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Prediction of the continuous cooling transformation diagram of some selected
steels using artificial neural networks

Willem Vermeulen, Sybrand van der Zwaag, Peter Morris and Ton de Weijer

Continuous cooling transformation (CCT) diagrams play an important role in the description of the transformation behaviour of steels. The
experimental determination of a CCT diagram'is a very time consuming and expensive task. It would therefore be very attractive to be
able to predict CCT diagrams from the chemical composition of the steel and its austenitising temperature. in this article the use of artifi-
cial neural networks for the prediction of the transformation start and finish lines in CCT diagrams is described. The data were selected
from a single source: The vanadium steels, atlas of continuous cooling transformation diagrams [4].

Three neural networks with different numbers of hidden nodes (5-10-15) were trained, The number of hidden nodes did not significantly
Influence the accuracy in the prediction. The network with the least number of hidden nodes (5) was therefore chosen for the evaluation of
the performance of the neural networks, This neural network was able to predict the general trends in the CCT diagrams quite well. The
relative standard deviation in the prediction of start and end temperatures of each transformation depended on the cooling rate. For the
high and low cooling rates it was ~ 40 °C, for the intermediate it rose to 90 °C for the ferrite start formation and to 75 °C for the other
diffusional transformations (pearlite and bainite).

The accuracy of the predicted CCT diagram was primarily restricted by the modest quality of the input data used to train the neural net-
work.

Vorausberechnung kontinuierlicher ZTU-Diagramme elniger ausgewdahiter Stahlsorten mit kiinstlichen neuronalen Netzen. Kon-
tinulerliche ZTU-Schaubllder spielen bei der Beschreibung des Umwandlungsverhaltens von Stah! eine bedeutende Rolle. Die experimen-
telle Bestimmung eines solchen Diagramms ist zeitintensiv und teuer. Daher wére eine Ableitung dieser Diagramme aus der chemischen
Zusammensetzung des Stahls und seiner Austenitisierungstemperatur hochinteressant.

In der vorliegenden Arbeit wird die Anwendung neuronaler Netze zur Vorausberechnung der Umwandiungsstart- und -endtemperaturen in
kontinuierlichen ZTU-Schaubildern beschrieben. Die Daten stammen aus einer einzigen Quelle, dem Atlas kontinuierlicher ZTU-
Schaubilder fir Vanadinstéhle [4].

Drel neuronale Netze mit unterschiedlich vielen verdeckten Knoten (58-10-15) werden trainiert. Die Anzahl der mittleren Knoten beeinfluft
die Vorhersagegenauigkeit nicht merklich, daher wurde ein Netz mit 5 gewéhlt. Es eignete sich recht gut zur Ermittlung der aligemeinen
Trends in kontinuierlichen ZTU-Diagrammen. Die Standardabweichung fir Start- und Endtemperaturen jeder Umwandlung hing von der
Abkihigeschwindigkeit ab: fir hohe und niedrige Abkuhlgeschwindigkeiten betrug sie ~ 40 °C, im mittleren Bereich stieg sie auf 90 °C
(Beginn der Ferritbildung) bzw. 75 °C fUr andere diffusionsgesteuerte Umwandlungen (Perlite oder Bainit).

Die Genauigkeit der so aufgestellten ZTU-Schaubilder wird von der Qualitét der fir das Training des neuronalen Netzes benutzten Ein-
gangsdaten beschrénkt.

Heat treatment of steel plays an important role in the
engineering industry in general. Success in heat treatment
requires that the operating variables, in particular those
concerned with the quenching process and the hardenabil-
ity of the steel, can be carefully controlled, Thus, knowl-
edge of hardenability and phase transformations in steels
are essential to produce a steel with the desired properties
[1.

The hardenability of steels is well characterised by the
Jominy end-quench-test, while the transformation kinetics
of steels usually are described using either isothermal
transformation (IT or TTT) or continuous cooling trans-
formation (CCT) diagrams. TTT diagrams describe the
phase transformations at a constant temperature, while
CCT diagrams describe the transformations taking place
during continuous cooling at various constant cooling
rates. The latter diagrams resemble more closely the con-
ditions during the actual production process of the steel or
during its heat treatment at a later stage. The CCT dia-
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grams not only provide information on the transformation
start and finish conditions, but also on the resulting hard-
ness and microstructures for each particular cooling curve.

The effort to determine a CCT diagram experimentally is
considerable. Normally, a CCT diagram is determined
using dilatometry in combination with microstructural
studies. This is a very time consuming and often difficult
task and it would therefore be very attractive if it were
possible to predict the CCT diagram of a particular steel
from its chemical composition and its prior thermal his-
tory. Of particular interest would be the prediction of the
transformation start and finish temperature and it is to this
information in the CCT diagram to which this work is
restricted.

At present, the problem is approached in two ways; theo-
retically using physical models, or statistically, using ear-
lier CCT diagrams determined for similar steel grades. The
theoretical approach might prove to be valuable for an
accurate CCT diagram prediction in the long run. How-
ever, some aspects of the transformation are not yet fully
understood (at least not in a quantitative manner) and this
poses an obstacle to the theoretical approach. The statisti-
cal approach has not been very successful either, because
of the complexity of the problem.
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Figure 1. Hierarchical feed-forward neural network. Data are
transfered from left to right along the arrows; the circles represent
the nodes or neurons

The purpose of this report is to describe the use of arti-
ficial neural networks for predicting the transformation
start and finish lines in a CCT diagram from the steel com-
position and the austenitising temperature. Neural net-
works are most suitable for analysing complex data sets
with unknown and/or non-linear dependencies between
input and output parameters. They have previously been
used with success to predict the martensite start tempera-
ture [2] and the Jominy hardness profile [3]. Following a
general description of the neural network theory, the data
selection and processing for this particular problem is
described in more detail. The data to develop the model
were selected from a collection of several continuous
cooling diagrams for different vanadium steels from open
literature [4]. The optimal architecture for the CCT dia-
grams was determined and the results of this neural net-
work are presented. The quality of predicted CCT dia-
grams is illustrated for three different steel grades. Fur-
thermore, the influence of the carbon and manganese con-
tent on the Ar3 temperature is discussed in more detail.

The neural network

In this section, the very basics of the type of neural net-
work used will be discussed. No attempts are made to
present a full overview of all types of neural networks, nor
to discuss the theory of the type of neural network used in
the finest detail. For those interested in a general overview
or in the finest detail, some excellent books are available
[5...8].

In this research, a hierarchical feed-forward neural net-
work is used. A diagram of this type of neural network is
shown in figure 1. The basic unit in a neural network is its
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Figure 2. Flowchart of a training cycle in a hierarchical feed-
forward neural network
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processing element, called a node or a neuron. In a hierar-
chical neural network these nodes are ordered in layers.
The network is called feed-forward, because the nodes
process the information in one direction only, from input to
output. Each node in a layer is connected, via a weight
factor, with each node in the preceding layer; the network
is fully connected. The number of nodes in the input layer
equals the number of input parameters. The number of
nodes in the output layer equals the number of output
parameters. The optimum number of nodes in the inter-
mediate -hidden- layer depends on the complexity of the
problem, and it is up to the researcher to determine this.
This intermediate layer is called the hidden layer, since
both inputs and outputs from this layer come and go from
other network layers and hence this layer is not seen when
looking from the outside to the network. The number of
input, output, and hidden nodes and their connections
define the architecture of the neural network.

Each node computes the scalar product of its input val-
ues and their weight factors and passes this value to a sig-
moid transfer function, which produces the output signal
of the node. To determine the weight factors -the actual
modelling- the neural network has to be trained. Hierarchi-
cal feed-forward neural networks are trained under so-
called supervision. A wide variety of different training
rules for supervisional training have been reported in lit-
erature and it is beyond the scope of this work to discuss
them here in detail. A detailed description of network
training rules or neural networks in general can be found in
references [5...8]. Only the general concept of supervised
training will be discussed here.

An iteration in the training cycle is outlined in the flow-
chart of figure 2. To start, the weight factors are initialised
randomly. Then, the input and output data of one sample
are presented to the network, which, with its randomly
initialised weight factors, calculates the output of the
sample; the predicted value. This predicted value is com-
pared with the actual or target value of the sample. The
difference between target and predicted value -the error in
the prediction- is a measure for the weight factor correc-
tion. This correction takes place in the reverse direction -
back propagation of error- so first, the weight factors of the
output layer are corrected, and then the weight factors of
the nodes in the hidden layer. Once the weight factors have
been corrected for all samples, the training cycle is re-
peated until the differences between calculated and target
output values are minimised sufficiently.

When there is a large number of training cycles -
iterations- the network starts to model not only the func-
tional dependencies between input and output parameters
but also the noise in the data set. This is called overtrain-
ing. To prevent the network from overtraining the data is
split into a relatively large training set and a smaller test or
validation set. The weight factors in the network are ad-
justed using the data in the training set only. In case of
overtraining the error for the training set decreases while
that for the test set increases with further iteration. At this
point training should be stopped. Our neural network soft-
ware program is designed in such a way that at the onset of
overtraining the training is stopped automatically. Once the
network is trained, the weight factors are fixed and the
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neural network can be used to calculate the output for any
arbitrary set of input data.

Data selection and processing

As the correct experimental determination of CCT dia-
grams is by no means trivial, a large scatter exists in CCT
diagrams for nominally the same steel grade. To minimise
this scatter all data used in the present work are selected
from a single source; The vanadium steels, atlas of con-
tinuous cooling transformation diagrams [4]. In total 89
steel grades were selected for training and validation of the
neural network. Only those CCT diagrams with connected
phase transformation fields were selected. A typical CCT
diagram of a steel used for training and its chemical com-
position is shown in figure 3.

The input parameters of all neural networks were the
chemical composition and the austenitising temperature.
The chemical composition was characterised using 12
alloying elements: C, Mn, Si, S, P, Cr, Ni, Mo, V, Cu, Al,
and N. The prior austenite grain size has an important
effect on the transformation kinetics [9], but as no infor-
mation was available on this parameter, it could not be
included as an input parameter. Instead, the austenitising
temperature was used as a qualitative measure for grain
size effects. The input parameter ranges (austenitising
temperature and alloying element concentrations) for the
neural networks are given in table 1.

The output of the neural network was the transformation
lines in the CCT diagram.

The CCT diagrams had to be converted from graphical
to numerical format, because only numerical formats can
be handled by the type of neural network used.

Several options were open to characterise the CCT dia-
grams numerically:

1. divide the CCT diagram into squares with equal surface
area and determine the microstructure that is stable
within each square;

2. determine the intercepts of fixed isotherms with the
boundary lines indicating the time-temperature combi-
nation leading to a particular transformation product;

3. determine the intercepts of fixed isochrons with the
boundary lines indicating the time-temperature combi-
nation leading to a particular transformation product;

4. determine the intercepts of fixed continuous cooling
curves with the boundary lines indicating the time-
temperature combination leading to a particular trans-
formation product,

The advantages and disadvantages for the various op-
tions are discussed below.

The option to divide the CCT diagram into smalf uni-
form squares (option 1) is not feasible since the amount of
redundant data to be processed becomes very large if a
high resolution is required.

For all intercept methods (options 2 to 4) a similar ap-
proach can be used. This approach is to determine the
intercepts of a test-line (isothermal, isochronal or cooling
curve) with the boundary lines in the CCT diagram indicat-
ing the time-temperature combination leading to a particu-
lar phase transformation.
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Figure 3. CCT diagram for a 0.14% G, 1.52% Mn, 0.48% 8,
0.004% 8, 0.011% P, 0.071% V steal [4]
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The intercept method using the fixed number of iso-
therms (option 2) resembles the conditions during the
determination of a TTT diagram best. Option 4, using the
fixed number of cooling curves resembles the conditions
during the determination of a CCT diagram best and this
method was therefore chosen to characterise the CCT dia-
gram. In our model 23 Newtonian curves were superim-
posed on each CCT diagram and the intercepts were de-
termined. The cooling rates corresponding to these curves
ranged from 720 to 0.05 C/s, In figure 4 a CCT diagram of
a hypothetical steel is shown, as well as five out of the
total 23 different cooling rates, indicated with dotted lines,

A particular complication in this procedure, which would
be present in any other of the intercept methods, is that the
number of intercepts is not a constant but may vary with
the cooling rate and the steel composition. Furthermore,
the order of the intercept points along a particular cooling
curve is not uniquely related to a particular type of trans-
formation. For example, the first intercept at the highest
cooling rate is usually related to the martensite formation,
while the first intercept at the lowest cooling rate is related
to the ferrite formation.

As for any statistical modelling, including the neural
network modelling, the number of dependent variables
should be constant and uniquely defined, the number of
intercepts for each cooling curve was fixed artificially at 6:
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Figure 4. CCT diagram of a hypothetical steel, The labels In the
figure refer to conditions discussed iater on
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# 1time-temperature combination for the start of the
ferrite formation (ferrite start temperature),

# 2 time-temperature combination for the end of the
ferrite formation (ferrite end temperature),

# 3 time-temperature combination for the start of the
pearlite formation (pearlite start temperature),

# 4 time-temperature combination for the end of the
peatlite formation (pearlite end temperature),

# 5 time-temperature combination for the start of the
bainite formation (bainite start temperature),

# O time-temperature combination for the end of the
bainite formation (bainite end temperature).

Now, several transformation scenarios are possible when
converting CCT diagrams to a numerical format:

— if for a particular cooling rate the austenite transforms
to ferrite, pearlite and bainite, the time-temperature
combinations for all transformations can be determined
unambiguously (situation for curve A in figure 4);

Table 1. input parameter ranges for all neural networks. The ele-
ment mass contents are expressed in % and the austenitising
temperature (Taust) in °C

Input parameter | minimum maximum
Taust 850 1350
c 0.10 0.44
Mn 0.50 2.25
Si 0.00 1.00

0.000 0.080
P 0,000 0.044
Cr 0.00 1.95
Ni 0.00 2.00
Mo 0.00 0.55
\ 0.00 0.45
Cu 0.00 0.48
Al 0.000 0.068
N 0.000 0.050

— if for a particular cooling rate the formation of ferrite
does not occur, then ferrite start and end temperatures
are given the same value as the pearlite start tempera-
ture (situation for curve B in figure 4);

— if for a particular cooling rate both the formation of
ferrite and pearlite do not occur, (only bainite and/or
martensite are formed) then the start and end tempera-
tures of these transformations are given the same value
as the bainite start temperature (situation for curve C in
figure 4);

— if only martensite is formed, then all transformation
start and end temperatures are given the same value:
the martensite start temperature (situation for curve D
in figure 4);

— if the formation of bainite does not occur at the particu-
lar cooling rate, and only ferrite and pearlite are
formed, then the bainite start and end temperature are
given the same value as the pearlite end temperature
(situation for curve E in figure 4).

steel research 68 (1997) No. 2

It should be stressed that the artificial intercepts assigned
to each cooling curve have no physical meaning, but they
serve to generate a constant six intercepts for each of the
23 cooling conditions used to convert the CCT diagram
from a graphical to a numerical format. The magnitude of
the differences between the six predicted intercept tem-
peratures can be used to reconstruct the type of transfor-
mation, requiring only a moderate amount of metallurgical
knowledge.

Training strategy

In total, 3 neural networks were trained, all on the same
data, with different architecture, i.e. with a different num-
ber of hidden nodes. A neural network with 5 hidden nodes
(network 1), a neural network with 10 hidden nodes
(network 2), and a neural network with 15 hidden nodes
(network 3) were trained.

As relatively few data (89 steels with measured CCT
diagram) were available for training and validation it is
unlikely that a randomly chosen validation set is fully
representative for the complete data set. In such cases the
performance of the neural network is difficult to evaluate
and an alternative training procedure must be chosen. It
was decided to train the network using cross-validation
[10...12]. Each neural network was trained 5 times with
different validation sets (each consisting of 18 samples).
The overall accuracy in prediction of the neural network is
the average obtained after the 5 training sessions. The final
neural network can be found by training a neural network
with all data in the training set, so without validation set,
using the average number of iterations at which overtrain-
ing occurred during the 5 cross-validation training ses-
sions,

Training was executed on a IBM compatible PC, 486
DX 11, 66 MHz. The maximum number of iterations for all
training sessions was pre-set at 1000. However, the best
models were already developed after, typically, a 100 it-
erations,

Overtraining started at these numbers of iteration and the
weight factor combination (model) was saved just before
the onset of overtraining.

The neural network was trained using the momentum
version of the back propagation of error learning rule.

Results and discussion

The accuracy in the prediction of all three neural net-
works was similar, So for this very complex problem a
network with only 5 hidden nodes is sufficient. This neural
network (network 1) was chosen to validate the predictive
power of the neural network models. The final test for this
validation is to compare the measured CCT diagrams with
the calculated CCT diagrams. Three of those comparisons
will be presented and discussed. One CCT diagram was
predicted for a steel in the middle of the input domain
(steel 1), a second CCT diagram was predicted for a steel
at the low alloy edge of the domain (steel 2), and a third
CCT diagram was predicted for a steel at the high-alloy
edge of the domain (steel 3). The input parameters for
these three predictions are given in table 2.
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Table 2. Input parameters for three steel grades for the comparison of the predicted

and the measured CCT diagram

was measured. Again, the reason for this
disagreement can be found in the data

Tawst| C | Mn | Si S P Cr| Ni [Mo]| V

steel 1]890 |0.23 |0.65 {0.30 |0.030{0.013 30.12 10.05 (0.5 {0.03 [0.08
steel 211350 [0.10 {1.50 |0.37 [0.007 {0.011 10.00 }0.00 (0.00 {0.02 {0.00
steel 311050 {0.43 [1.67 [0.28 [0.008 [0.021 {0.32 [0.11 {0.03 {0.10 {0.06

The predicted and measured CCT diagrams are shown in
figures 5 to 7. The shaded areas, surrounded by hand-
drawn dotted lines, belong to the experimental CCT dia-
grams. The squares represent the predicted time-temper-
ature combination for the ferrite formation; the crosses
represent the predicted time-temperature combination for
the pearlite formation, and the triangles represent the pre-
dicted time-temperature combination for the bainite for-
mation. The solid lines through the various data points
form the predicted CCT diagram.

The predicted and experimental CCT diagrams of steel 1
are both shown in figure 5. The martensite start tempera-
ture was well predicted. The prediction of the bainite start
temperature was also predicted with high accuracy. Only at
those cooling rates at which bainite' was the first phase to
form from austenite (the bainite nose), the predictions were
less accurate. The prediction of the ferrite start temperature
was 25 °C too low, and it was also predicted at lower
cooling rates. The same holds for the prediction of the
pearlite start temperature. The bainite end temperature was
predicted with high accuracy, except for the low cooling
rates. The reason for this can be found in the data process-
ing as will be shown later in the discussion.

The predicted and experimental CCT diagrams for the
low carbon steel (steel 2) are both shown in figure 6.
Again, the martensite start temperature was predicted with
high accuracy. The onset of the transformation of austenite
to ferrite or bainite was predicted at too high a tempera-
ture. The difference between predicted and measured tem-
peratures was between 25 and 50 °C. The pearlite start
temperatures are accurate, however, a much smaller trans-
formation area was predicted (a higher temperature for the
pearlite end transformation was predicted). The prediction
of the end temperature of the bainite formation was also
too high (50 °C) and the formation of bainite was predicted
at the lower cooling rates, at which no bainite formation
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Figure 5. Predicted and experimental CCT diagram of steel 1
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Al | N processing. Summarising, the prediction
0.051 0.000 of the CCT diagram for the low-carbon,
0.044 |0.000 low-alloyed steel (steel 2) was less accu-

rate than that of the steel in the middle of
0.000 {0000 the input domain (steel 1), but still quite

acceptable.

The predicted and experimental CCT diagrams for the
steel with the higher alloy content (steel 3) are both shown
in figure 7. For this steel grade the predicted martensite
start temperature was ~ 40 °C too high. The first transfor-
mation of austenite to ferrite or bainite was predicted at
higher temperatures (maximum difference is 25 °C) and
the formation of bainite was predicted at higher cooling
rates than has been measured. The prediction of the pear-
lite start temperature was good. The pearlite end tempera-
ture was predicted at too high a level (difference up to 100
°C), as was the case for steel 2. The same holds for the
bainite start temperature at the lower cooling rates. The
predicted bainite end temperatures were fairly accurate.
Again, the prediction of the CCT diagram of steel 3 was
less accurate than that of steel 1, but still very acceptable,
Especially when taking into account the limited number of
data sets available for training and the intrinsic variance in
the experimental CCT diagrams.

A more quantitative way to evaluate the performance of
the neural networks is by looking at the relative standard
deviation, s, of all 138 (23 sets of 6 intercepts) predictions
on which the predicted CCT diagrams are constructed for
the steel grades in the validation set. s is defined as:

(1)

with y;,; - measured transformation temperature and yp, -
predicted transformation temperature for sample i, resp.

All three neural network models gave similar values for
s. The s values for the transformation temperature predic-
tions for network 1 are given in table 3.

The error in the prediction of the transformation start
temperature for the fast and the slow cooling rates is lower
than for the intermediate ones. The reason for this is two-
fold:
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Figure 6. Predicted and experimental CCT diagram of steel 2
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Table 3. Error of the various predicted transformation temperature
predictions (°C) of network 1. The cocling rates are expressed in
°Cl/s

Cooling rate ferrite pearlite bainite
start end start end start end
713 46 46 45 46 45 46
583 45 46 46 46 46 46
457 46 45 45 46 46 45
309 56 48 48 48 48 45
220 68 58 59 58 60 45
133 83 70 70 70 71 44
67 90 76 74 72 72 48
62 94 75 75 72 73 48
36 93 73 76 72 73 53
32 91 72 75 70 71 46
22 86 65 67 64 64 45
14 80 61 64 60 62 52
10 78 58 59 58 60 58
7.0 77 58 63 60 63 66
5.5 62 48 53 46 53 75
33 63 47 48 42 53 92
1.2 58 44 43 42 45 106
0.96 52 42 45 48 52 112
0.59 49 42 49 52 58 130
0.30 42 44 53 58 72 138
0.13 42 46 57 56 82 127
0.072 42 44 56 57 79 114
0.047 44 42 56 55 82 117

— one, the transformation process for the intermediate
cooling rates itself is more complex than for the faster
and slower ones. When quenched, the austenite will
always transform to martensite. When slowly cooled,
the austenite will always first (partially) transform to
ferrite. The chemical composition of the steel is of little
importance compared to the cooling conditions at these
cooling rates. For the intermediate cooling rates, the
phase to be formed from austenite will depend more
strongly on the chemical composition. The austenite
may transform to martensite, bainite, ferrite, or even di-
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Figure 7. Predicted and experimental CCT diagram of steel 3
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Figure 8. CCT diagram of a 0.14% C, 1.53% Mn, 0.36% Si,

0.008% S, 0.009% P, 0.06% Cr, 0.03% Ni, 0.01% Mo, 0.04% V,
0.02% Cu, 0.057% Al steel [4]
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rectly to pearlite in the case of a eutectoid steel, with
only small variations in composition;

~ two, the cooling curves intersect the transformation
curves in the CCT diagram at an angle close to 90 ° for
the high and low cooling rates. This angle is much
smaller for the intermediate cooling rates. Now a small
shift in the transformation curve on the time axis will
result in a relatively large error in the intercept tem-
perature. This is clearly an artefact due to the procedure
used to convert the CCT diagram into numerical data.

The error in the prediction of the bainite start and end
temperatures for the lower cooling rates rises to a level of
over 100 °C. The explanation for this high s-value is that
bainite will not form at these cooling rates. However, due
to our sampling procedure, bainite is always assumed to be
present, be it at the pearlite end temperature only. Such
data handling clearly introduced an inconsistency in the
data set.

However, a more important reason for the still relatively
high error in the predictions is due to inconsistency in the
original data from literature as will be shown below.

The experimental CCT diagrams in figures 3 and 8 are
of steels with almost identical chemical compositions.
However, the CCT diagrams, which were determined by
different institutes are markedly different. Clearly, results
obtained by different institutes for nominally the same
steel grade might differ due to minor differences in meas-
urement procedures. Similarly, the diagrams in figures 9
and 10 are of the very same steel, however, with different
austenitising temperatures. The austenitising temperature
was included as an input parameter, but the differences in
these CCT diagrams are bigger than can be accounted for
by the different austenitising temperatures. These 4 dia-
grams were merely included to illustrate that the data used
for training and validation of the network were to some
extent inconsistent, intrinsically limiting the predictive
power of the neural network. Five possible reasons for the
inconsistency in the data are given:

— the interpretation of the dilatometer curves and the final
construction of the CCT diagram based on these dila-
tometer measurements may vary from person to per-
son. A lot of personal bias can be put in both analyses;

— an unknown temperature difference might exist over
the dilatometer sample, resulting in an incorrect tem-

77



Materials technology

9K —
800 4
700
é" 600 é)
gsno ‘;é
é‘ 400 ;Eg’_
300 & 30
200 200
100 100
0 1 | .
0.1 1 10 100 1000 10000 (] 1 10 100 1000 10000
time, s time, §
Figure 9. CCT diagram of a 0.11% C, 1.23% Mn, 0.31% §i, Figure 10. CCT diagram of a 0.11% C, 1.23% Mn, 0.31% §j,
0.018% S, 0.031% P, 0.08% V, 0.005% N steel (4] 0.018% S, 0.031% P, 0.08% V, 0.005% N steel [4]
perature measurement (it is common to have only one  ture is shown in figure 11. The solid lines are hand-drawn
thermocouple attached to the sample); for three different carbon contents (0.05, 0.25, and 0.45%)
— the size of the dilatometer samples is very small and  to bring out the different types of transformation more
they may not be representative for the bulk of the ma-  clearly. This figure illustrates the well known lowering of
terial; the Ar3 temperature with increasing carbon concentration,
— decarburisation of the sample is known to occur often  The influence of carbon on the martensite start temperature
unnoticed; in this subset equals that of earlier work [2] using a differ-
— the prior austenite grain size could not be included in  ent type of analysis: a decrease of 225 °C per percent car-
the model, for lack of suitable input data. It is known  bon for carbon concentrations less than 0.40%.
that at the same austenitization temperature different The influence of the manganese content on the Ar3 tem-
austenite grain sizes can be obtained. Hence the use of  perature is shown in figure 12 for three different manga-
the austenitization temperature as in our model is not  nese concentrations (0.75, 1.50, and 2.25%). Manganese
sufficient. lowers the Ar3 temperature too, but the effect is less strong
The above all contribute to the inconsistency of the data  than that of carbon. The martensite start temperature is
used for training and validation of the network. lowered by 30 °C per percent manganese, in agreement
Having verified that the predictions of the neural net-  with ecarlier work [2]. The influence of manganese is

work are as accurate as the scatter in the input data allows,  stronger at intermediate and lower cooling rates when
the influence of the various input parameters on the CCT  diffusional redistribution takes place [13; 14].
diagram can be investigated. The predicted effects of the The influence of both carbon and manganese was dis-
various element concentrations on the shape of the CCT  cussed, merely to illustrate the potential of the neural net-
diagram can not be shown in simple plots because of the  work model. It is now possible to predict a transformation
many lines in a CCT diagram and the multi-variate nature  line in the CCT diagram for steel grades inside the domain
of the input. Just as an illustration, both the influence of  given in table 1 within just a few seconds. The effects of
carbon and manganese on the start of the austenite decom-  varying single element concentration without contributions
position, the meta-stable Ar3 temperature, are shown in  from others can be investigated, something almost impos-
figures 11 and 12. The base composition of these steels  sible in practice.
(i.e. the concentrations of all alloying element except car- While in the present work a comparison between the
bon and manganese) was equal to that of steel 1. predicted transformation start and finish lines and the ex-
The influence of the carbon content on the Ar3 tempera-  perimental curves in the original data set has been made
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Figure 11, Influence of the carbon content on the Ar3 Figure 12. Influence of the manganese content on the Ar
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only, a more extensive comparison of the performance of
this neural network model with the existing metallo-
physical models for CCT transformation line predictions
would be desirable. It should be realized that such a com-
parison will be hampered by the fact that each of the
models has been validated for different steel grades and
models will have to be used outside their validated do-
mains. This wider comparison of transformation models is
outside the scope of this article and will have to be made in
a future article.

Conclusion

It is possible to predict the transformation start and finish
lines in CCT diagrams on basis of the chemical composi-
tion (12 alloying elements) and the austenitising tempera-
ture using artificial neural networks. The number of hidden
nodes did not influence the accuracy in the predictions. A
network with just five hidden nodes was used to evaluate
the performance of the neural network models. The error
in the temperature prediction depends on the cooling rate.
For high and low cooling rates, the error is only ~ 40 °C.
For the intermediate cooling rates the error in the tempera-
ture prediction is higher, mainly due to the shape of the
CCT diagrams themselves.

The predictive power of the neural networks is more
than satisfactory and all general trends are well predicted.
The prediction of the fine detail is seriously hindered by
the inconsistency within the data set used for the training
and validation. With the neural networks trained, it is pos-
sible to investigate pure relations between input parameters
and CCT diagram easily, something not generally possible
in practice.
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