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Quadrotor Thrust Vectoring Control with Time
Optimal Trajectory Planning in Constant Wind Fields

J. P. R. Silva, G. C. H. E. de Croon and C. De Wagter

Abstract—This paper proposes a control strategy to follow time
optimal trajectories planned to visit a given set of waypoints in windy
conditions. The aerodynamic effects of quadrotors are investigated,
with emphasis on blade flapping, induced and parasitic drag. An
extended method to identify all the aerodynamic coefficients is
developed, and their influence on the performance is analyzed.
A computationally efficient three steps approach is suggested to
optimize the trajectory, by minimizing aerodynamic drag and jerk
while still guaranteeing near optimal results. The derived smooth
trajectory is compared with standard discrete point to point followed
by low-pass filtering trajectories, showing energetic improvements in
thrust and reductions in Euler angles aggressiveness. By exploiting
the non-linear aerodynamic effects and using a priori trajectory
information, a thrust vectoring controller is designed and compared
with a standard PID controller, showing an increase in performance
by reducing the tracking delay and extending the flight envelope.

Index Terms—Quadrotor, Control, Thrust Vectoring, Wind, Opti-
mal Trajectory, Drag Effects, Minimum Jerk, Waypoint Sequencing.

I. INTRODUCTION

QUADROTORS are a popular type of Multicopter Unmanned
Aerial Vehicles (UAVs) used for applications in which

fast and aggressive trajectories on a three dimensional space
are required [Hehn and D’Andrea, 2015]. Application scenarios
such as surveillance, package delivery or plant monitoring reflect
the competence that quadrotors possess to follow predefined
trajectories [Hoffmann et al., 2007]. However, due to a variety of
limitations such as maximum thrust, reduced energetic capacity
or bounded bank angles, their performance is not efficient and
worsens when the wind is present. Planning the trajectory and
designing the controller to include a priori information about the
wind in order to increase the quadrotors performance becomes a
natural solution [J.A. Guerrero, 2013].

The goal of this work is to plan the time optimal trajectory for
quadrotors in the presence of constant wind fields. The trajectory
is formulated such that m predefined desirable waypoints are
visited, without restrictions in the visiting sequence. The total
trajectory time has to be minimized while still maintaining feasi-
bility, and the trajectory needs to be promptly computed to serve
real-time applications. Wind influence on the quadrotors dynamics
forces the inclusion of aerodynamic effects in the trajectory
generation phase and to understand those effects a literature study
is required. To control the quadrotor, a state of the art controller
needs to be designed, which should minimize the aerodynamic
effects and follow the aggressive trajectory efficiently.
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Trajectory generation for quadrotors has been studied in several
approaches. Smooth point to point trajectories have been studied
with Non Linear Programming (NLP) [Lai et al., 2006] and using
the Pontryagin’s Minimum Principle (PMP) [Mueller et al., 2013,
Hehn and D’Andrea, 2015, Mueller et al., 2015]. For multiple
waypoints the usual approaches are Sequential Convex Program-
ming (SCP) [Augugliaro et al., 2012] or Quadratic Programming
(QP) [Mellinger, 2012, Richter et al., 2013], extended to Multi
Integers Linear Programming (MILP) by Mellinger et al. [2012].
Those approaches, however, aim at minimizing accelerations,
jerks or snaps, disregarding wind and assuming fixed traveling
times. J.A. Guerrero [2013] is among the few who include
wind in the trajectory formulation, but plans only point to point
trajectories. Bipin et al. [2014] achieve the goal of minimizing
the time for multiple waypoints, but fail to include the wind.

Regarding quadrotor control, the typical controllers available
are based on standard PID theory [Hoffmann et al., 2007,
Waslander and Wang, 2009, Martin and Salaun, 2010]. In these
approaches the wind is disregarded and treated as a disturbance
to be further rejected by the controller. More complex approaches
that include aerodynamic effects, such as Feedback Linearization
[Sydney et al., 2013] or Integral-Backstepping [Araar and Aouf,
2014] exist, but are only implemented in simulations. In a further
step, Mellinger and Kumar [2011] consider the trajectory gener-
ation in the controller design, using a thrust vectoring approach,
but neglect wind. The same approach is used by Omari et al.
[2013] but without the trajectory information. Extending both the
work of Mellinger and Kumar [2011] and Omari et al. [2013] to
incorporate both the wind and the trajectory information seems
to be an interesting approach that fulfills the controller requisites.

A general method to achieve the proposed goal is thus ab-
sent in literature. Therefore, a new approach is proposed, that
consists in three sequentially linked aspects. The initial aspect
of the approach is to address an aerodynamic study in order
to understand the three most important aerodynamic effects that
influence the quadrotors dynamics: blade flapping drag, induced
drag and parasitic drag. To complement the study, a contribution
is made with an extended method to identify the drag terms and
an experiment is performed to validate their influence on the
controller performance. The next aspect of the approach is the
definition and construction of the time optimal trajectory. The
trajectory is defined to be as fast as possible while maintaining
the velocity with respect to (w.r.t.) the wind below a certain limit
such that the wind effects are diminished the most. A method to
plan the trajectory is proposed, that is divided in three steps, so
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that the process is structurally fast, therefore saving computational
time while still guaranteeing near optimal results. The first step
is to determine the time optimal sequence of waypoints using a
heuristic search algorithm. The second step is to determine the
optimal trajectory throughout the waypoint sequence by solving a
QP optimization problem that minimizes the jerk. The third step
is to ensure that the velocity respects the mentioned limit. The
last aspect of the approach is to design a controller optimized to
explore the a priori information obtained about the wind and the
trajectory. A cascade thrust vectoring controller is proposed and
compared with a typical PID controller, showing an increase in
performance, in particular by reducing tracking delay.

This work is structured as follows. Section II describes the wind
influence and the associated aerodynamic effects in the quadrotor.
The time optimal trajectory is defined and constructed in Section
III. Section IV presents the quadrotor mathematical model and the
proposed cascade controller, while Section V shows the results.
This work ends with the conclusion in Section VI and with
Section VII where future work is suggested.

II. WIND AND AERODYNAMIC EFFECTS

This Section aims at understanding the wind and associated
aerodynamic effects in the quadrotor. It starts with a literature
review in Section II-A and the following Sections describe each
effect with importance for this work individually (see Sections
II-B-II-E). In Section II-F the other drag effects are shown.

In order to plan the optimal trajectory in the presence of wind
fields it is firstly necessary to understand how the wind affects
the performance of the quadrotor, during its maneuvers, and also
how can the controller include the wind influence, instead of
only considering it as a disturbance to be further rejected. In the
absence of wind, the velocity of the quadrotor w.r.t. the ground,
ṙ, is equal to the velocity of the quadrotor w.r.t. the airflow, ṙ∞.
When this is not the case, and a stream of wind exists, then

ṙ = ṙ∞ + ṙw (II.1)

where ṙw is the wind speed w.r.t the ground. Equation (II.1) can
also be written with velocity vectors as v = v∞ + vw. As it will
be seen later, all the aerodynamic effects are established w.r.t. the
airstream, the apparent wind. For this fact, the wind effect is only
to alter that airstream, and studying the airstream influence on the
aerodynamics of the quadrotor alone is sufficient to withdraw the
necessary conclusions when wind is present.

A. Literature Review

Detailed studies on aerodynamic effects are already available
in the literature for the case of almost all aircraft types. Even for
helicopters, which can be seen as a distant parent of quadrotors,
precise studies have been performed, such as Prouty [2002] and
Leishman [2006]. In the latest, the aerodynamic properties of
rotating blades are studied in detailed. However, for the case of
small and more recent aircraft, such as quadrotors, the literature is
more scarce. Hoffmann et al. [2007] are one of the first to consider
aerodynamic effects into the model of the quadrotor. There, drag
effects such as the total thrust variation, blade flapping and airflow

disruption are considered. Later on, Huang et al. [2009] also
consider the first two aspects and Waslander and Wang [2009]
modeled the total drag as a lumped factor linear w.r.t. to the
airspeed. Bangura and Mahony [2012] are among the first who
pursue a detailed explanation of all aerodynamic effects that affect
the quadrotors dynamics. They consider in detail several aspects,
such as blade flapping, induced drag, translational drag, profile
drag, parasitic drag and also others such as ground effect and
vertical descent. Mahony et al. [2012] refers to induced drag
and blade flapping and also treats them as a lumped parameter
linear w.r.t. the horizontal air stream. Later they also refer to
additional aerodynamic effects that are important for high-speed
and highly dynamic maneuvers. In the Allibert et al. [2014]
approach, translational drag and blade flapping are considered
bilinearly influenced by the thrust and the horizontal velocity
w.r.t. the wind. They neglect parasitic drag since they operate near
hovering. Moreover, they also consider the vertical thrust force
variation due to the induced velocity. More recently, Ryll et al.
[2015] considers the aerodynamic effects and perform experiment
to obtain the model corresponding coefficients. There, it is shown
that the aerodynamic effects can be neglected. They also consider
the induced drag and blade flapping as first order dynamic effects
but still neglect them. However, they test the model with velocities
smaller than 1 [m/s], which is clearly not adequate for this work.

To summarize, there are several aerodynamic effects that
influence the quadrotor dynamics which have been reported,
however briefly, in literature. The following Sections II-B-II-E
analyze each effect separately, in a similar fashion as Bangura
and Mahony [2012]. Emphasis is given to the aerodynamic drag
effects which are considered of significant importance for this
work. The formulas have some simplifications, since the interest
of this work is to obtain a relatively simple model of the wind/drag
effects, in order to use them in the trajectory generation method
proposed in Section III and to include them in the controller to
be designed in Section IV. Nevertheless, the introduced literature
is suggested for further understanding of the drag effects.

B. Blade Flapping

Blade Flapping is a phenomena that occurs due to the flexibility
of the rotor blades. When in translational movement, the tip
advancing and retrieving blades, for each rotor, will not have the
same velocity w.r.t. the airstream. This causes the advancing blade
to flex upwards, while the retrieving blade flexes downwards. In
the literature, it is mentioned that this behavior creates roll and
pitch moments at the blade root, and shifts the thrust vector T
by a blade flapping angle β (see Figure II.1). The angle β can
be decomposed for each rotor in two components, parallel and
perpendicular to the airstream, as

β
‖
i = − µia1

1− 1
2µ

2
i

, β⊥i = − µia2

1 + 1
2µ

2
i

, (II.2)

where µi =
vP∞
ω̄ir

is the advancing ratio, i.e., the ration between
the airspeed projected in the rotor plane (similar to all rotors)
and the rotor linear velocity. The constants a1 and a2 depend on
blade properties and one can consider that 1

2µ
2
i � 1 due to the

high rotation speed of the rotors [Bangura and Mahony, 2012].
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Figure II.1: Blade Flapping angle illustration.

Being so, most authors who describe blade flapping as a drag
force due to aerodynamic effects [Mahony et al., 2012, Allibert
et al., 2014] represent it as a function of thrust magnitude, rotor
linear velocity and airspeed as

Dflap,i = Ti
Aflap
ω̄ir

vP∞ (II.3)

with

Aflap =

 a1 a2 0
−a2 a1 0

0 0 0


a constant matrix. Recently, Omari et al. [2013] uses the prop-
erties of blade theory to better estimate some states of the
state vector, using accelerometers and including blade flapping
in the quadrotor model. There, blade flapping is not written as
in Equation II.3, although representing the same. This has to do
with the fact that thrust can be written as a function of the rotor
angular speed (see Section IV-A2) as

Ti = kT ω̄
2
i , (II.4)

with kT the thrust coefficient, leading thus to

Dflap,i = ω̄iA′flapvP∞ (II.5)

with

A′flap =


a1kT
r

a2kT
r 0

−a2kTr
a1kT
r 0

0 0 0

 =

 a′1 a′2 0
−a′2 a′1 0

0 0 0


a constant matrix similar in structure to Aflap.

C. Induced Drag

As discussed before, the blades are flexible, meaning that they
can only bend to a certain angle β when a translational movement
w.r.t. the airstream exists. Nevertheless, the blades still have stiff
properties, meaning that when they produce produce lift, they
produce an associated and proportional drag called induced drag.
In order to model it, a linear drag coefficient can be introduced,
leading to

Dind,i = TiAindvP∞, (II.6)

with

Aind =

kind 0 0
0 kind 0
0 0 0


a constant matrix with kind the induced drag coefficient.

D. Lumped Drag Coefficient

The formulas obtained for blade flapping and induced drag are
only w.r.t. one rotor. In the final model the four rotors should
be added. For the induced drag it corresponds to linearly add the
thrust of each motor, as

∑4
i=1 Ti = T . For the blade flapping case

it is different. In Martin and Salaun [2010], the sum of all rotation
speeds is found to be approximately constant during flights of near
hovering thrust, leading to the blade flapping drag as

Dflap = ThA′′flapvP∞ (II.7)

with ThA′′flap ≈
∑4
i=1 ω̄iA

′
flap a constant matrix and Th the

hovering thrust. When comparing with the drag caused by blade
flapping and induced drag, it can be seen that the expressions are
similar. Thus, it is possible to lump these two drag forces into
only one, and obtain a drag force due to the mixed flexibility and
stiffness of the blade propellers as

Dbla = TAblavP∞ (II.8)

with

Abla =

abla 0 0
0 abla 0
0 0 0

 ≈


∑
ω̄ia

′
1

T + kind
∑
ω̄ia

′
2

T 0

−
∑
ω̄ia

′
2

T

∑
ω̄ia

′
1

T

′
+ kind 0

0 0 0


(II.9)

the lumped drag matrix and abla the lumped drag coefficient.

E. Parasitic Drag

Parasitic Drag is caused by the non-lifting surfaces of the
quadrotor in a translational movement. It must be considered
when high velocities, usually greater that 10 [m/s] [Bangura and
Mahony, 2012], are in question, since it is proportional to the
square of the translational velocity. It can be expressed as

Dpar = kpar‖v∞‖v∞, (II.10)

with kpar = 1
2ρSCDpar

depending on the non-lifting surfaces
area, the air density and the non-lifting drag coefficient, with
CDpar

negligible w.r.t. the blades drag coefficient CD [Bangura
and Mahony, 2012], all assumed constant.

In environments where the wind speed and the ground speed are
opposite, relatively big airspeeds will appear. Thus, the parasitic
drag is of utmost importance in the trajectory generation phase,
providing information on which direction to follow in order to
minimize the global drag forces to optimize the trajectory.

F. Other Drag Forces

The blade flapping, induced and parasitic drag represent most
of the important aerodynamic effects useful for this work. Nev-
ertheless, other aspects are referred in the literature, which will
be briefly described here for the sake of completeness:
• Total Thrust Variation - is the phenomena that occurs when

a quadrotor undergoes a translational motion or changes the
angle of attack, both w.r.t. the airflow. When this occurs,
there is an induced velocity given by

Vind =
V 2
h√

(V∞ cos γ)2 + (V∞ sin γ + Vind)2
(II.11)
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where Vh is the induced velocity at hover thrust and γ is the
angle of attack. The induced velocity will alter the necessary
thrust to perform the maneuver, and the ratio between the
ideal thrust and the thrust at hovering point can be then
obtained as function of γ and V∞ with

T

Th
=

Vh
Vind + V∞ sin γ

(II.12)

where Th is the nominal thrust when hovering;
• Translational Drag - also known as momentum drag, it

appears when the induced velocity passes the rotors, creating
a drag proportional to the lift. For small velocities, it can be
discarded when compared with induced drag or the blade
flapping effect. The same happens for high velocities, as
translational drag starts decreasing after a velocity threshold;

• Profile Drag - is the result of the transverse velocity of the
rotor blades moving through the air. It is zero at hovering
and usually does not depend on the angle of attack. It can
be discarded when compared with the induced drag or the
blade flapping effect;

• Ground Effect - it appears for flights near the ground, and
results in a reduced necessary power to hover when closer to
it. This effect will not appear in this work, as the quadrotor
will not fly close to the ground;

• Vertical Descent - it appears when a vertical descent maneu-
ver is in place, causing opposite directions in the induced
velocity and airspeed. This can lead to vortices or turbulence
generation.

III. TIME OPTIMAL TRAJECTORY

The problem addressed in this Section is to determine the time
optimal trajectory that covers multiple waypoints and considers
both the quadrotor dynamics and wind information. The problem
is defined by m waypoints distributed around the quadrotor, and
there are no restrictions either in time or space. Nevertheless, the
objective is to minimize the trajectory time and thus some inherent
restrictions have to be weighed, which are mainly imposed by the
drag forces and the quadrotor dynamics.

In order to solve the time optimal problem, two approaches
can be considered. One approach is to consider the problem as a
global one, i.e., to put all objectives and constraints into a global
optimization problem. However, this optimization problem would
be too complex to process within an acceptable time for on-
line applications. Therefore, a second approach that separates the
problem into three smaller problems, or steps, will be considered.

The first smaller problem of the proposed approach is to
estimate the optimal sequence of waypoints (see Figure III.2)
and it will be addressed in Section III-A. In order to do so,
geometric trajectory definitions can be used, including constraints
related with wind, but not including the vehicles dynamics. The
second smaller problem, solved in Section III-B, is to determine
the optimal trajectory between each of the sequential waypoints,
and can be solved using a Quadratic Programming (QP) approach.
The third smaller problem of the time optimal trajectory planning
is to adapt the QP problem solution so that the airspeed magnitude
requirement is fulfilled, and it is covered in Section III-C.

A. Optimal Sequencing

When determining the optimal trajectory sequence a purely
geometric approach with constraints will be used that includes
wind information. Although this approach can be considered
simple, it can critically reduce the computational time for this
step in the trajectory generation process, and lend time to the
second, and more complex, one. It is necessary to note that if
this step is not considered, instead of having just one second
smaller problem, there would be m!, increasing factorially the
processing time. This would push the selecting process towards
the final third step in the proposed trajectory generation method.

The possible trajectories are thus restrained to lines segments,
circles and splines [Barrientos et al., 2009] or to B-splines
[Bouktir et al., 2008, Lorenz and Adolf, 2010]. Another geomet-
rical approach is to consider vector fields such as in Zhou and
Schwager [2014]. Since at this point the goal lies in selecting the
optimal sequence, the complexity of the trajectory itself between
each point does not need to be significant.

For the remaining of this Section III-A, the focus will be on
line segments, that are evidently less complex. In Section III-A1
it will be seen that in constant wind fields a straight line is the
correct approach and in Section III-A2 the solution to solve the
optimal sequencing problem will be obtained.

1) The Zermelo’s Problem: Line segments are a direct geomet-
ric solution but they can also be considered as a simplification of
the Zermelo’s problem [Bryson and Ho, 1975] since the wind
is constant. In the original Zermelo’s problem a sea current
(analogue to wind velocity) pushes the ship directional velocity.
The current is dependent on the ship position and the trajectory
is modeled in state-space formulation as

f(x, y, u, v, χ, t) =

(
ẋ(t)
ẏ(t)

)
=

(
V cos(χ) + u(x, y)
V sin(χ) + v(x, y)

)
(III.1)

where V is the constant velocity of the ship. The states x and y are
the position that defines part of the trajectory, while χ defines the
course angle. The inputs are the current velocities u and v in the
x and y direction respectively. This theory was firstly introduced
in the quadrotors field by J.A. Guerrero [2013] but not in constant
wind fields.

Using the Pontryagin’s Minimum Principle [Pontryagin, 1987]
to optimize the trajectory time T the cost function becomes

minT = min

∫ T

0

1 dt, (III.2)

the Hamiltonian is expanded as

H = 1+λ>f = 1+λx(V cos(χ)+u)+λy(V sin(χ)+v) (III.3)

and co-state Euler-Lagrange equations are

λ̇x = −∂H
∂x

= −λx
∂u

∂x
− λy

∂v

∂x
, (III.4)

λ̇y = −∂H
∂y

= −λx
∂u

∂y
− λy

∂v

∂y
, (III.5)

0 =
∂H

∂χ
= V (−λx sin(χ) + λy cos(χ))⇒ tan(χ) =

λy
λx
.

(III.6)
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Figure III.1: Illustration of the different velocities and angles.

As it can be seen in Equation (III.1), in the original Zermelo’s
problem the sea current velocity is dependent on the position and
it influences the solution of the problem. In the problem regarded
in this work, the wind velocity is constant and independent of the
position, meaning that all derivatives w.r.t. the position are zero.
This will lead to

λ̇x = 0⇒ λx = a

λ̇y = 0⇒ λy = b

}
⇒ χ = c (III.7)

for some constants a, b and c. Thus, the desirable course angle
is constant and the optimal trajectory is a line segment between
two consecutive points. The problem can be expanded to include
the z direction and still straight lines will be the solution.

Minimizing the time to get the time optimal solution implies
maximizing the velocity, and thus the velocity can be determined
using the restriction on the limit velocity w.r.t. the airstream, so
that parasitic drag effects can be diminished, as in

V 2 = ‖v∞‖2 = ‖v− vw‖2 ≤ V 2
lim (III.8)

in which the quadratic form is used to allow for negative ve-
locities. Converting the inequality to equality to maximize the
velocity, the solution of Equation (III.8) is

V = Vwg ±
√

(Vwg)2 + V 2
lim − V 2

w (III.9)

where

g(χ1, χ2, α1, α2) = cos(χ1) cos(χ2) cos(α1) cos(α2)+

+ sin(χ1) cos(χ2) sin(α1) cos(α2) + sin(χ2) sin(α2)

and the plus sign is always used since V was defined as a positive
constant. The angles can be seen in Figure III.1.

With m waypoints, there are m! possible waypoint sequences.
For each possible sequence, the χ1i and χ2i angles are deter-
mined, the velocity Vi is computed and the time Ti is estimated.
It is evident that depending on the geometry of the waypoints
and on the wind velocity, different trajectory times will result. In
the next Section III-A2 the optimal sequence which optimizes the
time T =

∑m
i=1 Ti will be determined using search algorithms.

2) The Traveling Salesman Problem: The Traveling Salesman
Problem (TSP) is a well known NP -hard problem in the Artificial
Intelligence field [Laporte, 1991]. It aims at determining the
optimal sequence between m possible cities that a salesman
has to cover, with no restrictions on each city to visit first.
Determining the optimal sequence of waypoints the quadrotor
has to pass is analogous to choosing in which order the salesman

travels between cities. In the original problem, the traveling times
between each city are independent on the direction. In this work,
however, when wind is present this condition does not prevails
and for that reason an asymmetrical TSP is defined, which can
be represented in a directed graph as in Figure III.2.

1

2

3

m. . .

T12
T1m

Tm1

Tm2

T2m

T3m

Tm3

T31T13

T21

T32

T23

Figure III.2: Directed Graph illustrating a generic distribution of
m waypoints and traveling times.

In order to solve the TSP several approaches can be considered.
The most intuitive is to evaluate all possible sequences and
checking which one is the best, a brute force approach. Another
approach is to write the problem in an Integer Linear Program-
ming (ILP) formulation and numerically solve it [Papadimitriou
and Steiglitz, 1998]. One last approach is to use search algorithms
to start from the origin and incrementally extend the sequence
until the least costing solution is found [Rego et al., 2011].

The first approach works well in both computational time and
memory for small m. However, when m increases the dimension
increases by O(m!) and another approach must be chosen. The
ILP formulation has a comparable computational complexity has
the search algorithms, but it is slower. Therefore, for large m, the
problem was solved using search algorithms.

Search Algorithms for the TSP
The search algorithms used were of two types. The first type,

the uninformed (or blind) search, is general and allows to solve
every search problem type. The second type, the informed (or
heuristic) search, is dependent on the specific problem as it uses
extra information that varies from problem to problem. Both
methods start at the origin node (or a set of origin nodes). Every
created, and still unexplored, node is part of the open-list of nodes.
At each iteration the better node is chosen from the open-list,
using a selection criteria, and it is expanded. The different search
algorithms usually differ in the selection criteria. When a goal
node is reached, the search stops.

A strategy to solve uninformed search problems is to, at each
iteration, select the node with lower path cost, the so called
uniform cost search. This method is optimal and complete thus is
a suitable method for this work. For this type of search algorithms,
the total path cost is

f(i) = g(i) (III.10)

where i is the iths current waypoint in the sequence and

g(i) =

i∑
j=1

Tj (III.11)

for the js waypoints in the sequence.
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Informed search algorithms use heuristic functions that estimate
the cost of going from a specific node until the goal node. This
cost is obviously problem dependent and the challenge lies in
how to evaluate it. If only the heuristic is used as the selecting
criteria, then it is a greedy best-first search algorithm, which is not
optimal. However, if the information of getting from the origin
node until the current node, as well as the information of getting
from the current node until the goal node are joined, it is an A∗

search method. If the heuristic function used for the A∗ search is
admissible (never underestimates the true cost) then this approach
is optimal. For informed search algorithms the total path cost is

f(i) = g(i) + h(i) (III.12)

where h(i) is the heuristic function and in the greedy best-first
search g(i) = 0.

Heuristics for the TSP
Two heuristic functions were used. The first one is admissible,

and it is given as

h1(i) = (m− i)Tmin (III.13)

where m− i is the remaining number of waypoints to get to the
goal node and Tmin is the minimum traveling time between two
nodes. The second heuristic method is not admissible, since it
may happen that it underestimates the true cost of getting to the
goal, and is given as

h2(i) = Kheu(m− i)Tave (III.14)

where Tave is the average traveling time between two nodes
and Kheu is a constant, with 0 < Kheu ≤ 1. This approach
is not optimal, but the solutions are still acceptable as it will
be discussed later. The constant Kheu allows to tune the degree
of optimality in contrast with the computational times. For a
small Kheu the importance of the heuristic decreases and the
performance gets similar to uniform search. For a big Kheu the
performance moves towards a greedy best-first search.

B. Quadratic Programming

After determining the optimal sequence of waypoints, the next
problem step is to determine the trajectory between each one of
the waypoints. It is possible to obtain the trajectory by solving
a QP problem [Mellinger and Kumar, 2011, Mellinger et al.,
2012, Richter et al., 2013, Bipin et al., 2014] or using the
Pontryagin’s Minimum Principle, which results in an analytical
solution [Mueller et al., 2013, Hehn and D’Andrea, 2015, Mueller
et al., 2015]. Other approaches to plan the trajectory between two
points are Look-Up Tables [Corbets and Langelaan, 2007], and
discretizing the model or the trajectory [Lai et al., 2006, Au-
gugliaro et al., 2012]. QP was considered due to its mathematical
simplicity which leads to a general capability, since the solutions
can be extrapolated to multiple goals (minimizing the velocity,
acceleration, jerk or snap) within the same framework. Moreover,
the precision in the polynomials of the QP and continuity in the
derivatives can be guaranteed as far as wanted.

The trajectory is defined in Section III-B1 and the QP problem
is generally constructed in Section III-B2. In Sections III-B3-
III-B6 the specifications of the QP problem are determined.

1) Trajectory Definition: There is a special class of systems,
called Differentially Flat systems, for which there is an one-to-
one correspondence between trajectories of a set of “flat outputs"
and the full state space and inputs. This means that the trajectory
can be defined in output space, and then mapped algebraically to
the state and input space. These type of systems were introduced
in Fliess et al. [1992] and, because of their properties, are well
suited for trajectory definition and generation.

According to van Nieuwstadt and Murray [1997], the differen-
tial flatness theory states that the set of outputs must be equal in
number to the set of inputs, in order to allow a direct algebraic
mapping. Generically, the non-linear state-space system

ẋ(t) = f(x,u, t) x ∈ Rn, u ∈ Rm
y(t) = h(x,u, t) y ∈ Rm (III.15)

is differentially flat if it is possible to find outputs of z ∈ Rm in
the form

z(t) = ζ(x,u, u̇, ...,u(l), t) (III.16)

such that
x(t) = x(z, ż, ..., z(l), t) =: x(z̄, t),
u(t) = u(z, ż, ..., z(l), t) =: u(z̄, t), (III.17)

with y the tracking outputs and z the flat outputs. This means that
every element of the state x and the input u are covered by z.

Differentially flat systems are useful when explicit trajectory
generation is required and for quadrotors the flat outputs are
usually [Zhou and Schwager, 2014, Mellinger and Kumar, 2011]
chosen as

z(t) = [ rx(t) ry(t) rz(t) ψ(t) ]>, (III.18)

with the velocity, acceleration and the pitch θ and roll φ angles
the other elements of the state vector to be withdrawn. A proof
that quadrotors are differentially flat can be found in Zhou
and Schwager [2014]. Using differential flatness, a target time
trajectory is defined as

rT (t) = [ rTx
(t) rTy

(t) rTz
(t) ψT (t) ]> (III.19)

Considering a general direction on rT (t), furthermore referred
as σT (t), then m trajectories between the origin and each one of
the m waypoints in that single direction can be defined as a n
order time polynomial such that

σT (t) =


c10 + c11t+ c12t

2 + · · ·+ c1nt
n 0 ≤ t ≤ T1

c20 + c21t+ c22t
2 + · · ·+ c2nt

n T1 ≤ t ≤ T2

...

cm0 + cm1t+ cm2t
2 + · · ·+ cmnt

n Tm−1 ≤ t ≤ T
(III.20)

with m(n+ 1) coefficients cij . In the previous definition time is
monotonically increasing, meaning that the ci0 do not represent
the m waypoints coordinates. To do so, a time-shift can be applied
to Equation (III.20) such that

t = Ti−1 + ti Ti−1 ≤ t ≤ Ti (III.21)
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and

σT (t) =


c10 + c11t1 + c12t

2
1 + · · ·+ c1nt

n
1 0 ≤ t1 ≤ T1

c20 + c21t2 + c22t
2
2 + · · ·+ c2nt

n
2 0 ≤ t2 ≤ T2

...

cm0 + cm1tm + cm2t
2
m + · · ·+ cmnt

n
m 0 ≤ tm ≤ Tm

(III.22)
The time trajectory of the position and its derivatives, without

the i indexes for nomenclature convenience, is then given by

σT (t) = c0 + c1t+ · · ·+ cnt
n

σ̇T (t) = c1 + 2c2t+ · · ·+ ncnt
n−1

σ̈T (t) = 2c2 + 6c3t+ · · ·+ n(n− 1)cnt
n−2

...

dkσT (t)

dtk
=

n−k∑
j=0

(k + j)!

j!
ck+jt

j (III.23)

2) Creating the Quadratic Programming Optimization Prob-
lem: The QP optimization problem is a special case of a nonlinear
programming problem and is formulated to minimize or maximize
the cost J of the vector c as

min J(c) =
1

2
c>Hc + f>c (III.24)

subjected to Ainc ≤ bin
and Aeqc = beq

where H is a symmetrical matrix reflecting the quadratic form of
the problem and f is a vector reflecting the linear one.

The objective function can be formulated as a function of the k
derivative of the position [Mellinger and Kumar, 2011, Mellinger
et al., 2012], a sum of different derivatives [Richter et al., 2013]
or the Boor control points for the B-Spline [Bipin et al., 2014].

If the objective is to minimize the power of a general derivative
of the position then it can be formulated as

σ∗T (t) = min

∫ T

0

4∑
i=1

Ki

(
dkσTi

(t)

dtk

)2

dt (III.25)

with Ki a constant to turn the integral dimensionless. Since the
trajectories are decoupled in all directions, the above can be seen
as four different optimization problems, with c the vector with
the concatenation of the referred cij . By choosing to minimize
a derivative of the position, the H matrix will result in a block
diagonal of m independent (n+ 1)× (n+ 1) matrices as

H =


H1 0 · · · 0
0 H2 · · · 0
...

...
. . .

...
0 0 · · · Hm

 (III.26)

and the f vector will be null. Nevertheless, the waypoints are
still related by imposing constraints in the continuity up until the
p derivative of the position, constraints to be imposed by Aeq
and beq . Maximum or minimum values for acceptable velocities,

accelerations, jerks or snaps can also be imposed using Ain or
bin. However, minimizing a derivative of the position is already
indirectly imposing acceptable trajectories, and in this work the
inequality constraint is neglected.

3) Minimizing the Velocity w.r.t. the Wind: In order to mini-
mize the effects of the parasitic drag, an interesting cost function
is thus to minimize the power of the velocity of the quadrotor
w.r.t. the wind. Considering a general direction σT (t), the optimal
trajectory solution is given by

σ∗T (t) = min

∫ T

0

(σ̇T (t)− Vw,σ)
2 dt (III.27)

with Vw,σ the wind velocity in the direction of the trajectory
direction σT . Equation (III.27) can be expanded, and the fact that
wind is constant can be used to obtain

σ∗T (t) = min

∫ T

0

σ̇2
T (t) dt− 2Vw,σ

∫ T

0

σ̇T (t) dt. (III.28)

The first term will give origin to the H matrix while the second
term will give origin to the f vector. The necessary constraint to
this problem is the displacement in the position, that is∫ T

0

σ̇T (t) dt = ∆σT (III.29)

where the first term will give origin to Aeq and the second one
to beq . Thus, comparing Equation (III.29) with Equation (III.28)
one can see that, by construction, the second part is a constant
term and thus irrelevant to the minimization problem. Finally, it
can be concluded that minimizing Equation (III.27) is the same
as

σ∗T (t) = min

∫ T

0

σ̇2
T (t) dt (III.30)

and a conclusion can be withdrawn: wind has no influence in the
trajectory formulation. Thus, other derivatives of the position can
be chosen that better represent the quadrotors dynamics.

4) What Derivative to Minimize?: It was proven that minimiz-
ing the power of the velocity w.r.t. the wind is not relevant. Thus
minimizing the following position derivatives powers, which have
influence on the quadrotors dynamics (see Equation (IV.13)), is
proposed: acceleration, that is directly implied in the quadrotor
model and can be linked to thrust; jerk, the first derivative
of the acceleration which directly corresponds to the quadrotor
body rates; and snap, second derivative of the acceleration and
proportional to the motor commands and attitude accelerations.

Acceleration is the simplest of all but it is also the most naive
to define as the goal, since it will imply the less possible thrust,
thus constraining excessively the aggressiveness of the trajectory.
Smooth trajectories are desirable, but with some aggressiveness to
explore the time optimal possible trajectory, and this is acceptable
due to the thrust vectoring controller to be proposed in Section
IV-D, which will allow a great flexibility in Euler angles.

According to Mueller et al. [2015] the jerk cost is a better
representative of the aggressiveness of the true system inputs,
and the jerk, like the acceleration, has a direct link with thrust.
Plus, they say they can bound the body rates as functions of the
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jerk and the thrust. Moreover Hehn and D’Andrea [2015] affirm
that maintaining constraints on the acceleration and jerk leads to
a continuous thrust during the maneuver, which is then supported
by [Bipin et al., 2014] when affirming that constraints on jerk
are necessary for a smooth trajectory. Finally, it has also been
studied [Flash and Hogan, 1985] that humans tend to minimize the
integral of the square magnitude of the jerk, in order to increase
their performance in motion coordination.

According to Richter et al. [2013] minimum snap trajectories
have also been proven effective to generate quadrotor trajectories,
due to the linkage in the motors commands and body rate
derivatives. The same says Mellinger [2012] and supports that
with a study of human movement [Kawato et al., 1990] that
claims that the best criterion for modeling motion is minimizing
the integral of the square norm of torque torque derivatives, which
are related to snap.

In this work, minimizing the power of jerk was defined as the
goal, since it can balance all the aspects discussed before. More-
over, minimizing the jerk relates with minimizing the variation in
the acceleration that is linked to the Euler angles caused by drag.

5) Degree of the Polynomial and Constraints: The degree of
the polynomial was set to n = 5 so that there are still sufficient
coefficients when minimizing the jerk power. In the case that
n = 5 the jerk is a second order time polynomial which is
sufficient to give reliable results. Moreover, continuity constraints
were imposed until p = 2, in order to guarantee continuity at least
until the second derivative of the position, the acceleration.

6) Optimal Times: The time segments T1, T2 to Tm are con-
stants and the optimization process is solved using the expected
times obtained when solving the TSP problem. However, those
times can be adapted by allowing more time to one segment than
another, thus reducing the overall cost J while maintaining the
total trajectory time T . Thus, an iterative process to optimize
the time segments with a gradient descent method using a
backtracking line search was used [Mellinger and Kumar, 2011].

C. Constraint on the Maximum Velocity

At this point, the total time optimal trajectory time T is only
an estimate given by solving the TSP, meaning that the resulting
maximum velocity of the QP problem can be greater or smaller
than Vlim in some time intervals. Due to the non dimensional
spatial property included by construction in the QP formulation,
a new loop can be performed, by incrementally giving or taking
more time to T , without the need to solve the QP problem again.
By doing this third step of the approach in the planning of the
total time optimal trajectory, the velocity is guaranteed to respect
Vlim so that the parasitic drag is minimized.

IV. THRUST VECTORING CONTROLLER

From the two previous Sections II and III it is known that
the quadrotor dynamics are linked to aerodynamic effects and
trajectory dynamics. In this Section, the model of the quadrotor
will be obtained, in Section IV-A, and the quadrotor used in this
work will be presented, in Section IV-B. Usual controllers neglect

the aerodynamic effects and are generally naive when following
a trajectory, since they only account for discrete values of desired
position setpoints. Thus, powerful and real-time information that
can be used to design the controller is being neglected for
the standard cases, such as the the Paparazzi UAV embedded
controller. Paparazzi UAV is an open-source platform for UAV
development that will be used as framework for this work, and
will be analyzed in Section IV-C. However, the time optimal
trajectory information and the aerodynamic effects can be used
in an optimal way using a proposed thrust vectoring controller
approach, to be following presented in Section IV-D.

A. Model of the Quadrotor

The configuration of a typical quadrotor consists of four rigid
blade propeller motors mounted in a “+” or “×” pairwise sym-
metrical counter-rotating fashion, and attached to the quadrotor
rigid body as it can be seen in Figure IV.1.
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Figure IV.1: Top view of a typical quadrotor in “×”
configuration with reference frames scheme.

1) Frames of Reference and other Formalisms: The quadrotor
center of mass is B with mass m and inertia matrix J. The inertial
world frame of reference is W =

{
O, xW , yW , zW

}
and the

frame attached to the quadrotor, the body frame of reference, is
B =

{
B, xB , yB , zB

}
. To represent the relative frame orientation

a rotation matrix from B to W is used, defined as RWB =
RzRyRx = R. The inverse rotation is RBW = (RWB )−1 = (RWB )>

since the rotation matrix is orthogonal. RWB is composed of three
consecutive Z − Y −X rotations of the Euler angles yaw, pitch
and roll, with

Rz =

cψ −sψ 0
sψ cψ 0
0 0 1

 Ry =

 cθ 0 sθ
0 1 0
−sθ 0 cθ

 Rx =

1 0 0
0 cφ −sφ
0 sφ cφ


(IV.1)

using c and s for the sin(·) and cos(·) notation, such that

RWB =

cθcψ sθsφcψ − cφsψ sθcφcψ + sφsψ
cθsψ sθsφsψ + cφcψ sθcφsψ − sφcψ
−sθ cθsφ cθcφ

 . (IV.2)

With this convention of a right-handed coordinated system, ψ
is positive if the quadrotor is yawing left, θ is positive if the
quadrotor is pitching down and φ is positive if the quadrotor
is rolling right. The canonical basis of R3 is {e1, e2, e3}. The
quadrotor position, velocity and acceleration, in the inertial frame,
are r, ṙ and r̈ while the wind velocity is vw. The angular velocity,
measured in the body frame, is ω =

[
p q r

]>
. The roll rate is
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measured directly in the body frame, the pitch rate is measured
in an intermediate frame rotated by the roll angle and the yaw
rate is measured in the next intermediate frame rotated by pitch
and roll angles, such that, in body coordinatespq
r

 = I

φ̇0
0

+ R>x

0

θ̇
0

+ (RyRx)>

0
0

ψ̇

 =

1 0 0
0 cφ cθsφ
0 −sφ cθcφ

φ̇θ̇
ψ̇


(IV.3)

where I is a 3×3 identity matrix. The Euclidean norm is ‖a‖ :=√
a2

1 + a2
2 + a2

3, the dot-product is a·b := a1b1+a2b2+a3b3 and
the notation a×b := a× b relates to the skew-symmetric matrix
associated with the cross-product, such that

a× :=

 0 −a3 a2

a3 0 −a1

−a2 a1 0

 . (IV.4)

2) Motor Dynamics: The motors are symmetrically attached to
B at a distance of li =

(
lx,i ly,i 0

)>
. The motors dynamics

are assumed relatively fast when compared to the rigid body
dynamics and aerodynamics effects, so they can be neglected.
Considering the body frame B. each rotor rotating at ω̄i generates
a thrust FT,i = Tie3, with Ti = kT ω̄

2
i , and an aerodynamic

torque Ti = λikτ ω̄
2
i e3. The thrust and torque constants, kT and

kτ , depend on blade properties and the λi constant depends on
the direction of rotation of the blade (λi = 1 for clockwise and
λi = −1 for counterclockwise).

3) Dynamic Model: The dynamic model of the quadrotor,
which represents the Newton-Euler equations, is given by


mr̈ = R

∑4
i=1 Fi −mge3 + Faero

Ṙ = Rω×

Jω̇ = −ω×Jω +
∑4
i=1(Ti + li × Fi) + Taero

(IV.5)

All forces acting on the quadrotor, except for Faero, are the
sum of the thrust and blade flapping and induced drag, lumped
in one drag force as in Equation (II.8). Thus

4∑
i=1

Fi =

4∑
i=1

(FT,i + Dbla,i) = T e3 +

4∑
i=1

TiAblavP∞,i (IV.6)

with
4∑
i=1

TiAblavP∞,i = TAblaR>(ṙ− vw). (IV.7)

The aerodynamic force is the parasitical drag force (see Equa-
tion (II.10)) given by

Faero = Dpar = kpar‖v∞‖v∞ = kpar‖ṙ− vw‖(ṙ− vw) (IV.8)

The torque terms are
4∑
i=1

(Ti + li × Fi) = T +

4∑
i=1

Tili × AblavP∞,i (IV.9)

with

T =

4∑
i=1

λikτ ω̄
2
i e3 − kT ω̄2

i li × e3 (IV.10)

and
4∑
i=1

Tili × AblavP∞,i = 0 (IV.11)

due to symmetrical properties of the quadrotor. Assuming that
the external aerodynamic forces cause no torque on the quadrotor
then

Taero ≈ 0 (IV.12)

Finally, the full system can be written, with manipulated inputs
given by the rotors thrust and torque as
mr̈ = TRe3 −mge3 + TRAblaR>(ṙ− vw) + kpar‖ṙ− vw‖(ṙ− vw)

Ṙ = Rω×

Jω̇ = −ω×Jω + T
(IV.13)

where the thrust magnitude T and torque vector T relation with
the angular velocity of the blade propellers is represented as

(
T
T

)
=


kT kT kT kT
kT ly kT ly −kT ly −kT ly
−kT lx kT lx kT lx −kT lx
kτ −kτ kτ −kτ



ω̄2

1

ω̄2
2

ω̄2
3

ω̄2
4

 . (IV.14)

B. Parrot Bebop

The quadrotor used in this work is the Parrot Bebop (see
Figure IV.2), a commercially available quadrotor1 widely used at
TUDelft as a research platform. It uses a “×” motor configuration
and has features that are adequate for the work at hand: resistant
structure, also protected by side bumpers to increase safety;
lightweight; powerful dual-core CPU; and wide variety of sensors.

Figure IV.2: Parrot Bebop with side bumpers.

C. Paparazzi UAV - Reference Generator and PID Framework

The Paparazzi UAV is an open-source platform firstly con-
ceived as a tool for development of standard fixed-wing UAVs2.
Paparazzi is widely used at TUDelft and it was chosen since it
incorporates a standard reference generator and PID quadrotor
controller with whom the performances will be compared.

The current controllers (see Figure IV.3) have a traditional
separation between the vertical and horizontal movement, and
thus two main and independent control loops are usually imple-
mented. The vertical loop is responsible for the commanded thrust
while the horizontal loop is responsible for the commanded Euler
angles. Afterwards, the Motor-Mixing Unit (see Equation (IV.14)
is responsible for translating those commands into the four motors
rotating speeds.

1http://www.parrot.com/products/bebop-drone/
2http://wiki.paparazziuav.org/wiki/Main_Page

http://www.parrot.com/products/bebop-drone/
http://wiki.paparazziuav.org/wiki/Main_Page
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Figure IV.3: Illustration of a standard controller.

1) Vertical and Horizontal Control Loops in Paparazzi: The
vertical control loop is composed by a reference generator and a
vertical controller. The reference input is the z vertical setpoint,
a discrete value of desired altitude, and the output is the desired
thrust. The horizontal control loop is similar but also includes
a stabilization controller. The reference inputs are the x and y
lateral setpoints and the outputs are the desired Euler angles.

The reference generators create discrete point to point trajectory
steps followed by second order low-pass filtering, used so that
there are no aggressive requests of velocity and acceleration. The
reference generators will be further referred as the standard low-
pass filtering case. The vertical and lateral controllers are typical
PID controllers, with feedback action for the position and velocity,
and feedforward action for the acceleration. The stabilization
controller currently implemented uses an Incremental Non-Linear
Dynamic Inversion (INDI). Both Control Loops can be seen in
Figure IV.3.

2) Incremental Non-Linear Dynamic Inversion: The INDI con-
troller is an attitude based controller developed by Smeur et al.
[2016] in TUDelft for the Parrot Bebop. The INDI approach is
an improvement of the Non-Linear Dynamic Inversion in order
to increase the controller robustness as it calculates increments
in the control action based solely in the desirable increment
in the angular acceleration, avoiding problems with unmodeled
dynamics. The INDI inputs are the Euler angles and derivatives,
together with the body rates and it outputs the rotors torque
(see Equation (IV.14)). The inclusion of an optimal trajectory
generator and the thrust vectoring controller, together with the
INDI is thus a major step towards an optimal quadrotor controller.

D. New Controller Approach

Due to the loops separation in Paparazzi the coding imple-
mentation firstly performs the horizontal loop and afterwards the
vertical one. The only part in which the loops may be seen
as linked is through the (cos(φ) cos(θ))

−1 term in the vertical
loop, although these angles being the measured ones, and not
the desired. This separation will then impose a natural oscillatory
behavior by the exchange in vertical and horizontal performance.
Moreover, in the usual PID controllers there is no information
about the aerodynamic effects, manly composed of drag terms,
and critically affected by wind.

For these reasons, the performance of the current controller is
obviously not optimal. Thus, it is proposed the replacement of

the first two outer loops by a single one, which weights both the
vertical and horizontal movement at the same time. The current
reference generator is replaced by the equations discussed in
Section III, meaning that instead of a low-pass filter there will
be optimal trajectories, which minimize the jerk power. A priori
information of the desirable velocity and acceleration is used so
that there is no theoretical delay, which does not happen when
a low-pass filter is implemented. Moreover, a thrust vectoring
implementation allows to determine the desirable orientation of
the quadrotor so that the thrust vector, in the direction of zB , is
aligned with the desired force. The stabilization controller based
on the INDI implementation is also used.

1) Thrust Vectoring Equations: The proposed controller was
inspired by Mellinger and Kumar [2011], but divergences exist,
which will be further described. Extending the PID approach of
the traditional controller to include a double-derivative term for
the acceleration and incorporating aerodynamic effects one has

FT = Kpep +Kpi

∫ ∆t

0

ep dt+Kvev +Kaea +mgzW+

+ mr̈T + TRAblaR>(ṙ− vw) + kpar‖ṙ− vw‖(ṙ− vw)
(IV.15)

with FT the desirable thrust. The first four terms are feedback
related and the others are feedforward related. Equation (IV.15)
shows the first divergence with Mellinger and Kumar [2011],
since here the drag terms are accounted, whereas they neglect
them. The feedback errors are obtained asep

ev
ea

 =

rT − r
ṙT − ṙ
r̈T − r̈

 . (IV.16)

The desirable orientation of the quadrotor zB axis is given by

zBT =
FT
‖FT ‖

(IV.17)

With the desirable yaw angle, from the flat outputs, one can
derive the intermediate xψ orientation of the first reference frame
rotation, given by

xψT = Rze1 =
[
cos(ψT ) sin(ψT ) 0

]>
(IV.18)

The desirable orientation of the quadrotor yB axis can be
obtained considering the orthogonality property of the axes

yBT =
zBT × xψT
‖zBT × xψT ‖

(IV.19)

and the desirable orientation of the quadrotor xB axis is

xBT = yBT × zBT . (IV.20)

Equation (IV.19) is only valid if zBT ×xψT 6= 0 meaning that the
axes are not collinear. In order for this to happen the quadrotor
should be rotated on its side, which for practical reasons is never
the case. The three axes define the desirable rotation matrix in
the same way as in Equation (IV.2) as

RT =
(
xBT yBT zBT

)
(IV.21)
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and the other desirable Euler angles can finally be obtained using

(
φT

θT

)
=

 atan 2 (RT,32,RT,33)

atan 2
(
−RT,31,

√
R2
T,32 + R2

T,33

) (IV.22)

Equation (IV.22) shows the other major divergence from
Mellinger and Kumar [2011], since here the angles are computed
from the rotation matrix and inputted to the INDI stabilizer. In
their case, they compute the vee map error between RT and R,
as well as the error in the angular velocities ωT and ω to feed
directly to the inputs T1, T2 and T3. The proposed approach is
less subjected to measurement errors, since the tracking of the
angles is made directly through the INDI stabilizer, instead of
propagating the error throughout a rotation matrix

Finally, the desirable thrust magnitude can be obtained by
projecting the desirable thrust into the quadrotor zB axis

TT = FT · zB (IV.23)

2) Three Stages Cascade Controller: With the equations de-
rived in Section IV-D1, together with the equations derived from
Section III and including the INDI stabilizer, the block diagram of
the proposed three stages cascade controller can be represented,
as in Figure IV.4.
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 T
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φT θT  T
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Figure IV.4: Illustration of the proposed Cascade Controller.

V. RESULTS

In this Section the results of the work in hands will be analyzed,
in a fashion that follows the previous Sections sequence. Firstly,
in Section V-A, the lumped and parasitic drag coefficients will be
identified through flight data, and their influence on the controller
will be shown in Section V-B. Next, the optimal approach when
solving the TSP will be determined in Section V-C, the influence
of the wind in the time trajectory generation will be analyzed
in Section V-D, and in Section V-E an overview of the trajectory
formulation in computational times will be discussed. Later on, in
Section V-F, the time optimal trajectory generation is compared
versus a standard low-pass reference generator. Finally, in Section
V-G, the thrust vectoring controller is compared with a standard
PID controller.

A. Identification of the Drag Coefficients

In order to determine the coefficients related with aerodynamic
properties of the quadrotor, discussed in Section II, a set of flight
tests were conducted. The purpose of these tests is to identify the
lumped drag coefficient, Abla that combines blade flapping and
induced drag, and the second order drag coefficient, kpar.

1) Proposed Identification Equations: Omari et al. [2013]
proposed a method to obtain the lumped drag coefficient based
on the measures of the acceleration and the velocity in body
coordinates. Extending their work, an approach to obtain the
second order drag coefficient is proposed, by including it in
Equation V.1. In order to obtain the coefficients, Equation (IV.13)
was used, and the movement of the quadrotor was constrained to
the x axis direction, which allows some crucial simplifications. By
restraining the movement, and assuming equilibrium of forces, the
only non-zero Euler angle is the the pitch angle θ, and Equation
(IV.13) results in

m

ax0
0

 = T

sθ0
cθ

−
 0

0
mg

+ Tabla

 c2θ
0

−sθcθ

 vx + kpar‖vx‖

vx0
0

 .

(V.1)
Furthermore, using the small angles approximation for θ

(cos(θ) ≈ 1, sin(θ) ≈ θ) and assuming that

Tablaθ << T −mg (V.2)

a force equilibrium is achieved in the z axis naturally when T =
mg, thus leading to the equation in the x axis as

max = mgθ +mgablavx + kpar‖vx‖vx = mgθ +Dx (V.3)

showing a direct correspondence between velocity, acceleration
and pitch angle that allows to obtain the desired coefficients by
means of a statistic fitting. From every measure of the collected
flight data the specific drag force was determined as

dx,i :=
Dx,i

m
= ax,i − gθi

[m
s2

]
(V.4)

and a linear Least Squares (LS) fitting was used with cost

J =
N∑
i=1

(
dx,i − d̂x,i(vx,i)

)2

=
N∑
i=1

(
dx,i − gâblavx,i −

k̂par
m
‖vx,i‖vx,i

)2

(V.5)
producing the following estimate of the drag coefficientsgâblak̂par

m

 =


N∑
i=1

v2
x,i

N∑
i=1

‖vx,i‖v2
x,i

N∑
i=1

‖vx,i‖v2
x,i

N∑
i=1

‖vx,i‖2v2
x,i


−1

N∑
i=1

vx,idx,i

N∑
i=1

‖vx,i‖vx,idx,i


(V.6)

with N the number of samples.

2) Methodology: For the experimental tests, the tracking po-
sition was set to be a ramp, resulting in a step in velocity and
null acceleration. Due to the drag forces, an expected pitch angle
can be computed. An illustration can be seen in Figure V.1 for
a selected flight with velocity VT = 2 [m/s]. The movement
can be qualitatively described as follows: the quadrotor starts
at the center of the test arena and moves diagonally to the
corner, so it can maximize the flight distance; it does this at
a constant negative VT ; then the quadrotor waits six seconds
to stabilize its position and orientation; afterwards it moves to
the other corner at positive VT . Due to the space limitations
in the test arena, the corners positions were restricted to rx ∈
{±3.0, ±3.5, ±4.0} [m] accordingly to VT , which was varied
in the set VT ∈ {0.5, 1.0, 1.5, · · · , 4.0} [m/s].
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3) Results - Identification of the Drag Coefficients: For each
VT , seven flights were performed. The average result for VT = 2
[m/s] can be seen in Figure V.1, which allow to withdraw some
conclusions:
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Figure V.1: Position, velocity, acceleration and pitch angle
response with VT = 2 [m/s].

• The position request is fulfilled with a constant delay and
some overshoot, but with null steady-state error;

• The velocity request is fulfilled also with some delay but
with worst performance relatively to the steady-state error;

• The acceleration and the pitch angle appear to compensate
for each other (apart from a scale factor) when there is a
discontinuity in the velocity, but later the acceleration goes
to zero while the pitch angle goes to a constant value.

These conclusions are in line with the previous predictions,
mainly the constant pitch angle when there is no acceleration,
due to the compensation of the drag forces. The results of the LS
fitting can be seen in Figure V.2, with the identified coefficients

âbla = −0.0476
[ s

m

]
, k̂par = −0.0036

[
kg
m

]
.

The results indicate that in fact there is a linear term causing
drag due to the velocity. However, the influence of the identified
second order drag is too small when compared to the linear term,
thus validating the assumption that second order drag can be
neglected when flying at relatively slow speeds below 10 [m/s].
From the evaluation of the drag coefficients one can derive the
necessary pitch angle to compensate for the drag in steady flight,
which can be seen in Figure V.2.

B. Influence of the Lumped Drag Coefficient in the Controller
To see the influence of the lumped linear drag coefficient pre-

viously identified in the controllers, trajectories of the same type
as in the the previous Section V-A2 were tested. Two controllers
were used, that differ only in Equation (IV.15). The manipulated
variable was thus abla, with abla = −0.0476 ∨ abla = 0 [s/m].
The second order parasitic drag coefficient was neglected for both.
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Figure V.2: LS fitting to obtain the drag coefficients (left) and
necessary pitch angle to compensate for the drag force (right).

1) Results - Influence of the Lumped Drag Coefficient: Figure
V.3 shows that the velocity response is faster when the drag term
is accounted. For VT = 4 [m/s] the quadrotor is not able to get to
the goal due to space limitations, but still the response is faster.
It is noted that the velocity is higher than the desirable, but that
fact is explained by the position error.
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Figure V.3: Velocity for VT = 2, 4 [m/s] (left, right).

Figure V.4 shows the position error, which is smaller when the
drag term is accounted, by almost 0.5 meters. Concluding, these
Figures show that for small velocities (smaller than 10 [m/s]) the
linear drag is relevant and should be accounted in order to increase
the performance of the overall controller, thus sustaining the
hypothesis that the drag terms should have a significant influence
in the controller design.
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Figure V.4: Position error for VT = 2, 4 [m/s] (left, right).

C. Optimal Sequencing - TSP Solution

This Section aims at comparing the performances of the
alternatives in order to solve the TSP (see Section III-A2). The
methodology will be described in Section V-C1 and the results
will be shown in section V-C2.
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1) Methodology: Unless stated otherwise, the experiments
were set to randomly generate waypoints in a 50× 50× 50 [m3]
box, while randomizing the wind velocity as fractions of the limit
velocity, with a random angle α1 ∈ [0, 360] [o]. The value of
Kheu is set to Kheu = 0.9, as it will be discussed later when
optimizing Kheu. The experiments were performed in a 64 bits
Windows 7 OS, running MATLAB 2013a, with an Intel i5-2430M
2.40 GHz CPU processor and 4.00 GB of memory.

2) Results - Optimal Sequencing: Firstly, the approaches are
compared in terms of computational times (CPU) and problem
dimension, resulting that the heuristic h2 performs the best.
However, this heuristic is not admissible, so an analysis in the
difference between the heuristic h2 solution and the optimal
solution is accounted. Finally, the optimal value of Kheu is
determined by means of a sensitivity analysis.

Computational Times: The computational times can be seen
in Table V.1. One can see that for small m the permutations
approach works well, even when comparing with the second
heuristic h2. Nevertheless, after m = 5 the second heuristic h2

performs much better. Moreover, an increase in performance is
achieved from uniform search, passing to heuristic h1 and up
until the heuristic h2. Only with the second heuristic method it
is reasonable to generate trajectories with large m, in particular
greater than m = 8.

Table V.1: CPU Times for the different approaches.

CPU Time [ms]
Per. Uni. h1 h2

1 0.175 0.306 0.330 0.448
2 0.295 0.729 0.763 1.112
3 0.501 1.853 1.879 1.971
4 1.339 7.097 5.413 4.022

m 5 6.061 34.95 25.62 7.197
6 42.26 262.0 136.8 11.89
7 413.7 5101 1816 19.36
8 3159 - 20282 19.84
9 - - - 20.58

Problem Dimension: The computational times are dependent
on the computer in which the simulations are performed and
code efficiency. Although the first aspect may be irrelevant, since
all simulations were done in the same computer, the second
is not. The code for all three search algorithms is similar but
it is structured very differently than the permutations method,
which uses MATLAB predefined functions. For these reasons,
the computational times may not be a fair comparison criteria.
With that in mind, another criteria is the problem dimension,
a measure of its complexity. For the permutations method, this
is measured as all the possible permutations, and for the search
methods this is measured as the nodes in the open list. The results
can be seen in Table V.2, which clearly shows the incremental
increasing in performance from the permutations method up until
the heuristic h1 method, and a big increase in performance
towards the heuristic h2.

Trajectory Optimality: The second heuristic h2 is not admis-
sible and thus the resulting solution is not always optimal. The

Table V.2: Problem dimension for the different approaches
(kh1

< ku < 1).

Problem Dimension [-]
Per. Uni. h1 h2

1 1 1 1 1
2 2 2 2 2
3 6 6 6 5
4 24 23 22 12

m 5 120 108 92 25
6 720 536 411 44
7 5040 2847 1963 61
8 40320 - 8375 70
9 - - - 75
...

...
...

...
...

m O(m!) O(kum!) O(kh1
m!) O(m2)

average error in determining the trajectory time is displayed in
Table V.3, when comparing with the optimal solution. Values for
m larger than m = 8 are not available since the optimal solution
is obtained using one of the first three methods. It is possible to
see that the error increases as m increases.

Although it seems like the error is uncontrollably increasing,
this is not the case, since the above experiments where taken for
a random distribution of waypoints. When the waypoints are well
distributed, which is the case for most applications, this heuristic
gives better results, in particularly giving the correct solution, as
it will be seen later in Section V-D.

Table V.3: Trajectory Time error for the heuristic h2.

T [s] Error [%]
Optimal Heuristic h2

1 7.63 7.71 1.09
2 15.54 15.90 2.30
3 22.21 23.30 4.92
4 28.23 30.44 7.82

m 5 33.27 37.17 11.74
6 37.99 43.44 14.35
7 42.88 49.00 14.26
8 46.97 54.71 16.47

Optimal Kheu: To determine the optimal value of Kheu,
which represents a trade-off between the optimal solution and
the computational time, multiple values of Kheu were studied
in a sensitivity analysis. The comparison is being done with an
average wind speed Vw of half the limit velocity Vlim, which is
already a considerable amount of wind, and the results can be
seen in Figure V.5. For each Kheu the CPU times and trajectory
times are determined for up until m = 8 waypoints, which
reflects the increase in the trajectory time. When Kheu decreases
the computational time increases but the average trajectory time
decreases, and vice-versa. A good trade-off between trajectory
optimality and CPU time is achieved for Kheu = 0.90.

D. Time Optimal Trajectories
This Section aims at showing the smooth time optimal planned

trajectories after the three steps of the proposed approach are
performed. It will be seen results for the wind influence when it is
symmetrically and asymmetrically distributed around the origin.
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Figure V.5: Influence of Kheu in the trajectory time versus the
computational (CPU) time.

Wind on a Symmetric distribution of Waypoints: Symmet-
rical wind is tested using Vw = Vlim/3, Vlim = 3 [m/s], and for
four symmetric wind directions, only in the horizontal plane, with
α1 ∈ {20, 110, 200, 290} [o] (shifted 90 [o] in each quadrant).
The results are shown in Figure V.6. The time intervals are
obtained by solving the TSP and are then optimized as previously
referred. Due to the adequate distribution of waypoints around the
origin, the solution of the TSP either using an optimal method or
using the heuristic h2 are the same, which sustain the hypothesis
given in Section V-C.
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Figure V.6: Optimal trajectory for a symmetric distribution of
m = 4 waypoints, with multiple wind directions.

The resulting trajectories are also symmetric and one can
confirm the critical importance of wind when choosing the
optimal sequence of waypoints. This is a result from the TSP
and is illustrated here. The trajectories appear to be smooth and
logical. The resulting velocity w.r.t. the airstream, acceleration
and jerk are shown in Figure V.7 . It is validated that the maximum
V∞ = 3 [m/s], while the average velocity Vave = 2.1 [m/s]. The
total trajectory time is T = 6.4 [s], for every wind direction. The

jerk is minimal by definition leading to accelerations of 4 [m/s2]
which are clearly acceptable and within limits used, for instance,
by Mueller et al. [2013, 2015], Hehn and D’Andrea [2015].

0 5
0

1

2

3

v
∞

[m
/
s]

Time [s]

Velocity

0 5
0

2

4

a
[m

/
s2
]

Time [s]

Acceleration

0 5
0

5

10

j
[m

/
s3
]

Time [s]

Jerk

Figure V.7: Optimal velocity, acceleration and jerk.

Wind on an Asymmetric distribution of Waypoints: When
the waypoints are not symmetrically distributed around the origin,
the trajectories for different wind directions are not symmetrical.
The results are shown in Figure V.8 and Table V.4. Once again
the trajectories appear to be logical for passing through the set of
waypoints, and the sequences appear to be natural as well. This
qualitatively validates the use of the heuristic h2 for selecting the
waypoints sequence, because since m = 15 is relatively big, the
optimal sequence could not be computed using the other three
methods.
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Figure V.8: Optimal trajectory for an asymmetric distribution of
m = 15 wayoints, with multiple wind directions.

Due to the restriction on the maximum velocity, the trajectory
times are different. In particular, the first two angles will create
usually back wind, which allows faster trajectories, and the last
two angles will create usually front wind, which allows slower
trajectories. Thus, in environments where wind exists and it is
known, the selection of the sequence of waypoints is critical to
reduce the trajectory time and obtain the time optimal trajectory.

Table V.4: Trajectory times for multiple wind directions for an
asymmetric distribution of waypoints.

α1 [o] 20 110 200 290
T [s] 8.2466 8.2160 9.5278 9.0250
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E. Trajectory Planning Overview

It was proposed to divide the trajectory planning into three
smaller problems, or steps, in order to reduce the complexity
associated with finding the optimal sequence. Therefore, an initial
simplification was used leading to the following question: “Is
the initial obtained sequence the optimal one, after all steps?”. It
was checked that the sequence solution of the TSP is usually the
best after all steps, but in some specific cases gives a trajectory
time that is 5-10 [%] over the real optimal. Nevertheless, the
CPU times when solving he TSP problem are negligible when
compared to the other two next steps. There is a difference of
milliseconds to seconds, three orders of magnitude. Therefore,
by simplifying into three smaller steps, the overall CPU time is
reduced by O(m!) and the purpose of the simplification is still
satisfied, since the trade-off between CPU time and trajectory
optimality is positive.

F. Reference Generator Comparison

This Section aims at comparing the performance of a standard
trajectory generator, that uses a second order low-pass filter,
versus the proposed optimal reference generator. Therefore, the
difference in the two controllers is only in the first stage, the
reference generator. The trajectory selected consists of m = 8
equally distributed waypoints and the limit velocity is set to
Vlim = 1 [m/s]. The quadrotor starts at (x, y) = (−2, 2) [m].

1) Results - Reference Generator: The optimal trajectory, seen
in Figure V.9, is smooth and similar in shape to what has been
seen in the previous Sections, whereas the standard trajectory
consists of straight lines with some overshoot after the waypoints.
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Figure V.9: Comparison of the 2D trajectory.

Velocity magnitude: In Figure V.10 it is shown the time
evolution of the velocity magnitude. In both approaches, the total
trajectory time is approximately the same, i.e., T = 27 [s]. One
can see the velocity constraint Vlim = 1 [m/s] to be respected for
almost all time instants. The standard reference generator makes
the velocity behavior similar between each waypoint: there is an
initial increase in velocity until steady state is reached; then the
quadrotor senses that is near the next waypoint and the reference
is changed; due to the low-pass filter the velocity reduces; the
process repeats. Thus the velocity profile is in a sawtooth wave
fashion. For the optimal trajectory the velocity profile behavior
is much smoother and natural, in particular with less variations.
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Figure V.10: Caparison of the velocities magnitudes.

Body velocity: Since the yaw angle ψT is constant in the
standard case, depending on the turn direction, the body velocity
behavior will be separated in both axes. This behavior can be
seen in Figure V.11, where one can see a big velocity fluctuation
for both axes. For the optimal case, the yaw angle ψT follows
the desirable velocity direction and thus the velocity only varies
in the x body axis. For the y body axis the velocity is near zero.
Thus, the velocity variations are reduced in half and only one
axis direction is used, increasing the stability.
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Figure V.11: Comparison of the velocity in x (left) and y (right)
body axes directions.

Euler angles: The velocities contrasts have influence evidently
on the accelerations and thus on the Euler angles, which can be
seen in Figure V.12. The Figure shows a clear difference in the
results of both references generators, since the angles are bigger
and more aggressive for the standard low-pass filter case, whereas
in the optimal case the angles are smoother. For the standard
reference generator φ ∈ [−3, 6] [o] and θ ∈ [−6, 6] [o], whereas
in the optimal generator φ ∈ [−2, 2] [o] and θ ∈ [−2, 4] [o].
Therefore, a save in angles variation of 50 [%] is achieved when
the optimal trajectory generator is used.
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Figure V.12: Comparison of the Euler angles (φ left and θ right).
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Thrust: Eventually the summed effects of the velocities, accel-
erations and angles have influence in the energetic performance
of the quadrotor. As discussed in Section III-B4, it was chosen to
minimize jerk since it is a better representative of the aggressive-
ness of the system inputs, the rotors angular velocities, and thus
it is linked to thrust from Equation IV.23. Figure V.13 compares
the thrust for both reference generators and shows that in fact
there is less energy consumption when an optimal trajectory is
chosen. The hover thrust for the working quadrotor is Th = 3.874
[N], while the optimal mean thrust is Topt = 3.886 [N] and the
mean thrust resulting from the low-pass filter is Tlp = 3.923 [N].
Thus, thrust is reduced from Th plus 1.3 [%] to Th plus 0.3
[%] when the optimal reference generator is chosen, meaning a
reduction in thrust variation of 77 [%]. This Figure also shows that
the thrust during a flight is approximately equal to the hovering
thrust, within 5 [%] of thrust variation, validating the hypothesis
that almost all thrust goes to compensate the gravity force.

0 10 20
3.7

3.8

3.9

4

Time [s]

T
h
ru
st

[N
]

 

 

Hovering

Optimal Trajectory

Low−Pass Filter

Figure V.13: Comparison of the Thrust.

G. Thrust Vectoring versus Standard PID Controller

This Section aims at comparing the performance of a standard
PID controller versus the proposed thrust vectoring controller. The
tested trajectory consists of m = 3 equally distributed waypoints.
Two different limit velocities were tested, and throughout all
this Section Figures V.14-V.18 show results for the limit velocity
Vlim = 1 [m/s] on the left and for Vlim = 2 [m/s] on the right.

1) Results - Controllers Comparison: Figure V.14 shows the
overall trajectory. One can clearly see the increase in performance
on the thrust vectoring controller. Furthermore, the trajectory per-
formance of the proposed controller is not affected by the increase
in the velocity, which widens the quadrotor flight envelope
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Figure V.14: Comparison of the 2D trajectory.

Horizontal Position: For the PID controller it seems that the
performance increases when the velocity increases, but this is
a false conclusion caused by the Figure type. Seeing Figure

V.15 one can conclude that in fact the performance of the
PID controller worsens, whereas in the proposed controller the
performance is relatively the same (note the different time scales),
and a reduction of one second time delay is achieved. The delay
caused in the PID controller is mainly due to the integrator term.
The integrator role is to compensate the steady state error mainly
caused by the drag term, but since the trajectory is aggressive, as
it is always changing, the integrator can not perform fast enough.
The results are similar for the y axis, so they are not displayed.
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Figure V.15: Comparison of the x trajectory.

Vertical Position: Due to separation in the control loops it is
expected that the performance in the vertical position is poorer
for the PID controller, as it can be seen in Figure V.16, since the
position has more error and variation in the PID controller. For
the thrust vectoring case, there is an initial oscillatory behavior
but then the following becomes evident, whereas in the standard
PID controller the tracking never truly happens. Note the different
scale when comparing with Figure V.15. This is a result of the
vertical and horizontal loops inclusion into one single stage.
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Figure V.16: Comparison of the z trajectory.

Euler Angles: The final results (Figures V.17 and V.18) show
the performance in terms of the Euler angles. With the differential
flatness outputs and derivatives, and assuming a perfect following
of the trajectory, the desirable pitch and roll angles can be
computed, including the influence of the drag effects or not.
One can see that for the thrust vectoring case the performance
is better when comparing with the PID case. The performance
increases drastically when the velocity also increases, proving the
robustness of our controller, which is able to follow trajectories
in a wider flight envelope. It can be seen that by including the
drag into the thrust vectoring controller the initial response is
much faster (see Figure V.18). Furthermore, one can qualitatively
validate the identification of the drag term, since the angles appear
to follow the dark blue line, that accounts for the drag effects,
better than the soft blue line, that does not.
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Figure V.17: Comparison of the roll angle φ.
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Figure V.18: Comparison of the pitch angle θ.

VI. CONCLUSION

The aim of this work resided on three topics, namely: studying
the aerodynamic effects present in the dynamics of a quadrotor;
planning the time optimal trajectory in the presence of wind and;
designing a controller that uses wind and trajectory information.

A literature study was performed and the formulas for the most
important aerodynamic effects were derived. With an experiment,
the lumped and parasitic drag coefficients were identified, result-
ing in âbla = −0.0476 [s/m] and k̂par = −0.0036 [kg/m], and it
was shown that even in environments where wind is absent, the
inclusion of the drag terms in the controller increases significantly
the overall performance. Therefore, the identification of the drag
terms should be a step considered in controllers design stage.

Considering the time optimal trajectory, a simplified method to
determine the solution was proposed, based on three steps. It was
proven that the steps division saves computational time, reducing
it approximately by an O(m!) order, while still maintaining
acceptable time optimality. The QP was constructed and solved,
showing results that indicate acceptable values for acceleration
and jerk when compared to related work. The reference generator
was compared to a standard one, a low-pass filter, showing a per-
formance increase. The profit comes from saving energy related
with thrust variation, reduced by 70 [%], and from reducing the
aggressiveness related with angle variations, reduced by half.

Finally, a thrust vectoring controller was proposed and aug-
mented to include the drag terms. The controller was compared
with a current available open-source PID controller and it was
proven that a clear increase in performance of trajectory following
is achieved. A reduction of time delay was obtained, and the
position following was improved both in horizontal and vertical
planes. Moreover, it was observed that the thrust vectoring
controller maintains the performance in a higher flight envelope.

VII. FUTURE WORK

The following future work is proposed, which covers the three
main aspects of this work. For the aerodynamic effects, it is
advised to test the quadrotor at higher velocities to obtain a
relevant parasitic drag coefficient, as well as the identification of
the thrust variation coefficients, extending the model to include
them. For the optimal sequencing, it is recommend a study to
explore the less optimal results of the TSP. In particular by
verifying the increase in time optimality versus the increase in
CPU time to be achieved with them, after the QP problem when
assuring the constraint on the maximum velocity. Finally, it is
proposed to test the performance of the thrust vectoring controller
with higher aggressive maneuvers, higher velocities, and with 3D
movement. This will allow to see the real extension of the possible
flight envelope.
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