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Abstract
The chemical reactor network (CRN) approach is a practical tool for precisely pre-
dicting the species concentration in combustion processes with low computational
cost. This work examines the capability of the emerging Julia programming language
and its ecosystem in solving large CRNs. The packages DifferentialEquations.jl and
ModelingToolkit.jl are employed to defining and solving stiff ordinary differential
equations, for which the implicit time-integration methods Rodas5 and TRBDF2
with the GMRES linear solver are used. The graph structure of reactor networks is
constructed by LightGraphs.jl and SimpleWeightedGraphs.jl. The differential equa-
tion solver and the graph data structure are connected via NetworkDynamics.jl. It is
concluded that Julia is a competent tool for CRNs containing up to 1000 nodes each
with 4 species. Julia is capable of simulating pollutant formation in large reactor
networks with reasonable time and memory space.
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Chapter 1

Introduction

To move an aircraft, a propulsion system is needed to create thrust. Different engines

develop thrust in different ways, but all depend on burning fuels. The chemical process

of burning a fuel is called combustion. In such a process, oxygen reacts rapidly with a

fuel which can be solid, liquid, or gas. During combustion, new chemical substances,

called exhaust, are produced, most of which are water (H2O, hydrogen + oxygen) and

carbon dioxide (CO2, carbon + oxygen). However, the emission of by-products are

inevitable such as nitrogen oxides (NOx , nitrogen + oxygen) since nitrogen constitutes

around 78% of air besides the presence of dioxygen. Nitric oxide (NO) and nitrogen

dioxide (NO2) contribute to the formation of smog and acid rain and badly influences

ozone. Another air pollutant gas, carbon monoxide (CO), also plays roles affecting

climate change. Therefore, adequate tools are required for estimating emissions. This

thesis aims at developing a simulator written in the Julia programming language

following the chemical reactor network approach to model the formation of pollutants.

In this project, we focus on the combustion of natural gas with methane (CH4) as its

main component1 in large industrial furnaces.

An overview is given in this chapter. Chapter 2 describes the combustion of

methane and its reactor network in furnaces. Chapter 3 introduces the ecosystem

of the Julia programming language. Chapter 4 presents the application of Julia on

modelling methane combustion. The function of Julia is further evaluated in chapter 5
1we neglect here the presence of higher alkanes such as propane (C3H8) and butane (C4H10).
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by testing the 5-node-5-edge networks and large networks.
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Chapter 2

Combustion

Combustion of gaseous fuels is the combined process of the mixing of fuel (methane)

and oxidizer (oxygen) with transport of chemical species in a flow. To simulate

combustion, we model the chemical reactions aiming at a sufficiently accurate de-

scription of the formation of major and minor species during the chemical reactions.

The computational domain that represents the furnace is subdivided into subdomains

(containers, vessels or reactors). The dimension of the subdomain is large compared

to the typical dimension of a cell required to resolve the flow. These subdomains are

interconnected by the flow on mass leaving one reactor and entering the other reactor.

The furnace is represented as a chemical reactor network. A chemical reactor net-

work consists of nodes and edges. The nodes and edges represent chemical reactors

(subdomains) and interconnecting pipes, respectively. As for chemical reaction, we

will consider the combustion of methane and ambient air at atmospheric pressure and

constant volume. To alleviate computational cost, the representation of the flow is

simplified.

2.1 Basic mechanism of methane combustion

The natural gas we consider here is a fuel primarily consisting of methane (CH4).

When one methane molecule meets two oxygen molecules with sufficient heat, they

start to react and then one molecule of carbon dioxide and two molecules of water
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are formed.

CH4 + 2 O2 CO2 + 2 H2O. (2.1)

The rate of reaction is governed by the formulas

d[CH4]
d𝑡

= −𝑘 ⋅ 𝑟, (2.2a)

d[O2]
d𝑡

= −2𝑘 ⋅ 𝑟, (2.2b)

d[CO2]
d𝑡

= 𝑘 ⋅ 𝑟, (2.2c)

d[H2O]
d𝑡

= 2𝑘 ⋅ 𝑟, (2.2d)

𝑘 = 𝐴𝑇 𝛽 exp(−𝐸𝑎/𝑅𝑇 ), (2.3)

𝑟 = [CH4]𝑛CH4 [O2]𝑛O2 , (2.4)

where [ ⋅ ] means the concentration of a species, 𝑘 is the rate coefficients, 𝐸𝑎 is the

activation energy, 𝑅 is the gas constant, 𝑇 is temperature, 𝛽 is the temperature

exponent and 𝑛 is reaction order of a species. This relation is also known as the

Arrhenius law, in which the reaction rate depends on the temperature through the

Arrhenius equation and the pressure through the influence of pressure on molecular

space density which affects the species concentrations.

Depending on the level of detail of the mechanism, the reaction of methane and

oxygen may produce carbon dioxide and water in a single step. The reaction can also

be expressed in two steps. See subsection 2.2.1 for more details.

2.2 Pollutants

Some products of combustion are harmful to the health of humans and other living

beings and cause damage to the climate. The minor species, namely pollutants, of
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conventional combustion systems include CO, UHC, NOx , SOx . For the research to

be conducted, CO and NOx are relevant pollutants and are thus considered in the

following.

2.2.1 Carbon monoxide

Carbon monoxide (CO) is a colorless, odorless atmospheric pollutant mainly from the

exhaust of incomplete combustion of fuels. Large CO pollution events can be observed

from space over cities (Pommier et al., 2013). Breathing air with high concentration

of CO leads to a reduced oxygen (O2) transport in the blood stream to critical organs

such as heart and brain (Chenoweth et al., 2021).

The 2S_CH4_BFER scheme by Franzelli et al. (2012) accounts for six species

(CH4, O2, N2, CO, CO2, H2O) and the following two reactions:

CH4 + 1.5 O2 CO + 2 H2O (2.5a)

CO + 0.5 O2 CO2, (2.5b)

where the forward reaction rate for reactions (2.5) are

𝑘1 = 𝐴1𝑇 𝛽1 exp(−𝐸𝑎,1/𝑅𝑇 )[CH4]𝑛CH4 [O2]𝑛O2,1 , (2.6a)

𝑘2 = 𝐴2𝑇 𝛽2 exp(−𝐸𝑎,2/𝑅𝑇 )[CO]𝑛CO [O2]𝑛O2,2 . (2.6b)

The reaction parameters are summarized in table 2.1 (Franzelli et al., 2012).

Parameters CH4 oxidation (2.5a) CO-CO2 equilibrium (2.5b)
Activation energy 𝐸𝑎 3.55 × 104 1.2 × 104

Temperature exponent 𝛽 0.0 0.8
Pre-exponential factor 𝐴 4.9 × 109 2 × 108

Reaction exponents 𝑛CH4
0.50 𝑛CO 1.00

𝑛O2,1 0.65 𝑛O2,2 0.50

Table 2.1: Reaction parameters for the 2S_CH4_BFER mechanism

Furthermore, Jones and Lindstedt (1988) presented a four-step mechanism which

could be useful for more accurate simulation.
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2.2.2 Nitrogen oxides

Oxygen and nitrogen in general do not react at ambient temperatures due to lack

of energy. But at high temperatures typically in internal combustion engines, they

undergo an endothermic reaction producing various oxides of nitrogen (NOx).

Nitrogen oxides mainly result in two forms of air pollution. In the presence of

sunlight, NOx reacts with volatile organic compounds (VOCs) yielding photochem-

ical smog. People with lung diseases and people who work or exercise outside are

particularly susceptible to adverse effects of smog such as damage to lung tissue and

reduction in lung function (Hamra et al., 2015). Furthermore, NOx generates nitric

acid and acid rain by reacting in certain environments.

The primary sources of NOx in combustion processes are dominated by the thermal

NO formation, also well known as the Zel’dovich mechanism (Zel’dovich, 1946). The

reaction mechanism consists of two chain reactions:

O + N2
𝑘1 NO + N (2.7a)

N + O2
𝑘2 NO + O (2.7b)

which can be extended by adding the reaction

N + OH
𝑘3

NO + H. (2.7c)

The forward and backward reaction rate constants for reactions (2.7) are given in

table 2.2 (Turns, 2012, p. 171).

Reaction Forward reaction rate Backward reaction rate
coefficients (m3/(kmol)(s)) coefficients (m3/(kmol)(s))

2.7a 𝑘1𝑓 = 1.8 × 1011 exp(−38370/𝑇 ) 𝑘1𝑏 = 3.8 × 1010 exp(−425/𝑇 )
2.7b 𝑘2𝑓 = 1.8 × 107 exp(−4680/𝑇 ) 𝑘2𝑏 = 3.8 × 106 exp(−20820/𝑇 )
2.7c 𝑘3𝑓 = 7.1 × 1010 exp(−450/𝑇 ) 𝑘3𝑏 = 1.7 × 1011 exp(−24560/𝑇 )

Table 2.2: Reaction rates for the extended Zel’dovich mechanism

Note that reaction (2.7a) has a very high activation energy (𝐸𝑎 = 38370𝑅 =
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38370×8.3145 = 319027 kJ/mol) by contrast. Reactions (2.7b) and (2.7c) have been

found to be much faster than reaction (2.7a). If simulation timescale is sufficiently

long, one can assume that N2, O2, O and OH concentrations are at equilibrium and

N atoms are in steady state, which simplifies the calculation of the NO formation.

The reverse reaction can be further neglected by assuming that the NO concentration

is much less than its equilibrium value. So the rate expression is:

d[NO]
d𝑡

= 𝑘1𝑓[O][N2] + 𝑘2𝑓[N][O2] + 𝑘3𝑓[N][OH] (2.8a)

d[N]
d𝑡

= 𝑘1𝑓[O][N2] − 𝑘2𝑓[N][O2] − 𝑘3𝑓[N][OH] = 0 (2.8b)

⟹ d[NO]
d𝑡

= 2𝑘1𝑓[O][N2] (2.8c)

2.3 Chemical reactor network

Computer-based simulation techniques are commonly used by gas turbine manufac-

turers in the field of new combustor designs. To describe pollutant formation accu-

rately, around 102 species and 103 reactions must be considered besides the simplest

fuels. Currently, it is too computationally expensive to include all phenomena of

importance in a single accurate computational fluid dynamics (CFD) simulation for

a combustion system. For the sake of compensating detailed chemistry, the chemical

reactor network (CRN) approach has been developed with the cost of reduced treat-

ment of fluid dynamics (Benedetto et al., 2000). A trend can be seen that emission

simulation moves from the high-budget CFD approaches to CRN approaches where

a network of idealized chemical reactors simplifies the computation for combustion

modelling (Khodayari et al., 2020).

The CRN modelling approach is used for modelling combustion processes. The

inner combustor space is divided into several regions. The deviation of physical and

chemical properties is relatively small such that each region can be modelled as a

node with detailed chemistry in the chemical reactor network. The physical flow of

substances is captured by edges connecting nodes.
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Chapter 3

Julia programming language

Julia is a high-level, high-performance, dynamic programming language designed by

Bezanson et al. (2017). Many of its features are well suited for numerical and scientific

computing. It is claimed that Julia can achieve machine performance without sac-

rificing human convenience, namely the so-called Walks like Python, Runs like

C. The recent development of many Julia packages including various mathematical

libraries, data manipulation tools and packages for general purpose computing enrich

the Julia ecosystem for community use. In this project, we would like to apply Julia

to model pollutant formation using the chemical reactor network approach. The fol-

lowing sections introduce the main relevant packages and how they contribute to our

project.

3.1 DifferentialEquations.jl

DifferentialEquations.jl (Rackauckas & Nie, 2017) is a suite for numerically solving

differential equations. It assists convenient ODE construction and works well together

with Plots.jl to visualize solutions. One of the key features is that it has many built-in

solver algorithms which supports diverse types of differential equations in different

scales.
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3.2 ModelingToolkit.jl

ModelingToolkit.jl (Ma et al., 2021) is a modeling language for high-performance

symbolic-numeric computation in scientific computing. It allows for users to give a

high-level description of a model for symbolic preprocessing to analyze and enhance

the model. It is compatible with DifferentialEquations.jl as all the symbolic systems

have a direct conversion to a numerical system which can then be handled through

the SciML interfaces. ModelingToolkit.jl can be used to symbolicify numerical code

and do symbolic calculation. More particularly, it is capable to automatically derive

the Jacobian function of an ODEProblem.

3.3 LightGraphs.jl and SimpleWeightedGraphs.jl

To simulate the reactor network, special tools and data structures are needed to

store and process graphs. LightGraphs.jl and SimpleWeightedGraphs.jl (Bromberger

et al., 2017) offer a set of simple and graph implementations which make it easy

for us to define arbitrary complex networks. Besides constructing directed, weighted

networks by adjacency matrices, many built-in graph structures are available, such

as the Barabási–Albert model.

3.4 NetworkDynamics.jl

NetworkDynamics.jl (Lindner et al., 2020) provides an interface between LightGraphs.jl

and DifferentialEquations.jl. It allows to define several types of dynamic and static

nodes and edges and to link them up in order to create complex network dynamics.

In this project, the behavior of a node is the chemical reaction of fuel combustion.

The transport phenomena between neighbor nodes is captured by the edges.
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Chapter 4

Methane combustion simulation

with Julia

Julia is still relatively new with a 9-year history as of 2021. Despite the recent

development of Julia’s ecosystem, its application in combustion modelling remains to

be explored. In order to examine the its capability, we start from simple combustion

simulation of methane before modelling real physical networks. It is also important to

test the correctness of Julia’s packages by comparing results from other programming

languages.

4.1 One-step mechanism

The one-step reaction mechanism of methane combustion is described in section 2.1.

The package ModelingToolkit.jl is used in combination with DifferentialEquations.jl

to define the ordinary differential equations of the mathematical model. Van der Lin-

den (2020) adopted the forward Euler scheme with Python to simulate the reaction.

The parameters and initial conditions are kept the same which are summarized in

table 4.1. The Julia implementation can be found in appendix A.1 on page 30. The

results shown in figure 4-1 are the same which indeed demonstrate the basic functions

of DifferentialEquations.jl and ModelingToolkit.jl.
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Parameters and inputs Values
Activation energy 𝐸𝑎 2 × 104

Temperature exponent 𝛽 0.0
Pre-exponential factor 𝐴 1.1 × 1010

Reaction exponents 𝑛CH4
1.0

𝑛O2
0.5

Start time 𝑡0 0.0
End time 𝑡𝑛 2 × 10−8

Constant temperature 𝑇 1000
Initial values [CH4] 1.0

[O2] 2.0
[CO2] 0.0
[H2O] 0.0

Table 4.1: Parameters and inputs for the one-step reaction mechanism of methane
combustion

(a) Julia (b) Python (Van der Linden, 2020, p. 26)

Figure 4-1: One-step mechanism of methane combustion

4.2 Two-step mechanism

The combustion of methane is actually a sequence of elementary reactions rather than

the straightforward one-step mechanism. The 2S_CH4_BFER scheme by Franzelli

et al. (2012) considered in this section is explained in subsection 2.2.1. We would like
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to find an approximation solution to the following model for 0 < 𝑡 < 10−7.

d[CH4]
d𝑡

= −𝑘1, (4.1a)

d[O2]
d𝑡

= −1.5𝑘1 − 0.5𝑘2, (4.1b)

d[CO]
d𝑡

= 𝑘1 − 𝑘2, (4.1c)

d[CO2]
d𝑡

= 𝑘2, (4.1d)

d[H2O]
d𝑡

= 2𝑘1. (4.1e)

The same parameters in table 2.1 on page 5 are applied. We begin from the

simulation with the initial conditions in table 4.2 to compare the solutions with the

existing Python implementation.

Species Initial values
CH4 1.0
O2 2.0
CO 0.0
CO2 0.0
H2O 0.0

Table 4.2: Inputs for the two-step reaction mechanism of methane combustion

(a) Julia (b) Python (Van der Linden, 2020, p. 28)

Figure 4-2: Two-step mechanism of methane combustion

The results in figure 4-2 look the same for both implementations except the small

fluctuation in Python’s figure 4-2b due to the numerical methods it adopted. Note

that while we are investigating pollutant formation, it is not particularly obvious from

12



the figure that the carbon monoxide (CO) is produced. Figure 4-3 is a separate graph

for CO. The concentration of CO jumps sharply away from 0 immediately after the

reaction starts.

Figure 4-3: Carbon monoxide in two-step mechanism of methane combustion
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Chapter 5

Chemical reactor network with

Julia

This chapter presents solving reactor networks with Julia. It starts from the formal

mathematical model. Application on 5-node 5-edge networks is illustrated. At the

end, the performance of solving large networks with various solver algorithms are

evaluated and compared.

5.1 Mathematical model

As briefly introduced in section 2.3, an internal combustor space is modelled as a

network of graph 𝐺 with 𝑛 vertices 𝑉 and some edges 𝐸. A vertex 𝑣 is a container

with chemical reactions perfectly stirred which only involve chemistry. An edge 𝑒 is a

pipe serving as a channel for flowing species with prescribed velocity which captures

transport.

Each vertex 𝑣𝑖 contains 𝑠 chemical species. Directed edge 𝑒𝑖,𝑗 connects vertex 𝑣𝑖

and vertex 𝑣𝑗. u(𝑡) is a vector of unknown species concentration.

14



u(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

u1(𝑡)

⋮

u𝑖(𝑡)

⋮

u𝑛(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.1)

u𝑖(𝑡) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢𝑖,1(𝑡)

⋮

𝑢𝑖,𝑗(𝑡)

⋮

𝑢𝑖,𝑠(𝑡)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.2)

where u𝑖(𝑡) is a subvector corresponding to vertex 𝑣𝑖. 𝑢𝑖,𝑗 denotes the concentration

of the 𝑗-th species in vertex 𝑣𝑖.

The dynamics of the entire system is modelled by a set of ordinary differential

equations (ODEs)

du(𝑡)
d𝑡

= F(u(𝑡), 𝑡) = Fchemistry(u(𝑡), 𝑡) + Ftransport(u(𝑡), 𝑡) (5.3)

with prescribed initial conditions

u(𝑡 = 0) = u0. (5.4)

The aim is to solve the large-scale ODE system with sufficient accuracy for a

certain time range. The differential equations are stiff as it involves fast chemistry

and slow transport, for which we will apply implicit time integration methods with

variable time steps.
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5.2 Implicit time-integration method

Choosing a good solver is required to getting top speed. Figure 4-3 on page 13 from

the results of the two-step reaction mechanism of methane combustion reveals the stiff

nature of the CRN problem. Explicit methods generally demand impractically small

time steps Δ𝑡 to keep the error bounded. We thus apply implicit time-integration

methods which take less computational time to achieve given accuracy with larger

time steps, even taking into account that extra computations are needed at each

time step. The documentation of DifferentialEquations.jl recommends Rosenbrock

methods for smaller problems and ESDIRK methods for slightly larger problems

which are tested and evaluated below.

5.3 5-node-5-edge networks

In this section, we apply Julia to solve networks consisting of 5 nodes and 5 edges

in two different connectivity configurations. The code can be found in appendix A.3

on page 32. Each vertex in the graph is a node with the one-step reaction mech-

anism (2.1) of methane combustion as its internal chemistry. The ODE system is

defined as follows, ∀𝑖 ∈ {1, 2, 3, 4, 5},

du𝑖(𝑡)
d𝑡

= d
d𝑡

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

𝑢𝑖,1

𝑢𝑖,2

𝑢𝑖,3

𝑢𝑖,4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

= 𝑘𝑢𝑛CH4
𝑖,1 𝑢𝑛O2

𝑖,2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1

−2

1

2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

+ 𝜎
5

∑
𝑗=1

𝐺𝑗𝑖(u𝑗 − u𝑖) (5.5)

where 𝑢𝑖,1, 𝑢𝑖,2, 𝑢𝑖,3, 𝑢𝑖,4 denote the concentration of CH4, O2, CO2 and H2O in the

𝑖-th vertex respectively. The rate coefficient 𝑘 = 𝐴𝑇 𝛽 exp(−𝐸𝑎/𝑅𝑇 ), the reaction

orders 𝑛CH4
and 𝑛O2

are the same with the values in table 4.1 on page 11. The graph

structure and the flow rate are captured by the parameters 𝜎 and 𝐺𝑗𝑖.

Moreover, as for the initial condition, there are fuels in the first node and none in

other nodes at the start time. That is, methane is injected into node 1 only at the
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outset and flow travels downstream to other nodes. Node 1 acts as an inlet for CH4.

The initial values of O2 in nodes 1, 3, 5 are set to zero.

5.3.1 Main flux and recirculation

We firstly consider the network shown in figure 5-1. The vertices 1, 2, 3, 4 reside in

the same line. The vertex 5, the edges 4 and 5 creates a cycle of circulation.

5

2 31 4
1 2 3

45

Figure 5-1: Graph of 5-node 5-edge network with main flux and recirculation

The adjacency matrix is

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5

1 0 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 1

4 0 0 0 0 0

5 0 1 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.6)

where the numbers outside the border of the matrix indicate the indices of vertices.

The element 𝐺𝑗𝑖 on the 𝑗-th row and the 𝑖-th column is 1 if there exists a directed

edge from vertex 𝑗 to vertex 𝑖 and 0 otherwise.

Figures 5-2, 5-3 and 5-4 display the evolution of the substances in the network.

As we can see, the fuel flows from node 1 to other nodes. The oxygen diffuses to the

entire network except node 1. The reaction of methane combustion gradually take

place in nodes 2, 3, 4, and 5.
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Figure 5-2: 5-node 5-edge network with main flux and recirculation

(a) CH4 (b) O2

(c) CO2 (d) H2O

Figure 5-3: Species in 5-node 5-edge network with main flux and recirculation
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(a) Node 1 (b) Node 2

(c) Node 3 (d) Node 4

(e) Node 5

Figure 5-4: Nodes in 5-node 5-edge network with main flux and recirculation
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5.3.2 Main flux and by-pass

Figure 5-5 shows the structure of the 5-node-5-edge network with main flux and by-

pass. Edges 4 and 5 build a by-pass for edge 2. The adjacency matrix in this case

becomes

𝐺 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

1 2 3 4 5

1 0 1 0 0 0

2 0 0 1 0 1

3 0 0 0 1 0

4 0 0 0 0 0

5 0 0 1 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

. (5.7)

5

2 31 4
1 2 3

4 5

Figure 5-5: Graph of 5-node 5-edge network with main flux and by-pass

The results are illustrated in figures 5-6, 5-7 and 5-8. Compared to the network

with recirculation, the oxygen in node 2 gets consumed and spreads to other nodes

more quickly as there is an additional edge originating from node 2 and no flow

traveling back to it. The concentration of CO2 and H2O are higher in node 2 in the

network with recirculation than the that with by-pass. As a whole, less substances

react in node 2.
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Figure 5-6: 5-node 5-edge network with main flux and by-pass

(a) CH4 (b) O2

(c) CO2 (d) H2O

Figure 5-7: Species in 5-node 5-edge network with main flux and by-pass
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(a) Node 1 (b) Node 2

(c) Node 3 (d) Node 4

(e) Node 5

Figure 5-8: Nodes in 5-node 5-edge network with main flux and by-pass
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5.4 Jacobian sparsity

Solving stiff ordinary differential equations generally requires very small step size for

numerical stability. It is crucial to improve performance and avoid inefficiency when

dealing with large problems. According to the Julia package DifferentialEquations.jl,

Jacobian is built at each iteration when implicit differential equation solver is used

which is computationally expensive. The efficiency can be optimized by declaring

Jacobian functions to reduce the Jacobian construction cost. In this way, we provide

extra information about the ODE system to the solver. On the other hand, one can

exploit the sparsity pattern of Jacobian. For example, the sparsity structure of the

Jacobian for the 5-node-5-edge network with main flux and recirculation is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44 51 52 53 54

11 • • •

12 • • •

13 • • •

14 • • •

21 • • • • •

22 • • • • •

23 • • • • •

24 • • • • •

31 • • • • •

32 • • • • •

33 • • • • •

34 • • • 0 • •

41 • • •

42 • • •

43 • • •

44 • • •

51 • • • •

52 • • • •

53 • • • •

54 • • • •

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

(5.8)

where the non-zero elements are shown as black bullets •. The green blocks in the

diagonal represent the internal chemistry whose reaction rate depends on the concen-
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tration of the two reactants CH4 and O2 in our mathematical model. The red and

blue blocks correspond to the forward and backward directions of edges respectively.

For large networks, most of the entries in the Jacobian are zero. Therefore, special

data structures could be invoked to speed up Jacobian calculation and reduce memory

usage. Here, the SparseArrays stdlib module comes into play which helps save space

and execution time for arrays that contain enough zeros compared to dense arrays1.

5.5 Performance

We solved the one- and the two-step reaction mechanism of methane combustion with

the default solver algorithm2 and applied the 5th order A-stable stiffly stable Rosen-

brock method Rodas5 to solve the 5-node-5-edge networks. So far only small (<50

ODEs) problems are examined. However, in order to utilize Julia on real combustion

simulation, we shall test its capability on solving large reactor networks with more

species beforehand.

Besides Rodas5, we consider the second order A-B-L-S-stable one-step ESDIRK

method TRBDF2 which is suggested by DifferentialEquations.jl documentation for

slightly larger problems (with <2000 ODEs). Furthermore, it is possible to opti-

mize the linear solvers for certain differential equation integration methods. We also

evaluate the performance of TRBDF2 in combination with the GMRES linear solver.

For simplicity, we employ the test network shown in figure 5-9. All nodes reside

in the same line with a directed edge connecting every pair of consecutive nodes. The

internal chemistry in each node is the one-step mechanism of methane combustion.

The initial values are gradually decreasing from node 1 to node n. The parameters

are kept the same as the 5-node-5-edge networks discussed in section 5.3.

Figure 5-10 shows the result of execution times and allocated memory. TRBDF2 sig-

nificantly outperforms Rodas5 for large problems. The GMRES linear solver further
1Note that Jacobian sparsity should only be declared if the sparsity if high, for example, 99% of

the matrix elements are zeros, otherwise the overhead of sparse data structures may be higher than
the gains.

2Julia DifferentialEquations.jl automatically chooses an efficient method for the input problem if
no solver is selected by user.
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1 2 ⋯ ⋯ 𝑛 − 1 𝑛1 2 𝑛 − 2 𝑛 − 1

Figure 5-9: Graph of test network

aids in speeding up and reducing memory usage.

0 200 400 600 800 1,000
0

20

40

#nodes

T
im

e
[s]

Execution times

Rodas5
TRBDF2

TRBDF2 GMRES

(a) Execution times

0 200 400 600 800 1,000
0

5

10

15

#nodes

M
em

or
y

sp
ac

e
[G

iB
]

Memory allocation

Rodas5
TRBDF2

TRBDF2 GMRES

(b) Memory allocation

Figure 5-10: Performance of Julia for solving reactor networks
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Chapter 6

Conclusion

The research was initiated with the growing demand for a computational tool that is

able to simulate large chemical reactor networks and to predict pollutant emission. We

applied the Julia programming language to solve the one- and the two-step mechanism

of methane combustion, the 5-node-5-edge networks and large line-shaped networks.

The results of performance measurement prove that Julia with its ecosystem is

competent in simulating large network dynamics up to 1000 nodes with 4 species

within reasonable time as long as appropriate numerical solvers are chosen. However,

unlike C/C++ and Python, Julia has a rather shorter history. The Julia core code

and its packages are still under heavy development thanks to the common effort from

the open-source Julia community. It can be foreseen that Julia will be shortly utilized

to speed up CRN simulations in industry and to estimate emissions more accurately

for industrial furnaces.
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Appendix A

Julia implementation

The project file Project.toml including dependencies and versions is shown below.

1 [deps]

2 BenchmarkTools = "6e4b80f9-dd63-53aa-95a3-0cdb28fa8baf"

3 DifferentialEquations = "0c46a032-eb83-5123-abaf-570d42b7fbaa"

4 IncompleteLU = "40713840-3770-5561-ab4c-a76e7d0d7895"

5 LightGraphs = "093fc24a-ae57-5d10-9952-331d41423f4d"

6 ModelingToolkit = "961ee093-0014-501f-94e3-6117800e7a78"

7 NetworkDynamics = "22e9dc34-2a0d-11e9-0de0-8588d035468b"

8 Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"

9 SimpleWeightedGraphs = "47aef6b3-ad0c-573a-a1e2-d07658019622"

10 SparsityDetection = "684fba80-ace3-11e9-3d08-3bc7ed6f96df"

11

12 [compat]

13 BenchmarkTools = "1.0.0"

14 DifferentialEquations = "6.17.1"

15 IncompleteLU = "0.2.0"

16 LightGraphs = "1.3.5"

17 ModelingToolkit = "5.20.0"

18 NetworkDynamics = "0.5.4"

19 Plots = "1.16.5"

20 SimpleWeightedGraphs = "1.1.1"

21 SparsityDetection = "0.3.4"

22 julia = "1.6.1"
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A.1 One-step mechanism of methane combustion

1 using ModelingToolkit, DifferentialEquations, Plots

2

3 E = 2e4 # activation energy

4 β = 0.0 # temperature exponent

5 A = 1.1e10 # pre-exponential factor

6 R = 8.3145 # gas constant

7 T = 1e3 # temperature in Kelvin

8

9 @variables t CH₄(t) O₂(t) CO₂(t) H₂O(t) r(t)

10 @parameters k, n_CH₄, n_O₂

11 D = Differential(t)

12

13 u₀ = [CH₄ => 1.0, # initial value CH₄

14 O₂ => 2.0, # initial value O₂

15 CO₂ => 0.0, # initial value CO₂

16 H₂O => 0.0] # initial value H₂O

17

18 tspan = (0.0, # start time t₀

19 2e-8) # end time tₙ

20

21 p = [k => A * T^β * exp(-E / R / T), # rate coefficient

22 n_CH₄ => 1.0, # reaction exponent CH₄

23 n_O₂ => 0.5] # reaction exponent O₂

24

25 @named fol_separate = ODESystem([ r ~ CH₄^n_CH₄ * O₂^n_O₂,

26 D(CH₄) ~ -k * r,

27 D(O₂) ~ -2k * r,

28 D(CO₂) ~ k * r,

29 D(H₂O) ~ 2k * r ])

30

31 prob = ODEProblem(structural_simplify(fol_separate), u₀, tspan, p)

32 sol = solve(prob)

33 plot(sol, linewidth = 2, xlims = (0., 2.1e-8),

34 title = "One-step mechanism of methane combustion",

35 xlabel = "time [s]",

36 ylabel = "concentration [mol/L]")

37 savefig("res/one_step_mechanism_methane.svg")
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A.2 Two-step mechanism of methane combustion

1 using ModelingToolkit, DifferentialEquations, Plots

2

3 E₁ = 3.55e4 # activation energy

4 E₂ = 1.2e4

5 β₁ = 0.0 # temperature exponent

6 β₂ = 0.8

7 A₁ = 4.9e9 # pre-exponential factor

8 A₂ = 2e8

9 R = 8.3145 # gas constant

10 T = 1e3 # temperature in Kelvin

11

12 @variables t CH₄(t) O₂(t) CO(t) CO₂(t) H₂O(t) r₁(t) r₂(t)

13 @parameters k₁, k₂, n_CH₄, n_CO, n_O₂_₁, n_O₂_₂

14 D = Differential(t)

15 u₀ = [CH₄ => 1.0, # initial value CH₄

16 O₂ => 2.0, # initial value O₂

17 CO => 0.0, # initial value CO

18 CO₂ => 0.0, # initial value CO₂

19 H₂O => 0.0] # initial value H₂O

20 tspan = (0.0, # start time t₀

21 1e-7) # end time tₙ

22 p = [k₁ => A₁ * T^β₁ * exp(-E₁ / R / T), # rate coefficient 1

23 k₂ => A₂ * T^β₂ * exp(-E₂ / R / T), # rate coefficient 2

24 n_CH₄ => 0.5, # reaction exponent CH₄

25 n_CO => 1.0, # reaction exponent CO

26 n_O₂_₁ => 0.65, # reaction exponent O₂ 1

27 n_O₂_₂ => 0.5] # reaction exponent O₂ 2

28 @named fol_separate = ODESystem([ r₁ ~ CH₄^n_CH₄ * O₂^n_O₂_₁,

29 r₂ ~ CO^n_CO * O₂^n_O₂_₂,

30 D(CH₄) ~ -k₁ * r₁,

31 D(O₂) ~ -1.5k₁ * r₁ - 0.5k₂ * r₂,

32 D(CO) ~ k₁ * r₁ - k₂ * r₂,

33 D(CO₂) ~ k₂ * r₂,

34 D(H₂O) ~ 2k₁ * r₁ ])

35 prob = ODEProblem(structural_simplify(fol_separate), u₀, tspan, p)

36 sol = solve(prob)

37 plot(sol, linewidth = 2, xlims = (0., 1.04e-7),

38 title="Two-step mechanism of methane combustion",

39 xlabel="time [s]",

40 ylabel="concentration [mol/L]")

41 savefig("res/two_step_mechanism_methane.svg")

42
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43 plot(sol, linewidth = 2, xlims = (0., 1.04e-7), vars = (0, 3),

44 title="CO in two-step mechanism of methane combustion",

45 xlabel="time [s]",

46 ylabel="concentration [mol/L]")

47 savefig("res/two_step_mechanism_methane_CO.svg")

A.3 5-node-5-edge network

1 using SimpleWeightedGraphs, LightGraphs, NetworkDynamics,

2 DifferentialEquations, Plots

3

4 E = 2e4 # activation energy

5 β = 0. # temperature exponent

6 A = 1.1e10 # pre-exponential factor

7 R = 8.3145 # gas constant

8 T = 1e3 # temperature in Kelvin

9 k = A * T^β * exp(-E / R / T) # rate coefficient

10 σ = 5e8 # constant for edges

11 n_CH₄ = 1. # reaction order CH₄

12 n_O₂ = 0.5 # reaction order O₂

13

14 n_node = 5

15 n_species = 4

16

17 # adjacency matrix

18 G = [0. 1. 0. 0. 0. # main flux and recirculation

19 0. 0. 1. 0. 0.

20 0. 0. 0. 1. 1.

21 0. 0. 0. 0. 0.

22 0. 1. 0. 0. 0.]

23 config = "recirculation"

24 # G = [0. 1. 0. 0. 0. # main flux and by-pass

25 # 0. 0. 1. 0. 1.

26 # 0. 0. 0. 1. 0.

27 # 0. 0. 0. 0. 0.

28 # 0. 0. 1. 0. 0.]

29 # config = "by-pass"

30

31 g_weighted = SimpleWeightedDiGraph(G - G')

32 edge_weights = getfield.(collect(edges(g_weighted)), :weight)

32



33 g_directed = SimpleDiGraph(g_weighted)

34

35 @inline Base.@propagate_inbounds function chemistry!(du, u, edges, p, t)

36 if u[1] < 0.

37 u[1] = 0.

38 end

39 if u[2] < 0.

40 u[2] = 0.

41 end

42 rate = k * u[1]^n_CH₄ * u[2]^n_O₂

43 du[1] = -rate # dCH₄

44 du[2] = -2rate # dO₂

45 du[3] = rate # dCO₂

46 du[4] = 2rate # dH₂O

47 for e in edges

48 du .+= e

49 end

50 nothing

51 end

52

53 @inline Base.@propagate_inbounds function transport!(e, u_s, u_d, p, t)

54 e .= 0.

55 if p > 0. # forward direction of directed edge

56 for i in 1:n_species

57 if u_s[i] > u_d[i]

58 e[i] = p * (u_s[i] - u_d[i])

59 end

60 end

61 elseif p < 0. # backward direction of directed edge

62 for i in 1:n_species

63 if u_d[i] > u_s[i]

64 e[i] = p * (u_d[i] - u_s[i])

65 end

66 end

67 end

68 nothing

69 end

70

71 node = ODEVertex(f! = chemistry!, dim = n_species,

72 sym=[:CH₄, :_O₂, :CO₂, :H₂O])

73 edge = StaticEdge(f! = transport!, dim = n_species,

74 coupling = :directed)

75 network! = network_dynamics(node, edge, g_directed)

76
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77 p = (nothing, σ * edge_weights)

78 u₀ = zeros(n_species * n_node)

79 u₀[1] = 1. # initial value CH₄ in node 1

80 u₀[2n_species-2] = 1. # initial value O₂ in node 2

81 u₀[4n_species-2] = 1. # initial value O₂ in node 4

82 tspan = (0., # start time t₀

83 2e-8) # end time tₙ

84 prob = ODEProblem(network!, u₀, tspan, p)

85 sol = solve(prob, Rodas5(autodiff=false))

86

87 plot(sol, linewidth = 1, titlefont = 11,

88 xlims = (0., 2.1e-8), ylims = (0., 1.),

89 title = "5-node 5-edge network with main flux and $(config)",

90 ylabel = "concentration [mol/L]",

91 xlabel = "time [s]")

92 savefig("res/$(config).svg")

93

94 for n in 1:5

95 plot(sol, linewidth = 2,

96 titlefont = 11, legendfont = 12,

97 xlims = (0., 2.1e-8), ylims = (0., 1.),

98 vars = syms_containing(network!, string(n)),

99 title = "node $(n) in 5-node 5-edge network "

100 * "with main flux and $(config)",

101 ylabel = "concentration [mol/L]",

102 xlabel = "time [s]")

103 savefig("res/$(config)$(n).svg")

104 end

105

106 for s in ["CH₄", "_O₂", "CO₂", "H₂O"]

107 plot(sol, linewidth = 2,

108 titlefont = 11, legendfont = 12,

109 xlims = (0., 2.1e-8), ylims = (0., 1.),

110 vars = idx_containing(network!, s),

111 title = "$(s) in 5-node 5-edge network "

112 * "with main flux and $(config)",

113 ylabel = "concentration [mol/L]",

114 xlabel = "time [s]")

115 savefig("res/$(config)$(s).svg")

116 end
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A.4 Performance measurement

1 using SimpleWeightedGraphs, LightGraphs, NetworkDynamics,

2 DifferentialEquations, Plots, SparseArrays, BenchmarkTools

3

4 E = 2e4 # activation energy

5 β = 0. # temperature exponent

6 A = 1.1e10 # pre-exponential factor

7 R = 8.3145 # gas constant

8 T = 1e3 # temperature in Kelvin

9 k = A * T^β * exp(-E / R / T) # rate coefficient

10 σ = 5e8 # constant for edges

11 n_CH₄ = 1. # reaction order CH₄

12 n_O₂ = 0.5 # reaction order O₂

13 tspan = (0., # start time t₀

14 2e-8) # end time tₙ

15 n_species = 4

16

17 @inline Base.@propagate_inbounds function chemistry!(du, u, edges, p, t)

18 if u[1] < 0.

19 u[1] = 0.

20 end

21 if u[2] < 0.

22 u[2] = 0.

23 end

24 rate = k * u[1]^n_CH₄ * u[2]^n_O₂

25 du[1] = -rate # dCH₄

26 du[2] = -2rate # dO₂

27 du[3] = rate # dCO₂

28 du[4] = 2rate # dH₂O

29 for e in edges

30 du .+= e

31 end

32 nothing

33 end

34

35 @inline Base.@propagate_inbounds function transport!(e, u_s, u_d, p, t)

36 e .= 0.

37 if p > 0. # forward direction of directed edge

38 for i in 1:4

39 if u_s[i] > u_d[i]

40 e[i] = p * (u_s[i] - u_d[i])

41 end

42 end

35



43 elseif p < 0. # backward direction of directed edge

44 for i in 1:4

45 if u_d[i] > u_s[i]

46 e[i] = p * (u_d[i] - u_s[i])

47 end

48 end

49 end

50 nothing

51 end

52

53 node = ODEVertex(f! = chemistry!, dim = n_species,

54 sym=[:CH₄, :_O₂, :CO₂, :H₂O])

55 edge = StaticEdge(f! = transport!, dim = n_species,

56 coupling = :directed)

57

58 function measure(n_node, solver)

59 println("\n$(n_node) nodes\n$(solver)")

60 # adjacency matrix

61 G = spdiagm(n_node, n_node, 1 => ones(n_node-1))

62 g_weighted = SimpleWeightedDiGraph(G - G')

63 edge_weights = getfield.(collect(edges(g_weighted)), :weight)

64 g_directed = SimpleDiGraph(g_weighted)

65 network! = network_dynamics(node, edge, g_directed)

66

67 p = (nothing, σ * edge_weights)

68 u₀ = zeros(4n_node)

69 init = collect(range(1., 0., length=n_node))

70 for i in 1:n_node

71 u₀[4i-3] = init[i] # initial value CH₄ in node i

72 u₀[4i-2] = 2init[i] # initial value O₂ in node i

73 end

74 prob = ODEProblem(network!, u₀, tspan, p)

75 @btime solve($prob, $solver, save_everystep=false)

76 nothing

77 end

78

79 for n_node in [2^i for i in 1:10]

80 for solver in [Rodas5(autodiff=false), TRBDF2(autodiff=false),

81 TRBDF2(autodiff=false, linsolve=LinSolveGMRES())]

82 measure(n_node, solver)

83 end

84 end
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