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Abstract—Accurate classification of handheld object weight
during different human motion is crucial for applications in
health monitoring, injury prevention and exoskeleton systems.
This study investigates the feasibility of using only a single
forearm mounted inertial measurement unit (IMU) combined
with AI algorithms to classify both movement types and the
weights of handheld objects. A series of experiments with one
subject were conducted to collect IMU data under various
combinations of movements and object weights. Multiple fea-
ture extraction techniques including time, frequency, and time-
frequency domains were applied, followed by classification using
machine learning methods (SVM, KNN) and deep learning
models (1D-CNN-LSTM, Wavelet-CNN). A genetic algorithm
was used for optimal feature selection in machine learning
pipelines, while open set classification capability was implemented
using the Convolutional Prototype Network (CPN). Result shows
that deep learning models, particularly 1D-CNN-LSTM method,
outperform machine learning methods, achieving up to 94%
classification accuracy. Moreover, the CPN model effectively
rejected unknown movement patterns in open set scenarios. The
proposed framework shows promising potential for wearable
systems capable of intelligent workload classification in real world
environments.

Index Terms—Weight Classification, IMU, Open set Recogni-
tion, Machine Learning, Deep Learning

I. INTRODUCTION

Strain injury is a common problem caused by repetitive
modern physical loads, which seriously affects the health and
work efficiency of the workforce[l]. With the rapid devel-
opment of medical and health management, human-machine
collaboration and intelligent assistance systems, the demand
for intelligent systems that can monitor human physical load
continues to grow. Accurately identifying the load level in
physical tasks is important for applications such as preventing
strain injuries and workload recorder.

Previous studies have used IMU sensor either alone or in
combination with other sensors such as surface electromyo-
graphy (SEMG) and force sensor to classify and predict
hand gestures|2], muscle force[3|], movement types and joint
angles[4]]. However, relatively little attention has been given
to the estimation of handheld object weight during movement
and the simultaneous classification of movement types by
using IMU sensors. C Crema et al. used Linear Discriminant
Analysis, a machine learning method, to classify different
activities and achieved an average classification accuracy of
85%|5]. In contrast, Peter Hausberger et al. applied Hidden
Markov Model, Support Vector Machines (SVM), and K-
Nearest Neighbours (KNN) classifiers to classify different
postures in weightlifting activities, achieving a segmentation

misdetection rate of 1.5%, a classification accuracy of 99.7%,
and an average response time of approximately 300 ms[6].
Martina Ravizza et al. use 6 IMUs and machine learning
methods to perform classfication of resistive exercises and
achieved an accuracy of 89.03%][7]. Most existing studies
focus on classifying different types of movement, without
jointly considering both the type of movement and the weight
of the handheld object.

To fit this challenge, this study explores the potential of
using only IMU sensor with Al techniques to perform clas-
sification of both object weight and movement type during
dynamic human activities. The IMU is a compact, low-cost
sensor capable of measuring linear acceleration and angular
velocity, making it highly suitable for integration into wear-
able systems. Also, most smartwatches are already equipped
with IMU sensors, allowing for cost effective implementation
on existing platforms|8]]. Compared to vision-based systems,
force sensors, or SEMG based solutions, IMUs offer greater
portability, lower deployment cost, and fewer environmental
constraints, which makes them attractive for real world appli-
cations.

Accurately classification of handhold object weight and
movement types based on acceleration signals has a significant
challenge due to the subtle and highly individual dependent
differences in arm dynamics under different loads. Accel-
eration signals, like many natural signals, are nonstationary
and nonlinear. The statistical properties of a nonstationary
signal such as mean and variance change over time, especially
during human motion, where arm acceleration patterns can
vary widely across different movement states. Even for the
same action, acceleration intensity may fluctuate at different
time points[9]]. The acceleration signals of human motion are
also nonlinear. Human motion involves complex and nonlinear
interactions that arise from multiple biomechanical factors,
including the coordinated movement of bones and muscles,
the dynamic effects of ground reaction forces, and the inter-
dependent behavior of multi joint systems. These intertwined
mechanisms collectively contribute to the complexity of the
acceleration signals, making them difficult to model and inter-
pret using traditional linear approaches. This makes the gen-
eration process of acceleration signal cannot be simply fitted
by linear model, especially in complex movements or multiple
task state.This nature needs advanced signal engineering and
robust modeling approaches to accurately extract and classify
useful patterns from raw IMU data. Traditional threshold-
based or rule-based approaches|10] often fail when applied



to complex human motion, particularly when subtle variations
in movement patterns are induced by different carried loads.
In contrast, Al based methods especially those using neural
networks can automatically learn discriminative features from
time series sensor, enabling robust and generalizable classifi-
cation of both object weight and movement type.

The hypothesis is that different weight loads and movement
types have distinguishable motion signatures, which can be
effectively captured by an IMU sensor and subsequently used
for classification. By using proper feature engineering and
algorithms, particularly machine learning and deep learning,
these complex motion patterns can be learned from data,
achieving robust classification over combination of weights
and movement types.
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Fig. 1: Overall Process of Classification

The overall process for classifying different movement types
and object weights of this study is illustrated in the figurdI}
After collecting raw acceleration data using an IMU sensor,
the signal performed preprocessing steps such as denoising
and normalization. Subsequently, the continuous signal is
segmented into fixed length windows, each serving as a sample
for further analysis. The segmented data obtained from raw ac-
celeration signals can be directly used as input for some neural
network based models or undergo feature extraction to use
as input for both traditional machine learning algorithms and
deep learning models. Feature engineering is a crucial part in
Al methods, especially for mathematics-based machine learn-
ing methods which can not automatically learn features from
raw data. Without informative and discriminative features,
the performance of these models can degrade significantly.
Although neural network based methods can automatically
extract features, using well-designed features can still enhance
model performance.

In this study, multiple types of features were used, in-
cluding time-domain, frequency-domain, and time-frequency
domain features based on wavelet transform. The choice
and combination of these features have influences on the
classification accuracy[/11]. In addition to manual selection of
different feature subsets, various automated feature selection
methods can effectively select the most informative features
and improve model performance. Principal component anal-
ysis (PCA) and genetic algorithm (GA) are widely used in
previous research[12]][4]], which are used for unsupervised
dimensionality reduction and feature subset optimization based
on classification performance, respectively. In summary, a
proper selection of features is therefore crucial for achieving
high classification accuracy.

In this study, a variety of Al algorithms were used, including
machine learning methods such as Support Vector Machine
(SVM) and K-Nearest Neighbors (KNN), as well as neural net-
work based methods like Convolution Neural Networks (CNN)
and Long Short Term Memory(LSTM). The genetic algorithm
was applied to the machine learning methods to select the
optimal subset of features for the SVM and KNN methods.
In terms of neural network based algorithms, three different
methods were used. First, a 1D-CNN-LSTM was used to
directly process the acceleration signals after preprocessing,
enabling the model to automatically learn temporal features
from the original time series data. Second, a CNN architecture
was also applied to input derived from wavelet-transformed
representations, where the transformed signals were visualised
as pseudo images. In addition, the model should be able to
reject unknown patterns in real-world applications. The system
may receive movement or weight categories that have not
appeared in the training set. If the model cannot recognize
these unknown inputs, it may force them to be misclassified
as known categories. Regrading systems with humans in-
volved, misclassification is more dangerous than rejection. So
this study used the Convolutional Prototype Network (CPN)
method to achieve open-set recognition. By using different
machine learning, deep learning, and open set recognition
techniques, this study provides an explorative framework of Al
application in classification of handheld Object Weight during
human motion.

To sum up, this study investigate whether multiple Al
models trained on IMU data can effectively classify the weight
of handheld objects across different movement types, thereby
enabling a workload recording system to prevent strain injury
or be applied to the control algorithm of exoskeleton.

This thesis is structured as follows: the next section provides
an explanation of feature engineering techniques and the Al
methods used. Section III describes the experimental setup
used to obtain the dataset and details the implementation of
the pipeline of classification and various AI methods. The
experimental results are presented and discussed in Sections
IV and V. Finally, conclusions are drawn in Section VI.

II. PRELIMINARIES

In this section, the working principles of several feature
extraction techniques and Al methods are explained.

A. Wavelet transform

Wavelet Transform is a powerful signal processing tech-
nique used to decompose a signal into components with
different frequency contents at various resolutions. Unlike
the Fourier Transform, which provides only frequency-domain
information and assumes signal stationarity, the Wavelet Trans-
form offers both time and frequency localization, making it
especially effective for analyzing non-stationary signals.

The Wavelet Transform operates by scaling and translating a
fundamental function known as the mother wavelet to generate
a family of wavelet functions. These wavelets are then used to



analyze different parts of the signal, capturing both short-term
high-frequency details and long-term low-frequency trends.

Wavelet transform can be divided into Continuous Wavelet
Transform (CWT) and Discrete Wavelet Transform (DWT).
CWT performs transformation on a signal in continuous time,
applying the wavelet function across the entire time domain
and analyzing the signal at all possible scales. It provides
rich time-frequency information. However, CWT involves high
computational complexity and contains a large amount of
redundant information. To improve computational efficiency
and reduce redundancy, DWT uses discrete scales and trans-
lation parameters. To improve computational efficiency and
reduce redundancy, the Discrete Wavelet Transform (DWT)
uses discrete scales and translation parameters. It typically
decomposes the signal using a filter bank consisting of high-
pass and low-pass filters. As shown in Figure [2] the input
signal X [n] is passed through both filters, and each output is
downsampled by a factor of 2. The high-pass filter extracts
the detail coefficients X p[n|, while the low-pass filter yields
the approximation coefficients X; 4[n]|. This process can be
recursively applied to the approximation coefficients to enable
multi-level time-frequency analysis of the signal.

Low Pass Down
Filter sampl2|ng by X1,p[n]
Input
X[n]
. Down
High Pass .
%ilter samplzlng by X1,4[n]

Signal = A1+ D1 — A2+ D2 +D1—A3+D3+D2+D1—..
Fig. 2: Principle of DWT

B. Genetic algorithm

Genetic Algorithm (GA) is an evolutionary optimization
method. As illustrated in the figure [3] the algorithm begins
with population initialization, where a set of candidate solu-
tions is randomly generated. Each individual in the population
is then evaluated using a fitness function during the evaluation
step. Based on their fitness, individuals are selected in the
selection phase to become parents for the next generation. The
selected individuals undergo crossover to produce offspring,
combining features from two parents. Subsequently, random
alterations are introduced during the mutation step to maintain
diversity in the population. After mutation, the new generation
is evaluated again, and this loop continues until a predefined
termination criterion is met, such as reaching a maximum
number of generations or achieving a satisfactory fitness level.
Finally, the algorithm outputs the best individuals as the
solution set.

C. KNN

The k-Nearest Neighbors (kNN) algorithm is a supervised
learning approach extensively utilized for both classification

Population
Initiazation

Termination
Criterion?
Solution
Set

Fig. 3: Schematic Diagram of Genetic Algorithm

and regression tasks. Its fundamental principle involves de-
termining the class of an unseen data instance by analyzing
its proximity to previously labeled data. Specifically, the
algorithm identifies the k closest samples in the feature space
and assigns the class most frequently represented among these
neighbors to the new instance.

D. SVM

Support Vector Machine (SVM) is widely used supervised
machine learning algorithms designed to find an optimal
hyperplane that separates data points belonging to different
classes. The ideal hyperplane maximizes the margin between
itself and the nearest data points from each class, thereby
increasing the likelihood of correctly classifying unseen data.
However, in many real-world scenarios, perfectly separating
the classes is not feasible due to overlapping data or noise.
In such cases, the model can be adjusted to tolerate a certain
degree of misclassification by introducing a soft margin, which
balances the trade-off between maximizing the margin and
minimizing classification errors.

E. CNN

Convolutional Neural Network (CNN) is a deep learning
model specifically designed to process data like images or time
series signals. Inspired by the visual processing mechanism of
the human brain, CNNs are highly effective at automatically
learning spatial hierarchies of features through the use of
convolutional operations. A Convolutional Neural Network
consists of multiple layers, typically including convolutional
layers, activation layers, and pooling layers. In the convolu-
tional layers, the input is convolved with learnable filters to
automatically extract local features. The activation layers apply
non-linear functions, such as ReLU, which enable the network
to learn complex, non-linear relationships. Pooling layers
downsample the feature maps, selecting the most significant
features while reducing computational complexity and the risk
of overfitting. By stacking these layers, the model gradually
extracts more abstract and high-level features. Finally, the



output is passed through fully connected layers and a softmax
function to produce probability values for classification.

F LSTM

The Long Short-Term Memory (LSTM) network is a spe-
cial type of recurrent neural network designed to effectively
capture long-range dependencies in sequential data. As shown
in the figure ] at each time step ¢, the LSTM unit receives
the previous hidden state H; 1, the previous cell state Cy_1,
and the current input x,. Within the cell, three gate mecha-
nisms—forget gate, input gate, and output gate—control the
information flow. The forget gate determines how much of the
previous cell state should be retained, the input gate regulates
how much new information is stored in the cell state, and
the output gate decides what information from the cell state
is passed to the next hidden state H;. These gates together
update the cell state to C; and produce the new hidden state
H;, enabling the model to maintain and update long-term
information over time.
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Fig. 4: Schematic Diagram of LSTM Model

G. CPN

The Convolutional Prototype Network (CPN) aims to con-
struct a CNN feature extractor and multiple prototypes of
known classes[13]. The implementation of the CPN can be
divided into two stages which are the training phase and the
testing phase, as illustrated in the figure 3]

In the training phase, labeled data from known classes is
used to train a CNN model, which learns a feature extractor to
convert input samples into deep representations. These learned
representations are used in the subsequent testing phase. At the
same time, the model learns a prototype for each class, which
serves as the center of that class in the feature space, based
on the distribution of samples belonging to that class.

In the testing phase, the trained CNN model is used to
extract deep representations from new input samples. These
representations are then matched against the set of learned
prototypes from the training phase. As illustrated in the figure
[6l the distances between the extracted feature and each pro-
totype are calculated. If the distance to one of the prototypes
is sufficiently small within a predefined threshold. then the
sample is classified into the corresponding known class, and its
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Fig. 5: Overview of CPN Architecture
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Fig. 6: Classifying of Known Class and Rejecting Unknown
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label is returned. If the distances to all prototypes exceed the
threshold, the sample is considered to belong to an unknown
class and is thus rejected.

III. METHODOLOGY
A. Experinment Design

To investigate the feasibility of using only the IMU sensor
and Al methods to identify the weight of handheld objects, a
series of controlled experiments with one subject were carried
out in which single participants performed repetitive motion
tasks under different load conditions. The experiments were
designed to simulate real upper limb movements while mini-
mizing Interfering variables such as fatigue and environmental
noise.

1) Experiment Goal: The primary goal of the experiment
is to collect high resolution, labelled time series data from a
forearm mounted IMU during two main types of movement
tasks while the participant holds objects of different masses.
The resulting dataset will be used to train supervised machine
learning models for multiple class weight classification and
open set classification based on IMU data.

2) Experiment Setup and Device: The experiment contains
two main movement types and one support movement type
as a distractor. The two main movement types are walking
and running in place. The walking task required participants
to alternately lift their knees and swing their arms naturally



at a walking like rhythm while remaining stationary [I4].
The running task involved higher frequency jogging in place,
which increased the dynamic activity of the upper limbs. All
movements were controlled by the participants themselves,
but the rhythm was kept within a consistent range. In each
exercise mode, the tester held objects of different masses,
which were Okg (empty hands), 0.5kg, lkg and 1.5kg. There
were eight combinations in total and each unique combination
of movement type and weight constitutes a different class label
in the classification task. Each combination of movement type
and weight perform two times. Arm swinging while standing
still is used as a support movement. Under this situation, the
tester stands stationary and continuously swings both arms
forward and backwards without lifting the legs.

Fig. 7: IMU Sensor(left) and its Adapter(right)

The high precision WT9011DCL-RF IMU sensor is
used to collect the movement data as shown in figure [7} The
IMU sensor was mounted on the mid-forearm of the dominant
arm, with its Y-axis oriented toward the palm and the Z-axis
aligned vertically upward, perpendicular to the ground and an
elastic strap was used to ensure that the device was stable and
fit during exercise as shown in figure [8| The sensor sampling
frequency was set to 50 Hz, providing sufficient temporal
resolution to capture rapid arm movements and subtle dynamic
variations during different tasks.

Fig. 8: Position and Orientation of IMU Sensor

3) Experiment Procedure and Data Management: The ex-
periment was conducted on multiple non-consecutive days to
introduce natural within-subject variability and reduce fatigue
effects. A specific exercise weight condition was randomly

selected and performed. There was a 20-minute break between
each section to prevent fatigue interference.

The recorded data were stored in plain text (.txt) format,
containing time-stamped entries for each sample. Each data
point includes measurements of three axis linear acceleration
(Ax, Ay, Az), resulting in a three dimensional time series
signal associated with each movement.

The experimental conditions, including movement types,
weight levels, duration, and repetition counts, along with their
associated labels, are shown in the table [T}

Label Movement Type Weight  Duration  Number of
D P (kg) (min) Experiment

Cl Walking in place 0 5 2

Cc2 Walking in place 0.5 5 2

C3 Walking in place 1 5 2

C4 Walking in place 1.5 5 2

C5 Running in place 0 5 2

C6 Running in place 0.5 5 2

C7 Running in place 1 5 2

C8 Running in place 1.5 5 2

Swinging while
© standing still None 3 !
Table 1: Experimental conditions for movement types,

weights, durations, and repetitions.

B. Signal preprocessing

The raw acceleration signals require preprocessing and an
example of raw acceleration data is shown in figure [9} Firstly,
a butterworth high pass filter with a cutoff frequency of
0.5Hz is applied to remove low frequency components, such
as gravitational acceleration and slow drifts, thereby keeping
high frequency information related to motion. Subsequently,
the acceleration data are standardized to have zero mean and
unit variance for each axis. The mean and standard deviation
are computed independently along the temporal dimension for
each axis. To ensure numerical stability, the standard deviation
is set to 1 when it is less than 1 x 107%. This normalization
is crucial for maintaining a consistent numerical range across
input channels, which facilitates faster convergence and im-
proved overall performance of the model.

Raw Acceleration X, Y, Z vs Time
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Fig. 9: Raw 3 axis acceleration data

Finally, the continuous IMU signals are segmented using a
fixed length sliding window approach. Each window consists
of 128 sampling points, with a 50% overlap between con-
secutive windows. The 3 axis acceleration data after signal
preprocessing and segmentation is shown in the figure
The rectangular boxes outlined with double-dashed lines in



different colors represent different sliding windows. Longer
windows help capture the complete temporal characteristics of
complex movements, while the overlapping strategy increases
the number of training samples and smooths transitions be-
tween windows and improve the model’s ability to perceive
continuous temporal changes.

Filtered Acceleration & Sliding Windows
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Fig. 10: Filtered, normalized and segmented acceleration data

After the above preprocessing steps, the resulting data
structure is a tensor of shape (IV, 128, 3), where N denotes the
number of samples obtained through sliding window segmen-
tation, 128 represents the temporal length of each window, and
3 corresponds to the three acceleration channels. Each sample
is also associated with a corresponding label indicating the
handheld weight and movement type.

C. Feature Engineering

To effectively represent the underlying motion characteris-
tics within each segmented IMU window, a comprehensive set
of features is extracted from multiple domains, including time
domain, frequency domain, and time-frequency domain. These
features are designed to capture hidden patterns in acceleration
signal. Specifically, four types of feature are computed as
following.

1) Time domain features: For each segmented window X €
R128%3_six time-domain features are computed independently
for each of the three axis. These included the mean, standard
deviation, root mean square (RMS), skewness, kurtosis, and
zero-crossing rate (ZCR). The mean and standard deviation
described the central tendency and dispersion of the signal,
respectively. The RMS served as an energy-related descriptor,
while skewness and kurtosis captured the asymmetry and
peakedness of the signal distribution. The ZCR quantified the
frequency of sign changes in the signal, thereby reflecting its
variability . As a result, a total of 18 time domain features
(6 x 3) are obtained for each window.

2) Frequency domain features: In the frequency domain,
the Fast Fourier Transform (FFT) is applied to each axis
to obtain the magnitude spectrum. The spectral energy was
then aggregated across three empirically defined frequency
bands: low-frequency (bins 0-9), mid-frequency (bins 10-29),
and high-frequency (bins 30 to the Nyquist frequency). These
features were designed to reflect the energy distribution across
different motion intensities. As a result, a total of 9 frequency
domain features are obtained for each window.

3) Time frequency domain features: In order to get time
frequency domain features, a 3 level DWT is applied to each
signal axis using the Daubechies-4 (db4) wavelet basis. From
each set of wavelet coefficients at every decomposition level,
three features were extracted. The first one is energy, which
represents the signal power within each frequency band. The
second one is entropy, which quantifies the complexity or
irregularity of the signal. The third one is the maximum
absolute amplitude, which reflects the peak signal strength in
each sub-band[17]. As a result, a total of 36 time frequency
domain features are obtained for each window.

4) Wavelet based pseudo images: To support CNN based
models, a wavelet based pseudo image is constructed for
each segmented window. A 3 level discrete wavelet transform
(DWT) was applied to each axis of the input signal using the
Daubechies-4 (db4) wavelet basis. This decomposition resulted
in four sets of wavelet coefficients per axis which are one
approximation and three detail components.
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Fig. 11: Pseudo image based on DWT

To get the pseudo image, each coefficient set is zero-padded
to match the original window length, ensuring a uniform
temporal dimension across all levels and axis. These padded
coefficients were then stacked along a new dimension, where
the vertical axis of the resulting image corresponds to the
decomposition scale and sensor axis, and the horizontal axis
corresponds to time. An example of pseudo image is shown
in figurdTT] and this image can be used as the input feature of
CNN, similar to the RGB image input in image classification
tasks. The vertical axis labeled ”Wavelet Scales (X — Y — Z)”
represents the concatenation of wavelet decomposition levels
across the three sensor axis. These coefficients are stacked
sequentially, with the four levels from the X-axis followed by
those from the Y-axis and then the Z-axis, resulting in a total
of 12 rows.

D. SVM and KNN method with GA

In order to improve classification performance and reduce
model complexity, the genetic algorithm is used for feature
selection before the model training. Each individual in the
population is represented as a binary vector of length 63,
where each gene corresponds to a specific feature. A total of 63
features were constructed during the feature engineering stage.
A value of 1 indicates that the corresponding feature is se-
lected, while a value of 0 denotes exclusion. The population is



initialized with 50 individuals and evolved over 20 generations.
During the evolutionary process, standard genetic operations
are applied, including tournament selection (with a tournament
size of 3), two-point crossover (with a crossover probability
of 0.6), and bit-flip mutation (with a mutation probability of
0.2 per individual and 0.1 to 0.05 per bit).

The fitness of each individual is defined as the mean
classification accuracy obtained from 5 fold cross validation
using only the selected subset of features. Depending on
the configuration, either a Support Vector Machine (SVM)
classifier or a K-Nearest Neighbors (KNN) classifier with
k = 5 is used to evaluate the fitness. In each evaluation,
the classifier is retrained exclusively on the subset of features
indicated by the individual’s binary representation.

After the completion of the evolutionary process, the in-
dividual with the highest fitness score has the most effective
feature subset and is selected for training the final classification
model.

E. ID-CNN-LSTM

To effectively model both local temporal dependencies and
long-range sequential patterns in multivariate time-series data,
a hybrid deep learning architecture combining one dimensional
convolutional neural networks (1D-CNN) and bidirectional
long shortterm memory (BiLSTM) layers is constructed.

The model is initialized with a 1D convolutional layer
consisting of 64 filters with a kernel size of 3 and ReLU
activation. This layer is followed by batch normalization and
max pooling with a pool size of 2. Subsequently, a second
convolutional layer with 128 filters and similar configurations
is applied, again followed by batch normalization and pooling.
Through these convolutional layers, hierarchical local patterns
were learned and the temporal resolution is reduced.

To capture long-range temporal dependencies, the output
of the convolutional block is passed into a bidirectional
LSTM layer with 64 units in each direction. This structure
allowed contextual information from both past and future time
steps to be effectively integrated. Then the resulting sequence
representation is processed by a fully connected dense layer
with 64 units and ReLU activation, and a dropout layer with a
rate of 0.3 is used to mitigate overfitting. Finally, a softmax-
activated output layer was employed, with the number of
neurons corresponding to the number of target classes.

The entire model is trained using the Adam optimizer with a
learning rate of 0.001, and the sparse categorical cross-entropy
loss function is used. Model performance is evaluated in terms
of classification accuracy.

FE. wavelet-CNN

To effectively utilize the time-frequency characteristics of
non stationary signals, a convolutional neural network archi-
tecture is developed based on pseudo images generated from
discrete wavelet transform. Unlike conventional image data,
the input to the model consisted of synthetic images con-
structed by stacking multi-level wavelet coefficients. Specif-
ically, each input sample was represented as a three dimen-
sional pseudo image of shape (L, T, C), where L = 4 denoted

the number of wavelet decomposition levels, 7' = 128 is the
length of each wavelet sub-band, and C' = 3 corresponded to
the number of signal channels.

The model architecture followed a sequential design. It
begins with a 2D convolutional layer containing 32 filters of
size (2,3) and ReLU activation, aimed at capturing low-level
spatiotemporal features across adjacent wavelet levels and time
frames. This is followed by batch normalization and a max-
pooling layer with a pooling size of (1,2) to reduce temporal
resolution while preserving wavelet-level structure.

A second convolutional layer with 64 filters and the same
kernel size is then applied to learn more abstract and complex
features. Similar to the first block, this layer is followed
by batch normalization and temporal downsampling via max
pooling. After feature extraction, the resulting tensor is flat-
tened and passed through a fully connected dense layer with
128 units and ReL.U activation. A dropout layer with a rate of
0.5 is incorporated to prevent overfitting. Finally, a softmax-
activated dense layer is used for classification, with the number
of output neurons equal to the number of target classes.

This method used same optimizer and evaluation metrics
that mentioned in 1D-CNN-LSTM method.

G. CPN with Open Set Recognition

To improve class discriminability and enable the rejection of
unknown samples during classification, the CPN based on a 1D
convolutional architecture with integrated prototype learning
is used. The input to the network is a multivariate time-series
of shape (128,3), where 128 is the temporal window length
and 3 corresponds to the number of sensor channels. Feature
extraction is performed using two 1D convolutional layers with
64 and 128 filters, each followed by batch normalization. A
max pooling layer reduces temporal resolution, and global
average pooling aggregates temporal features. The resulting
vector is projected into a 32-dimensional embedding space
via a dense layer and normalized to unit length.

To achieving feature learning, a custom Prototype Layer
maintains a learnable set of class prototypes, one for each
of the K target classes. During training, the model receives
both the input signal and the ground truth label to compute
a prototype alignment loss, encouraging features to cluster
around their corresponding class prototypes. This loss is scaled
by a factor & = 1.0 and added to the overall training objective
alongside the standard categorical cross-entropy loss. The final
classification logits are produced by a dense layer on the
normalized feature vector. During inference, class prediction
is based on the nearest prototype in the embedding space, and
a threshold can be used to reject unfamiliar samples based on
distance.

IV. RESULT
A. SVM with GA Feature Selection

The confusion matrix for single movement type and differ-
ent object weights (C1-C4) is shown in Figure [[2] Each cell
in the matrix represents the percentage of instances belonging
to a true class (rows) that were predicted as a certain class



(columns). For example, for the cell in the first row and first
column, 86% of the samples that actually belong to C1 are
correctly predicted to be C1.

The diagonal elements indicate the proportion of correctly
classified samples for each class, which also known as the
recall value. Specifically, the model correctly identified 86%
of Class 1 (C1) instances, 87% of Class 2 (C2), 86% of Class
3 (C3), and 85% of Class 4 (C4). The average classification
accuracy across the 4 classes is 86.3%.

SVM(with GA feature selection) for 4 class
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Fig. 12: Confusion Matrix of SVM+GA for 4 Class
The normalized confusion matrix for different movement
types and different object weights (C1-C8) is shown in Figure

[I3] The average classification accuracy across the 8 classes is
82.1%.

SVM(with GA Feature Selection) for 8 Class
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Fig. 13: Confusion Matrix of SVM+GA for 8 Class

B. KNN with GA Feature Selection

The confusion matrix for different movement types and
object weights (C1-C8) is shown in Figure [I4} The average
classification accuracy across the eight classes is 68.4%.

KNN(with GA Feature Selection) for 8 Class
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Fig. 14: Confusion Matrix of KNN+GA for 8 Class

C. ID-CNN-LSTM

The 1D-CNN-LSTM model was trained on data including
different movement types and object weights. The training
loss and accuracy curves are shown in FigurdI3] The model
performance stabilized after approximately 5 epochs. The

validation accuracy reached a peak value of approximately
94%.
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Fig. 15: Training Loss and Accuracy Curves of 1D-CNN-
LSTM Method for 8 Class

D. Wavelet-CNN

The Wavelet-CNN model was trained on data including
different movement types and object weights. The training loss
and accuracy curves are presented in Figure [T The validation
accuracy reached approximately 91%.
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Fig. 16: Training Loss and Accuracy Curves of Wavelet-CNN
Method for 8 Class



E. CPN Open set Classification

For the case of single movement type as known class, the
CPN model was trained using data from a single movement
type (walking) with different object weights (C1-C4) as
known classes. An unseen movement type (C9) was used as
an unknown class. The resulting confusion matrix is shown
in Figure The classification accuracy for known classes
ranges from 74% to 86%, while the unknown class (C9) was
identified with 71% accuracy.

Confusion Matrix of CPN using 4 Known Class
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Fig. 17: Confusion Matrix of CPN using 4 Known Class

In the second open-set setting, the CPN model was trained
using two movement types and object weights (C1-C8) as
known classes. An unseen movement type (C9) was used as
the unknown class. The confusion matrix is shown in Figure
[I8] The classification accuracy for known classes ranged from
54% to 72%, while the unknown class (C9) was identified
with an accuracy of 53%.
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Fig. 18: Confusion Matrix of CPN using 8 Known Class

V. DISCUSSION

This study extracted multiple features in different domains
from acceleration signal and used both machine learning
methods (including Support Vector Machine and K-Nearest
Neighbors) and deep learning methods (including 1D-CNN-
LSTM and Wavelet-CNN) to evaluate human activity classifi-
cation performance under different combinations of movement
types and handheld object weights. Additionally, the Convo-
lutional Prototype Network (CPN) is used to counter open set
classification tasks.

A. Performance of Machine Learning Methods

Under the scenarios involving only one movement type
and varying object weights, the combination of GA-based
feature selection and SVM achieved high classification accu-
racy,which showed strong discriminative power in relatively
simple classification tasks. However, when the task complexity
increased to include multiple movement types and associated
weights, the accuracy of SVM declined slightly but still
maintained acceptable classification performance, indicating
its good generalization capability.

In contrast, KNN using the same GA-selected features
showed relatively lower accuracy. This is likely due to KNN’s
sensitivity to local data distributions and vulnerability to inter
class overlap and noise, which make it more difficult to build
stable decision boundaries in high-dimensional feature spaces.

B. Advantages of Deep Learning Methods

The deep learning model based on 1D-CNN-LSTM per-
formed excellently in classifying different movement types and
corresponding object weights, achieving a validation accuracy
of approximately 94%. This performance is attributed to the
CNN component’s ability to extract local temporal features
and the LSTM component’s strength in modelling long-term
dependencies.

Compared to this, the Wavelet-CNN model also yielded sat-
isfactory performance (around 91% accuracy), though slightly
lower than 1D-CNN-LSTM. This may be due to the insuf-
ficient feature representation during the pseudo-image con-
struction process. Also, the Wavelet-CNN method relied more
heavily on spatial features within the image representation and
lacks strong modelling capacity for temporal sequences, as
provided by LSTM.

Overall, deep learning methods showed clear advantages in
complex feature integration and sequence modelling, and have
better performance than machine learning models in this study.

C. Challenges and Performance in Open-set Classification

For the open set classification, the CPN model was used
to reject unknown movement patterns. When trained on a
single movement type with varying weights, the model effec-
tively distinguished unseen movement types, which showing
a strong ability to separate known from unknown distribu-
tions. However, when the known class set was broadened to
include multiple movement types and weight combinations,
recognition performance declined markedly. In particular, the



model’s accuracy in identifying the unknown class (C9)
dropped to around 53%. This decline indicates that greater
intra- and inter-class similarity among the known categories
blurs the boundaries between prototypes, thereby weakening
the model’s capacity to detect unfamiliar patterns.

D. Research Contributions and Comparative Analysis

Compared with previous studies that typically focused
on movement type or object weight classification sepa-
rately[[5]][[7][6], this research integrated both aspects, construct-
ing a joint classification task that is more aligned with real-
world applications. When different weights under the same
movement type were used as known classes, models achieved
better performance. For tasks involving classification between
multiple movement types, accuracy was slightly lower. This is
because the two selected movements in this study are relatively
similar in motion pattern. In comparison, prior works often
used more distinct activities such as squats, deadlifts, rowing,
and bench press, which have clearer differences in acceleration
pattern. This observation is further supported by the confusion
matrix results as shown in figurdI3| and figurdI4] where some
samples originally belonging to classes C1-C4 were misclas-
sified as their corresponding weight matched counterparts in
C5-C8. Specifically, samples of C1 (0 kg, walking) were often
confused with C5 (0 kg, running), suggesting some similarity
between classes with the same weight but different movement
types.

In addition, previous studies mainly used time domain
features and machine learning methods, this study used ad-
vanced methods such as time frequency domain features, deep
learning models, and open set classification using the CPN
model, contributing both practical value and methodological
innovation. Particularly, the open set capability offers a viable
solution for intelligent wearable devices or fitness monitoring
systems to handle unknown behaviour patterns in real-world
applications.

E. Limitations and Further Work

Although this study had achieved certain results in classifi-
cation accuracy, comparison in different model and open set
classification, it still has the following limitations.

1) Limited number of movement types and resolution of
weight: Only two relatively similar movement types were
considered as main movement types in this study. In the real
world application, it limits the generalizability of the models
to more diverse and complex human activities. Future research
should include a wider range of activities with more distinct
motion characteristics to fully evaluate model performance.
The classification of object weight was discretized into a
limited number of class, which may not capture finer grained
variations in weight. In real world applications, object weights
may vary continuously rather than in fixed intervals. This
discretization could lead to reduced sensitivity and limit the
model’s ability to generalize across subtle weight differences.
Future studies may explore regression based methods to im-
prove resolution and realism.

2) Single subject limitation: This study was conducted
using data from only one participant. As a result, the model’s
performance may be overfitted to the movement patterns
associated with that individual. This limits the generalizability
of the results to a broader population. Future research should
include data from multiple subjects with diverse physical
conditions to ensure the robustness and applicability of the
proposed methods.

3) Unclear decision boundaries in open set classification:
When using CPN for open set classification, the model’s abil-
ity to distinguish unknown classes degraded as the number and
diversity of known classes increased. This indicates that under
conditions of high intra-class similarity, prototype boundaries
become less distinguishable. Future work may explore more
robust open set classification strategies.

In addition, future studies could explore increasing the
number of IMU sensors. For example, placing one on the
upper arm and another on the forearm to capture more
comprehensive movement information. This multi position
sensing strategy may enhance the model’s ability to improve
classification performance.

VI. CONCLUSION

This study provides an explorative Al-based solution for
classification of handheld object weight during human mo-
tion by using IMU data. By comparing traditional machine
learning approaches (SVM and KNN with GA-based feature
selection) and deep learning models (ID-CNN-LSTM and
Wavelet-CNN), the study highlights the clear advantages of
deep architectures in handling complex, non linear motion
patterns. Among all tested methods, the 1D-CNN-LSTM
model achieved the highest classification accuracy, while the
Convolutional Prototype Network (CPN) introduced open set
recognition capability.

To sum up, this study successfully met the proposed hypoth-
esis, showing effective classification of motion patterns across
different movement types and object weights by using only
IMU data and Al method, as well as reasonable performance
unknown class rejection function. These results provide a solid
base for designing an IMU based workload recording system
for real world applications to prevent strain injury or to be
integrated into wearable exoskeletons.
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