12] that presents a novel ap-
proach that aims to maximize temporal context while min-
imizing the complexity of the model [12]. It uses a ba-
sic, parameter-free, and local region operating max-pooling
block. This block selectively picks out the most critical in-
formation from adjacent and local clip embeddings, result-
ing in a more efficient TAL model. TemporalMaxer outper-
forms other SOTA methods that rely on long-term tempo-
ral context modelling, such as self-attention models, while
requiring significantly fewer parameters and computational
resources [13].

This research addresses the challenges of data and com-
pute efficiency in TAL by closely investigating the per-
formance and scalability of the TemporalMaxer [12] deep
learning model under limited compute resources and data
availability. The goal is achieving accurate action localiza-
tion while mitigating the demands for extensive datasets and
compute power. The THUMOS14 dataset [8] will serve as
a benchmark for assessing the impact of these constraints
on the model’s accuracy. To achieve this objective, we will
compare the results with those reported in the original Tem-
poralMaxer introductory paper [12] by making use of the
DelftBlue supercomputer [14]. Moreover, we will analyze
the data and compute efficiency of TemporalMaxer against
other influential TAL models such as ActionFormer [10,15],
TriDet [16, 17]. and TadTR [18, 19]. Through this analy-
sis, we aim to provide insights into the trade-offs between
model complexity and performance under resource con-
straints. These insights have the potential to speed up the
research process in the TAL field, allowing researchers to
assess the efficiency of an approach without the need for
comprehensive training and testing.

2. Related work

2.1. Temporal Action Localization
Temporal action localization represents the problem of

detecting the start and end times of actions in untrimmed
videos, where the videos contain multiple actions with vary-
ing lengths and occur at different times. The untrimmed

1

video, denoted as X, can be represented by a collection of
feature vectors X = {x1, x2, ..., xT}, where the number of
discrete time steps, denoted as t = {1, 2, ...T}, can vary
depending on the video’s length. Each feature vector xt is
obtained by extracting information from a pre-trained 3D
convolutional network, representing a specific moment in
the video at time t [12].

The goal of TAL is to predict a set of action instances
ψ = {ψ1, ψ2, ...ψN} based on the input video sequence X ,
with N representing the number of action instances present
inX . Each action instance ψn consists of three components:
the starting time (sn), the ending time (en), and the associ-
ated action label (an), with sn ∈ [1, T], en ∈ [1, T] and
sn < en. The action label an belongs to a pre-defined set of
C categories [12].

Temporal Action Localization (TAL) employs both Two-
Stage and Single-Stage methods to detect actions in videos
[20]. Two-Stage methods [21] generate action proposals
and then classify them through anchor windows, action
boundaries detection, graph representation, or Transform-
ers. Single-Stage TAL [22, 23] performs action proposal
generation and classification in one pass, with notable ex-
amples including anchor-based and anchor-free single-stage
models.

TAL models often strive to capture long-term temporal
dependencies within video clip features, usually utilizing
features from 3D-CNN networks as input [24, 25]. These
models generally comprise an encoder or backbone and a
decoder or head. To enhance the capture of long-term de-
pendencies, long-term temporal context modelling (TCM)
blocks are integrated into the backbone, with different tech-
niques including Graph [26], Local-Global Temporal En-
coder [12], and Relation-aware Pyramid Network [27] be-
ing explored. Despite the notable improvements achieved
through self-attention for long-term TCM, there are con-
cerns about inference speed and effectiveness. Temporal-
Maxer capitalizes on the strong features of the pre-trained
3D CNN and focuses on efficiently utilizing a Max Pooling
block for local context modelling [12].

2.2. Data Efficiency
In Temporal Action Localization, data efficiency pertains

to a model’s capability to learn from limited labelled train-
ing data, which is essential due to the resource-intensive
nature of obtaining large-scale datasets. A range of ap-
proaches can be deployed to augment data efficiency.

Transfer learning [28] pretrains models on substantial
datasets and fine-tunes them on smaller TAL datasets, lever-
aging learned features to lessen extensive training on the
target dataset. Semi-supervised learning [29] enhances gen-
eralizable representations by combining labelled and unla-
beled data, while active learning employs a selective an-
notation of the most informative unlabeled samples. This
iterative process enhances performance while limiting an-
notation efforts. Weakly-supervised learning [30] reduces
the need for detailed frame-level annotations by employing
weak annotations for training. Challenges such as limited
dataset availability, domain shift, balancing model com-

plexity and interpretability, and trade-offs between annota-
tion effort and performance persist despite these method-
ologies.

Techniques like few-shot learning, zero-shot learning,
and learning curve analysis are used to evaluate data ef-
ficiency. Few-shot learning [31], which involves training
models on a minimal number of samples per class, tests the
model’s ability to generalize. Zero-shot learning [32] as-
sesses the model’s capabilities to recognize unseen classes,
reflecting its generalization capabilities. Learning curves,
which plot accuracy against the volume of training data,
provide insights into performance shifts with increasing
data availability.

The study uses the approach of sampling percentages of
training data due to class imbalances and the presence of
multiple classes in single videos. The practicality of a few-
shot learning approach was seen as challenging within the
project’s timeframe.

2.3. Compute Efficiency
In Temporal Action Localization, compute efficiency re-

lates to a model’s ability to accurately localize action while
minimizing computational resources, such as Multiply-
Accumulate operations (MACs) and inference time. This
involves models that efficiently process videos and per-
form action localization tasks with fewer computational de-
mands.

Several methods to improve TAL models’ compute effi-
ciency include creating lightweight model architectures tai-
lored for TAL tasks, applying temporal downsampling tech-
niques like adaptive frame skipping [33], using temporal
pooling operations to reduce temporal resolution [34], im-
plementing pruning and quantization techniques [35], and
employing knowledge distillation [36] to train a more com-
putationally efficient model.

However, challenges arise in achieving compute effi-
ciency, including the trade-off between model complex-
ity and performance, balancing accuracy and compute ef-
ficiency and hardware limitations. These are particularly
relevant in real-time action localization applications, where
timing constraints are strict.

Measures such as the number of floating point & MAC
operations, memory used, and inference and training times
are used to test for computational efficiency. For instance,
TAL models such as TriDet [16], TemporalMaxer [12], and
ActionFormer [10] report MAC operations and the time
to forward a single video. Nonetheless, no experiments
have assessed how these models scale with increasing video
length. Therefore, this study measures TemporalMaxer’s
inference performance on videos of varying lengths, record-
ing the inference time, VRAM used, and the number of
MAC operations executed.

Efforts to optimize for computational efficiency in TAL
models, such as the low computational cost designs of
TriDet [16] and TemporalMaxer [12], aims to enable effec-
tive action localization on resource-constrained devices or
situations with limited computational resources. Through
these optimization techniques and striking the right balance

2

between efficiency and accuracy, TAL models can offer ef-
fective action localization with reduced computational de-
mands.

3. Methodology

3.1. TemporalMaxer
TemporalMaxer [12] is a proposed method for tempo-

ral action localization (TAL), which aims to accurately de-
tect and localize action instances in videos (visualization of
the model is presented in Figure 1). The model focuses on
extreme minimization of the backbone network by maxi-
mizing the information from extracted video clip features
in a short-term perspective. Instead of employing complex
modules or attention mechanisms, TemporalMaxer uses a
basic, parameter-free, local operating Max Pooling block
as its temporal context modelling (TCM) component. The
model takes pre-extracted features from a 3D convolutional
neural network (CNN) as input and encodes them using the
simplified backbone. By leveraging the strong features of
the pre-trained 3D CNN, TemporalMaxer maintains only
the most critical information on adjacent and local clip em-
beddings. Combining the simplified backbone and the large
receptive field of deep networks enables TemporalMaxer to
outperform other TAL methods by a sensible margin regard-
ing accuracy and speed on various challenging datasets, in-
cluding THUMOS’14 [37].

3.2. Data Efficiency
Chosen metrics. In the context of evaluating TAL deep

learning models like TemporalMaxer, the most common
metric for evaluation is the mean average precision (mAP),
which is evaluated across different Intersection over Union
(tIoU) thresholds [7]. Mean average precision (mAP) com-
bines precision and recall in a single metric. Precision (the
ratio of correctly predicted positive instances to the total
predicted positives) gauges the model’s accuracy. However,
precision doesn’t consider the missed positives or false neg-
atives, so recall is introduced.

mAP calculates the mean precision at different recall lev-
els, ranging from 0 to 1, for each class of action c of a video.
It begins by sorting all the predicted class instances by their
confidence scores, then calculates precision and recall ev-
ery time a positive instance is encountered. The precision
values are then interpolated across the full range of recall
levels to create a precision-recall curve. The averages of
these interpolated precision values give the average preci-
sion (AP) for that class, and by computing the mean of the
AP values across all classes, the mAP is obtained. It effec-
tively integrates model performance across different classes
and varying confidence levels, presenting a balanced per-
spective of its effectiveness. A high mAP score signifies
a model that is accurate in its predictions (high precision)
and covers a large portion of actual positive instances (high
recall).

The tIoU (Intersection over Union) measures the overlap
between the predicted and actual duration of an action in a
video. It is calculated as the ratio of the intersection (the

duration where both the predicted and actual action exists)
to their union (the combined duration of the predicted and
actual action). For any tIoU threshold, µ, and a class, c, cor-
rect predictions are those with a tIoU equal to or exceeding
µ, and where the predicted class matches the actual class, c.

Evaluation. We will use Algorithm 1, previously intro-
duced in [15] for evaluation of the data efficiency of the
model. We divide the dataset D into a training set (Dtrain)
and a testing set (Dtest), according to THUMOS’14 speci-
fications [8]. A percentage p of Dtrain is randomly selected
to create a new set, Ds. This set Ds is then used to train
the model, after which its performance is assessed on Dtest.
The mAP is then measured at different tIoU thresholds dur-
ing this evaluation. This full sampling, training, and testing
process is performed five times, each time with varying ran-
dom splits. Subsequently, the average for each mAP thresh-
old is determined, and the standard deviation is recorded.
The whole procedure is repeated for different percentages
of p.

The sampling method, as depicted in the pseudocode
of Algorithm 1, randomly selects videos from the train-
ing set such that the size of Ds is rounded to the nearest
integer when (Dtrain) is multiplied by p over 100%. Fur-
thermore, the sampling method must ensure that every ac-
tion class is represented at least once in the resulting set
Ds. In a practical scenario, this was achieved by continu-
ally sampling from Dtrain until a split was found that rep-
resented all classes. The calculate-mAP method assesses
the model’s performance by calculating the mean average
precision (mAP) at various tIoU thresholds that the model
attained on the test set Dtest.

Algorithm 1 Data efficiency evaluation procedure

D = {(Vi,yi)}Ni=1
Dtrain,Dtest ← split(D)
for p in [10%, 20%, 40%, 60%, 80%, 100%] do

mAPs← empty list
for i = 1, ..., 5 do
Ds ← sample(Dtrain, p)
Train on Ds
mAP← calculate-mAP(Dtest)
Append mAP to mAPs

Report µmAPs and σmAPs

For extrapolation purposes to other datasets, we use the
equation: instancesPerClass = pM

C ; to report the aver-
age action instances per class for each percentage p of the
dataset. Here, M represents the total action instances, and
C is the number of distinct classes. This estimated count is
used as the precise number could be skewed by the specific
splits (Ds) used in the data efficiency experiment.

3.3. Compute Efficiency
3.3.1 Training efficiency

The training efficiency of the TemporalMaxer model was
analyzed by recording its training duration and the average

3

Figure 1. Overview of TemporalMaxer taken from [12]. In short, this method applies Max Pooling as a Temporal Context Modeling
(TCM) block between layers of a temporal feature pyramid. It aims to enhance significant features from similar video clip embeddings.
Initially, it employs a pre-trained 3D CNN to extract features from each clip. Then, it uses a backbone composed of 1D convolutional
layers and TemporalMaxer layers to encode these features into a multi-scale feature pyramid. Finally, a simple classification and regression
head decodes the feature pyramid, proposing action candidates for each input moment.

mAP scored on the test set. The training duration here refers
to the time spent within the training loop, excluding the time
consumed during the initialization and other unrelated op-
erations.

To capture the variability in training time and average
mAP, the experiment will be repeated five times, and in each
iteration of the experiment, five models will be trained, re-
sulting in 25 trained models overall. For each of the five
iterations of the experiment, a random seed will be chosen
(with a value ranging from 109 to 232 − 1), and the exact
values will be found in the public repository of this paper.

3.3.2 Inference performance

The computational efficiency during inference was assessed
using videos of varying lengths. Thus, following the prac-
tices stated in TemporalMaxer paper [12], the model’s per-
formance would be evaluated by calculating the total num-
ber of multiply-accumulate operations and the time taken
for inference per video. Moreover, analyzing the number
of MAC operations can provide further insight into how ef-
fectively the hardware is used. Following the same reason-
ing, memory usage is also tracked. For our calculations,
fvcore library [38] is used to count the MAC operations,
Python’s time.time() method is used for timing, and Py-
Torch’s max memory allocated method is used for measur-
ing memory use. The hardware use rate was determined by
comparing the true number of MAC operations to the max-

imum theoretical operations from hardware documentation
(one MAC operation equals two floating point operations:
add and multiply).

The TemporalMaxer model was evaluated using videos
of varying lengths. However, during inference, all
the videos are padded to the length indicated by the
max seq len parameter of the model [15], which has a de-
fault value of 2304 for the THUMOS’14 dataset [8]. This
indicates that the same computation is done regardless of
the videos’ original lengths. The model’s performance was
assessed using random features with shapes corresponding
to videos of different increasing lengths (by modifying the
parameter to take values from 200 to 3000, with an incre-
ment of 200. All inference experiments were conducted in-
dependently to avoid unintended correlations in the result-
ing data. Each experiment was repeated five times. Each
repetition used a different random seed, with the exact val-
ues available in the project’s source code.

4. Experiments

4.1. Setup

The evaluation was performed on the widely-employed
THUMOS’14 dataset [8] for TAL-related tasks. This
dataset contains 413 unedited and diverse videos spanning
20 action categories of human activities such as sports or
musical performances. The dataset is split into a validation
set of 213 videos and a test set of 200 videos. Following the

4

methodology presented in the TemporalMaxer paper [12],
the model is trained on the validation set and tested on the
test set. In this study, the TemporalMaxer model analyzed
for data and compute efficiency uses Inflated 3D (I3D) fea-
tures [25] that were pre-trained on the Kinetics dataset [39].
Training of the model was carried out exclusively using a
single GPU Nvidia Tesla V100S 32GB [40] from the Delft-
Blue supercomputer [14], which was chosen due to the free
access provided to Delft University of Technology students
and employees. The architecture, code, and hyperparame-
ters of the model remained mostly unaltered from the origi-
nal paper [12] (the exceptions are noted down below in sec-
tion 4.3).

Furthermore, the TemporalMaxer model is compared
against other SOTA TAL models [37], which include TriDet
[16,17], ActionFormer [10,15], and older TAL models such
as TadTR [18, 19] (the evaluation for this was effectuated
on a different environment than DelftBlue supercomputer).
Similar procedures to the ones described in this paper and
the same analyses have been conducted on these models
with minimal differences.

4.2. Data efficiency

0 20 40 60 80 100
0

20

40

60

80

100

p [%]

m
A

P
@

tI
oU

[%
]

Performance on THUMOS’14

ActionFormer
TadTR

TemporalMaxer
TriDet

0 30.1 60.1 90.2 120.3 150.4 #/class

Figure 2. Reported average mAP@tIoU for the tested models on
the THUMOS’14 dataset [8].

According to the methodology presented in Section 2.2,
algorithm 1 has been applied to assess the efficiency of the
TemporalMaxer model in a data-restricted setting. The re-
sults are reported on the THUMOS’14 dataset [8] and can
be visually observed in Figures 2 and 3.

The training of the models was executed on six different
percentages of the training set (the full training set consisted
of the validation subset of THUMOS’14 [8]), and it was
evaluated on the test set (which coincides with the test sub-
set of THUMOS’14 [8]). Figure 2 shows the results of the
TemporalMaxer model compared against the other previ-

0 20 40 60 80 100
0

20

40

60

80

100

p [%]

m
A

P
@

tI
oU

[%
]

Average mAP for tIoU = [0.3..0.7]

tIoU = 0.3
tIoU = 0.4
tIoU = 0.5
tIoU = 0.6
tIoU = 0.7

0 30.1 60.1 90.2 120.3 150.4 #/class

Figure 3. Average mAP for tIoU = [0.3..0.7] on THUMOS’14 [8].

ously mentioned TAL models (Section 4.1). Several obser-
vations can be made from these results. Firstly, the model’s
accuracy increases with the training dataset percentage, and
when reaching 100% it closely replicates the original pa-
per’s results [12] with an error of roughly±0.5%. Addition-
ally, it validates the claims of small performance improve-
ments over the ActionFormer [10] model that represents the
baseline of TemporalMaxer (for most of the percentages p)
[12]. Another interesting aspect is that at the lower percent-
ages p, TemporalMaxer performs significantly better than
both ActionFormer [10] and TriDet [16]. However, its per-
formance is significantly lower than that of the older TadTR
model [18], which has a completely different architecture
and thus a different learning curve (thus, at p = 100%,
TemporalMaxer outperforms it by almost 10%). An inter-
esting insight is that with only 40 to 50% of the data, the
TemporalMaxer manages to surpass the 50% threshold of
performance, which can still be considered ”top-tier perfor-
mance”. An increase in the percentage of the data leads to
a plateau of around 67.5%, which resembles the claimed
performance from the original paper [12].

Figure 3 represents the different learning curves that
arise from changing the tIoU parameter. At p = 100%, the
strictest value for tIoU (0.7) results in performance slightly
over 40%, while at the most permissive value of tIoU (0.3),
the performance crosses the 80% threshold. Most notably,
the results indicate a significant slowdown in the learning
rate once the model is trained with over 60% of the THU-
MOS’14 dataset [8].

4.3. Compute efficiency
4.3.1 Training performance

The outcome of the training experiment (methodology de-
tailed in Subsection 3.3.1) is presented in Tables 1, 2, 3.

5

Model Time [s]
TriDet [16] 646.17 ± 26.12

TemporalMaxer [12] 2955.64 ± 1659.98
ActionFormer [10] 866.22 ± 26.97

TadTR [18] 425.72 ± 3.469

Table 1. Training time of the tested models.

Model Avg. mAP [%] O. mAP [%]
TriDet [16] 68.07 ± 0.42 69.3

TemporalMaxer [12] 66.96 ± 0.37 67.7
ActionFormer [10] 66.5 ± 0.31 66.8

TadTR [18] 55.3 ± 0.63 56.7

Table 2. Training performance of the tested models. The second
column shows the average mAP obtained in the experiments while
the third column shows the mAP claimed in the original paper of
each model.

Seed Shortest time Longest time
4241261284 1676.51 6829.95
2196100728 1403.30 3391.90
1890014188 1275.81 3720.92
3718461004 1216.56 5310.94
3714286883 3979.41 6113.06

Table 3. Ranges of TemporalMaxer [12] training time obtained for
each seed.

As anticipated (from the stated performances of the four
analyzed models in their original papers, which can be seen
in Table 2), the TriDet model [16] achieved the highest mAP
at 68.07%, roughly a percent lower than the results doc-
umented in the original paper. This minor discrepancy is
likely attributable to hardware variations between the ini-
tial experiment and our study, which employed resources
from the DelftBlue cluster [14]. In terms of performance
ranking, TriDet [16] is followed by TemporalMaxer [12],
ActionFormer [10], and finally TadTR [18].

We implemented steps to diminish external disruptions
in model evaluations. To this end, each model was trained
and evaluated 25 times in five groups of five. Each group
represents a job submitted to the TU Delft’s HPC cluster,
DelftBlue [14]. These experiments were carried out at vary-
ing times of the day to adjust for fluctuations in cluster
load percentages. While these measures were successful for
most models, the TemporalMaxer’s [12] training duration
significantly exceeded our initial estimates, considering the
model’s similarities with the ActionFormer [10] model. The
average training time was approximately 50 minutes, rang-
ing from 1216.56 to 6829.95 seconds. Consequently, the
standard deviation was notably high at 1659 seconds com-
pared to the 3 or 26 seconds observed with other models. A
complete analysis of these results can be found in Tables 1
and 3.

The key difference in TemporalMaxer is the substitution
of the Transformer block in ActionFormer [10] with a Max-

Pooling block [12]. As mentioned in the original paper and
summarized previously, the MaxPooling operation, which
the TemporalMaxer uses in its Temporal Context Modeling
(TCM) block [12], is conceptually simpler in complexity
than ActionFormer’s Transformer architecture [10]. While
this may result in longer training times, it improves perfor-
mance, and our experiments prove this fact.

Further research is necessary to definitively ascertain
whether these results genuinely reflect the model’s inher-
ent properties or if potential external factors linked to the
testing environment (DelftBlue [14]) were not entirely iso-
lated. Nonetheless, the close replication of the mAP values
may suggest that the findings from this experiment are in-
deed accurate.

Based on the gathered results, it is clear that while TriDet
[16], ActionFormer [10], and TemporalMaxer [12] show
comparable accuracy results, the TemporalMaxer model
[12] is the least-suited model for an environment that re-
stricts the training time. It yields an accuracy approximately
1% lower for five times the training time. TadTR [18] per-
forms the best in this regard, being 6.5x faster than Tempo-
ralMaxer [12], but it comes with a significant drop in per-
formance. A balanced solution is provided by TriDet [16],
which is 1.5x slower than TadTR [18] but yields the best
performance out of all the models analyzed. Thus, Tempo-
ralMaxer [12] is not an optimal solution for training time
constraints since it doesn’t provide superior performance or
rapid training time.

Furthermore, the experiment was conducted exclusively
on the THUMOS’14 dataset [8]. As a result, all conclusions
mentioned above have limited generalizability but can assist
in forming assumptions and hypotheses on the models’ ef-
ficiency when tested on different datasets.

4.3.2 Inference performance

Figures 5 and 6 showcase the results of the GMACs and
inference time & memory experiments. Additionally, fig-
ures 4 and 7 contextualize the TemporalMaxer’s computa-
tional performance with two other models that have similar
accuracy-performance on THUMOS’14 [8]: TriDet [16,17]
and ActionFormer [10, 15].

As mentioned in Subsection 3.3.2, these experiments
employed random features from the original I3D features
[25] extracted from THUMOS’14 [8], with sizes ranging
from 200 to 3000 in 200 increments ([15] provides more
detailed reasoning for this particular range). These features
are benchmarked against the baseline features with a de-
fault size of 2304, corresponding to roughly 5 minutes of a
THUMOS’14 video [8, 12].

In the original TemporalMaxer paper, it is claimed that
the model surpasses the robust baseline, ActionFormer, in
performance with 2.8x fewer GMACs and a 3x faster infer-
ence speed [12], given a default feature size of 2304.

The first claim holds, as evidenced by Figure 7, where
the 2.8x difference is noticeable at size 2304. Unlike Tem-
poralMaxer and TriDet, ActionFormer exhibits a stair-like
increase pattern since ActionFormer pads input videos to

6

0 800 1600 2400
0

25

50

75

100

Feature size

In
fe

re
nc

e
tim

e
[m

s]

TemporalMaxer, TriDet, ActionFormer

ActionFormer
TriDet

TemporalMaxer

Figure 4. Comparative analysis of average inference times for the
ActionFormer [10], TriDet [16], and TemporalMaxer [12] models
across varying input feature sizes.

0 800 1600 2400
0

25

50

75

100

0

1.2

2.4

3.6

4.8

Feature size

M
ea

n
in

fe
re

nc
e

ti
m

e
[m

s]

Inference time and utilization

U
ti

li
za

ti
on

[%
]

Inference time
GPU Utilization

Figure 5. Inference time and utilization of TemporalMaxer [12].

sizes that are multiple of 576, as required by its archi-
tecture [10, 15]. In contrast, due to the different TCM
employed (TemporalMaxer with its namesake backbone
[12], compared to the ActionFormer’s transformer back-
bone [10]), TemporalMaxer exhibits an almost linear in-
crease of GMACs with the lowest slope out of all the three
analyzed models (TriDet exhibits a similar increase in shape
in GMACs, but with a steeper slope). Moreover, Temporal-
Maxer and TriDet present constant amounts of GMACs for
the smaller feature sizes. This happens likely due to the

0 800 1600 2400
0

15

30

45

0

100

200

300

Feature size

G
M

A
C

s

GMACs and memory usage

GMACs
Memory

Figure 6. GMACs and memory usage of TemporalMaxer [12].
The right y-axis corresponds to the memory usage in MBs.

0 800 1600 2400
0

20

40

60

Feature size

G
M

A
C

s

GMACs of TemporalMaxer, TriDet, ActionFormer

ActionFormer
TemporalMaxer

TriDet

Figure 7. Comparative analysis of GMACs across the Temporal-
Maxer [12], TriDet [16], and ActionFormer [10] models.

configurations inherited from the ActionFormer [10] archi-
tecture, particularly the max seq len parameter, which has a
lower-bound value of 576, representing the lower boundary
for the feature size.

Results to support the second claim (TemporalMaxer
having 3x faster inference speed than ActionFormer) are in-
conclusive. Figure 4 indicates a linear increase in the aver-
age inference time for all three models with the rise in fea-
ture size, with the difference between the lines remaining
relatively constant. Thus, even though TemporalMaxer [12]

7

is approximately 20 seconds faster than the slowest model,
ActionFormer [10], it does not demonstrate a 3x difference.
The main reason for this discrepancy is a difference in eval-
uation methodology. The original TemporalMaxer paper
computed the average inference time without considering
I3D feature extraction and post-processing steps, such as
non-maximum suppression (NMS) [12], which depend on
the feature size. By strictly analyzing the backbone time
(which represents the sole difference between the Action-
Former and TemporalMaxer models), we see that Tempo-
ralMaxer backbone time is 2.5 seconds, which is 8x faster
than ActionFormer’s Transformer TCM that has a backbone
time of 20.1 seconds [12]. This explains the constant differ-
ence of roughly 20 seconds in Figure 4.

The inference and MACs experiments were conducted
on the GPU available on the DelftBlue cluster [14], namely
the NVIDIA V100S 32GB GPU, which has a theoretical
performance of 8200 GMACs/s [40] used to compute the
utilization rate of the model. Figure 5 depicts the GPU’s
utilization rate and the time taken for inference relative to
increasing feature sizes. Both metrics exhibit a linear in-
crease, consistent with other evaluated metrics. The sharp
initial drop in utilization rate can be attributed to Temporal-
Maxer inheriting the lower bound for the feature size of 576
from ActionFormer. As a result, the GMACs value remains
constant for sizes below 576, leading to a steep drop in the
utilization rate. The utilization rate is calculated as the ra-
tio of GMACs to inference time divided by the maximum
theoretical GMACs per second the GPU offers.

The results obtained for the compute efficiency exper-
iments provide insights into finding the optimal hardware
specifications needed to run the TemporalMaxer model.
TemporalMaxer outperforms the other models significantly
in inference speed and GMACs, making it an ideal candi-
date for computationally constrained environments. To sub-
stantiate this, TemporalMaxer requires about 230 MBs of
VRAM for features of size 2304 (approximately equivalent
to 5 minutes of a THUMOS’14 [8] video), representing a
memory usage roughly 4.8x lower than the baseline model,
ActionFormer [10, 15].

5. Responsible research

5.1. Reproducibility
Ensuring reproducibility, transparency, and integrity is

essential in any type of research, including the Temporal
Action Localization (TAL) field. This study upholds these
principles by providing a detailed description of the Tempo-
ralMaxer model, its architecture, and the methodology em-
ployed in the previously-presented experiments. By sharing
this information, we enable other researchers to replicate,
validate and build upon our work and findings. To assure the
reproducibility and transparency of our research, all of our
code used to run the experiments and the subsequent results
can be found in a publicly available online repository at
https://github.com/LeTeutz/data-compute-temporalmaxer,
and are licensed with an MIT license. Additionally, docu-
mentation is provided for all the steps taken in this research.

Complete reproduction of the results obtained for the
data and compute efficiency experiments depends on the
type of seed used in each experiment. For fixed-seed ex-
periments, the exact values of the seed can be found in the
repository, while for the random-seed experiments, the re-
sults we present consist of both a mean and standard devi-
ation value. Reproducibility also depends on the hardware
used since the training and inference times may vary signif-
icantly based on the available computational resources.

5.2. Ethical considerations

Regarding ethical implications, TAL technology has
broad implications in various domains, including video
surveillance and commercial applications. TAL’s applica-
bility in surveillance scenarios introduces significant ethi-
cal concerns, such as balancing public safety and individual
privacy. Thus, if deployed without safeguards and regula-
tions, TAL models can potentially infringe upon individ-
ual privacy. Therefore, it is crucial to develop responsible
practices and guidelines that ensure TAL systems’ respect-
ful and ethical use [41].

Our research does not directly improve the current SOTA
TAL models or develop a new, improved model; it instead
analyses the data and computation efficiency of the Tem-
poralMaxer models and shows that it is possible to achieve
decent results even with reduced storage and computational
capacity. This, in turn, might spark more research on the
feasibility and efficiency of complex TAL models running
on Raspberry PIs and other small-sized embedded devices,
subsequently improving the current video surveillance ca-
pabilities even more. As such, while these advances are
promising, it is critical to acknowledge and mitigate the po-
tential privacy and ethical risks associated with increased
video surveillance capabilities, ensuring that the progres-
sion of technology aligns with the protection of individual
rights and societal values.

Furthermore, we underscore the importance of data pri-
vacy, favouring publicly accessible or anonymized data
sources to ensure individual privacy is upheld. The potential
for bias in machine learning models is another paramount
ethical consideration. We recommend using diverse, repre-
sentative training datasets and adversarial training methods
to minimize such biases. Furthermore, we acknowledge the
importance of ethical considerations and emphasize the use
of benchmark datasets, such as THUMOS14 [8], to evaluate
the performance of the TemporalMaxer model. By using es-
tablished datasets, we minimize the need for additional data
collection, which could potentially invade privacy or violate
ethical guidelines.

This research upholds the principles of reproducibility,
transparency, and integrity by sharing detailed information
about the model and experimental setup. We also recognize
the ethical implications of TAL and emphasize the impor-
tance of responsible research practices to mitigate poten-
tial privacy concerns and promote the ethical deployment
of TAL systems.

8

https://github.com/LeTeutz/data-compute-temporalmaxer

6. Conclusion

Temporal action localization (TAL) plays a crucial role
in video analysis, aiming to detect and determine the tempo-
ral boundaries of specific actions within a video sequence.
Despite the great strides that TAL models have made with
the adoption of deep learning techniques, these models typ-
ically depend on substantial datasets and computationally
intensive backbones, like the 1D Convolutional layer in
AFSD [42], Graph in G-TAD [26], and Transformers in Ac-
tionFormer [10] to encapsulate local and long-term tempo-
ral context.

This study analyses the TemporalMaxer model, which
introduces a novel backbone by combining a 1D Convo-
lutional layer with a MaxPooling block [12]. We repro-
duce this state-of-the-art model and evaluate its data and
compute efficiency using a well-defined methodology. We
compare it to other well-performing TAL models: Action-
Former [10, 15], TriDet [16, 17] and TadTR [18, 19].

To assess the data efficiency of TemporalMaxer, we train
the model on subsets of the available training data and mea-
sure its performance on the test set. Our results demonstrate
that TemporalMaxer achieves satisfactory performance with
only 40%-60% of the training data from the THUMOS’14
dataset [8], exhibiting a performance drop of just roughly
10% compared to the original performance. This indicates
TemporalMaxer’s high degree of generalization in data-
limited environments.

Regarding the compute efficiency, we conduct experi-
ments to measure the training time of TemporalMaxer on
the THUMOS’14 dataset [8]. The results indicate that Tem-
poralMaxer may not be suitable for situations in which
models have to be trained within strict time constraints, as
models like TriDet and TadTR outperformed it in such cir-
cumstances in terms of both speed and a smaller standard
deviation. For additional compute efficiency experiments
focused on inference, we examined the number of MACs,
video memory usage, and inference time of TemporalMaxer
as the input feature sizes grew. Our findings indicate that
the model scales linearly with video size, enabling the pre-
diction of inference times on different hardware configu-
rations. Furthermore, TemporalMaxer outperforms other
state-of-the-art (SOTA) models, such as TriDet and Action-
Former, in terms of MACs, exhibiting the lowest number of
MACs.

While our research provides valuable insights into Tem-
poralMaxer’s efficiency, further research is warranted. Fu-
ture studies could consider strategies like hyperparameter
tuning, transfer learning, or semi-supervised learning to op-
timize performance. Techniques such as temporal down-
sampling, pruning and quantization, or knowledge distil-
lation may also enhance computational efficiency. These
steps would offer deeper insights into TemporalMaxer’s
performance in real-world, resource-constrained environ-
ments.

In conclusion, our study sheds light on the performance
of TemporalMaxer in terms of data and compute efficiency.
The model exhibits promising data efficiency, performs well

with limited training data, and demonstrates linear scalabil-
ity with video size during inference. These findings offer
insights into the practical applicability of TemporalMaxer
in resource-constrained scenarios. However, additional re-
search is required to fine-tune its performance and explore
other efficiency metrics.

Acknowledgments

I want to express my gratitude to the responsible pro-
fessor, Dr. Jan van Gemert, and to my supervisors, Robert-
Jan Bruintjes, Attila Lengyel, and Ombretta Strafforello, for
their valuable insights, constructive feedback, and continu-
ous support. Furthermore, I wish to acknowledge the im-
mense contribution of my teammates. I am grateful for their
continuous feedback and encouragement, inspiring and mo-
tivating me immensely.

References
[1] Sarvesh Vishwakarma and Anupam Agrawal. A survey

on activity recognition and behavior understanding in video
surveillance. The Visual Computer, 29(10):983–1009, Octo-
ber 2013. 1

[2] Yong Jae Lee, Joydeep Ghosh, and Kristen Grauman. Dis-
covering important people and objects for egocentric video
summarization. In 2012 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1346–1353, June 2012.
1

[3] Yixin Gao, S Swaroop Vedula, Carol E Reiley, Narges Ah-
midi, Balakrishnan Varadarajan, Henry C Lin, Lingling Tao,
Luca Zappella, Benjamın Béjar, David D Yuh, et al. Jhu-isi
gesture and skill assessment working set (jigsaws): A surgi-
cal activity dataset for human motion modeling. In MICCAI
workshop: M2cai, volume 3, 2014. 1

[4] Xiao-Yu Zhang, Haichao Shi, Changsheng Li, Peng Li,
Zekun Li, and Peng Ren. Weakly-supervised action localiza-
tion via embedding-modeling iterative optimization. Pattern
Recognition, 113:107831, 2021. 1

[5] Hyunjun Eun, Jinyoung Moon, Jongyoul Park, Chanho Jung,
and Changick Kim. Temporal filtering networks for online
action detection. Pattern Recognition, 111:107695, 2021. 1

[6] Kun Xia, Le Wang, Sanping Zhou, Gang Hua, and Wei Tang.
Dual relation network for temporal action localization. Pat-
tern Recognition, 129:108725, 2022. 1

[7] Huifen Xia and Yongzhao Zhan. A survey on temporal action
localization. IEEE Access, 8:70477–70487, 2020. 1, 3

[8] Y.-G. Jiang, J. Liu, A. Roshan Zamir, G. Toderici, I. Laptev,
M. Shah, and R. Sukthankar. THUMOS challenge: Action
recognition with a large number of classes. http://crcv.ucf.
edu/THUMOS14/, 2014. 1, 3, 4, 5, 6, 8, 9

[9] Rizard Renanda Adhi Pramono, Yie-Tarng Chen, and Wen-
Hsien Fang. Hierarchical self-attention network for action
localization in videos. In 2019 IEEE/CVF International Con-
ference on Computer Vision (ICCV), pages 61–70, 2019. 1

9

http://crcv.ucf.edu/THUMOS14/
http://crcv.ucf.edu/THUMOS14/

[10] Chenlin Zhang, Jianxin Wu, and Yin Li. Actionformer: Lo-
calizing moments of actions with transformers, 2022. 1, 2,
5, 6, 7, 8, 9

[11] Yunfeng Yuan, Wenzhu Yang, Zifei Luo, and Ruru Gou.
Temporal context modeling network with local-global com-
plementary architecture for temporal proposal generation.
Electronics, 11(17), 2022. 1

[12] Tuan N Tang, Kwonyoung Kim, and Kwanghoon Sohn.
Temporalmaxer: Maximize temporal context with only max
pooling for temporal action localization. arXiv preprint
arXiv:2303.09055, 2023. 1, 2, 3, 4, 5, 6, 7, 8, 9

[13] Tuan N. Tang. Temporalmaxer. https : / / github. com/
TuanTNG/TemporalMaxer, 2023. 1

[14] Delft High Performance Computing Centre (DHPC). Delft-
Blue Supercomputer (Phase 1). https://www.tudelft.nl/dhpc/
ark:/44463/DelftBluePhase1, 2022. 1, 5, 6, 8

[15] Jan Warchocki. Benchmarking Data and Computational Ef-
ficiency of ActionFormer on Temporal Action Localization
Tasks. Bachelor’s thesis, Delft University of Technology,
2023. 1, 3, 4, 5, 6, 7, 8, 9

[16] Dingfeng Shi, Yujie Zhong, Qiong Cao, Lin Ma, Jia Li, and
Dacheng Tao. Tridet: Temporal action detection with relative
boundary modeling. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
18857–18866, 2023. 1, 2, 5, 6, 7, 9

[17] Alexandru Dămăcus, . Efficient Video Action Recognition.
Bachelor’s thesis, Delft University of Technology, 2023. 1,
5, 6, 9

[18] Xiaolong Liu, Qimeng Wang, Yao Hu, Xu Tang, Shiwei
Zhang, Song Bai, and Xiang Bai. End-to-end temporal ac-
tion detection with transformer. IEEE Transactions on Image
Processing (TIP), 2022. 1, 5, 6, 9

[19] Paul Misterka. Efficient Temporal Action Localization model
development practices. Bachelor’s thesis, Delft University
of Technology, 2023. 1, 5, 9

[20] Huifen Xia and Yongzhao Zhan. A survey on temporal action
localization. IEEE Access, 8:70477–70487, 2020. 2

[21] Tianwei Lin, Xiao Liu, Xin Li, Errui Ding, and Shilei Wen.
Bmn: Boundary-matching network for temporal action pro-
posal generation, 2019. 2

[22] Shangliang Xu, Xinxin Wang, Wenyu Lv, Qinyao Chang,
Cheng Cui, Kaipeng Deng, Guanzhong Wang, Qingqing
Dang, Shengyu Wei, Yuning Du, and Baohua Lai. Pp-yoloe:
An evolved version of yolo, 2022. 2

[23] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian
Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C.
Berg. pages 21–37. Springer International Publishing, 2016.
2

[24] Limin Wang, Yuanjun Xiong, Zhe Wang, Yu Qiao, Dahua
Lin, Xiaoou Tang, and Luc Van Gool. Temporal segment net-
works: Towards good practices for deep action recognition.
In European conference on computer vision, pages 20–36.
Springer, 2016. 2

[25] Joao Carreira and Andrew Zisserman. Quo vadis, action
recognition? a new model and the kinetics dataset. In pro-
ceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 6299–6308, 2017. 2, 5, 6

[26] Mengmeng Xu, Chen Zhao, David S. Rojas, Ali Thabet, and
Bernard Ghanem. G-tad: Sub-graph localization for tempo-
ral action detection, 2020. 2, 9

[27] Jialin Gao, Zhixiang Shi, Guanshuo Wang, Jiani Li, Yufeng
Yuan, Shiming Ge, and Xi Zhou. Accurate temporal ac-
tion proposal generation with relation-aware pyramid net-
work. Proceedings of the AAAI Conference on Artificial In-
telligence, 34(07):10810–10817, Apr. 2020. 2

[28] Ahsan Iqbal, Alexander Richard, and Juergen Gall. Enhanc-
ing temporal action localization with transfer learning from
action recognition. In 2019 IEEE/CVF International Confer-
ence on Computer Vision Workshop (ICCVW), pages 1533–
1540, 2019. 2

[29] Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xiang.
Semi-supervised temporal action detection with proposal-
free masking, 2022. 2

[30] Yue Tang, Yawen Wu, Peipei Zhou, and Jingtong Hu. En-
abling weakly-supervised temporal action localization from
on-device learning of the video stream, 2022. 2

[31] Sauradip Nag, Xiatian Zhu, and Tao Xiang. Few-shot tempo-
ral action localization with query adaptive transformer, 2021.
2

[32] Sauradip Nag, Xiatian Zhu, Yi-Zhe Song, and Tao Xi-
ang. Zero-shot temporal action detection via vision-language
prompting, 2022. 2

[33] Yizheng Ouyang, Tianjin Zhang, Weibo Gu, and Hongfa
Wang. Adaptive perception transformer for temporal action
localization, 2022. 2

[34] Phuc Nguyen, Ting Liu, Gautam Prasad, and Bohyung Han.
Weakly supervised action localization by sparse temporal
pooling network, 2018. 2

[35] Tailin Liang, John Glossner, Lei Wang, Shaobo Shi, and Xi-
aotong Zhang. Pruning and quantization for deep neural
network acceleration: A survey. Neurocomputing, 461:370–
403, 2021. 2

[36] Jianping Gou, Baosheng Yu, Stephen J. Maybank, and
Dacheng Tao. Knowledge distillation: A survey. Interna-
tional Journal of Computer Vision, 129(6):1789–1819, mar
2021. 2

[37] Papers with Code. Temporal action localization on THU-
MOS14. https://paperswithcode.com/sota/temporal-action-
localization-on-thumos14, n.d. 3, 5

[38] Facebook Research. Fvcore. Available at: https://github.
com/facebookresearch/fvcore, 2023. Accessed: 2023-06-25.
4

[39] Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang,
Chloe Hillier, Sudheendra Vijayanarasimhan, Fabio Viola,
Tim Green, Trevor Back, Paul Natsev, Mustafa Suleyman,
and Andrew Zisserman. The kinetics human action video
dataset, 2017. 5

10

https://github.com/TuanTNG/TemporalMaxer
https://github.com/TuanTNG/TemporalMaxer
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://www.tudelft.nl/dhpc/ark:/44463/DelftBluePhase1
https://paperswithcode.com/sota/temporal-action-localization-on-thumos14
https://paperswithcode.com/sota/temporal-action-localization-on-thumos14
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore

[40] NVIDIA Corporation. Nvidia v100s tensor core gpu. Avail-
able at: https://images.nvidia.com/content/technologies/
volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf,
2020. Accessed on 25/06/2023. 5, 8

[41] Shoshana Zuboff. The age of surveillance capitalism: The
fight for a human future at the new frontier of power: Barack
Obama’s books of 2019. Profile books, 2019. 8

[42] Chuming Lin, Chengming Xu, Donghao Luo, Yabiao Wang,
Ying Tai, Chengjie Wang, Jilin Li, Feiyue Huang, and Yan-
wei Fu. Learning salient boundary feature for anchor-free
temporal action localization, 2021. 9

11

https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf
https://images.nvidia.com/content/technologies/volta/pdf/volta-v100-datasheet-update-us-1165301-r5.pdf

	. Introduction
	. Related work
	. Temporal Action Localization
	. Data Efficiency
	. Compute Efficiency

	. Methodology
	. TemporalMaxer
	. Data Efficiency
	. Compute Efficiency
	Training efficiency
	Inference performance

	. Experiments
	. Setup
	. Data efficiency
	. Compute efficiency
	Training performance
	Inference performance

	. Responsible research
	. Reproducibility
	. Ethical considerations

	. Conclusion

