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Abstract
Recent work has revealed frequency-dependent global patterns of information flow by
a network analysis of magnetoencephalography data of the human brain. However, it
is unknown which properties on a small subgraph-scale of those functional brain
networks are dominant at different frequencies bands. Motifs are the building blocks of
networks on this level and have previously been identified as important features for
healthy and abnormal brain function. In this study, we present a network construction
that enables us to search and analyze motifs in different frequency bands. We give
evidence that the bi-directional two-hop path is the most important motif for the
information flow in functional brain networks. A clustering based on this motif exposes
a spatially coherent yet frequency-dependent sub-division between the posterior,
occipital and frontal brain regions.

Keywords: Network motifs, Network clustering, Brain networks, Information flow,
Effective connectivity

Introduction
The application of network science to neuroscience has provided a new research perspec-
tive on the organization of brain networks from healthy subjects and patients suffering
from neurological disorders (Stam and Van Straaten 2012; Bullmore and Sporns 2009).
A recent study by Hillebrand et al. (2016) observed frequencydependent global patterns
of information flow based on magnetoencephalography (MEG) data of healthy subjects.
However, little is known about the underlying mesoscale level in terms of network motifs
at which these flows occur.
To analyze information flow, the pairwise measure of transfer entropy (TE) has often

been applied (Schreiber 2000). For a pair of time series X and Y, TE quantifies the
improvement in predicting the future of X when considering both the current value of X
and the current value of Y, compared to only using the current value of X. At the level
of brain regions, the TE value is classified as a measure of effective connectivity between
two regions.
Recently, an extension of the TE that is based on phase information (Rosenblum et al.

2001), the Phase Transfer Entropy (PTE), has been proposed in order to lower the com-
putational costs and complexity (Lobier et al. 2014; Paluš M and Stefanovska 2003). After
calculating all pairwise PTE values, functional brain networks with nodes representing
brain regions and link weights inheriting their pairwise effective connectivities, can be
constructed so that the topology of these networks can be characterized.
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Based on the pairwise PTE values, Hillebrand et al. (2016) observed that for higher
frequency bands, alpha1, alpha2 and beta, the global information flow was predomi-
nantly from posterior to anterior brain regions, whereas the pattern was opposite for the
low frequency theta band. The latter, an anterior-to-posterior pattern, was also discovered
in electroencephalography (EEG) data (Dauwan et al. 2016). It was hypothesized that the
information flow in resting-state networks is likely driven by the strong posterior struc-
tural hubs and their high levels of neuronal activity (Hillebrand et al. 2016; Moon et al.
2015; Tewarie et al. 2014). However, the opposite directions of information flow are not
yet fully understood.
Another biological explanation for the reverse patterns could be the Default Mode Net-

work (DMN), which is the network of brain regions that are active during resting-state.
The DMN consists of two interacting subsystems: the temporal system, which is responsi-
ble for memory, and the fronto-parietal system, which is essential for self-relevant mental
simulations (Buckner et al. 2008). These two subsystems seem to exist in parallel, though
at different frequencies, and their interaction represents an integration mechanism for
brain functions (Edelman andGally 2013). This hypothesis is strengthened by results from
invasive animal recordings of the visual cortex (Van Kerkoerle et al. 2014; Bastos et al.
2015), where the opposite directions of information flow have been connected with the
process of memory consolidation (Sirota et al. 2008).
In this study we investigate the information flow patterns with regard to a smaller

scale for different frequency bands. On the mesoscale level of brain networks, network
motifs have been identified as a valuable feature by many previous studies (Sporns and
Kötter 2004; Honey et al. 2007; Sporns et al. 2007). Motifs are frequently occurring
subgraphs of networks, typically consisting of three or four nodes (Milo et al. 2002).
Previous studies were able to link structural and functional brain networks with regard
to their motifs to describe flexibility in switching between different brain functions
(Battaglia et al. 2012) and for coupling of brain dynamics (Battiston et al. 2017). Further-
more, changes in the motif frequencies of so-called progression networks for patients
suffering from Alzheimer’s disease have been discovered (Friedman et al. 2015), showing
that motif analysis may provide potentially powerful new biomarkers.
The importance of motifs has not only been studied for brain networks, but also for var-

ious others, like biological transcription networks (Mangan and Alon 2003), food webs
(Kondoh 2008) or transportation and mobility networks (Schneider et al. 2013). In order
to link motifs to the modular organization often present in such networks, Benson et al.
(2016) proposed a new algorithm for motif-based clustering. Since this algorithm identi-
fied clusters of functional importance in the neuronal network of theC. Elegans, it appears
to be a promising approach to analyze the higher-order organization of human brain net-
works. Our previous study (Meier et al. 2016) gave evidence that clusters obtained by this
algorithm are indeed meaningful for effective connectivity networks constructed using a
similar metric, the directed phase transfer entropy (dPTE). Here, we extend this prelimi-
nary work with results for PTE (as compared to dPTE) and for two frequency bands, the
alpha2 and the theta band.

Frommeasurements to directed networks
Measuring information flow in the brain

MEG measures the magnetic field fluctuations induced by neuronal activity
(Hämäläinen et al. 1993). The data for our analysis is based on MEG recordings in 67
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healthy subjects from a preceding study (Tewarie et al. 2014) and was used to show the
frequency-dependence of the global information flow in the brain. In particular, it was
shown that the alpha2 band at 10-13 Hz has a strong back to front information flow, while
the theta band at 4-8 Hz has a strong front to back information flow (Hillebrand et al.
2016). This current study is based on the alpha2 and theta band as well. Figure 1 gives
a schematic overview of our processing pipeline, from an example time series of source
level MEG data towards obtaining the PTEmatrices for the alpha2 frequency band (theta
frequency band data follows a similar processing).
From the MEG measurements, we obtained1 phase time series (Rosenblum et al. 2001)

from 78 different cortical regions of interest (ROIs) based on the Hilbert transform. We
denote a possible value of the instantaneous phase of the signal of region X at time t by
xt and abbreviate the probability that the phase of X equals xt at an arbitrary time point
t to Pr[Xt = xt]= Pr[ xt]. The information flow between two ROIs, X and Y, is then
quantified by the Phase Transfer Entropy (Lobier et al. 2014)

PTEXY (h) =
∑

Pr
[
xt+h, xt , yt

] × log
(
Pr

[
xt+h|xt , yt

]

Pr
[
xt+h|xt

]
)
, (1)

for a certain time delay h, where the sum runs over all possible values xt , xt+h and yt
of the instantaneous phases of the signals. The (joint) probabilities are determined over
histograms of their occurrences in an epoch (Lobier et al. 2014). Following Hillebrand
et al. (2016), we fix h at

h = Ns · NROI
N±

, (2)

where Ns = 4096 and NROI = 78 are the number of samples in an epoch and the number
of ROIs, respectively, andN± counts the number of sign changes for the phase across time

Fig. 1 Processing pipeline from source level MEG data (78 cortical regions) to alpha2 frequency band PTE
matrix. The figure shows an example time series of a single ROI for a single epoch. In order to calculate the
PTE matrices, we need the instantaneous phases of all 78 cortical regions. The PTE matrix entry (i, j)
corresponds to the PTE value from region i to j
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and ROIs. For clarity, h will be omitted from the notation and we use only PTEXY instead
of PTEXY (h) in the remainder. It should be noted, that the PTE of two regions X and Y is
asymmetric, so PTEXY = PTEYX does not hold in general. In order to remove individual
bias of the measurements, all pairwise PTE values are averaged over all subjects and all
epochs. A histogram of those averaged PTEs is shown in Fig. 2 for the alpha2 and theta
band.

Network construction

The pairwise PTE values between all 78 ROIs imply a fully connected networkGPTE where
each ROI is a node and the PTE is the weight of each link. In order to filter out noise
and focus on the most important connections possessing the highest PTE values, all links
with a PTE below or equal a certain threshold τ are discarded (set to zero) and all links
above τ remain without a weight (set to one). This procedure eliminates weak connections
which might otherwise obscure the inherent topology induced by significantly stronger
connections. If (for a fixed h) PTEXY > τ and PTEYX > τ for two ROIs X and Y, a
bi-directional link between X and Y is set. Similarly, for PTEXY > τ ≥ PTEYX , only a uni-
directional link from X to Y is set. Thus, by selecting an appropriate threshold τ , the fully
connected weighted networkGPTE is transformed into a sparser, directed and unweighted
network G(τ ), also known as binary directed network.
Finding an appropriate threshold τ is a challenge in itself (van Wijk et al. 2010), which

we will not undertake, since one singular value for τ will not be needed in our approach
here. Instead, we consider a class of networksG(τ ) created by sampling τ from an interval
[ τmin, τmax]. Setting τ = 0 results in a fully connected network whereas setting τ to the
maximum of all PTE values results in an empty network of 78 isolated nodes. Clearly,
these extreme thresholds provide networks that lack structure and present no insight. To
avoid constructing such degenerate networks, we pick a narrower interval as follows:
We set τmax to be the smallest threshold at which the obtained network is still weakly

connected, i.e. has no isolated nodes. To avoid too many weak connections, τmin is set
to the 30th-percentile of the PTE distributions (see Fig. 2). This value eliminates a fair
amount of weak connections while the majority of the strongest connections persist.

Fig. 2 PTE between each possible pair of ROIs averaged over all subjects and measurement epochs. In total,
6006 average PTEs are displayed as a histogram with 100 bins for each of the two frequency bands. The
alpha2 frequency band (shown in blue) has on average lower PTEs than the theta frequency band (shown in
orange). The vertical linesmark the 30th-percentile of each distribution
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The networks within [ τmin, τmax] are all connected, but sparse enough to resemble com-
plex structures. At τmax itself, the link density is 0.168 for alpha2 and 0.152 for theta,
whereas the 30%-percentile of τmin corresponds to networks with a link density of 0.7.
This allows to cover a large variety of different networks in [ τmin, τmax], each representing
a different perspective on the underlying data. For example, we observe that the assorta-
tivity (Noldus and VanMieghem 2015) for theta frequency band data ranges from−0.351
to −0.062 and that the ratio between uni-directional and bi-directional links is changing
as well. Table 1 contains the exact values of τmin and τmax together with some properties
of networks at the interval endpoints. Figure 3 shows how the number of links is changing
for various sampled values of τ , including the interval.

Information flowmotifs
Motif search

Ourmotif search is performed with themfinder software version 1.2 (Kashtan et al. 2002).
For the current study, our main focus is on the 13 different 3-motifs as shown in Fig. 4.
Each motif is identified by a number whose binary representation translates to the adja-
cency matrix for the corresponding motif, consistent with the notation used by mfinder.
Figure 5 gives an example of this conversion, using motif number 78 (the bi-directional
2-hop path).
For any given network G (to which we refer as “original network”), the mfinder pro-

gram performs two tasks: first, it counts the frequency JG,M of all motifs M in G and
second, it generates a number of random networks with similar properties as the original
network and determines the motif frequencies in each of them as well. For every orig-
inal network, mfinder generates 1000 random networks using the switching algorithm
described in Maslov and Sneppen (2002) with 100 switches. We use the default param-
eters for mfinder, which preserve the degree sequence of the original network and the
number of bi-directional links.
The random networks serve as a null model to determine which motifs are over-

expressed in the original network. More precisely, we adopt the criteria given in the
supplemental material of Milo et al. (2002). These criteria are:

i) The probability that a motif in a random network occurs more or an equal amount
of times as in the original network is smaller than 0.01.

ii) The motif appears in the original network at least 4 times with a distinct set of
nodes.

iii) The ratio between the motif frequency of the original network and the average
number of occurrences of the motif in the random networks is at least 1.1.

Table 1 Network properties of G(τ ) for τ at the endpoints of the interval [ τmin , τmax]

alpha2 theta

G(τmin) G(τmax) G(τmin) G(τmax)

#uni-directional links 1006 848 648 799

#bi-directional links 1601 81 1776 56

average degree 53.949 12.949 53.846 11.679

assortativity -0.105 -0.129 -0.351 -0.062

link density 0.700 0.168 0.700 0.152

For alpha2 we have [ τmin , τmax ]=[ 1.8050, 1.8636] and for theta [ τmin , τmax ]=[ 2.0095, 2.0535]
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a

b

Fig. 3 Left axis: change in link density (in absolute number of links) with respect to different values of τ . Our
selection of τmin corresponds to a relative link density of 0.7 (4204 links, counting each bi-directional link as
two links). Right axis: number of isolated nodes. Our selection of τmax is the highest possible τ for which there
is still 1 weakly connected component (i.e. the network has no isolated nodes). The grey shaded areas
indicate the resulting interval [ τmin , τmax ] for a alpha2 and b theta band

Given the mean μ(Jrand,M) and the standard deviation σ(Jrand,M) of the motif frequency
in the random networks, the magnitude of overexpression of motifM in G is given by its
z-score

zG,M = JG,M − μ(Jrand,M)

σ (Jrand,M)
. (3)

A motif which is not overexpressed may still occur quite frequently in the original net-
work, though it arises at a similar frequency by a random link rewiring process. Thus,
it can be argued that overexpressed motifs carry some functional importance for the
underlying system since they do not arise merely by chance.

Fig. 4 All 13 possible connected directed 3-motifs. The motif ID in binary represents the 3 × 3 adjacency
matrix of the motif
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a b

Fig. 5 aMotif ids explained by motif 78 as an example. The decimal representation 78 encodes the binary
adjacency matrix of the motif. b The central node of motif 78 is known as apex node

Overexpressed motifs in functional brain networks

We sample the interval [ τmin, τmax] with a step-size of � = 0.005, for both alpha2 and
theta band data. For each sampled threshold τ , we construct G(τ ) and regard G(τ ) as
the original network formfinder in order to determine all overexpressed motifs. Figure 6
shows the overexpressed motifs for alpha2 and Fig. 7 for theta band data together with
the corresponding z-scores.
We observe that motif overexpression depends on the chosen threshold τ . For example,

in the alpha2 bandmotif 74 andmotif 14 were only detected in very sparse networks close
to the connectivity threshold τmax (Fig. 6). Moreover, there are gaps at certain ranges of τ
in which amotif does no longer fulfill all overexpression criteria, e.g. motif 102 at τ = 1.85
and τ = 1.855 for alpha2 or motif 6 at τ = 2.025 and τ = 2.050 for theta.
From all overexpressed motifs, motif 78 stands out for the following reasons: Firstly,

motif 78 is overexpressed in both, alpha2 and theta, for a large part of the interval
[ τmin, τmax] without gaps between our sample points. Secondly, the z-scores for this motif
are always higher than the z-scores of any other overexpressed motif for the correspond-
ing thresholds. Hence, we select motif 78 as our motifM for the motif-based clustering in
the “Motif-based clustering of functional brain networks” section.

Apex-ratio and overlap with hubs

Motif 78 encodes a pattern in which one central node is bi-directionally linked with
two otherwise disconnected nodes. The node at this central position of motif 78 is
known as apex and has been shown to be related to brain dynamics in previous studies
(Harriger et al. 2012; Vicente et al. 2008; Gollo and Breakspear 2014; Gollo et al. 2014).

Fig. 6 Overexpressed 3-motifs for alpha2 band data in the interval [ τmin , τmax ]. The area of the circles scales
with the z-scores. The numerical value of the z-scores is plotted on top of each circle for better comparison.
Note that motif 78 has consistently the highest z-score
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Fig. 7 Overexpressed 3-motifs for theta band data in the interval [ τmin , τmax ]. The area of the circles scales
with the z-score. The numerical value of the z-score is plotted on top of each circle for better comparison.
Note that motif 78 has consistently the highest z-score

The apex-ratio of a node is the ratio between the node occupying the apex-position (see
Fig. 5b) divided by its total participation in instances of the complete motif 78. For exam-
ple, an apex-ratio of 1 corresponds to a node that is always at the apex-position ofmotif 78,
and never at a different position. Figure 8 shows amapping of the average apex-ratio to the
template brain for both frequency bands. The average was taken over equally distributed
sample points, taken from the corresponding [ τmin, τmax] with a step-size of � = 0.005.
Following the study by Sporns et al. (2007) conceptually, we are interested in the relation

between the apex-ratio of a node and its degree. A node is a high-degree node, if its degree
(number of incoming + outgoing links) is at least as large as the average degree of the
network plus one standard deviation. Figure 9 shows that most of the nodes with the
highest apex-ratio are also high-degree nodes in both the alpha2 and theta band for τ

fixed to 1
2 (τmin+τmax). While the apex-ratio and the number of high-degree nodes change

with τ , we observe (not shown) a similar relation for different values of τ as well. More
specifically, when considering the sample points between τmin and τmax described in the
previous paragraph, the Pearson correlation coefficient between the apex-ratio and the
degree for all nodes with a positive apex-ratio lies within [ 0.53, 0.86] for alpha2 andwithin
[ 0.55, 0.95] for theta.

a b

Fig. 8 Average apex-ratio mapped to the template brain. The average was taken over equally distributed
sample points of a [ τmin , τmax ]=[ 1.8050, 1.8636] for alpha2 and b [ τmin , τmax ]=[ 2.0095, 2.0535] for theta. The
step-size for sampling was � = 0.005. The nodes with the highest apex-ratio in the theta band are found in
posterior brain regions, where for alpha2 the apex-ratio is lowest
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a

b

Fig. 9 ROIs sorted in decreasing order by their apex-ratio. Red barsmark high-degree nodes, i.e. nodes with a
degree higher than the average degree plus one standard deviation. a alpha2 band for τ = 1.834, b theta
band for τ = 2.032

Motif-based clustering
Benson et al. (2016) developed a clustering algorithm that partitions a networkG based on
a motif M. The main idea of their algorithm is to construct clusters by “cutting” through
the minimum possible number of motif instances, while maintaining a high density of
motif instances within each of the clusters. In this section, we summarize only the basic
concepts (including the algorithm) necessary to understand how the clustering of the
networks was achieved. Details about the performance, complexity and additional appli-
cations can be found in the supplemental material of Benson et al. (2016) together with a
comprehensive analysis of the algorithm.
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Motif adjacency matrices

Let G be a directed network with a set of nodes N = {1, 2, . . . ,N}. Two motif instances
are called node-disjoint if their set of nodes are not identical, i.e. they have at least one
node not in common. For each pair of nodes i, j let wij be the number of node-disjoint
motif instances in which i and j participate together. Then, the N × N symmetric matrix
WM with elements wij is called the motif adjacency matrix. The elements dij of the motif
diagonal degree matrix DM are given by

dii =
N∑

j=1
wij

and themotif Laplacian by

LM = DM − WM.

The clustering algorithm uses the eigenvector belonging to the second smallest eigen-
value of the normalized motif Laplacian, which is defined as

LM = I − D− 1
2

M WMD− 1
2

M

where I denotes the identity matrix. For a graph G(τ ) based on a threshold τ the
corresponding motif adjacency matrix is denoted by WM(τ ). Figure 10 illustrates the
construction of a motif adjacency matrix.

Motif conductance

Given the motif adjacency matrix WM of a network G, and a partition of the nodes N =
|N | into two disjoint subsets N1 and N2 = N \N1, we define the motif conductance
φG(N1,N2) of that partition as

Fig. 10 Example for the construction of a motif adjacency matrix based on the motif 108. In this example
network, motif 108 can be found twice: 1. nodes {A, B, C}, 2. nodes {A, C, E}. Each instance of motif 108 is only
counted once per set of nodes (node-disjoint motifs). The outgoing link from node D is still in the network,
but is not part of any motif instance 108. The node-pair {A,C} is part of two different (node-disjoint) instances
of motif 108, which is why there is a value of 2 at the corresponding cells of the motif adjacency matrix
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φG(N1,N2) = cutG (N1,N2)

min {volG(N1), volG(N2)}
with

cutG(N1,N2) =
∑

i∈N1,j∈N2

wij

and for a = 1, 2

volG(Na) =
∑

i∈Na

N∑

j
wij =

∑

i∈Na

dii.

Thus, the motif conductance φG(N1,N2) equals the ratio between the number of
motif-instances cut by the partition {N1,N2} and the lowest number of preserved
motif-instances in one of the two partitions.

Motif-based clustering algorithm

A low conductance is often a desirable quality for a network clustering (Emmons et al.
2016). However, finding the minimum conductance of a network is a well-known NP-
complete problem (Garey and Johnson 2002) which directly translates to the complexity
of finding theminimummotif conductance φ∗

G. Benson et al. (2016) present a polynomial-
time algorithm that finds a nearly optimal partition {N1,N2} with motif conductance

φG(N1,N2) ≤ 4
√

φ∗
G

for 3-motifs. In practice, the runtime is largely dominated by the computation of the motif
adjacency matrix, which is still efficient for the motifs of size three that we consider for
this work.
The algorithm from Benson et al. (2016) is a generalization of the classical spectral

clustering algorithm (Van Mieghem 2011; Von Luxburg 2007), which makes use of the
Laplacian matrix of a network. The eigenvector corresponding to the second smallest
eigenvalue of this matrix is known as Fiedler’s vector (Fiedler 1973) and by ordering its
elements, a node partition of a low (link-based) conductance can be devised.
The main steps of the algorithm from Benson et al. (2016) consist of computing the

motif adjacency matrix WM from which the normalized motif Laplacian LM is con-
structed and the second smallest eigenvalue is computed. Afterwards, the corresponding
eigenvector is used to create a partition {N1,N2} according to the smallest motif conduc-
tance. Motif conductance is not defined for nodes that do not participate in any instance
of the motif M and thus are not considered to be part of neither N1 nor N2. We show
them as a separate third group of nodes.
The complete algorithm is listed as Algorithm 1 in pseudocode. We implemented the

algorithm in Python (using NumPy and NetworkX) and double-checked our results with
the implementation available on the SNAP-platform (Leskovec and Sosič R 2016).

Motif-based clustering of functional brain networks

The first step to apply the motif-based clustering to the brain is to fix a motif M. In
the “Overexpressed motifs in functional brain networks” section, we identified motif 78
to be of high importance: it is prominent in both, the alpha2 and theta band and provides
continuously the highest z-score of all motifs, which designates it as the strongest candi-
date. Moreover, motif 78 is most robust against changes in τ as it was overexpressed at
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Algorithm 1Motif-based clustering algorithm by Benson et al. (2016)
1: Input: Directed, unweighted network G and motifM
2: Output:Motif-based clustersN1 andN2 (subsets of nodes)
3: WM ← motif adjacency matrix of G with respect toM
4: DM ← diagonal degree matrix ofWM

5: LM ← I − D− 1
2

M WMD− 1
2

M normalized motif Laplacian
6: z ← eigenvector corresponding to second smallest eigenvalue of LM

7: σi ← index of vector D− 1
2

M z with ith smallest value
8: � ← arg min

i=1,...,N
φG({σ1, . . . , σi}, {σi+1, . . . , σN })

9: {N1,N2} ← {σ1, . . . , σ�},{σ�+1, . . . , σN }
10: return {N1,N2}

almost all sample points taken within [ τmin, τmax]. However, it is not obvious, which of
these sample points would result in the best possible network representation to create a
meaningful clustering. To circumvent the selection of a fixed single threshold, we define
a set of different thresholds T, each of them related to a different network and thus to dif-
ferent motif adjacency matrices. This is similar to the analysis done for Fig. 6, where we
sampled [ τmin, τmax] with a step-size of � = 0.005, resulting in a set

T∗ = {τmin + k · � | k = 1, . . . , 12} .
While this set is sufficient to get an idea about the impact of a changing τ on motif counts
and makes for some compelling visualizations, equally distributed sample points result in
a bias, since the change in the networks (i.e. their numbers of links) does not scale linearly
with τ as shown in Fig. 3.
To avoid this bias, we pick the sample points T such that between each two consecutive

sample points the corresponding networks change by the same amount. The smallest
amount of change between two networks is the existence (or absence) of a single link. If
we begin with the networkG(τ = τmin) and slowly increase τ by ε untilG(τ ) andG(τ +ε)

differ by exactly one link, we add τ + ε to our set T of sample points and continue this
procedure until we eliminate the next link and so on. Thus, T consists of all thresholds τ

within [ τmin, τmax] at which the corresponding networks change by one link2, creating an
unbiased sample of high resolution.
Summing the motif adjacency matrices over all networks generated by the elements in

T results in an aggregated motif adjacency matrix

WMagg =
∑

τ∈T
WM(τ ) (4)

for each frequency band. Applying the motif-based clustering algorithm to the aggregated
motif adjacency matrix given by Eq. (4) constructs a partition that takes the structure
of different networks into account. Motifs consisting of strong links (i.e. with weights
close to τmax) will be part of many of these networks, giving themmore importance when
searching for a partition of low motif conductance. In contrast, motifs with weak links
(weights close to τmin) receive less consideration accordingly.
Although the aggregation avoids to base the complete analysis on a single fixed thresh-

old, it introduces another difficult choice: the sample interval [ τmin, τmax]. Our reasoning
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to set τmin to the 30th-percentile of the PTE-distribution and τmax to the weak connec-
tivity threshold has been discussed already in the “Network construction” section. To
add to this reasoning, we want to point out that in general, a small change to the end-
points from [ τmin, τmax] will only result in small changes to aggregated clusterings, while
a small change to a clustering based on a single threshold is comparably more sensi-
tive. Ultimately, setting the interval [ τmin, τmax] must, to some extent, remain a matter
of preference, as it reflects which of the measurements (PTE values) are expected to be
meaningful.
The results of the partition of the brain into 2 clusters are shown in Fig. 11 for the alpha2

band data and in Fig. 12 for the theta band data, based on our preference for [ τmin, τmax].

Discussion
Overexpression of motif 78

Concerning network motifs, we observed an overexpression of motif 78 in line with our
previous study (Meier et al. 2016). Two other motifs, 14 and 74, which can be regarded as
degenerated forms of motif 78 missing one uni-directional link, have also been identified
as overexpressed in both of our studies. Due to the overview over a range of thresholds
in the current study, we can explain the origins of the overexpression of these related
motifs: Since motifs 14 and 74 are only overexpressed for higher thresholds τ and, thus,
only for sparser networks, their appearance seems to be a direct consequence of the
applied threshold removing the weakest link in motif 78. Thus, motifs 14 and 74 are most
likely consequences of the applied threshold not representing new triangular relations but
supporting the overall dominance of motif 78.
The overexpression of motif 78 is also in line with previous research stating the same

result for the structural brain networks of the macaque and the cat (Sporns and Köt-
ter 2004). Gollo et al. (2015) applied neural mass models on the macaque connectome
and identified motif 78 as an important motif for the dynamic core of the brain network.
Furthermore, a recent study by Wei et al. (2017) singled out motif 78 as an important

Fig. 11 Partition of brain networks into two clusters of nodes based on motif 78 for the alpha2 band. 15 out
of 78 nodes did not participate in any motif 78 instance and are shown as a separate third cluster
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Fig. 12 Partition of brain networks into two clusters of nodes based on motif 78 for the theta band. 2 out of
78 nodes did not participate in any motif 78 instance and are shown as a separate third cluster

motif for the information transfer in functional brain networks. In particular, a node at
the apex position of motif 78 acts as a bridge for the information flow between its neigh-
bors and the overexpression of motif 78 could represent the basic principle of segregation
and integration at the macroscopic level of brain regions (Sporns and Kötter 2004). The
principle of segregation and integration originates from neuronal dynamics where signals
from spatially segregated neurons are integrated with each other into one coherent signal
(Sporns et al. 2004; Tononi et al. 1998; Zhigulin 2004). Further, Honey et al. (2007) showed
that the participation of a node in motif 78 has a high correlation with being a hub of
the network. The overexpression of motif 78 together with its close relation to hubs con-
firms previous findings identifying hubs as drivers for the integration of information flow
(van den Heuvel et al. 2012; Gollo et al. 2015; Sporns et al. 2007). In addition, the over-
expression of motif 78 in both frequency bands, alpha2 and theta, strengthens the claim
even further that motif 78 is a general building block of effective connectivity networks
and therefore an important feature for the information flow in brain networks.
We showed that the hubs of the effective connectivity network often take on the apex

position of motif 78. This hub-apex relation has previously been shown by (Sporns et al.
2007) for structural brain networks. We now extended this finding to the effective con-
nectivity networks, identifying another shared feature of brain structure and function.
The effective connectivity hubs seem to be located more in the front for the alpha2 band
and in posterior regions for the theta frequency band (Fig. 8). Considering these oppo-
site locations together with the opposite directions of information flow that have been
discovered by Hillebrand et al. (2016), these effective connectivity hubs seem to be the
targets of the global information flow. Thus, one could argue that their target position
in the global information flow patterns makes these hubs ’slaves’ of the information flow,
which is line with a previous study by (Gollo et al. 2015). These findings support earlier
studies by (Moon et al. 2015) and (Meier et al. 2017), which showed that hubs play an
important role for the global network dynamics, and extend them from the structural to
the functional domain.
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Clusters of the functional brain network

When analyzing the global intertwined organization of motif 78, we identified spatially
coherent clusters in both frequency bands. Overall, the motif-based clustering algorithm
split the brain in three major parts, the frontal lobe, the occipital lobe and the rest cor-
responding to a joint cluster of temporal and parietal lobe. Without including any spatial
information in the construction of the directed networks or any restriction on locations
for the performed clustering, we were able to recognize this well-known global spatial
organization of the human brain in our obtained clusters.
As a commonality between the alpha2 and theta band, the frontal regions seem to be

nearly consistently together in one cluster. Moreover, in alignment with the recent study
of Hillebrand et al. (2016) we also observe differences in the global patterns between
high and low frequency bands. Whereas in the theta band, the posterior regions belong
together with the frontal lobe in one cluster and thus participate in motif 78 together with
the frontal lobe, the posterior regions in the alpha2 band do not participate in motif 78.
For the theta band, the frontal and the occipital lobe apparently share many interactions
in the form of motif 78 because the clustering algorithm does not split them. This strong
higher-order interaction between posterior and frontal brain regions could relate to the
previously described global pattern of information flow between frontal and posterior
regions in the theta band (Hillebrand et al. 2016; Dauwan et al. 2016).
The non-participating regions in the alpha2 band consist mainly of strong hubs in

posterior brain regions, which in our constructed networks have no in-degree but a sig-
nificant out-degree. These nodes cannot participate in any instance of motif 78 as they
would need at least one incoming link. Thus, the previously described pattern of informa-
tion flow from the posterior to the frontal regions in the alpha2 band is more likely based
on the strong sending links, and less on this particular motif. However, the high density
of motif 78 in the frontal regions might still play a role for the integration of the received
signals from the posterior regions.

Differences to previous study

We simplified the construction of directed networks in comparison with our previous
study (Meier et al. 2016). In the earlier work, we computed the directed PTE (dPTE) value
defined as

dPTEXY = PTEXY
PTEXY + PTEYX

(5)

for each direction and extracted the links with significantly high or low dPTE values.
Thereby, we focused on the highly asymmetric pairwise relations representing strongly
sending (dPTE > 0.5) or strongly receiving nodes (dPTE < 0.5), but discarded balanced
nodes with a dPTE ≈ 0.5. The dPTE is unable to distinguish whether both nodes are
(at the same time) strong senders and receivers or are both weak senders and receivers.
However, applying the PTE directly allows us to include those balanced nodes into our
analysis, if they have strong enough connections (i.e. both directions have a PTE value
greater than τ ). Moreover, in contrast to our previous study (Meier et al. 2016), we did
not fix a single threshold but analyzed how the motif counts and the corresponding
results depend on the threshold. The clusters we find are based on a complete interval of
thresholds and the remaining results on different sample points within this interval.
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Conclusions
The motif search for different frequency bands resulted in the dominant overexpression
of motif 78 in networks generated over a wide range of thresholds. This motif, which
was also observed in previous studies, seems to represent a general building block for the
information flow in functional brain networks resembling the organizational principle of
segregation and integration. The motif-based clustering revealed the higher-order orga-
nization of effective connectivity on a global scale. The differences between higher and
lower frequency bands could be traced back to the interaction pattern between the poste-
rior regions and the frontal regions. In the theta band, the frontal regions participated in
many instances of motif 78 together with the posterior regions, pointing towards a strong
integration of information flow between those spatially segregated areas. In the alpha2
band, the posterior regions are no longer part of any cluster as they miss necessary bi-
directional links to participate in motif 78, although the segregation between the frontal
regions and the remainder of the brain is still observable. Further investigation into other
over-expressed motifs may shed more light on similar principles of information flow in
the brain.

Endnotes
1 The MEG data were recorded using a 306-channel whole-head MEG system (Elekta

Neuromag Oy, Helsinki, Finland) during a no-task, eyes-closed condition for five consec-
utive minutes. A beamformer approach was adopted to project MEG data from sensor
space to source space (Hillebrand et al. 2012) and the automated anatomical labelling
(AAL) atlas was applied to obtain time series for 78 cortical regions of interest (ROIs)
(Gong et al. 2009; Tzourio-Mazoyer et al. 2002). For each subject, we extracted the first
20 artefact-free epochs of 4096 samples (3.2768 s).

2Note that the values in T are exactly the PTE values of the links that get removed by
this procedure.
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