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Preface

Most of the analytical theory developed to date for tidal wave propagation in a
prismatic or convergent estuary requires linearization of the St. Venant equations,
i.e., neglecting the inertial term, linearizing the friction term. The basic assumption
then is that the tidal elevation and velocity can be described by simple harmonic
waves, where the tidal amplitude and velocity amplitude vary exponentially along
the estuary axis. The second fundamental assumption made for deriving analytical
solution is that the tidally averaged flow depth and the friction is constant when
tide propagates landward. Conversely, Savenije [1998, 2001, 2005, 2012] derived
analytical solution based on the nonlinearized St. Venant equations in a Lagrangean
reference frame, using the assumption that the water particle moves according to a
simple harmonic. This theory leads to an analytical expression for the tidal damping
by subtracting high water (HW) and low water (LW) envelopes that retained both
the quadratic velocity in the numerator and the periodic variation of the hydraulic
radius in the denominator. This thesis builds on this theory, refines it and compares
it to other approaches. The first challenge was to compare the linear and quasi-
nonlinear models. Fortunately, it appears that all the analytical approaches can
be cast in the form of a set of four implicit dimensionless equations for the phase
lag, the velocity amplitude, the damping, and the wave celerity (see Chapter 2).
To explore different analytical models, a common theoretical framework has been
proposed and the results show that the main difference between the examined
models lies in the treatment of the friction term (see Chapter 3).

The second challenge was to analyse the asymptotic behaviour of the tidal
damping, which is nonexistent in the linear theory since the tidal amplitude ap-
proaches zero for a damped wave and infinity for an amplified wave. A new explicit
expression for the tidal amplitude as a function of distance has been proposed,
where an asymptotic solution exists when distance approaches infinity, reflecting
the balance between friction and channel convergence (see Chapter 4).

The investigation of how river discharge affects tidal damping is the third chal-
lenge in this thesis. The numerical simulations indicate that the residual water level
slope can have a substantial influence on tidal damping when including the river
discharge. However, this factor is seldom taken into account in analytical analysis.
The analytical framework developed in Chapter 3 has been extended to account
for the effect of river discharge, in which an iterative analytical method has been
adopted to include the influence of the residual water level slope (Chapter 5).

It should be noted that the method presented in this thesis is not meant to
replace linear theory since in practice all the analytical methods perform approx-
imately well. The main purpose is to enhance our understanding of tidal wave
propagation in estuaries and to provide a consistent analytical tool to describe this
process. In this respect, the proposed method could be valuable from both the
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scientific and practical point of view.

Huayang Cai
Delft, February 2014



Notation

The following symbols are used in this thesis:
𝑎 convergence length of cross-sectional area [L]
𝐴 tidally averaged cross-sectional area of flow [L ]
𝐴 tidally averaged cross-sectional area at the estuary mouth [L ]
𝑏 convergence length of width [L]
𝐵 width [L]
𝐵 tidally averaged width at the estuary mouth [L]
𝐵 storage width [L]
𝑐 wave celerity [L/T]
𝑐 celerity of a frictionless wave in a prismatic channel [L/T]
𝑐 wave celerity at HW [L/T]
𝑐 wave celerity at LW [L/T]
𝑑 convergence length of depth [L]
𝐷 longitudinal dispersion coefficient [L /T]
𝐷 longitudinal dispersion coefficient at the estuary mouth [L /T]
𝑓 friction factor accounting for the difference in friction at HW and LW [-]
𝑓 friction factor used for the derivation of linear damping equation [-]
𝐹 quadratic friction term [-]
𝐹 mass flux [M/T]
𝐹 Dronkers’ friction term accounting for river discharge [-]
𝐹 Godin’s friction term accounting for river discharge [-]
𝐹 Hybrid friction term accounting for river discharge [-]
𝐹 Lorentz’s friction term accounting for river discharge [-]
�̂� effective friction term obtained with a Lagrangean-based approach [-]
𝑔 acceleration due to gravity [L/T ]
𝐺 , 𝐺 , 𝐺 , 𝐺 Godin’s coefficients accounting for river discharge [-]
ℎ cross-sectional average depth [L]
ℎ tidal average depth [L]
ℎ ideal depth [L]
ℎ critical depth [L]
ℎ depth at HW [L]
ℎ depth at LW [L]
𝐼 water level residual slope due to the density gradient [-]
𝐻 tidal range [L]
𝐼 tidally averaged water level slope [-]
𝐼 bottom slope [-]
𝐾 Manning-Strickler friction factor [L / /T]
�̂� Van der Burgh’s coefficient [-]
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x Notation

𝐿 estuary length [L]
𝐿 salt intrusion length [L]
𝐿∗ salt intrusion length [-]
𝐿 , 𝐿 Lorentz’s coefficients accounting for river discharge [-]
𝑝 , 𝑝 , 𝑝 , 𝑝 Chebyschev coefficients accounting for river discharge [-]
𝑄 river discharge [L /T]
𝑄 tidal discharge [L /T]
𝑟 storage width ratio [-]
𝑆 steady state salinity [M/L ]
𝑆∗ steady state salinity [-]
𝑆 steady state salinity at the estuary mouth [M/L ]
𝑡 time [T]
𝑡∗ time [-]
𝑇 tidal period [T]
𝑈 cross-sectional average flow velocity [L/T]
𝑈∗ cross-sectional average flow velocity [-]
𝑈 tidal velocity at HW [L/T]
𝑈 tidal velocity at LW [L/T]
𝑈 tidal velocity [L/T]
𝑈 river velocity [L/T]
𝑈 the maximum possible velocity in Godin’s approach [L/T]
𝑉 velocity at HW [L/T]
𝑉 velocity at LW [L/T]
𝑉 Lagrangean velocity for a moving particle [L/T]
𝑥 distance from the estuary mouth [L]
𝑥∗ distance from the estuary mouth [-]
𝑧 tidal water level variation [L]
𝛼 weight of the linearized friction term [-]
𝛽 tidal Froude number [-]
𝛾 estuary shape number [-]
𝛾 estuary shape number accounting for width convergence [-]
𝛾 estuary shape number accounting for depth convergence [-]
Γ damping parameter of quasi-nonlinear model [-]
Γ damping parameter of linear model [-]
Γ damping parameter of Dronkers’ model [-]
Γ damping parameter of Godin’s model [-]
Γ damping parameter of hybrid model [-]
𝛿 damping number [-]
𝛿 damping gradient [1/L]
𝜀 phase lag between HW and HWS (or LW and LWS) [-]
𝜁 tidal amplitude to depth ratio [-]
𝜁 asymptotic tidal amplitude to depth ratio [-]
𝜂 tidal amplitude [L]
𝜂∗ tidal amplitude [-]
𝜂 tidal amplitude at the estuary mouth [L]



Notation xi

𝜃 dimensionless term accounting for wave celerity
not being equal at HW and LW [-]

𝜅 coefficient that include the effect of time-dependent
depth in the friction term [-]

𝜑 phase of water level [-]
𝜑 phase of velocity [-]
𝜆 celerity number [-]
𝜇 velocity number [-]
𝜇 velocity number at the seaward boundary [-]
𝜐 tidal velocity amplitude [L/T]
𝜐∗ tidal velocity amplitude [-]
𝜐 asymptotic velocity amplitude [L/T]
𝜒 friction number [-]
𝜒 reference friction number [-]
𝜒 friction number at the seaward boundary [-]
𝜔 tidal frequency [1/T]
Δ error term [1/L]
Δ error term [1/L]
Δ𝑥 length step [L]

Superscript/subscript
𝑥∗ dimensionless variable
𝑥 tidally averaged variable
𝑥 variable at the estuary mouth

Abbreviations:
LWS Low water slack
HWS High water slack
LW Low water
HW High water
TA Tidal average
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1
Introduction

Estuaries are of primary importance to humankind due to the fact that they are
usually prominent locations for ports, industry, agriculture, recreation and urban
development. In recent years, there has been an increasing concern about en-
vironmental degradation in estuaries as a result of human interventions, such as
dredging for navigation, land reclamation, dam construction and fresh water with-
drawal, which in turn has led to growing demands for developing rapid assessment
techniques that assist policy maker and managers to make considered decisions for
the protection and management of estuarine environment. However, before predic-
tions about hydraulic responses to future changes can be made with any confidence,
there is need to achieve an adequate understanding of tidal wave propagation in
estuaries. Hence, in this thesis we restrict our attention to the development of
physical understanding of tidal dynamics in estuaries, which are essential to assess
the effects of these human interventions.

In particular, we focus on the tidal wave propagation in convergent estuaries,
where the cross-sectional area varies as an exponential function along the estuary
axis. This kind of estuarine geometry, observed in coastal plain estuaries all over the
world including such widely-studied tidal estuaries as the Scheldt in the Netherlands,
Thames in the U.K. and Delaware in the U.S.A., is similar to the shape of an ideal
estuary as described by Pillsbury [1956a,b] and Langbein [1963], where there is
no tidal damping (i.e., constant tidal amplitude and velocity amplitude) and the
topographic convergence is just sufficient to balance the friction. If the effect of
convergence is stronger than the effect of friction, the wave is amplified; if friction
is stronger than convergence, the wave is damped.

1.1. Formulation of the Problem
The generic geometry of the idealized tidal channel of interest to this thesis is

shown in Figure 1.1. We consider a tidal channel with varying width and depth
and investigate the propagation of the tidal wave along an estuary with a fixed
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bed, where the flow is mainly concentrated in a rectangular cross section, with
a possible presence of lateral storage areas, described by the storage width ratio
𝑟 = 𝐵 /𝐵, i.e., the ratio between the storage width 𝐵 and the stream width 𝐵
(hereafter overbars denote tidal averages). The along channel variation in tidally
averaged width 𝐵 and depth ℎ is assumed to be exponentially convergent[e.g.
Savenije, 2005, 2012]:

𝐵 = 𝐵 exp(−𝑥𝑏) , ℎ = ℎ exp(−𝑥𝑑) , (1.1)

where 𝑥 is the longitudinal coordinate directed landward, 𝐵 and ℎ are the tidally
averaged width and depth at the estuary mouth, 𝑏 and 𝑑 are the convergence length
of the width and depth, respectively. Similarly the tidally averaged cross-sectional
area 𝐴 can be expressed as

𝐴 = 𝐴 exp(−𝑥𝑎) , (1.2)

where 𝐴 is the cross-sectional area at the mouth and 𝑎 is the convergence length
for cross-sectional area, respectively, and the subscript 0 relates to the reference
value at the estuary mouth. Since 𝐴 = 𝐵ℎ the relationship between these conver-
gence lengths is 𝑎 = 𝑏𝑑/(𝑏 + 𝑑).

We assume that the system is forced by a simple harmonic tidal wave (e.g., 𝑀 )
in the seaward boundary, with a possible presence of constant river discharge 𝑄
from the upstream boundary. In Figure 1.1b we see that the water levels along the
estuary remain between two envelopes: one for high water (HW) and the other
for low water (LW). It is worth noting that the mean water level does not coincide
with mean sea level everywhere along the estuary due to the nonlinear terms from
mass and momentum equations [Vignoli et al., 2003].

1.2. Objective of This Thesis
The objective of this thesis is to enhance our understanding of tidal propagation

in estuaries and to provide an analytical instrument to describe the tidal propagation
process in a convergent estuary. The proposed analytical solutions are transparent
and practical, allowing a quantitative and qualitative assessment of human inter-
ventions (e.g., dredging, flow reduction) on tidal dynamics. Moreover, they are
rapid assessment techniques that enable the users to set up a simple model and to
understand the functioning of the system with a minimum of information required.

It is important to note that there already exists a number of analytical solutions
for tidal dynamics in estuaries (see Chapter 2 for a review). In this thesis we derive
an analytical solution that differs from these earlier studies:

1. We concentrate on one dominant tidal constituent (e.g., 𝑀 ) without over-
tides (i.e, neglecting any tidal distortion), but develop an analytical model
for reproducing the most relevant features of the tidal wave along the es-
tuary (i.e., tidal amplitude, velocity amplitude, wave celerity, relative phase
between elevation and velocity).
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Figure 1.1: Sketch of an estuary: (a) planimetric view; (b) altimetric view.

It should be noted that the linear analytical solutions developed to date all
concentrated on the propagation of one dominant tidal constituent (e.g., 𝑀 ),
where the solutions for the tidal elevation (𝑍) and cross-sectionally averaged
tidal velocity (𝑈) at any location can be expressed by:

𝑍(𝑥, 𝑡) = 𝜂(𝑥) cos(𝜔𝑡 − 𝑘𝑥), 𝑈(𝑥, 𝑡) = 𝜐(𝑥) cos(𝜔𝑡 − 𝑘𝑥 − 𝜙), (1.3)

where 𝑥 is longitudinal coordinate measured in landward direction from the
estuary mouth, 𝑡 is time, 𝜂 and 𝜐 are the tidal elevation and velocity amplitude,
𝜔 and 𝑘 are tidal frequency and wavenumber, and 𝜙 is the relative phase
between tidal elevation and velocity. This means that the linear solutions only
reproduce the tidal dynamics along the estuary for a single harmonic tidal
constituent. However, as tide propagates along the estuary overtides can be
generated due to the nonlinear terms in continuity and momentum equations
[Parker, 1991].
On the contrary, in this thesis, building on earlier works by Savenije [1998,
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2001, 2005, 2012], the analytical solutions are derived based on the full non-
linearized St. Venant equations in a Lagrangean reference frame. The fun-
damental assumption we made for the flow characteristics is that the instan-
taneous flow velocity 𝑉 for a moving particle can be described by a simple
harmonic wave:

𝑉 = 𝜐(𝑥) sin(𝜔𝑡), (1.4)

Based on this assumption, the mass and momentum equations can be rewrit-
ten in a Lagrangean way and are solved for the instance of high water (HW)
and low water (LW), where a nonlinear damping equation can be obtained by
subtracting HW and LW envelopes that retained both the quadratic velocity
in the numerator and the periodic variation of the hydraulic radius (approxi-
mated by the depth) in the denominator. As a results, the derived analytical
solutions aim at enabling to reproduce the most relevant features of the tidal
wave along the estuary, which accounts for the nonlinear effects in the St
Venant equations (e.g., overtides).

2. We adopt a multi-reach approach for accounting for the along-channel varia-
tions of friction and depth.

In linear theory, we also note that the solutions are usually derived for the
entire estuary with an effective friction coefficient (i.e., hydraulic drag coef-
ficient) and a constant averaged depth. This is mainly due to the fact that
they have to neglect any variation of the friction and averaged depth when
solving a second-order differential equation for one of the two unknowns in
St Venant equations. However, in principle the friction along an estuary is
a function of tidal amplitude and tidally averaged depth. The classical linear
solution is valid locally or for a short reach where the friction and depth could
be assumed constant. Hence a multi-reach approach has been adopted to
follow variations of the estuarine sections along the estuary.

In this thesis, we demonstrated that analytical solutions to the one-dimensional
St. Venant equations for the tidal hydrodynamics in convergent unbounded
estuaries with negligible river discharge can be cast in the form of a set of four
implicit dimensionless equations for phase lag, velocity amplitude, damping,
and wave celerity, as a function of two localized parameters describing friction
and convergence. With obtained damping gradient d 𝜂/ d 𝑥, a tidal amplitude
𝜂 at a distance Δ𝑥 (e.g., 1 km) upstream can be calculated by simple explicit
integration of the damping number:

𝜂 = 𝜂 + d𝜂d 𝑥Δ𝑥. (1.5)

This process is repeated until the solutions for the whole estuary are obtained.

3. We develop an analytical model that takes into account the effect of river
discharge and residual water level slope due to nonlinear friction.
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It is noted that most of the analytical solutions for tidal dynamics were de-
rived based on the assumption that the river discharge is negligible compared
to the amplitude of the tidal discharge. This is not a restrictive assumption
in the downstream part of an estuary since the cross-sectional area is large
compared to the cross-sectional area in river [Horrevoets et al., 2004]. How-
ever, as river discharge gains importance (such as in the upstream part of an
estuary or during flood season), an analytical model that includes the effect
of river discharge is required for further understanding of tidal process.

In this thesis we also extend the validity of the analytical model for tidal
dynamics by including the effect of river discharge within a consistent frame-
work. It is observed that the residual water level slope can have a substantial
influence on tidal wave propagation when the effect of river discharge is re-
markable (e.g., in Yangtze estuary)[Cai et al., 2014]. An iterative analytical
method has been developed to account for this factor, which significantly
improves the model performance.

1.3. Outline of This Thesis
In this Chapter we briefly introduce the formulation of the problem and define

the objective of this study. It also highlights the main differences between the
proposed analytical model and the previous linear theory developed to date. The
main results of the present thesis is divided into five parts: the similarity of the linear
analytical solutions developed so far (Chapter 2), the new analytical framework for
understanding tidal damping (Chapter 3), the asymptotic behaviour of tidal damping
(Chapter 4), the influence of river discharge on tidal propagation (Chapter 5) and
developing a coupled analytical model for analysing salt intrusion (Chapter 6). And
conclusions and future research are drawn in Chapter 7.

In Chapter 2 a brief derivation of the localized linear solutions is presented,
where four dimensionless equations are derived directly from the mass and mo-
mentum equations. We also compare analytical solutions of a wide range of authors
and compare them within one consistent framework.

Chapter 3 presents one consistent analytical framework for understanding tidal
damping in estuaries. A general solution procedure is proposed for the set of gov-
erning analytical equations expressed in dimensionless form. The different analyt-
ical solutions are then tested against fully nonlinear numerical results for a wide
range of parameters and a new analytical expression for the tidal damping is de-
rived. The new accurate relationship for the tidal damping is then exploited for a
classification of estuaries. Finally, the new model is used to investigate the effect of
depth variations on the tidal dynamics in 23 real estuaries, highlighting the useful-
ness of the analytical method to assess the influence of human interventions (e.g.
by dredging) and global sea-level rise on the estuarine environment.

In Chapter 4 we investigate the asymptotic behaviour of tidal damping in the new
analytical framework presented in Chapter 3. An explicit solution for the longitudinal
tidal damping is proposed, in order to study the asymptotic behaviour when the
friction is balanced by the channel convergence. The model is subsequently used
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to explore the influence of deepening on tidal wave propagation and the asymptotic
behaviour as increasing depth is studied.

Chapter 5 shows an extended analytical framework for tidal wave propagation
when accounting for the effect of river discharge. We highlight the importance
of residual water level slope on tidal wave propagation when including the effect
of river discharge. The analytical solutions are compared with numerical results
and the data from Modaomen and Yangtze estuaries are used to validate the new
method.

In Chapter 6 we have developed a coupled analytical model (i.e., combining
salt intrusion and hydrodynamics models) for analysing salt intrusion in estuaries.
The coupled model has been applied to six estuaries in Malaysia, where we did
measurements from June to August 2012 and February to March 2013 during the
dry season at spring tide.

In Chapter 7 we summarize the main results from this thesis and elaborate on
the possible future research.



2
Comparing different

analytical solutions for tidal
dynamics in convergent

estuaries

Analytical solutions to the one-dimensional St. Venant equations for tidal hydrody-
namics in convergent infinite estuaries with negligible river discharge can be cast in
the form of a set of four implicit dimensionless equations for phase lag, velocity ampli-
tude, damping, and wave celerity in terms of two independent parameters (describing
friction and convergence). This method allows one to make comparisons among dif-
ferent analytical approaches by rewriting the solutions in this form. In this paper,
classical and more recent formulations are compared, showing that the solutions cor-
respond to each other apart from specific simplifications. The envelope method that
subtracts the envelope expressions at high water and lowwater can be used to derive
damping equations by exploiting different friction approximations for the friction term,
which results in as many analytical solutions, and thereby building one consistent
theoretical framework. Analysis of the asymptotic behaviour of the equations shows
that an equilibrium tidal amplitude exists reflecting the balance between friction and
channel convergence.

2.1. Introduction
Knowledge of tidal dynamics is essential to analyze the effect of human inter-

ventions, such as dredging for navigation, fresh water withdrawal, and design of
regulation structures, in estuaries. Analytical tools are invaluable tools to assess
the impact of such interventions as they provide direct insight in cause-effect rela-
tions that are generally nonlinear. Over time, a range of 1-D analytical solutions of

7
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the tidal dynamics equations have been derived by: Hunt [1964], Dronkers [1964],
Ippen [1966], Jay [1991], Friedrichs and Aubrey [1994], Lanzoni and Seminara
[1998], Savenije [1992a, 1998, 2001, 2005, 2012], Prandle [2003], Savenije and
Veling [2005], Souza and Hill [2006], Savenije et al. [2008], Friedrichs [2010], Tof-
folon and Savenije [2011], Van Rijn [2011], Cai et al. [2012a] and Winterwerp and
Wang [2013]. The aim of this chapter is to compare all these analytical solutions
that try to reproduce the main dynamics of tidal wave propagation along the es-
tuary within one consistent theoretical framework. As a result, we aim to provide
insight into the effects of tidal forcing and geometry on estuarine dynamics.

All analytical solutions in convergent estuaries developed to date invariably re-
quire assumptions to simplify the nonlinear set of St. Venant equations. Most
researchers linearized the St. Venant equations by neglecting the inertial term, den-
sity term in the momentum equation and linearizing the friction term. For a simple
harmonic wave, they also assumed that the tidal amplitude and velocity amplitude
are damped or amplified exponentially along the estuary axis. It was demonstrated
by Cai et al. [2012a] that many of the linear solutions are in fact identical since
they solved the same set of differential equations by using the same assumptions.
Unlike most researchers who derived the solutions in an Eulerian frame, Savenije
[1998, 2001, 2005, 2012] derived expressions for the envelope curves of high wa-
ter (HW) and low water (LW) in a Lagrangean reference frame to arrive at a tidal
damping equation that retained the quadratic dependence of friction on velocity as
well as the effect of the periodic variation of the hydraulic radius (we will term this
as the ‘envelope method’because of its peculiar derivation). After scaling the
St. Venant equations, Toffolon et al. [2006] derived four dimensionless equations
reflecting the phase lag, the tidal damping, and wave propagation and provided a
fully explicit solution for tidal wave propagation by solving the set of four implicit
equations. The approach was further developed by Cai et al. [2012a], who used
different approximations to the friction term in the momentum equation and ended
up with various damping equations using the envelope method.

Of course, analytical approaches to describe a real complex estuarine system
comprise several limitations, like for instance the highly simplified geometry of the
cross-section, the idealized planimetric shape, the assumption of small tidal am-
plitude, the neglect of Coriolis force and density gradients. Nevertheless, the ad-
vantages are many. First of all, the analytical equations provide direct insight into
the effect of model forcing and geometry on system performance (e.g., to assess
the effects of dredging on tidal dynamics). Second, they form a simple and rapid
assessment tool in the preparation of a more complex numerical modeling exercise
(e.g., to assess the possible outcome of a numerical model or to design the model
setup). Finally, they can be very useful in setting up a monitoring program and to
identify the most effective density and location of the monitoring network.

The chapter is organized as follows. In the next section, we describe the basic
equations for the analytical solutions. In section 2.3, a general derivation of the
classical linear solutions in convergent estuaries is presented and it is shown that the
solutions can be obtained by solving a set of four implicit equations. A comparison of
the different linear solutions is presented in section 2.4. In section 2.5 we presented
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the quasi-nonlinear approach and hybrid solutions using the envelope method. In
section 2.6 we analyze the asymptotic behavior of solutions reflecting the balance
between friction and convergence. Finally, conclusions are drawn in section 2.7.

2.2. Formulation of the Problem
We consider a tidal channel with varying width and depth and investigate the

propagation of the tidal wave along an estuary with a fixed bed. The conceptual
sketch of the geometry of the idealized tidal channel is presented in Figure 2.1,
together with a simplified picture of the periodic oscillations of water level and
velocity defining the phase lag. In order to derive a simple analytical solution,
we assume that the flow is concentrated in a main rectangular cross-section, with
possible presence of lateral storage areas, described by the storage width ratio
𝑟 = 𝐵 /𝐵, i.e., the ratio between the storage width 𝐵 and the stream width 𝐵
(see Figure 2.1).
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Figure 2.1: Sketch of the geometry of the idealized tidal channel and notation: tidal oscillations of water
level and velocity and definition of the phase lag ; definition of the equivalent rectangular cross-
section of width , and of the total width including storage areas; planimetric view of the estuary
with storage areas; lateral view showing instantaneous and tidally averaged depth. Figure modified
from Savenije et al. [2008].

The basic one-dimensional equations describing the tidal dynamics in an estuary
are the continuity and momentum equations [e.g., Savenije, 2005], which read:

𝜕𝑈
𝜕𝑡 + 𝑈

𝜕𝑈
𝜕𝑥 + 𝑔

𝜕ℎ
𝜕𝑥 + 𝑔𝐼 + 𝑔𝐹 +

𝑔ℎ
2𝜌
𝜕𝜌
𝜕𝑥 = 0 , (2.1)

𝑟 𝜕𝑧𝜕𝑡 + 𝑈
𝜕𝑧
𝜕𝑥 + ℎ

𝜕𝑈
𝜕𝑥 −

ℎ𝑈
𝑎 = 0 , (2.2)

where 𝑡 is the time, 𝑈 is the cross-sectional average flow velocity, ℎ is the flow depth,
𝑔 is the acceleration due to gravity, 𝐼 is the bottom slope, 𝜌 is the water density,
𝑧 is the free surface elevation, 𝑎 is the convergence length of cross-sectional area
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defined in (1.2) and 𝐹 is the friction term. The friction term is widely represented
by:

𝐹 = 𝑈|𝑈|
𝐾 ℎ / , (2.3)

where 𝐾 is the Manning-Strickler friction coefficient. The density gradient described
by the last term in the left-hand side of equation (2.1) is often disregarded, but in
the method of Savenije et al. [2008] it is retained.

The system is forced by a sinusoidal tidal wave with a tidal period 𝑇 and a fre-
quency 𝜔 = 2𝜋/𝑇. As the wave propagates into the estuary, it has a wave celerity
𝑐, an amplitude of the tidal water level variation 𝜂, a tidal velocity amplitude 𝜐, and
a phase lag 𝜀, defined as the phase difference between high water (HW) and high
water slack (HWS), or between low water (LW) and low water slack (LWS) due to
the assumption of a simple harmonic solution (see Figure 2.1). For a simple har-
monic wave, 𝜖 = 𝜋/2− (𝜑 −𝜑 ), where 𝜑 is the phase of water level and 𝜑 the
phase of the tidal velocity. After scaling the continuity and momentum equations
(2.1) and (2.2), five dimensionless variables can be found: the estuary shape num-
ber 𝛾 (representing the effect of depth and width convergence), the friction number
𝜒 (describing the role of the frictional dissipation), the velocity number 𝜇 (the actual
velocity scaled with the frictionless value in a prismatic channel), the celerity num-
ber 𝜆 (the ratio between the theoretical frictionless celerity in a prismatic channel
and the actual wave celerity), and the damping number for tidal amplitude 𝛿 (a
dimensionless description of the increase, 𝛿 > 0, or decrease, 𝛿 < 0, of the tidal
wave amplitude along the estuary) [Toffolon et al., 2006; Savenije et al., 2008],
where 𝛾 and 𝜒 are the independent variables, while 𝜀, 𝜇, 𝜆, 𝛿 are the dependent
variables. For further details on the scaling factors and the resulting dimension-
less equations, readers can refer to Savenije et al. [2008]. These dimensionless
variables are defined as:

𝛾 = 𝑐
𝜔𝑎 , (2.4)

𝜒 = 𝑟 𝑓 𝑐
𝜔ℎ
𝜁 , (2.5)

𝜇 = 1
𝑟
𝜐ℎ
𝜂𝑐 , (2.6)

𝜆 = 𝑐
𝑐 , (2.7)

𝛿 = 1
𝜂
d𝜂
d𝑥
𝑐
𝜔 , (2.8)

where 𝑐 is the classical wave celerity of a frictionless progressive wave, ℎ is the
tidal average depth of flow, 𝑓 is the dimensionless friction factor and 𝜁 is the di-
mensionless tidal amplitude defined as:
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𝑐 = √𝑔ℎ/𝑟 , (2.9)

𝑓 = 𝑔

𝐾 ℎ
/ [1 − (

4
3𝜁) ] , (2.10)

𝜁 = 𝜂
ℎ
. (2.11)

In equation (2.10), the periodic effect of depth variation during the tidal cycle
has been taken into account through the factor indicated between square brackets,
which results from the subtraction of the envelopes at HW and LW. This additional
friction factor is a property of the envelope method [e.g., Savenije, 2005], which
traditional linearization methods do not have. For small value of tidal amplitude to
depth ratio (𝜁 ≪ 1), this property is less important.

2.3. The Classical Linear Solutions
2.3.1. Basic Equations

The tidal dynamics in an alluvial estuary with possible presence of intertidal
flats may be approximated by the following linearized equations [e.g. Toffolon and
Savenije, 2011]:

𝑟 𝜕ℎ𝜕𝑡 + 𝑈
𝜕ℎ
𝜕𝑥 + ℎ

𝜕𝑈
𝜕𝑥 +

ℎ𝑈
𝐵
d𝐵
d𝑥 = 0, (2.12)

𝜕𝑈
𝜕𝑡 + 𝑔

𝜕𝑧
𝜕𝑥 + 𝐹 = 0, (2.13)

where 𝑔 the gravity acceleration and 𝐹 is the linearized friction term using Lorentz’
s method [Lorentz, 1926]. The linearization of friction term is widely represented
by:

𝐹 = 8
3𝜋𝑓

𝜐
ℎ
𝑈, (2.14)

where 𝑓 is a dimensionless friction factor, defined as:

𝑓 = 𝑔

𝐾 ℎ
/ , (2.15)

It should be noted that the water level variation can be expressed as 𝑧 = ℎ−ℎ.
In the case of small tidal amplitude (i.e., 𝑧 ≪ ℎ), it is possible to find:

𝑈𝜕ℎ𝜕𝑥 = 𝑈
𝜕(𝑧 + ℎ)
𝜕𝑥 = 𝑈𝜕𝑧𝜕𝑥 +

ℎ𝑈
ℎ
𝜕ℎ
𝜕𝑥 ≈ 𝑈

𝜕𝑧
𝜕𝑥 +

ℎ𝑈
ℎ
𝜕ℎ
𝜕𝑥 , (2.16)

where the last equality only applies for small value of 𝑧/ℎ. Substituting equation
(2.16) into (2.12) and making use of equation (1.2), the following equation is ob-
tained:

𝑟 𝜕𝑧𝜕𝑡 + 𝑈
𝜕𝑧
𝜕𝑥 + ℎ

𝜕𝑈
𝜕𝑥 −

ℎ𝑈
𝑎 = 0, (2.17)
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which has the advantage that the depth convergence is implicitly taken into account
by the convergence of the tidally averaged cross-sectional area. The nonlinear term
𝑈𝜕𝑧/𝜕𝑥 is negligible with respect to the following term in the case of small tidal
amplitude. Thus equation (2.17) finally modifies into

𝑟 𝜕𝑧𝜕𝑡 + ℎ
𝜕𝑈
𝜕𝑥 −

ℎ𝑈
𝑎 = 0. (2.18)

2.3.2. Scaling the Equations
We introduce a scaling on equations (2.13) and (2.18), similar to that used by

Savenije et al. [2008], to derive the dimensionless equations, the asterisk super-
script denoting dimensionless variables:

𝑈∗ = 𝑈/𝜐 , ℎ∗ = ℎ/ℎ,𝑧∗ = 𝑧/𝜂 , 𝑥∗ = 𝑥2𝜋𝐿 , 𝑡
∗ = 𝑡2𝜋𝑇 , (2.19)

where 𝜂 and 𝜐 are the tidal amplitude and velocity amplitude at the estuary mouth,
𝐿 is the wavelength and 𝑇 is the tidal period. Note that the scaling of tidal flow
velocity and water level fluctuation are slightly different from the scaling used by
Savenije et al. [2008] because they are scaled with the corresponding values at the
estuary mouth. For an infinite length estuary, the velocity amplitude and the tidal
amplitude are proportional:

1
𝜐
𝜕𝜐
𝜕𝑥 =

1
𝜂
𝜕𝜂
𝜕𝑥 , (2.20)

which implies that the ratio of the velocity amplitude to the tidal amplitude is con-
stant: 𝜐

𝜂 =
𝜐
𝜂 . (2.21)

Making use of the assumption (2.21), equations (2.13) and (2.18) may then be
rewritten as:

𝜕𝑈∗
𝜕𝑡∗ + (

𝑔𝜂𝑇
𝜐𝐿 )

𝜕𝑧∗
𝜕𝑥∗ + (

8
3𝜋
𝜐𝑇𝑓
2𝜋ℎ

)𝑈∗ = 0, (2.22)

𝜕𝑧∗
𝜕𝑡∗ + (

ℎ𝜐𝑇
𝜂𝐿𝑟 )ℎ

∗ 𝜕𝑈∗
𝜕𝑥∗ − (

ℎ𝜐𝑇
2𝜋𝜂𝑎𝑟 )ℎ

∗𝑈∗ = 0. (2.23)

The real scales of velocity amplitude 𝜐 and the wavelength 𝐿 are scaled with the
corresponding values for a frictionless tidal wave in a channel with zero convergence
(𝑈 , 𝐿 ) as a reference:

𝜐 = 𝑈 𝜇, (2.24)

𝐿 = 𝐿 /𝜆, (2.25)

where the dimensionless velocity number 𝜇 and celerity number 𝜆 are defined in
(2.6) and (2.7), respectively.

For the case of frictionless estuary with zero convergence, the velocity amplitude
𝑈 and the wavelength 𝐿 are:

𝑈 = 𝜁𝑐 𝑟 , (2.26)
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𝐿 = 𝑐 𝑇. (2.27)

Assuming ℎ∗ = 1 (i.e., ℎ = ℎ) in the continuity equation (2.23), then the dimen-
sionless equations (2.22) and (2.23) read:

𝜕𝑈∗
𝜕𝑡∗ +

𝜆
𝜇
𝜕𝑧∗
𝜕𝑥∗ +

8
3𝜋𝜇𝜒𝑈

∗ = 0, (2.28)

𝜕𝑧∗
𝜕𝑡∗ + 𝜇𝜆

𝜕𝑈∗
𝜕𝑥∗ − 𝜇𝛾𝑈

∗ = 0, (2.29)

where the dimensionless parameters 𝜒 and 𝛾 have been introduced as the friction
number (2.5) and estuary shape number (2.4), respectively.

2.3.3. Analytical Solutions of the Linearized Equations
Concentrating on the propagation of one predominant tidal constituent (e.g.,

𝑀 ), the solution can be expressed as:

𝑈∗ = 𝑉∗ exp(𝑖𝑡∗) , 𝑧∗ = 𝐴∗ exp(𝑖𝑡∗) , (2.30)

where 𝑉∗, 𝐴∗, and 𝑖 are the complex amplitude of the velocity, the complex ampli-
tude of the tidal elevation, and the unit imaginary number √−1, respectively.

Substituting equation (2.30) into (2.28) and (2.29) yields:

𝑖𝑉∗ + 𝜆𝜇
𝜕𝐴∗
𝜕𝑥∗ +

8
3𝜋𝜒𝜇𝑉

∗ = 0, (2.31)

𝑖𝐴∗ + 𝜇𝜆𝜕𝑉
∗

𝜕𝑥∗ − 𝜇𝛾𝑉
∗ = 0. (2.32)

We introduce the well-known fundamental solutions for a simple harmonic wave,
i.e., assuming a solution that is the real part of:

𝐴∗(𝑥∗) = exp(𝛿𝑥∗/𝜆) exp(−𝑖𝑥∗) , (2.33)

𝑉∗(𝑥∗) = exp(𝛿𝑥∗/𝜆) exp[−𝑖(𝑥∗ + 𝜑)] , (2.34)

where 𝜙 is the relative phase between tidal elevation and velocity. Substituting
equations (2.33) and (2.34) into equations (2.28) and (2.29) gives the following for
momentum and continuity:

exp(𝑖𝜑)
𝜇 = −𝜆 + 8𝜇𝜒𝛿/(3𝜋)

−𝜆 − 𝛿
+ 𝑖𝛿 + 8𝜇𝜒𝜆/

(3𝜋)
−𝜆 − 𝛿

, (2.35)

exp(𝑖𝜑)
𝜇 = 𝜆 + 𝑖(𝛿 − 𝛾) . (2.36)

One can separately balance the real and imaginary parts to derive:

−𝜆 + 8𝜇𝜒𝛿/(3𝜋)
−𝜆 − 𝛿

= 𝜆, (2.37)
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𝛿 + 8𝜇𝜒𝜆/(3𝜋)
−𝜆 − 𝛿

= 𝛿 − 𝛾. (2.38)

Multiplying equation (2.37) by 𝜆 and equation (2.38) by 𝛿, and adding them
together, we end up with:

𝜆 = 1 − 𝛿(𝛾 − 𝛿) . (2.39)

Similarly, multiplying equation (2.37) by 𝛿 and equation (2.38) by 𝜆, and adding
them together, we obtain the following equation:

𝛿 = 𝛾
2 −

4
3𝜋
𝜒𝜇
𝜆 . (2.40)

Using the identity exp(𝑖𝜙) = cos(𝜙) + 𝑖 sin(𝜙), the phase of velocity relative to
elevation is seen from equation (2.36) to be:

tan(𝜑) = 𝛿 − 𝛾
𝜆 . (2.41)

From equation (2.36) it also follows that:

𝜇 = cos(𝜑) /𝜆 = sin(𝜑) /(𝛿 − 𝛾) . (2.42)

The phase lag between high water slack (HWS) and high water (HW) (or low
water slack (LWS) and low water (LW)) for a simple harmonic wave is 𝜖 = 𝜋/2+𝜙,
such that equations (2.41) and (2.42) can be rearranged respectively to become

tan(𝜖) = 𝜆
𝛾 − 𝛿 , (2.43)

𝜇 = sin(𝜖)
𝜆 = cos(𝜖)

𝛾 − 𝛿 . (2.44)

We can see that equations (2.43) and (2.44) are derived from the continuity
equation, while equations (2.39) and (2.40) are obtained from the combination of
continuity and momentum equations.

Equations (2.39), (2.40), (2.43) and (2.44) represent a set of four implicit
equations, which can be solved by an iterative numerical method (e.g., a simple
Newton-Raphson method). Making use of the trigonometric equation [cos(𝜖)] =
1+[tan(𝜖)] , equations (2.43) and (2.44) can be combined to eliminate the variable
𝜖 to give:

(𝛾 − 𝛿) = 1
𝜇 − 𝜆 . (2.45)

Then the four equations reduce to three. Table 2.1 presents the linear solutions
for the general case as well as for some particular cases: frictionless (𝜒 = 0, both
with subcritical convergence, 𝛾 < 2, and supercritical convergence, 𝛾 ≥ 2), constant
cross section (𝛾 = 0) and ideal estuary (𝛿 = 0). Similar results are derived by
Toffolon and Savenije [2011]. Figure 2.2 shows the variation of the dependent
dimensionless parameters obtained by solving the set of equations (2.39), (2.40)
and (2.45) as a function of the estuary shape number 𝛾 and the friction number 𝜒.
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Table 2.1: Classical linear solutions of tidal wave propagation

Case Phase lag tan(𝜖) Scaling 𝜇 Damping 𝛿 Celerity 𝜆
General 𝜆/(𝛾 − 𝛿) sin(𝜖)/𝜆 = cos(𝜖)/(𝛾 − 𝛿) 𝛾/2 − 4𝜒𝜇/(3𝜋𝜆) 1 − 𝛿(𝛾 − 𝛿)
Frictionless (𝛾 < 2) √4/𝛾 − 1 1 𝛾/2 1 − 𝛾 /4
Frictionless (𝛾 ≥ 2) 0 (𝛾 − √𝛾 − 4)/2 (𝛾 − √𝛾 − 4)/2 0
Constant cross section −𝜆/𝛿 sin(𝜖)/𝜆 = −cos(𝜖)/𝛿 −4𝜒𝜇/(3𝜋𝜆) 1 + 𝛿
Ideal estuary 1/𝛾 √1/(1 + 𝛾 ) = 3𝜋𝛾/(8𝜒) 0 1

2.4. Similarity of Different Linear Solutions
Hunt’s approach
Hunt [1964] was one of the first to consider tidal wave propagation in estuaries

characterized by width convergence with constant or variable depth. It is worth
noting that equations (2.31) and (2.32) can be combined into a single, second-
order differential equation and rearranged to form separate expressions for either
𝐴∗ or 𝑉∗. The expressions for the tidal amplitude A* and velocity amplitude V* are
then as follows:

𝜕 𝐴∗
𝜕𝑥∗ − 𝛾𝜆

𝜕𝐴∗
𝜕𝑥∗ +

1 − 𝑖�̂�
𝜆

𝐴∗ = 0, (2.46)

𝜕 𝑉∗
𝜕𝑥∗ − 𝛾𝜆

𝜕𝑉∗
𝜕𝑥∗ +

1 − 𝑖�̂�
𝜆

𝑉∗ = 0, (2.47)

with
�̂� = 8𝜒𝜇/(3𝜋) . (2.48)

Equations (2.46) and (2.47) can be solved if the coefficients are constant. This
means that we have to neglect any variation of the parameters 𝛾, 𝜆, and �̂� along the
longitudinal coordinate 𝑥∗. Since equations (2.46) and (2.47) are identical except
dependent variable, we can solve either of them analytically, leading to:

𝑐 exp[(𝛾/2 + √𝛾 /4 − 1 + 𝑖�̂�) 𝑥∗/𝜆] + 𝑐 exp[(𝛾/2 − √𝛾 /4 − 1 + 𝑖�̂�) 𝑥∗/𝜆] ,
(2.49)

where 𝑐 and 𝑐 are two constants.
For an infinite length estuary with no landward boundary condition, applying the

seaward boundary condition 𝐴∗ = 1 at 𝑥∗ = 0, the solution is then given by:

𝑐 = 0, 𝑐 = 1, (2.50)

which suggests that there is no reflective wave.
The expressions for the main dependent dimensionless parameters have been

derived by Toffolon and Savenije [2011] and can be summarized as follows:

tan(𝜑) = 𝛾𝜅 + 2𝜅
�̂� , (2.51)

𝜇 = 1
√1 + 𝛾𝜅 + 2𝜅

, (2.52)
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Figure 2.2: Relationship between the main dimensionless parameters and the estuary shape number
obtained by solving equations (2.38), (2.39) and (2.44) for different values of the friction number .

𝛿 = 𝛾
2 − 𝜅, (2.53)

𝜆 = 𝜅 + Γ, (2.54)

with

𝜅 = √Ω − Γ2 , Ω = √Γ + �̂� , Γ = 1 − (𝛾2) . (2.55)

It is important to note that equations (2.51)–(2.54) are implicit equations be-
cause of �̂� as a function of 𝜇. Unlike Toffolon and Savenije [2011] who made use
of an iterative refinement to determine the friction, Hunt assumed �̂� as a constant
(�̂� = 𝜒). Consequently, Hunt’s solution can be directly obtained from equations
(2.51)–(2.54), which corresponds to the model of “lin0”by Toffolon and Savenije
[2011].

The analytically determined dimensionless parameters, both without and with
an iterative procedure to determine the friction, are presented in Figure 2.3. It can
be seen that the deviation between the model assuming constant friction and the
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model using an iterative refinement to determine the correct friction becomes large
as friction increases.
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Figure 2.3: The main dimensionless parameters obtained with different analytical models. The dashed
lines represent the model using constant friction ( ̂= ), while the drawn lines indicate the model ex-
ploiting an iterative procedure to determine the friction.

Analytical solutions for exponentially converging channels with constant depth
derived by Prandle and Rahman [1980] and Prandle [1985] have large similarities
with Hunt’s approach with regard to considering constant friction.

Pillsbury’s approach
Pillsbury [1956a,b] provided a particular solution for an ‘ideal’estuary, where

the tidal amplitude, velocity amplitude and depth are uniform through the entire
channel. In this case, the width reduces in an upstream direction as an exponential
function:

𝐵 = 𝐵 exp[−𝑘𝑥 cot(𝜖)] , (2.56)

and the velocity amplitude 𝜐 and wave celerity 𝑐 are given by:

𝜐 = 𝜂𝑔
𝑐 sin(𝜖) , 𝑐 =

𝜔
𝑘 =

√𝑔ℎ. (2.57)
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After some algebra and making use of the dimensionless parameters, equations
(2.56) and (2.57) appear to be identical to (1.1) and (2.44) for an ideal estuary
(see Table 2.1). In an ideal estuary, the increase in tidal amplitude due to channel
convergence in width is just sufficient to balance the tidal damping due to friction
[Langbein, 1963].

Ippen’s approach
Ippen [1966] derived analytical solutions of the linearized St. Venant equa-

tions for a prismatic estuary (i.e., constant depth and width) both with and without
friction. In a frictionless, prismatic channel of rectangular cross-section, the one-
dimensional St. Venant equations for tidal elevation (𝐻) reduce to a basic wave
equation:

𝜕 𝑧
𝜕𝑡 = 𝑐 𝜕 𝑧𝜕𝑥 . (2.58)

For an estuary of infinite length, equation (2.58) produces a progressive wave
solution with 𝑐 = 𝑐 (hence 𝜆 = 1) and the relative phase between tidal eleva-
tion and velocity is 0 (hence 𝜖 = 𝜋/2). Without considering the effect of channel
convergence and friction, the system becomes an ideal estuary (hence 𝛿 = 0) and
the velocity amplitude is given by 𝜐 = (𝜂/ℎ)𝑐 (hence 𝜇 = 1). As a result, we can
see that Ippen’s analytical solution for a frictionless, prismatic channel of infinite
length corresponds to the frictionless solution presented in Table 2.1 in the case of
𝛾 = 0.

Ippen [1966] also provided solutions to (2.58) for channel closed at one end,
characterized by incident and reflected waves of equal amplitude. The result is a
standing wave of maximum amplitude at antinodes and of zero amplitude at nodes.
However, the relative phase between tidal elevation and velocity can be shown to be
close to 90∘ time angle in many short estuaries without the need to explicitly include
a classical reflected wave [Hunt, 1964; Wright et al., 1973]. In fact, as shown in
Table 2.1 and Figure 2.2, it is possible to predict realistic solutions in these short
estuaries using a single incident wave without the explicit presence of a reflected
wave by including both friction and the channel convergence of the cross-sectional
area.

Ippen [1966] then used Green’s Law [Green, 1837] to examine tides in chan-
nels of gradually varying cross-section. In particular, the solution of tidal amplitude
for the channel of constant depth with exponential variation of width is given by:

𝜂 = 𝜂 exp( 12𝑎𝑥) , (2.59)

which corresponds to the damping equation in the frictionless (𝛾 < 2) case pre-
sented in Table 2.1. However, Ippen [1966] did not provide the solutions of velocity
amplitude, wave celerity and phase lag, which are presented in Table 2.1.

In his review of tidal dynamics in estuaries, Ippen [1966] also discussed the
more ‘realistic’case of tidal wave propagation in a prismatic channel which includes
the effect of friction. In a channel of infinite length, the tidal amplitude decays
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exponentially along the estuary axis where the damping number 𝛿 is described by:

( 𝜔𝑐 ) = (𝜔𝑐 ) − (−𝛿 𝜔𝑐 ) , (2.60)

which is the celerity equation for the constant cross-section channel presented in
Table 2.1. Substitution of equation (2.60) into the following equation

𝑔
𝜔
8
3𝜋

𝜐

𝐾 ℎ
/ = tan(−2𝜑) = −2𝛿𝜔/𝑐𝜔/𝑐

1
1 − [(𝛿𝜔/𝑐 ) /(𝜔/𝑐)] , (2.61)

yields the damping equation of constant cross-section channel presented in Table
2.1. The phase of velocity relative to elevation is described by:

tan(−𝜑) = (𝛿𝜔/𝑐 ) /(𝜔/𝑐) , (2.62)

and the velocity amplitude is given by:

𝜐 = 𝜂
ℎ
𝑐 𝜔/𝑐

√(−𝛿𝜔/𝑐 ) + (𝜔/𝑐)
, (2.63)

which correspond to the phase lag equation and scaling equation of constant cross-
section channel presented in Table 2.1, respectively.

Jay’s approach
Jay [1991] revisited Green’s law on tidal propagation in strongly convergent by

including the effects of friction, channel convergence, finite amplitude, river flow
and tidal flats adjacent to the main channel. Two analytical solutions were then
derived: the former applied to weakly dissipative estuaries where the effects of
acceleration and topographic convergence are dominant over friction in determin-
ing the complex wave number; the latter concerns strongly dissipative estuaries
where friction controls the wave number. Both solutions change character at the
defined“critical convergence”such that the effect of acceleration and topography
balanced exactly in his wavenumber equation [Jay, 1991, equation 22]. In this
case, the complex wave number is given to lowest order by:

𝑞 = 𝜔
𝑐 + 𝑖

1
𝜂
d𝜂
d𝑥 , (2.64)

with
𝜔
𝑐 = −

1
𝜂
d𝜂
d𝑥 =

𝜔

𝑐 √2𝜔𝐾 ℎ
/
/(𝑝𝑔𝜐)

, , (2.65)

where the coefficient 𝑝 is derived from the Tschebyschev coefficient, and the ve-
locity amplitude is scaled as:

𝜐 = 𝜂
ℎ
𝑐 . (2.66)
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Substituting the dimensionless parameters presented in Section 3 into equations
(2.64)-(2.66) gives to the following solutions:

𝛿 = −𝜆, 𝜆 = √𝑝𝜒𝜇/2, 𝜇 = 1. (2.67)

Friedrichs’approach
Friedrichs and Aubrey [1994] considered tidal propagation in strongly conver-

gent estuaries and provided simple first and second order analytical solutions, which
diverge markedly from classical views of co-oscillating tides. The solution of the
first order is of negligible amplification for the tidal wave and has a relative phase
between velocity and elevation of 90 degree time angle, in which the velocity am-
plitude and wave celerity are given by:

𝜐 = 𝑎𝜔𝜂/ℎ, (2.68)

𝑐 = 𝜔/𝑘 = 3𝜋
8
𝑐 ℎ
𝑓𝜐𝑎 ., (2.69)

The first order solutions for velocity amplitude (2.68) and wave celerity (2.69)
were then used in the derivation of second-order solution, where the dominant
tidal component is a uni-directional wave with an amplitude that is exponentially
modulated. The amplitude growth factor is presented as follows:

1
𝜂
d𝜂
d𝑥
𝑐
𝜔 = 3𝜋

8
𝜔ℎ
𝑓𝜐 −

𝜔𝑎
𝑐 = 𝜔𝑎

𝑐 [(
𝑐
𝑐 ) − 1] , (2.70)

while the phase lag between HW and HWS is given by:

𝜖 = 𝜔
𝑐 𝑎. (2.71)

Making use of the dimensionless parameters defined in Section 3, equations
(2.68)–(2.71) can be scaled resulting in the following set of dimensionless equa-
tions:

𝜇 = 1/𝛾, 𝜆 = 8𝜇𝜒/(3𝜋𝛾) , 𝜆 = 1 − 𝛾𝛿, 𝜖 = 𝜆/𝛾. (2.72)

After some algebra, (2.72) can be cast in the form of analytical solutions of the
four dependent parameters (𝜇, 𝛿, 𝜆 and 𝜖) as functions of the shape number 𝛾 and
friction number 𝜒:

𝜇 = 1/𝛾, 𝛿=(−64𝜒 + 9𝛾 𝜋 ) /(9𝛾 𝜋 ) , 𝜆 = (8𝜒) /(3𝛾 𝜋) , 𝜖 = (8𝜒) /(3𝛾 𝜋) .
(2.73)

It is worth noting that the set of equations (2.72) is a simplified version of our
linearized solutions with vanishing amplification (small 𝛿) and strong convergence
of cross-sectional area (big 𝛾, hence small 𝜖), because Friedrichs and Aubrey [1994]
used perturbation analysis where the scaled equations are simplified by neglecting
higher-order terms. The analytically computed dependent dimensionless parame-
ters based on equation (2.73) as a function of estuary shape number 𝛾 is shown
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in Figure 2.4. We can see that, as the shape number 𝛾 increases, the solutions
(2.73) suggests that the velocity number 𝜇, celerity number 𝜆 and the phase lag
𝜖 decrease until zero is reached asymptotically, while the damping number is ap-
proaching zero. The asymptotic case is identical to a frictionless standing wave
system (see Table 2.1).
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Figure 2.4: Variation of the dimensionless parameters obtained with equation (2.72) as a function of
estuary shape number γ for given values of friction number .

Friedrichs [2010] again used perturbation analysis to simplify the governing
equations for a wide range of channelized estuaries. In particular, he solved the
linearized St. Venant equations by including the effect of width convergence based
on the assumption that the tidal amplitude and velocity amplitude along the estu-
ary axis can be described by exponential functions. The general solutions can be
described by the following four dimensional equations:

𝑐
(𝑔ℎ/𝑟 ) =

3𝜋
8
𝜔ℎ
𝑓𝜐 (

𝑐
𝑎𝜔 − 2

1
𝜂
d𝜂
d𝑥
𝑐
𝜔) , (2.74)

𝑐
(𝑔ℎ/𝑟 ) = 1 +

𝑐
𝜔𝑎

1
𝜂
d𝜂
d𝑥
𝑐
𝜔 − (

1
𝜂
d𝜂
d𝑥
𝑐
𝜔) , (2.75)
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𝜑 = −arctan( 𝑐𝜔𝑎 −
1
𝜂
d𝜂
d𝑥
𝑐
𝜔) , , (2.76)

𝜐 = 𝑔𝜂
𝑐 |

𝑖 − ( )

𝑖 +
|. (2.77)

Substitution of the dimensionless parameters defined in Section 3 into equations
(2.74)–(2.76)yields the damping equation, celerity equation and phase lag equation
for the general case presented in Table 2.1. However, equation (2.77) is not the
scaling equation as we expected due to the complex number in the right-hand side.
In fact, following the derivation used by Friedrichs [2010, pp. 47-48] and using the
identity exp(𝑖𝜙) = cos(𝜙) + 𝑖 sin(𝜙), it is possible to derive:

𝜐 = 𝑟 𝜂 𝑐 cos(𝜑)
ℎ

= 𝑟 𝜂 𝑐 sin(𝜑) /[ℎ(1𝜂
d𝜂
d𝑥
𝑐
𝜔 −

𝑐
𝜔𝑎)] , (2.78)

which is the scaling equation as presented in Table 2.1.
Lanzoni’s approach
Lanzoni and Seminara [1998] revisited the one-dimensional tidal propagation in

convergent estuaries considering four limit cases identified by the relative strength
of channel convergence and ratio of friction to local inertia. For weakly dissipa-
tive and weakly convergent estuaries, the dominant tidal component reduces to a
progressive wave in a frictionless prismatic channel, where the velocity is in phase
with free surface elevation (i.e., 𝜖 = 𝜋/2). In this case, the solution for the tidal
amplitude along the estuary is given by:

𝜂 = 𝜂 exp[𝑥/(2𝑎)]
1 − 8𝑓𝜐𝑎/(3𝜋𝑐 ℎ) + 8𝑓𝜐𝑎/(3𝜋𝑐 ℎ) exp[𝑥/(2𝑎)]

. (2.79)

Making use of scaling equation for velocity amplitude 𝜐 = 𝜁𝑐 (implying 𝜇 = 𝜆 =
1)and dimensionless parameters defined in Section 3, equation (2.79) reduces to:

𝜂∗ = exp[𝑥∗𝛾/(2𝜆)]
1 − 8𝜒/(3𝜋𝛾) + [8𝜒/(3𝜋𝛾)] exp[𝑥∗𝛾/(2𝜆)] , (2.80)

with
𝜂∗ = 𝜂/𝜂 . (2.81)

One can easily observe that an equilibrium tidal amplitude 𝜂∗ exists when the
distance approaches infinity, which reads:

𝜂∗ = 3𝜋𝛾
8𝜒 . (2.82)

In weakly dissipative and moderately or strongly convergent estuaries, they
derived the following form of solutions:

1
𝜂
d𝜂
d𝑥
𝜔
𝑐 = 1

2𝑎 , (2.83)
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𝜔
𝑐 =

√4𝜔 𝑎 /𝑐 − 1
2𝑎 , (2.84)

tan(𝜖) = √4𝜔 𝑎 /𝑐 − 1, (2.85)

𝜐
𝜁𝜔𝑎 =

𝑐
𝜔𝑎 , (2.86)

which can be rewritten by using the dimensionless parameters defined in Section 3
and give rise to the solutions:

𝛿 = 𝛾/2, 𝜆 = √1 − 𝛾 /4, tan 𝜖 = √4/𝛾 − 1, 𝜇= 1, (2.87)

which corresponds with the frictionless case (𝛾 < 2) presented in Table 2.1. For
the cases of strongly dissipative and weakly convergent estuaries and strongly dis-
sipative and strongly convergent estuaries, Lanzoni and Seminara [1998] did not
derive the analytical solutions due to the nonlinearity of the friction term.

Prandle’s approach
Prandle [2003, 2004] proposed localized analytical solutions for the particu-

lar case of a synchronous (i.e., ideal) estuary with strongly convergent triangular
cross-sections and a predominant (𝑀 ) tidal constituent. He also assumed a con-
stant estuary depth to width ratio and introduced a cross-sectional slope defined
as tan(𝛼) = 2ℎ/𝐵. Noting that for a triangular cross-section 𝐴 = 0.5𝐵ℎ, then the
convergence of cross-sectional area is given by:

1
𝐴
𝜕𝐴
𝜕𝑥 =

1
ℎ / tan(𝛼)

𝜕[ℎ / tan(𝛼)]
𝜕𝑥 = 1

ℎ
𝜕ℎ
𝜕𝑥 . (2.88)

The solution for the wave celerity corresponds to the propagation of an un-
bounded inviscid wave (in water depth ℎ/2). In this case the solutions are described
by the following equations:

tan(−𝜑) = −1.33𝜒𝜇 = 21
ℎ
𝜕ℎ
𝜕𝑥

𝑐
𝜔 , (2.89)

𝜐 = 𝜂𝑔/[𝑐√1 + ( 83𝜋𝜒𝜇) ] , (2.90)

𝑐 = √𝑔ℎ/2, (2.91)

where the factor 1.33 in equation (2.89) is derived from the linearization of the
quadratic velocity term in the momentum equation for a triangular cross-section.
Equations (2.89)–(2.91) can be solved for 𝜐 and 𝜕ℎ/𝜕𝑥, and by integrating 𝜕ℎ/𝜕𝑥,
it is possible to obtain the values of depth along the estuary.
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Substitution of the dimensionless parameters in equations (2.89)–(2.91) yields
the following set of equations:

tan(𝜖) = 2/𝛾 = 1/(1.33𝜇𝜒) , 𝜇 = √1/(1 + 4𝛾 ), 𝜆= 1, (2.92)

which are slightly different from our solutions for the ideal estuary (see Table 2.1)
due to the triangular cross-section shape.

Van Rijn’s approach
Van Rijn [2011] derived the analytical solutions for tidal wave propagation in

both prismatic and converging channels, where the main tidal dynamics can be
explicitly described by two independent parameters, i.e., the width convergence
and Lorentz’s friction factor. The solution is an exponential damped/amplified
wave due to the balance between channel convergence and friction. The solutions
are given by:

tan(−𝜑) = 𝑐
𝜔

⎡
⎢
⎢
⎢
⎣

1
2𝑏 +

1
√2

𝜔
𝑐
√−1 + ( 𝑐2𝜔𝑏) + √[−1 + ( 𝑐2𝜔𝑏) ] + (

8𝑓𝜐
3𝜋ℎ𝜔

)
⎤
⎥
⎥
⎥
⎦

,

(2.93)
𝜐 = −(𝜂/ℎ) 𝑐 cos(−𝜑) , (2.94)

− 1𝜂
𝑑𝜂
𝑑𝑥 = −

1
2𝑏 +

1
√2

𝜔
𝑐
√−1 + ( 𝑐2𝜔𝑏) + √[−1 + ( 𝑐2𝜔𝑏) ] + (

8𝑓𝜐
3𝜋ℎ𝜔

) , (2.95)

𝑐 = 𝜔
𝑘 = 𝜔/

⎡
⎢
⎢
⎢
⎣

1
2𝑏 −

1
√2

𝜔
𝑐
√1 − ( 𝑐2𝜔𝑏) + √[−1 + ( 𝑐2𝜔𝑏) ] + (

8𝑓𝜐
3𝜋ℎ𝜔

)
⎤
⎥
⎥
⎥
⎦

, (2.96)

which can be scaled by the dimensionless parameters defined in Section 3 and lead
to four dimensionless equations:

tan(𝜖) = 𝜆/(𝛾 − 𝛿) , (2.97)

𝜇 = sin(𝜖) /𝜆, (2.98)

𝛿 = 𝛾
2 −

1
√2
√−(1 − 𝛾 /4) + √(1 − 𝛾 /4) + ( 83𝜋𝜒𝜇) , (2.99)

𝜆 = 1 − 𝛿(𝛾 − 𝛿) . (2.100)

After some algebra, it is possible to rewrite equation (2.99) as:

𝛿 = 𝛾
2 −

4
3𝜋
𝜒𝜇
𝜆 . (2.101)
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We can see that the solutions (2.98)-(2.101) are identical to the general case
of linear solutions that presented in Table 2.1.

Meanwhile, Van Rijn [2011] also proposed a semi-analytical (because it should
be coupled with his linear solution) solution of the energy equation:

2d𝜂d𝑥 =
1
𝑏𝜂 −

8
3𝜋

𝑓𝜐
𝑔ℎ cos(−𝜑)

, (2.102)

which includes the effect of quadratic (nonlinear) bottom friction as he mentioned.
However, using the dimensionless parameters and noting that cos(𝜙) = 𝑠𝑖𝑛(𝜖) =
𝜇𝜆, the solution of (2.102) becomes equation (2.101), which means that it is still
identical to its linear solution.

Toffolon’s approach
Toffolon and Savenije [2011] revisited the classical linear solution for tidal prop-

agation in convergent estuaries (with width and depth convergence) based on com-
plex functions. Moreover, it is shown how the solution can be improved by exploit-
ing an iterative refinement of the linearized bottom friction and by subdividing the
estuary in multiple reaches.

The analytical solution is given explicitly by the set of equations (2.51)–(2.55)
as presented in Hunt’s approach. The refinement process based on iteratively
calculating the correct value of �̂� based on the estimated 𝜇 is described in Toffolon
and Savenije [2011]. Here it suffices to say that plugging the set of equations
(2.55) into equations (2.51)–(2.54) yields equations (2.97)–(2.100), which suggests
that Toffolon’s solutions are also identical to the linear solution (general case)
presented in Table 2.1.

Winterwerp’s approach
The solution presented by Winterwerp and Wang [2013] is identical to the so-

lution proposed by Van Rijn [2011] and Toffolon and Savenije [2011]. It should be
noted that the wave number 𝑘 defined in their paper is a complex, where the real
part represents the real wave number 𝜔/𝑐 while the imaginary part represents the
damping gradient . We are able to rewrite their solutions with dimensionless
parameters presented in Section 3:

1
2[2

√(4𝑟 /𝛾 − 1) + (4𝑟 �̂�/𝛾 ) + 2(4𝑟 /𝛾 − 1)]
/

= 2
𝛾𝜆, (2.103)

1 − 12[2
√(4𝑟 /𝛾 − 1) + (4𝑟 �̂�/𝛾 ) − 2(4𝑟 /𝛾 − 1)]

/

= 2
𝛾𝛿, (2.104)

𝜇 = √𝜆 + 𝛿
1 + �̂� , (2.105)

tan(−𝜑) = 𝛿 − 𝛾
𝜆 . (2.106)
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It can be seen from equations (2.103)–(2.106) that they are just slightly differ-
ent expressions of the analytical solutions (general case) presented in Table 2.1.
However, instead of using an iterative procedure to determine the correct velocity
scale 𝜐, they assumed a constant friction parameter �̂� along the estuary. Neither
did they use a multi-reach approach to account for the variation of the longitudinal
depth.

2.5. The Quasi-nonlinear and Hybrid Approaches
As shown in the previous section, analytical solutions developed to date concen-

trated on linear models, usually neglecting the inertial term, linearized the friction
term and assuming a constant friction and average flow depth. Savenije [1998,
2001], however, followed another approach based on a Langrangean reference
frame and derived an analytical expression for the tidal damping (i.e., the damp-
ing equation) that retained the nonlinear friction term (i.e., the quadratic velocity
and the periodic variation of the hydraulic radius). We termed this as “envelope
method”due to the fact that the damping equation was obtained by subtracting
the envelope curves of HW and LW. A detailed description of the envelope method
to derive the damping equations for different friction formulations is presented in
Appendixes A.2 and A.3. On the basis of this envelope method, Toffolon et al.
[2006] and Savenije et al. [2008] derived a fully explicit solution for the tidal wave
propagation by solving four equations, i.e., phase lag, scaling, damping, and celer-
ity equations, where the phase lag and scaling equations were derived by Savenije
[1992a, 1993a] from the mass balance equation by a Lagrangean approach, while
the celerity equation was derived by Savenije and Veling [2005] with the method
of characteristics.

Recently, Cai et al. [2012a] presented one consistent theoretical framework for
tidal wave propagation building on the previous works by Toffolon et al. [2006] and
Savenije et al. [2008]. It was demonstrated by Cai et al. [2012a] that different fric-
tion formulations can be used in the envelope method to arrive at an equal number
of damping equations (see Table 2.2). These equations are explained in detail in
Savenije [2012] and are similar to the ones described in Appendixes A.2 and A.3.
Subsequently, the different damping equations can be combined with phase lag,
scaling, and celerity equations to form the solutions of the hydraulic equations. In
general, the main classes of the solutions are: (1) quasi-nonlinear solution with
nonlinear friction term [Savenije et al., 2008]; (2) linear solution with Lorentz’s
linearization [Lorentz, 1926]; (3) Dronkers’solution with higher order formula-
tion for quadratic velocity [Dronkers, 1964]; (4) hybrid solution characterized by a
weighted average of Lorentz’s linearization, with weight 1/3, and the nonlinear
friction term, with weight 2/3 [Cai et al., 2012a]. It is worth noting that in this
framework we used a different definition for the dimensionless friction factor:

𝑓 = 𝑓 [1 − (4𝜁/3) ] , (2.107)

where the last term stems from the subtraction between HW and LW envelopes,
which accounts for the periodic variation of the hydraulic radius in the denominator
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of the friction term.

Table 2.2: A new analytical framework for tidal wave propagation

Model Friction term Damping equation References
Quasi-nonlinear 𝑈|𝑈|/(𝐾 ℎ / ) 𝛿 = 𝛾/2 − 𝜒𝜇 /2 Appendix A.1

Linear 8𝜐𝑈/(3𝜋𝐾 ℎ
/
) 𝛿 = 𝛾/2 − 4𝜒𝜇/(3𝜋𝜆) Appendix A.2

Dronkers 16𝜐 [𝑈/𝜐 + 2(𝑈/𝜐) ]/(15𝜋𝐾 ℎ
/
) 𝛿 = 𝛾/2 − 8𝜒𝜇/(15𝜋𝜆) − 16𝜒𝜇 𝜆(15𝜋) Appendix A.3

Hybrid 2𝑈|𝑈|/(3𝐾 ℎ / ) + 8𝜐𝑈/(9𝜋𝐾 ℎ / ) 𝛿 = 𝛾/2 − 4𝜒𝜇/(9𝜋𝜆) − 𝜒𝜇 /3 Savenije [2012, 84–89]

Figures 2.5–2.8 illustrate the response of the velocity number, the damping
number, the celerity number, and the phase lag obtained with different analytical
models (see Table 2.2) as a function of friction number 𝜒 and estuary shape number
𝛾. The range of 𝜒 (0—50) and 𝛾 (0—5) values covered is representative of most
estuaries. It can be seen from Figures 2.5–2.8 that all methods are identical for a
frictionless wave. Since there exists two families of solutions in the quasi-nonlinear
model [Savenije et al., 2008], we can clearly see that the dimensionless scale of
velocity 𝜇 flips suddenly when the friction reaches its critical value, defined as the
threshold condition for the transition from the mixed tidal wave (first family of so-
lution, 0 < 𝜖 < 2/𝜋) to the“apparently standing wave”(second family, 𝜖 = 0) (see
Figure 2.5). On the contrary, the other three methods (i.e., the hybrid, linear and
Dronkers’models) provide a continuous solution with a smooth transition.

It is important to recognize that the solutions for the dependent dimensionless
parameters 𝜇, 𝛿, 𝜆 and 𝜖 are local because they are obtained by solving four implicit
equations that depend only on local (fixed position) quantities (i.e., the local tidal
amplitude to depth ratio 𝜁, the local estuary shape number 𝛾 and the local friction
number 𝜒). In order to reproduce the correct wave behavior along the estuary,
a multi-reach approach has to be used to follow along-channel variations of the
estuarine sections, where the whole estuary is subdivided into multiple reaches.
With the obtained damping number 𝛿, it is possible to calculate a tidal amplitude 𝜂
at a distance Δ𝑥 (e.g., 1 km) upstream by simple explicit integration of the damping
number:

𝜂 = 𝜂 + d𝜂d𝑥Δ𝑥 = 𝜂 + 𝜂 𝜔𝛿𝑐 Δ𝑥. (2.108)

To demonstrate the capability of the proposed multi-reach approach, Figure 2.9
compares the longitudinal variations of tidal amplitude and velocity amplitude as
well as the control parameters (friction number 𝜒 and shape number 𝛾) for different
depth profile along the estuary (𝑑=infinite, 𝑑=150 km or 𝑑=-150 km). It should be
noted that for the convergent depth there exists a maximum value for 𝜒 due to the
opposite effect of depth reduction. On the other hand, for the prismatic channel
with diverging depth we can see that the tidal amplitude and velocity amplitude
consistently decrease because of frictional dissipation and diverging depth.

2.6. Asymptotic Behaviour of the Solutions
The present method, exploiting a multi-reach approach, differs from earlier stud-

ies [e.g. Hunt, 1964; Ippen, 1966; Friedrichs and Aubrey, 1994; Van Rijn, 2011] in
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Figure 2.5: Contour plot of the velocity number in the plane obtained with different analytical
approaches.

exploring localized dynamics in terms of tidal amplitude to depth ratio as opposed to
seeking whole-estuary solutions. It was demonstrated by Cai and Savenije [2013]
that the exponential damping for the whole-estuary is only valid for an ideal estuary
or for the case of frictionless. This is due to the fact that for these two cases the
damping number δ is assumed to be constant (hence constant friction 𝜒, velocity
𝜇, celerity 𝜆, and phase lag 𝜖). In particular, the classical exponential solutions for
tidal amplitude and velocity amplitude can be described as:

𝜂∗ = exp(𝑥∗𝛿/𝜆) , 𝜐∗ = exp(𝑥∗𝛿/𝜆) . (2.109)

with
𝜐∗ = 𝜐/𝜐 . (2.110)

It can be seen from equation (2.109) that both tidal amplitude and velocity
amplitude approach zero for a damped wave and infinity for an amplified wave. On
the contrary, Cai and Savenije [2013] found that an asymptotic solution exists due
to the balance between friction and channel convergence and derived a fully explicit
equation for tidal amplitude (as a function of distance) from the damping equation,
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Figure 2.6: Contour plot of the damping number in the plane obtained with different analytical
approaches.

which can be expressed as:

𝜂∗ =
𝜂∗

1 − (1 − 𝜂∗ ) exp{−𝛾𝜇 𝑥∗/[𝜆(1 + 𝜇 )]} , (2.111)

where 𝜂∗ is the asymptotic solution of tidal amplitude when the distance ap-
proaches infinity and depends on the specific damping equation (see Table 2.2).
Table 3 presents the analytical expressions that reflect the balance between friction
and channel convergence, which are derived by setting 𝛿 = 0 in the damping equa-
tion. The localized asymptotic solutions for tidal amplitude derived from different
damping equations are also presented in Table 2.3, where the subscript 𝑄, 𝐿, 𝐷,
and 𝐻 stand for the corresponding analytical models. The reason that the asymp-
totic solutions are local is due to the fact that they are obtained by assuming that
the friction factor 𝑓, the phase lag 𝜖, the wave celerity 𝑐, the tidally averaged depth
ℎ, and the ratio of the velocity amplitude to the tidal amplitude 𝜐/𝜂 are constant.

Figure 2.10 illustrates the asymptotic behaviour of tidal amplitude when distance
approaches infinity where the friction is balanced by the channel convergence for
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Figure 2.7: Contour plot of the celerity number in the plane obtained with different analytical
approaches.

different values of the estuary shape number 𝛾. Although in reality the estuary is too
short to achieve an equilibrium tidal amplitude, the explicit equation (2.107) does
provide new insight into the tidal damping in convergent estuaries when compared
with the simple exponential damping equation (2.109).

2.7. Conclusions
In this chapter we present a general derivation of linear solution for tidal wave

propagation in convergent estuaries without land boundary (i.e., infinite length
channel) based on a Eulerian reference frame using the assumption that the tidal
elevation and velocity can be described by simple harmonic waves. The derivation
results in four implicit equations, i.e., the phase lag, the scaling, the linear damping,
and the celerity equation, which can be solved by simple numerical method. It is
demonstrated that most of the analytical solutions developed to date have large
similarity to the proposed linear solutions with four explicit equations, except the
analytical approach proposed by Savenije [1998, 2001, 2005, 2012], Savenije et al.
[2008] who derived the solutions in a Lagrangean reference frame while retaining
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Figure 2.8: Contour plot of the phase lag in the plane obtained with different analytical ap-
proaches.

the inertial term and nonlinear friction term in the momentum equation. In gen-
eral, it is possible to classify the linear solutions into four types: 1) linear solution
assuming constant friction, such as Hunt [1964], Prandle and Rahman [1980], Pran-
dle [1985], Friedrichs [2010]; 2) linear solution exploiting an iterative procedure to
determine the correct velocity amplitude υ in the Lorentz’s linearization, such as
Van Rijn [2011]; 3) linear solution that accounts for the longitudinal variation of
friction and depth by subdividing the entire estuary in short reaches over which
the friction number 𝜒 and averaged depth are considered constant, such as Tof-
folon and Savenije [2011]. 4) linear solution that is obtained by solving four implicit
equations and the longitudinal behavior is reproduced by a multi-reach approach,
such as the method presented in section 3 and the linear model proposed by Cai
et al. [2012a].

The analytical framework developed by Cai et al. [2012a] enables comparison
among a wide range of analytical approaches. Four classes of analytical solutions
are identified and the main difference lies in the treatment of the friction term using
different friction approximations. They are quasi-nonlinear model with nonlinear
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Figure 2.9: Comparison of the main dimensional parameters as well as their control parameters under
different depth profile scenarios. The drawn line represents prismatic channel with horizontal bed ( =
infinite). The dashed line denotes prismatic channel with convergent depth ( = 150 km), while the
dashed-dotted line for prismatic channel with diverging depth ( = -150 km).

friction term, linear model with Lorentz’s linearization, Dronkers’model with third
order formulation for the friction term, and hybrid model characterized by 2/3 of
the nonlinear friction term and 1/3 of the Lorentz’s linearization. It is important to
recognize that a multi-reach approach should be applied in order to reproduce the
correct behavior of tidal dynamics along the estuary. The asymptotic behavior of
these analytical solutions was further investigated by Cai and Savenije [2013] where
equilibrium tidal amplitude was found that reflects the balance between friction and
channel convergence.
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Table 2.3: Summary of the asymptotic solutions for different analytical models

Model Balance between friction 𝜒 and channel convergence 𝛾 Localized asymptotic solution
Quasi-nonlinear 𝜒 = 𝛾(𝛾 + 1) 𝜂∗ _ = 𝛾/(𝜒 𝜇 𝜆 )
Linear 𝜒 = 3𝜋𝛾√𝛾 + 1/8 𝜂∗ _ = 3𝜋𝛾/(8𝜒 𝜇𝜆)
Dronkers 𝜒 = [15𝜋𝛾(𝛾 + 1) / ]/[16(𝛾 + 3)] 𝜂∗ _ = 15𝜋𝛾/(16𝜒 𝜇𝜆 + 32𝜒 𝜇 𝜆 )
Hybrid 𝜒 = 𝛾/{8/(9𝜋√1 + 𝛾 ) + 2/[3(1 + 𝛾 )]} 𝜂∗ _ = 𝛾/[8𝜒 𝜇𝜆/(9𝜋) + 2𝜒 𝜇 𝜆 /3]
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A new analytical framework

for assessing the effect of
sea-level rise and dredging on

tidal damping in estuaries
This chapter explores different analytical solutions of the tidal hydraulic equations in
convergent estuaries. Linear and quasi-nonlinear models are compared for given ge-
ometry, friction, and tidal amplitude at the seaward boundary, proposing a common
theoretical framework and showing that the main difference between the examined
models lies in the treatment of the friction term. A general solution procedure is pro-
posed for the set of governing analytical equations expressed in dimensionless form,
and a new analytical expression for the tidal damping is derived as a weighted aver-
age of two solutions, characterized by the usual linearized formulation and the quasi-
nonlinear Lagrangean treatment of the friction term. The different analytical solutions
are tested against fully nonlinear numerical results for a wide range of parameters,
and compared with observations in the Scheldt estuary. Overall, the method com-
pares best with the numerical solution and field data. The new accurate relationship
for the tidal damping is then exploited for a classification of estuaries based on the
distance of the tidally averaged depth from the ideal depth (relative to vanishing am-
plification) and the critical depth (condition for maximum amplification). Finally, the
model is used to investigate the effect of depth variations on the tidal dynamics in
23 real estuaries, highlighting the usefulness of the analytical method to assess the
influence of human interventions (e.g. by dredging) and global sea-level rise on the

Parts of this chapter have been published in:
Cai, H., Savenije, H.H.G., Toffolon, M. (2012), A new analytical framework for assessing the ef-
fect of sea-level rise and dredging on tidal damping in estuaries, J. Geophys. Res., 117, C09023,
doi:10.1029/2012JC008000.
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estuarine environment.

3.1. Introduction
Recently, Toffolon and Savenije [2011] proposed a modified linear model and

compared it with the quasi-nonlinear model of Savenije et al. [2008], suggest-
ing that the discontinuous behavior (i.e., with two families of solutions) and the
transition toward a standing wave (i.e., the wave celerity tending toward infinity)
predicted by the latter model do not happen in reality. Interestingly, numerical
simulations (see section 3.3.2) indicate that the two models approach the numer-
ical results from a different side, i.e., the modified linear model overestimates the
tidal damping while the quasi-nonlinear model underestimates it, and it appears
that a weighted average of the two comes close to the numerical results. In this
chapter, a comparison is made between different linear and quasi-nonlinear models
building a common theoretical framework based on which a new analytical model
is derived. We pay particular attention to the effect of different formulations of the
friction term, leading to different expressions for tidal damping.

The chapter is arranged as follows. In the next section, we present the quasi-
nonlinear solution of tidal wave propagation in convergent estuaries. The compar-
ison between the quasi-nonlinear model and the linear model is presented in sec-
tion 3.3. In section 3.4, the performance of the new analytical model is shown and
compared with analytical solutions by Savenije et al. [2008], Toffolon and Savenije
[2011] and Dronkers’ approach [Dronkers, 1964]. The new model is subsequently
applied in the Scheldt estuary and compared with the solution of a numerical model.
In section 3.5, a new classification of estuaries and the effect of depth variations
on tidal dynamics in 23 real estuaries are presented. Finally, conclusions are drawn
in section 3.6.

3.2. Quasi-nonlinear model
Savenije et al. [2008] derived four dimensionless equations based on the equa-

tions for the phase lag [Savenije, 1992a, 1993a], for tidal damping [Savenije, 1998,
2001], and for wave propagation [Savenije and Veling, 2005]:

𝛿 = 𝛾
2 −

1
2𝜒𝜇 , (3.1)

𝜇 = sin(𝜀)
𝜆 = cos(𝜀)

𝛾 − 𝛿 , (3.2)

tan(𝜀) = 𝜆
𝛾 − 𝛿 , (3.3)

𝜆 = 1 − 𝛿(𝛾 − 𝛿) . (3.4)

The damping equation (3.1) reflects the relative balance between the conver-
gence of banks and friction and can be rewritten as:



3.3. Comparison between Linear and Quasi-nonlinear Solutions ..

3

37

𝛾 − 𝛿 = 𝛾 + 𝜒𝜇
2 , (3.5)

which is greater than 0 for any convergent estuary (𝛾 > 0), showing that the
tidal wave amplification (𝛿) cannot be larger than the estuary shape number 𝛾.
The scaling equation (3.2) shows that the velocity amplitude is determined by the
ratio between the phase lag 𝜀 and the combined effect of friction and convergence
as expressed in (3.5). The phase lag equation (3.3) highlights that a standing
wave (𝜀 = 0) is characterized by an infinite wave celerity (𝜆 → 0) and that friction
tends to move the system far from this asymptotic condition. On the other hand, a
progressive wave (𝜀 = 𝜋/2) is obtained only when the difference between 𝛾 and 𝛿
(3.5) is vanishingly small, i.e., when both friction and convergence are negligible.
The celerity equation (3.4) shows that tidal wave propagation is closely related
with the longitudinal amplitude variation (amplification or damping): recalling the
positive value of (3.5), it is easy to see that the actual celerity 𝑐 is larger than the
reference value 𝑐 for amplified conditions, while it decreases with damping. It is
worth noting that this set of equations corresponds to the case of an infinitely long
channel, where the effect of the landward boundary condition can be neglected
[Toffolon and Savenije, 2011]. Also it is worth noting that in the derivation of
both the damping and the celerity equation, the density term in the momentum
balance equation was taken into account, but that this term dropped out in both
the envelope method [Savenije, 1998, 2001] and the method of characteristics
[Savenije and Veling, 2005] used for their derivation. Hence the density term has
no impact on the tidal damping nor the wave celerity (only indirectly, it leads to a
residual water level slope). The scaling equation and the phase lag equation result
from the mass balance equation and hence are also not affected by the density
term.

3.3. Comparison between Linear and Quasi-nonlinear
Solutions

3.3.1. Difference in Damping Equation
Recently, Toffolon and Savenije [2011] and Van Rijn [2011] revisited the linear

solution for estuarine hydrodynamics by taking into account the effects of the width
and depth convergence. In this section we compare these modified linear solutions
with the quasi-nonlinear analytical solution proposed by Savenije et al. [2008], with
specific focus on the damping equation (Table 3.1). Basically, Toffolon and Savenije
[2011] and Van Rijn [2011] exploited the same method, linearizing the friction term
(both the velocity variation 𝑈|𝑈| and the variation of the depth ℎ) and neglecting
the inertial term 𝑈𝜕𝑈/𝜕𝑥 and the density term 𝑔ℎ/(2𝜌)𝜕𝜌/𝜕𝑥 in the momentum
balance equation. The set of obtained equations was then solved using complex
functions. These functions were considered as a local approximation of the solution
in a multi-reach system by Toffolon and Savenije [2011], who also showed a more
reliable solution can be obtained by iteratively refining the Lorentz’ constant in the
friction term. On the other hand, Van Rijn [2011] concentrated on the solution of
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the whole estuary, but derived a damping equation based on energy considerations
as well. Another distinct difference is that the solution proposed by Savenije et al.
[2008] is intrinsically local, i.e., it is expressed in terms of point-to-point values of the
parameters provided that the information about the tidal amplitude is transferred
only in the landward direction by means of the damping equation, while the other
two linearized solutions (which potentially account also for the landward boundary
condition) can be used in this way by neglecting the effect of the reflected wave.

Table 3.1: Comparison of different approaches to tidal damping equation.

Model Method Landward b.c. 𝑈𝜕𝑈/𝜕𝑥 and
𝑔ℎ/(2𝜌)𝜕𝜌/𝜕𝑥

Friction term Damping equation

Savenije et al.
[2008]

Subtracting high wa-
ter and low water en-
velopes

Neglected Considered Quadratic
velocity, time-
variable depth

𝛿 = − 𝜒𝜇

Toffolon and
Savenije [2011],
Van Rijn [2011]

Considering the ampli-
tude of complex func-
tion

Neglected (but
possibly consid-
ered)

Neglected Linearized,
time-invariant
depth

𝛿 = − √
√Γ + √Γ + ( 𝜒𝜇)

Γ = − 1
(T1)

Van Rijn [2011]
Energy-based ap-
proach

Neglected Neglected Linearized,
time-invariant
depth

𝛿 = − (T2)

It is worth noting that, after some algebra, it is possible to demonstrate that
the two damping equations (T1) and (T2) in Table 3.1 are identical, which means
that the analytical solution proposed by Van Rijn [2011], both with the linear and
the energy-based approach, can be cast into the same set of four nonlinear equa-
tions using the dimensionless parameters defined in section 3.2. The dimensionless
equations obtained are similar to equations (3.1)-(3.4), but with a different damping
equation:

𝛿 = 𝛾
2 −

4
3𝜋
𝜒𝜇
𝜆 . (3.6)

Since Van Rijn [2011]’s model is characterized by Lorentz’s linearization [Lorentz,
1926] of the friction term 𝐹:

𝐹 = 8
3𝜋

𝜐

𝐾 ℎ
/ 𝑈 , (3.7)

it is interesting to analyze the effect of using Lorentz’s assumption in the derivation
of the damping equation (3.1) with the envelope method. This is done in Appendix
A.2, following the procedure proposed by Savenije [2005] and considering the lin-
earized friction term, instead of the quasi-nonlinear friction term, in the momentum
equation. The result is that we obtain the same linear tidal damping equation as
in (3.6), demonstrating that Van Rijn [2011]’s model coincides with the linearized
version of Savenije et al. [2008].

Replacing the quasi-nonlinear damping equation (3.1) with equation (3.6), a
new system of four analytical equations is obtained, namely (3.6), (3.2), (3.3) and
(3.4). In contrast to the quasi-nonlinear system, which has an explicit solution,
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this set of equations can only be solved by an iterative numerical method (e.g., a
simple Newton-Raphson method). Figure 3.1 shows the variation of the dependent
dimensionless parameters obtained with the different approaches as a function of
the estuary shape number 𝛾 and the friction number 𝜒. We can see that the results
obtained using (3.6) coincide fully with the solutions provided by Van Rijn [2011]
and Toffolon and Savenije [2011]. Hence, the only difference between the quasi-
nonlinear [Savenije et al., 2008] and modified linear models [Toffolon and Savenije,
2011; Van Rijn, 2011] is the friction term in the damping equation.
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Figure 3.1: Relationship between the main dimensionless parameters and the estuary shape number
(2.4) obtained by solving equation (3.6) in combination with equations (3.3), (3.2), and (3.4) for

different values of the friction number (2.5). The drawn black and dashed green lines represent the
solutions obtained by Toffolon and Savenije [2011] and Van Rijn [2011], respectively.

More precisely, the damping equation of Savenije et al. [2008] differs from the
linearized damping equation by a factor that depends on the phase lag 𝜀, as be-
comes clear by substituting (3.2) into (3.1):

𝛿 = 𝛾
2 −

1
2
𝜒𝜇
𝜆 sin(𝜀). (3.8)

Equations (3.6) and (3.8) are formally identical if sin(𝜀) = 8/(3𝜋) ≈ 0.85, implying
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a value of the phase lag of approximately 58∘ (2 hours for an M2 tide).
Dronkers [1964, p. 302] suggested an interesting higher order formulation for

the friction term (see also Cartwright [1968]), leading to results that are compa-
rable to those obtained using the fully nonlinear formulation for the friction term.
Dronkers [1964] took account of over-tide generation by including a third order
term (cubic velocity) in the friction term, while also assuming that 𝑈 is a periodic
function with zero mean:

𝐹 = 16
15𝜋

𝜐

𝐾 ℎ
/ [
𝑈
𝜐 + 2(

𝑈
𝜐 ) ] . (3.9)

Note that this equation did not account for the time variable depth in the friction
term. In our symbols the expression for the tidal damping using Dronkers’ friction
term would read (see Appendix A.3):

𝛿 = 𝛾
2 −

8
15𝜋

𝜒𝜇
𝜆 − 16

15𝜋𝜒𝜇 𝜆 . (3.10)

Equation (3.10), when combined with equations (3.2), (3.3) and (3.4), forms a new
set of nonlinear equations, which can be solved iteratively.

It is worth noting that the different methods use different definitions of the
dimensionless friction factor 𝑓 (i.e., equation (2.10)). The Lorentz’s linearization
and Dronkers’ method consider a time-invariant depth in the friction term, which is

the same as taking 𝜁=0 in (2.10), i.e., 𝑓 = 𝑔/(𝐾 ℎ
/
).

3.3.2. Performance of Different Analytical Models
In order to investigate the performance of the analytical solutions, they have

been compared with a fully nonlinear numerical solution of the governing equations
(2.1) and (2.2). The numerical model [Toffolon et al., 2006] is based on the explicit
MacCormack method, which is second order accurate both in space and in time.
A total variation diminishing (TVD) filter is applied to avoid spurious oscillations,
especially when the wave steepens because of frictional or geometrical effects.

Since we focus on the tidal damping in this paper, in this section we present a
comparison between the values of the dimensionless damping number 𝛿 estimated
using analytical methods against the fully nonlinear numerical results. We consider
a wide range of parameters (with 1 ≤ 𝛾 ≤ 3, 0.1 ≤ 𝜁 ≤ 0.3, 10 m / s ≤ 𝐾 ≤
50 m / s and ℎ=10 m) covering a wide spectrum of tidal channels. In order to
present dimensionless results, distance 𝑥 is scaled by the frictionless wavelength in
prismatic channels:

𝑥∗ = 𝜔
𝑐 𝑥 (3.11)

Figure 3.2 shows the performance of the different analytical models at a single
position 𝑥∗ = 0.426 (corresponding to 30 km for a 10 m deep estuary). Both
the linear [Toffolon and Savenije, 2011] and the quasi-nonlinear [Savenije et al.,
2008] solution behave reasonably well, but none of them is fully correct for a finite
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amplitude wave. It appears that Dronkers’ approach lies closest to the numerical
solution, and that Savenije et al. [2008] and Toffolon and Savenije [2011] have a
consistent bias from the numerical solution. The former method underestimates
the tidal damping, while the latter overestimates it.
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Equation (13): Savenije 2008 R2=0.94

Equation (18): Toffolon 2011 R2=0.94

Equation (22): Dronkers  R2=0.96

Equation (27): Proposed model R2=0.99

Figure 3.2: Tidal damping at ∗ . obtained with four different analytical models (new damping
equation (3.15), Dronkers’ equation (3.10), Savenije et al. [2008], Toffolon and Savenije [2011]), com-
pared to numerical results. is the coefficient of determination, which provides an estimate of the
average deviation of the estimates of the different analytical models from the assumed correct value
(numerical model): the closer is to unit, the better is the model.

The reason for this behavior lies in the different simplifications used in the friction
term 𝐹. Toffolon and Savenije [2011] used Lorentz’s linearization (3.7), which is
based on the equal energy dissipated by linear and quadratic friction during a tidal
cycle (assuming a sinusoidal tide). On the other hand, working within an original
Lagrangean-based approach, Savenije et al. [2008] obtained the effective friction
�̂� acting over a tidal cycle by subtracting the high water (HW) and low water (LW)
envelopes, leading to:
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�̂� = 1
2[

𝑈

𝐾 (ℎ + 𝜂 )
/ + 𝑈

𝐾 (ℎ − 𝜂 )
/ ] , (3.12)

where the two velocities at HW and LW follow from:

𝑈 ≈ 𝜐 sin(𝜀) , 𝑈 ≈ −𝜐 sin(𝜀) . (3.13)

These approaches (linearized and quasi-nonlinear), which are correct for the
strictly linear case where the tidal wave is a simple harmonic, yield opposite biases
in the damping equation for finite-amplitude waves.

This behavior can be clearly seen from Figure 3.3, which compares the fric-
tion effectively acting during a tidal cycle considering the different options. The
damping in the three standard Eulerian approaches (see also Vignoli et al. [2003])
is based on the definition of a tidally average friction term ⟨ |𝐹| ⟩ = 𝑇 ∫ |𝐹| d 𝑡,
where 𝐹 is estimated as follows: the fully nonlinear definition from (2.3) (blue line),
Lorentz’s linearization 𝐹 from (3.7) (red dashed line), and Dronkers’ relationship 𝐹
from (3.9) (black dash-dot line). On the contrary, Savenije’s Lagrangean approach
(3.12) directly provides the effective friction �̂� (green dashed line), which can be
consistently compared with the previous ones. All quantities used in Figure 3.3 are
obtained by the numerical model, so the only difference is the approximation used
for the friction term. The comparison suggests that the tidally averaged friction
term obtained with Lorentz’s linearization overestimates the friction along the es-
tuary, while Savenije et al. [2008] model tends to underestimate it. In the middle,
the third-order approximation by Dronkers [1964] is very close to the complete
nonlinear friction.

As a whole, the two approaches to calculate the frictional dissipation (i.e., using
the linearized friction term or the average of HW and LW values) consistently have
an opposite bias. Because of this, it is attractive to explore if the ‘true’ damping
can be obtained by taking the weighted average of equations (3.6) and (3.8):

𝛿 = 𝛾
2 − 𝛼

4
3𝜋
𝜒𝜇
𝜆 − (1 − 𝛼)12𝜒𝜇 . (3.14)

For different weights of the linearized friction term 𝛼 (from 0 to 1), it is possible
to compare the values of 𝛿 obtained by equation (3.14) with the damping observed
in the numerical results for the same wide range of parameters as for Figure 3.2.
Figure 3.4 presents the optimum weight 𝛼 with its standard error at different loca-
tions along the estuary and the corresponding coefficient of determination 𝑅 . We
can see that the optimum weight 𝛼 becomes stable from 𝑥∗ ≃ 0.35 onward and that
the equilibrium weight for 𝛼 is about 1/3. The fact that the weight is approximately
1 (corresponding to the linearized friction) near the estuary mouth is the result of
the imposed harmonic boundary condition without overtides, which is consistent
with the linear assumption. The stable values of 𝛼 that develops in the landward
direction indicates that the wave adjusts its shape toward an equilibrium shape.

Assuming 𝛼 = 1/3, the optimized damping equation hence reads:
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Figure 3.3: Comparison of the tidally averaged friction term | | computed with different formulations
of the friction term: fully nonlinear (2.3) (blue line), Lorentz’s linearization (3.7) (red dashed line),
Dronkers’ expansion (3.9) (black dash-dot line); and for Savenije’s effective friction F̂ (3.12) (green
dashed line). All estimates are based on variables obtained from numerical results ( =1, =0.1, =30
m / and =10 m).

𝛿 = 𝛾
2 −

4
9𝜋
𝜒𝜇
𝜆 − 𝜒𝜇3 . (3.15)

This equation is very similar to Dronkers’ equation (3.10), which can be rearranged
using (3.2) in the following form:

𝛿 = 𝛾
2 −

2
5
4
3𝜋
𝜒𝜇
𝜆 − 32

15𝜋 sin(𝜀)
1
2𝜒𝜇 . (3.16)

Similarly to (3.14), the last two terms of equation (3.16) can be seen as a combina-
tion of (3.6) and (3.8), whereby the weights of the linearized and nonlinear models
imply 𝛼 = 0.4 and 1 − 𝛼 = 0.68 sin(𝜀), which is satisfied if sin(𝜀) ≃ 0.88, a value
similar to the one derived from (3.8).

By iteratively solving the set of four analytical equations (3.2), (3.3), (3.4) and
(3.15), we have obtained a new analytical solution for the dimensionless parameters
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Figure 3.4: Optimum weight of the linearized friction term with its standard error along the estuary
axis and the corresponding coefficient of determination .

𝜇, 𝛿, 𝜆, and 𝜀. The damping number 𝛿 has been compared with the other solutions
in Figure 3.2, and we can see that the agreement of equations (3.10) and (3.15)
with the numerical model is very good, but the latter obtains the best result with the
highest coefficient of determination 𝑅 = 0.99. Moreover, as we can see from Figure
3.5, where different versions of analytical solutions are compared with numerical
results, the proposed new damping equation obtains the best result with the highest
coefficient of determination 𝑅 along the estuary axis, except near the mouth of
the estuary where the modified linear model [Toffolon and Savenije, 2011] achieves
the best result due to the purely harmonic wave imposed at the seaward boundary.

Apparently, by combining the two approaches of Toffolon and Savenije [2011]
and Savenije et al. [2008], we have obtained a more accurate analytical model,
which is closer to the fully nonlinear numerical solution.
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Figure 3.5: Longitudinal variation of the coefficient of determination between numerical model and
different analytical models for a wide range of parameters with , . . , 10 m / s

50 m / s and =10 m.

3.4. Behavior of the New Set of Equations
3.4.1. General Performance

Figures 3.6-3.9 present the solution of the velocity number, the damping number,
the celerity number, and the phase lag obtained with the different analytical models
as a function of 𝛾 and 𝜒. In these graphs, the blue symbols represent the new
method using equation (3.15), whereas the dashed red lines represent the solution
of Savenije et al. [2008], the drawn black lines the solution of Toffolon and Savenije
[2011], and the dashed-dotted green lines the solution with Dronkers’ friction term.
Unlike the equation of Savenije et al. [2008], which had two families of solutions
for mixed and standing waves, both the new solution and the solutions of Toffolon
and Savenije [2011] and Dronkers’ approach provide continuous solutions in the
transition zone of critical convergence [Jay, 1991] where 𝛾 is close to 2. In the new
model, a clear separation between the subcritical and the supercritical cases exists
only for vanishing friction (𝜒 = 0).

Comparing the new model with the other three models, we can see in Figures
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3.6-3.9 that three zones can be distinguished. For small values of 𝛾 (weakly conver-
gent estuaries), the main dimensionless parameters (𝜇, 𝛿, 𝜆 and 𝜀) obtained with
the new model are closer to the linear solution of Toffolon and Savenije [2011]. In
the transition zone where critical convergence occurs in the model of Savenije et
al. (2008), the result is about the average of Savenije et al. [2008] and Toffolon
and Savenije [2011]. For larger values of 𝛾 (the strongly convergent estuaries), we
can see that the new solution is closer to the frictionless case. Moreover, it appears
that Dronkers’ solution is very close to our new solution for an amplified wave with
bigger 𝛾, while it is similar to Savenije et al. [2008] for waves with 𝛾 < 2. For an
ideal estuary (where friction balances convergence), the four methods are identical.
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Figure 3.6: Relationship between the velocity number (2.6) and the estuary shape number (2.4)
for different values of the friction number (2.5). The blue symbols indicate the new model exploiting
equation (3.15). The red drawn line represents the frictionless estuary ( =0). The dashed red lines,
drawn black lines, and dashed-dotted green lines represent the solutions obtained by Savenije et al.
[2008], Toffolon and Savenije [2011], and Dronkers’ approach, respectively. The green round symbols

indicate the ideal estuary ( √ ).
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Figure 3.7: Relationship between the damping number (2.8) and the estuary shape number (2.4)
for different values of the friction number (2.5). The symbols are as in Figure 3.6. The ideal estuary
is defined by =0.

3.4.2. Application to the Scheldt Estuary
For given geometry, friction, and tidal amplitude at the downstream boundary,

the dimensional values of the tidal amplitude 𝜂, the velocity amplitude 𝜐, the wave
celerity 𝑐, and the phase lag 𝜀 can be computed by using the analytical model
presented in section 3.3. We have applied the new equation to the geometry of the
Scheldt estuary, assuming a convergence length for the cross-sectional area 𝑎=27
km (see also Horrevoets et al. [2004]). Until 110 km from the mouth of the estuary
the flow depth is approximately constant (ℎ=11 m), while more landward the depth
reduces gradually to 2.6 m (assumed estuary length 𝐿=200 km). At the estuary
mouth (𝑥=0 m), we assume a harmonic tide characterized by a tidal amplitude
𝜂 =2.3 m (spring tide) and a tidal period 𝑇=44400 s.

The four analytical models have been compared with observations made in the
Scheldt estuary during spring tide on 14-15 June 1995. The different models can
be made to fit the observations if a suitable friction coefficient is used. However,
this calibration provided significantly different values of the Manning-Strickler coeffi-
cient: 𝐾=32 m / s for Savenije et al. [2008]’s model, 𝐾=33 m / s for Dronkers’
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Figure 3.8: Relationship between the celerity number (2.7) and the estuary shape number (2.4) for
different values of the friction number (2.5). The symbols are as in Figure 3.6. The ideal estuary is
defined by =1.

approach, 𝐾=39 m / s for the present model, and 𝐾=46 m / s for Toffolon and
Savenije [2011]’s model. Apparently the differences introduced by using different
friction formulations can be compensated by decreasing or increasing the friction
coefficient. Therefore, the different analytical models have also been compared
with a 1D numerical model in the Scheldt estuary. The calibrated Manning-Strickler
friction coefficient 𝐾 used in the numerical model (38 m / s ) appears to be al-
most the same as the friction coefficient of the new model (39 m / s ), which is
to be expected since the new damping equation (3.15) was obtained by calibration
of 𝐾 against numerical solutions. In Figure 3.10, all models use the same friction
coefficient 𝐾=38 m / s . It can be clearly seen that the quasi-nonlinear model
[Savenije et al., 2008] and Dronkers’ method underestimate the tidal damping while
the linear model [Toffolon and Savenije, 2011] overestimates it. The reason for the
overestimation of the travel time at LW in the landward part in both the analytical
and numerical models is due to the neglect of river discharge and the high tidal
amplitude to depth ratio.

Finally, the tidal characteristics of the Scheldt estuary, as computed with the new
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Figure 3.9: Relationship between the phase lag and the estuary shape number (2.4) for different
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( / ).

model, are presented in diagrams for the velocity number, damping number, celerity
number and phase lag. In Figure 3.11, the Scheldt estuary is represented by red line
segments. Next to the segments, the distance from the estuary mouth in kilometers
is written, indicating the length over which a segment is representative. We can
see that in the Scheldt the seaward part (0-110 km) has a vertical line segment with
a constant estuary shape number (this is due to the constant convergence length
and depth assumed over that reach). At the inflection point, at 110 km, the tidal
wave comes near to a standing wave, but unlike in the method of Savenije et al.
[2008], this does not happen in the new method. Further upstream the pattern
becomes irregular due to shallowing.

3.5. Results
3.5.1. Classification of Estuary

Estuaries can be classified on the basis of their water balance, geomorphology,
vertical structure of salinity, or hydrodynamics [Valle-Levinson, 2010]. The interac-
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Figure 3.10: Comparison between different analytical models, numerical solution and field data: (a)
tidal amplitude, and (b) travel time at HW and LW in the Scheldt estuary observed on 14-15 June 1995.

tion between tidal wave propagation and the geomorphology of the estuary is an
important factor for characterizing the type of estuary [Dyer, 1997]. Savenije et al.
[2008] suggest that the classification of estuaries can be based on the result of the
imbalance between topographic convergence (i.e., the shape number 𝛾) and fric-
tion (i.e., the friction number 𝜒). If convergence is stronger than friction, the wave
is amplified; if friction is stronger than convergence, the wave is damped; if their
impact is equal, the tidal range is constant and the estuary is indicated as “ideal”. In
the following, we show that the classification of estuaries can be based on the com-
parison between tidally averaged depth ℎ and ideal depth ℎ which is defined as
the depth corresponding to an ideal estuary obtained keeping all the other charac-
teristic quantities (say, tidal amplitude at the mouth, convergence length, friction
coefficient) fixed. In particular, an estuary can be characterized as amplified when
ℎ > ℎ , while it is a damped estuary for ℎ < ℎ , and an ideal estuary for
ℎ = ℎ .

The marginal condition for tidal wave amplification is easily set by posing 𝛿 = 0
(hence 𝜆 = 1 and tan(𝜖) = 1/𝜆). The resulting relationship between the friction
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Figure 3.11: Positioning of the Scheldt estuary (red circles) in: (a) velocity number diagram, (b) damping
number diagram, (c) celerity number, and (d) phase lag diagram. The numbers at the inflection points
indicate the distance from the estuary mouth (in kilometers). The background shows the lines of the
new model with different values of the friction number (2.5). The drawn line with dots represents the
ideal estuary.

number 𝜒 and the shape number 𝛾 in the current model is:

𝜒 = 𝛾

√ + ( )

, (3.17)

where, substituting (2.5) into (2.10), the friction number reads:

𝜒 = 𝑟 𝑔𝑐

𝐾 𝜔ℎ
/
[1 − (4𝜁/3) ]

𝜁 . (3.18)

In the case of a small tidal amplitude to depth ratio 𝜁, equation (3.18) corresponds
to the definition by Toffolon et al. [2006] and Toffolon and Savenije [2011].

Substitution of equation (3.17) into equation (3.18) yields the expressions of
the ideal depth ℎ as a function of tidal amplitude 𝜂, frequency 𝜔, convergence
length 𝑎, and friction 𝐾:
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ℎ = 𝑓(𝜂, 𝜔, 𝑎, 𝐾) . (3.19)

It is easy to solve equation (3.19) by a simple numerical algorithm, e.g., Newton’s
iteration method, since the convergence is usually fast. Figure 3.12 shows the tidally
averaged reference depth ℎ, the ideal depth ℎ calculated by equation (3.19),
and the critical depth ℎ introduced in the next section. The classification of
some estuaries in the world, based on the relative quantity (ℎ −ℎ )/ℎ to assess
the magnitude of amplification or damping, is presented in Table 3.2. It can be
seen from Figure 3.12 that most of the estuaries, such as Bristol Channel, Outer Bay
of Fundy, Scheldt and St. Lawrence, are significantly amplified estuaries because
of the bigger positive relative difference between tidally averaged depth and ideal
depth, while Fraser, Ord, Gambia, Pungue, Lalang, Tha Chin, and Chao Phya can be
classified as damped estuaries due to negative relative difference. Finally, it is easy
to see that Gironde, Hudson, Potomac, Maputo are very close to an ideal estuary.
The correspondence of this classification with field observations is consistent, as
confirmed by the references indicated in Table 3.2. The earlier studies of Toffolon
et al. [2006] and Savenije et al. [2008] showed that the estuarine classification can
be based on two dimensionless parameters 𝛾 and 𝜒. Although results are obviously
consistent, the present study yields a dimensional classification system.

Table 3.2: Characteristic values of alluvial estuaries and classification.

No. Estuary 1 𝑇 𝜂 ℎ 𝑎 𝐾 𝜁 𝛾 𝜒 ℎ (ℎ − ℎ )/ℎ ℎ Type Ref.2

hour m m km m / s – – – m – m
1 Bristol Channel 12.4 2.6 45 65 33 0.06 2.30 0.48 14.9 0.67 37 Over-amplified 1
2 Columbia 12.4 1 10 25 38 0.10 2.81 2.21 4.7 0.53 9 Over-amplified 2
3 Deltaware 12.5 0.64 5.8 40 51 0.11 1.35 2.21 4.8 0.18 13 Amplified 3
4 Elbe 12.4 2 10 42 43 0.20 1.68 3.79 8.4 0.16 18 Amplified 4
5 Fraser 12.4 1.5 9 215 31 0.17 0.31 6.28 28.0 -2.11 370 Damped 1
6 Gironde 12.4 2.3 10 44 38 0.23 1.60 5.52 9.8 0.02 20 Close to ideal 5
7 Hudson 12.4 0.69 9.2 140 67 0.08 0.48 0.58 8.9 0.03 157 Close to ideal 1
8 Ord 12 2.5 4 15.2 50 0.63 2.83 54.5 4.5 -0.11 7 Damped 6
9 Outer Bay of Fundy 12.4 2.1 60 230 33 0.04 0.75 0.23 31.7 0.47 424 Amplified 1
10 Potomac 12.4 0.65 6 54 56 0.11 1.01 1.75 5.6 0.07 23 Close to ideal 1
11 Scheldt 12.4 1.9 10.5 27 39 0.18 2.67 3.35 6.2 0.41 11 Amplified 7
12 Severn 12.4 3 15 41 40 0.20 2.10 3.09 10.0 0.33 19 Amplified 8
13 St. Lawrence 12.4 2.5 70 183 44 0.04 1.02 0.11 23.8 0.66 267 Amplified 1
14 Tees 12 1.5 7.5 5.5 36 0.20 10.7 6.62 2.3 0.69 1 Over-amplified 9
15 Thames 12.3 2 8.5 25 31 0.24 2.57 9.94 6.9 0.19 12 Amplified 7
16 Gambia 12.4 0.6 8.7 121 42 0.07 0.54 1.43 11.2 -0.29 117 Damped 7
17 Pungue 12.4 3 4.3 20 31 0.70 2.31 341 6.9 -0.60 11 Damped 7
18 Lalang 12.4 1.5 10.6 217 40 0.14 0.33 2.73 23.0 -1.17 378 Damped 7
19 Tha Chin 12.4 1.35 5.3 87 34 0.25 0.59 13.47 14.3 -1.69 59 Damped 7
20 Incomati 12.4 0.5 3 42 50 0.17 0.92 6.14 4.6 -0.53 14 Damped 7
21 Limpopo 12.4 0.55 7 50 43 0.08 1.18 1.82 5.9 0.15 20 Amplified 7
22 Maputo 12.4 1.4 3.6 16 48 0.39 2.64 17.0 3.4 0.06 6 Close to ideal 7
23 Chao Phya 12.4 0.9 8 109 35 0.11 0.58 3.55 13.9 -0.74 94 Damped 7
1 Data are modified from Toffolon et al. [2006], where data in columns 𝐿 and 𝐶 were listed in a wrong way due to editing mistakes.
2 Reference where the classification is confirmed: 1, Prandle [1985]; 2, Giese and Jay [1989]; 3, Friedrichs and Aubrey [1994]; 4, Savenije et al.
[2008]; 5, Allen et al. [1980]; 6, Wright et al. [1973]; 7, Savenije [1992a]; 8, Uncles [1981]; 9, Lewis and Lewis [1987].

3.5.2. Effect of Depth Variations on Tidal Dynamics in Real
Estuaries

The relatively simple analytical solution proposed in this paper is powerful to
obtain first-order estimates of the consequences of estuary geometry variations:
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Figure 3.12: Values of the characteristic depths for the estuaries presented in Table 3.2: tidally averaged
depth , ideal depth from (3.19), critical depth obtained by the condition (3.20). Bar for

are truncated and higher values are indicated by numbers. The physical meaning is as follows:
if the estuary is amplified ( implying damping); if the estuary is
over-amplified.

it is a useful practical tool for management purposes, since it provides a rapid
assessment of the tidal behavior of an estuary in response to external or internal
modifications.

In particular, intensive dredging along the estuary, which changes the estuary
topography, has a measurable impact on the tidal propagation and the damping
through the variation of the depth. In addition, it has a direct relation to salt
intrusion and storm surge propagation into the estuary. Also sea-level rise can
modify the tidally averaged depth ℎ, thus producing effects that are qualitatively
similar to those of dredging. Church and White [2006] estimated an increase of
global sea-level ranging from 0.28 to 0.34 m from 1990 to 2100 based on the
multi-century sea-level records, while projections for UK estuaries exceed 0.5 m at
the end of the century for high emissions scenarios considering also vertical land
movement [Lowe, 2009].

To demonstrate the potential of the analytical method to evaluate the effect
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of deepening, we applied a depth increase of 3 m to the estuaries listed in Table
3.2. For simplicity, we assume that the tidal amplitude at the estuary mouth is
unchanged by deepening. It is worth noting that Garrett and Greenberg [1977]
showed how a change of tidal amplitude at the open boundary may be estimated
and used to correct predictions of changes in tidal dynamics that might be brought
about by the structures, such as tidal power development. Table 3.3 shows the
effect of this deepening on tidal amplitude 𝜂, velocity amplitude 𝜐, wave celerity 𝑐,
and phase lag 𝜀 at two fixed positions in the estuaries (𝑥=0 and 𝑥=50 km ). We
can see that the response of these quantities to an increase of the depth is quite
variable from case to case, while the wave celerity is always increased with larger
depth. It is attractive to assess the influence of increasing depth on tidal variables
through the diagrams of the velocity number 𝜇, the damping number 𝛿, the celerity
number 𝜆, and the phase lag 𝜀 (see Figures 3.6-3.9) as a function of 𝛾 and 𝜒. Since
the shape number 𝛾 is increased with depth, what we need to do is to determine
the influence of depth on the friction number 𝜒 according to equation (3.18). At
the mouth of estuary (𝑥=0), it is easy to estimate the influence of dredging on tidal
variables keeping the tidal amplitude constant: the friction number 𝜒 is decreased
and the shape number 𝛾 increases due to larger depths.

Table 3.3: Variation of tidal amplitude , velocity amplitude , wave celerity , and phase lag at
two locations after an increase of the average depth of 3 m.

No. Estuary Δ𝜂 (m) Δ𝜐 (m/s) Δ𝑐 (m/s) Δ𝜀 (∘)
𝑥=0 𝑥=50 km 𝑥=0 𝑥=50 km 𝑥=0 𝑥=50 km 𝑥=0 𝑥=50 km

1 Bristol Channel 0 -0.05 -0.06 -0.09 105.49 91.87 -0.83 -1.06
2 Columbia 0 -0.09 -0.11 -0.17 110.36 92.33 -2.40 -3.46
3 Deltaware 0 0.18 -0.05 0.06 3.27 2.69 -7.90 -7.70
4 Elbe 0 0.33 -0.05 0.07 4.36 3.29 -7.21 -6.39
5 Fraser 0 0.19 0 0.09 0.84 0.48 2.23 1.45
6 Gironde 0 0.40 -0.04 0.11 3.06 2.30 -5.80 -5.22
7 Hudson 0 0.05 -0.06 -0.02 0.25 0.24 1.72 1.26
8 Ord 0 1.29 -0.12 0.13 24.10 11.62 -24.27 -15.11
9 Outer Bay of Fundy 0 0.01 -0.02 -0.02 0.13 0.13 -0.17 -0.16
10 Potomac 0 0.15 -0.05 0.06 1.38 1.21 -2.42 -3.24
11 Scheldt 0 -0.07 -0.19 -0.24 52.22 40.48 -5.77 -7.55
12 Severn 0 0.19 -0.12 -0.05 14.23 9.54 -8.28 -7.40
13 St. Lawrence 0 0 -0.02 -0.02 0.24 0.24 -0.53 -0.51
14 Tees 0 -0.04 -0.05 -0.05 878.26 841.05 -0.06 -0.07
15 Thames 0 0.31 -0.14 -0.04 17.64 11.65 -11.85 -10.78
16 Gambia 0 0.07 -0.03 0.02 0.55 0.44 2.22 1.25
17 Pungue 0 1.55 0.37 0.38 3.94 1.40 -17.2 -8.35
18 Lalang 0 0.15 -0.02 0.06 0.65 0.42 2.78 1.90
19 Tha Chin 0 0.34 0.02 0.17 1.20 0.59 0.40 -0.68
20 Incomati 0 0.27 -0.03 0.16 1.88 1.23 -4.08 -5.68
21 Limpopo 0 0.11 -0.03 0.04 1.84 1.61 -4.00 -4.39
22 Maputo 0 0.50 -0.27 -0.09 36.4 23.7 -19.6 -17.8
23 Chao Phya 0 0.14 -0.02 0.06 0.88 0.59 1.55 0.56

The effect of deepening on tidal dynamics is not linear: in same cases deepening
leads to amplification while in others it leads to a reduction of the tidal amplitudes.
Figure 3.13 shows the variation of the velocity amplitude as a result of deepening
by 3 m (a) and a more modest increase of 0.3 m (b) for the same locations 𝑥=0
and 𝑥=50 km. In Figure 3.13a, corresponding to a depth increase of 3 m, it can
be seen that the velocity at the estuary mouth is generally decreased as a result of
dredging except in the Fraser, Pungue, and Tha Chin, while the velocity at 𝑥=50 km
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increases with depth for most of the estuaries. Whether the velocity is increased
or not depends on the position of the new values of 𝛾 and 𝜒 in the graph for the
velocity number (Figure 3.6). The extremely high celerity in the Tees (see Table 3.3,
No. 14) is attributed to the strong convergence of the estuary (𝛾=10.72), where
a standing wave develops and the celerity tends to infinite. A similar behavior
can be noticed in Figure 3.13b for the smaller depth increase (0.3 m), although
some exceptions indicate that the behavior is not monotonic and that the trend of
velocity amplification or reduction can change during the deepening process (for
instance, in the Ord, Severn, Thames and Maputo, indicated by No. 8, 12, 15 and
22, respectively).
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Figure 3.13: Change of the velocity amplitude at the estuary mouth ( =0) and at =50 km for:(a)
a large increase of the average depth of 3 m, due to dredging; (b) a modest increase of 0.3 m, in
agreement with projected sea-level rise for 2100.

Another interesting result we see in Table 3.3 (deepening of 3 m) is that the tidal
amplitude (at 𝑥=50 km) increases in most of the estuaries, but that the strongly
amplified estuaries experience a reduction of the amplitude: e.g., Bristol Channel,
Columbia, Scheldt and Tees. This is unusual since it is generally accepted that the
tidal wave is further amplified as a result of the reduced friction induced by larger
depth [e.g., Luo et al., 2007; Cai et al., 2012b]. To illustrate this phenomenon, we
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present the trajectory of the damping number 𝛿 with increasing depth in Figure
3.14. It can be seen that the damping numbers of Bristol Channel, Columbia,
Scheldt and Tees (No. 1, 2, 11 and 14; note that the position of Scheldt is different
from that in Figure 3.11, where spring tide conditions were considered instead of
mean tide) are actually decreasing with larger depth. We see that a depth increase
only leads to increased amplification (larger 𝛿) until a maximum value is reached
at a critical depth ℎ defined by the condition:
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Figure 3.14: Positioning of the estuaries in Table 3.2 in the damping number diagram. The black square
symbols indicate the initial position before dredging, while the black circle symbols represent the final
position after increasing the depth by 3 m. The red segments indicate the trajectories in the ( , ) plane.
The gray lines indicate the analytical solutions of the new model for different values of the friction number
(2.5).

𝜕𝛿
𝜕ℎ

= 0 . (3.20)

A further increase of the depth leads to a reduction of the amplification until the
ideal condition (𝛿=0) is reached asymptotically. A similar equation was derived
by Savenije et al. [2008] for critical convergence (i.e., equation 43 therein), which
approximately corresponds to condition (3.20). The critical convergence was the
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threshold beyond which the tidal wave acted as a standing wave. We see something
similar here. However, unlike the discontinuous behavior predicted by Savenije
et al. [2008], switching from one wave type to another, the current model provides
a continuous solution.

We term estuaries having a depth ℎ > ℎ as ‘over-amplified’, a condition
typical of strongly convergent (large 𝛾) and relatively weekly dissipative (small 𝜒)
estuaries, where increasing the depth reduces the amplification. It is possible to
identify this critical depth ℎ by changing the depth over a wide range of values
in our analytical model until it satisfies condition (3.20): the calculated values are
shown in Table 3.2. Figure 3.12 shows the comparison between the tidally aver-
aged depth ℎ and the critical depth ℎ : by comparing the difference between
the green and yellow bar, we are able to determine whether an estuary is over-
amplified (e.g., Bristol Channel, Columbia, and Tees, indicated by No. 1, 2 and 14,
respectively) or not. Generally, with this figure, we are capable of predicting the
influence of depth variations on tidal dynamics. This is particularly useful when as-
sessing the influence of human interventions in estuary topography (e.g., dredging)
or global sea-level rise on tidal propagation in estuaries, as it influences the aquatic
environmental of an estuary and the potential use of water resources.

In Figure 3.14, we also see that the variation of the damping number in the
Bristol Channel, Outer Bay of Fundy, and St. Lawrence (No. 1, 9 and 13, respec-
tively) is very small. This is due to the fact that the tidally averaged depth ℎ in these
estuaries is very large while the shape number 𝛾, which is increased by dredging,
does not change much.

3.6. Conclusions
In this paper we revisited the analytical approach for tidal hydrodynamics pro-

posed by Savenije et al. [2008] by introducing a new tidal damping equation, which
is similar to the equation that uses the friction formulation proposed by Dronkers
[1964]. Reworking this quasi-nonlinear solution, we are able to accurately repro-
duce the main dynamics of tidal wave propagation along estuary channels. We
have also demonstrated that the linear models of Toffolon and Savenije [2011]
and Van Rijn [2011] and the quasi-nonlinear model of Savenije et al. [2008] can
be readily combined within one consistent theoretical framework, i.e., by solving
the same set of equations with different formulations for the friction term. Explor-
ing the difference between the quasi-nonlinear model [Savenije et al., 2008] and
the modified linear models proposed by Toffolon and Savenije [2011] and Van Rijn
[2011], we found that the main difference lies in the friction term: the linear model
exploits a linear damping equation resulting from a linearized friction term [Lorentz,
1926], while the quasi-nonlinear model retains the fully nonlinear friction term, with
quadratic velocity and varying depth, but assuming a simple harmonic to deter-
mine the tidal velocity at HW and LW. An important difference between the quasi-
nonlinear friction term and Dronkers’ friction term lies in the fact that Dronkers’
friction term does not account for tidally varying depth, while the quasi-nonlinear
term does. Another difference is that the approach by Savenije et al. [2008] im-
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plicitly accounts for the density term, while the other methods neglect the density
effect. This has no implications because, as was shown by Savenije [2005], the
density term cancels out in the derivation of the damping and celerity equations.
We further note that the effect of river discharge can, in principle, be incorporated
in the present model through a modified formulation, as proposed in Cai et al.
[2012b].

We have compared the performance of the different analytical models with a
fully nonlinear numerical model. The comparison indicates that Savenije et al.
[2008] and Toffolon and Savenije [2011] models approach the numerical results
from opposite sides (under/overestimating friction). A weighted average of the two
comes very close to the numerical results, the optimum weight of the linearized
friction term being 1/3, and 2/3 of the quasi-nonlinear friction term. We tested
the equations in a real case, the Scheldt estuary, which has strong convergence
(overall with 𝛾 values above 2, which is the region where the methods show the
largest difference). Overall, the new method preforms best against field data and
numerical results.

The new model proposed in this paper not only overcomes the unrealistically
discontinuous behavior predicted by Savenije et al. [2008], but also improves on
accuracy compared with linear models as by Toffolon and Savenije [2011]. This is
important when assessing the influence of depth increase on tidal dynamics in real
estuaries (e.g., because of human interventions, by dredging, or sea-level rise). For
this purpose, we provided two threshold criteria: the ideal depth ℎ (condition
for vanishing damping) and the critical depth ℎ (condition for maximum am-
plification). As a result, we could classify estuaries into three types on the basis of
the tidally averaged depth ℎ compared with ℎ : damped (ℎ < ℎ ), amplified
(ℎ > ℎ ), and approximately ideal (ℎ ≃ ℎ ). Moreover, an estuary can be
characterized as over-amplified when it has a depth larger than the ℎ : in this
case, a further increase of the depth reduces the tidal wave amplification.



4
Asymptotic behavior of tidal
damping in alluvial estuaries

Tidal wave propagation can be described analytically by a set of four implicit equa-
tions, i.e., the phase lag equation, the scaling equation, the damping equation, and the
celerity equation. It is demonstrated that this system of equations has an asymptotic
solution for an infinite channel, reflecting the balance between friction and channel
convergence. Subsequently, explicit expressions for the tidal amplitude and veloc-
ity amplitude are derived, which are different from the generally assumed exponen-
tial damping equation that follows from linearizing the friction term. Analysis of the
asymptotic behavior demonstrates that exponential damping of the tidal amplitude
is only correct for a frictionless wave or an ideal estuary (no damping). However, in
estuaries with modest damping (near ideal) it provides a reasonable approximation.
In natural estuaries there is generally a need to take account of local variability of
e.g. depth and friction, by subdividing the estuary into multiple reaches. This is illus-
trated with an example of the Scheldt estuary, which has been gradually deepened
for navigation purpose over the last half-century. The analytical model is used to
study the effect of this deepening on the tidal dynamics in the main navigation chan-
nel, demonstrating that the navigation channel will become ‘over-amplified’ when it
reaches a depth larger than the critical depth. In the case of over-amplification, a
further increase of the depth reduces the amplification until critical convergence (con-
dition for a frictionless standing wave) is reached asymptotically. Finally, based on
the ratio between the tidal amplitude at the seaward boundary and the asymptotic
tidal amplitude, estuaries can be classified into damped, amplified or ideal estuaries,
which is illustrated with 23 real estuaries.

Parts of this chapter have been published in:
Cai, H., Savenije, H.H.G. (2013), Asymptotic behavior of tidal damping in alluvial estuaries, J. Geophys.
Res., 118, 1-16, doi:10.1002/2013JC008772.
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4.1. Introduction
In the previous chapter, we proposed a general analytical framework to simulate

tidal wave propagation, which allowed the comparison of different analytical ap-
proaches mentioned above and concluded that the main difference between these
models lies in the treatment of the friction term. It appeared that linear solutions,
such as those by Toffolon and Savenije [2011] or Van Rijn [2011], based on the
classical Lorentz linearization [Lorentz, 1926] for the friction term, are identical,
although they used a different solution method. It was shown by Cai et al. [2012a]
that a hybrid combination of the traditional linearized approach [e.g., Toffolon and
Savenije, 2011] and the envelope method [e.g., Savenije et al., 2008] provides the
most accurate predictive results. However, although they provided an explicit so-
lution for tidal damping, they were not yet able to write the tidal amplitude and
velocity amplitude as explicit functions of distance. In this chapter, we provide a
new explicit solution for the tidal amplitude. Furthermore we demonstrate that,
in contrast with what is generally believed, the tidal amplitude has an asymptotic
solution. Classical methods, assuming exponential damping, either lead to an in-
finite amplitude (when amplified), or a zero amplitude (when damped), but here
we show that the asymptotic solution corresponds with the amplitude of an ideal
estuary.

The chapter is organized as follows. First a comparison between classical solu-
tions and those developed by Savenije et al. [2008], Toffolon and Savenije [2011]
and Cai et al. [2012a] is presented in section 4.2. In section 4.3, a fully explicit
solution of the tidal damping equation is developed, leading to an explicit equation
for the tidal amplitude. In section 4.4, the upstream and downstream asymptotic
behavior is explored based on the obtained explicit solution. In section 4.5, the
model is compared to observations in the Scheldt estuary, which over the last half
century has been substantially deepening with drastic implications for the tidal dy-
namics. The asymptotic solution is subsequently used to classify 23 real estuaries
in the world. Finally, conclusions are drawn in section 4.6.

4.2. Comparison of Models
Table 4.1 presents one consistent theoretical framework for the solution of the

one-dimensional hydrodynamic equations for tidal wave propagation as provided
by Cai et al. [2012a] [based on Toffolon et al., 2006; Savenije et al., 2008] (see
also chapter 3). Cai et al. [2012a] showed that different friction formulations can be
used in the envelope method to arrive at an equal number of analytical solutions. In
general, the main classes of the solutions are: (1) quasi-nonlinear solution with non-
linear friction term [Savenije et al., 2008], (2) modified linear solution with Lorentz’s
linearization [Lorentz, 1926], (3) hybrid solution characterized by a weighted aver-
age of Lorentz’s linearization, with weight 1/3, and the nonlinear friction term, with
weight 2/3 [Cai et al., 2012a]. And the solutions can be obtained by solving four
implicit equations, i.e.,: the phase lag equation (T1), scaling equation (T2), celerity
equation (T3), and damping equation (T4a, T4b, or T4c), where 𝛿 is the damp-
ing number (a dimensionless description of the amplification (𝛿 > 0) or damping
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(𝛿 < 0) of the tidal wave amplitude along the estuary), 𝜇 the velocity number (the
actual velocity scaled with the frictionless value in a prismatic channel), 𝛾 the estu-
ary shape number (representing the effect of cross-sectional convergence), 𝜒 the
friction number (describing the role of the frictional dissipation), and 𝜆 the celerity
number (the ratio between the theoretical frictionless celerity in a prismatic channel
and the actual wave celerity). The dimensionless variables of these equations are
presented in Table 4.2. The analytical solutions for some particular cases, includ-
ing: constant cross-section (𝛾=0), frictionless channel (𝜒=0, both with subcritical
convergence (𝛾 <2) and supercritical convergence (𝛾 ≥2)) and ideal estuary (𝛿=0),
are also presented in Table 4.1. For a frictionless or an ideal estuary, all methods
are identical.

Table 4.1: Analytical framework for tidal wave propagation [Cai et al., 2012a]

Case Phase lag tan(𝜖) Scaling 𝜇 Celerity 𝜆 Damping 𝛿

General
Quasi-nonlinear 𝜆/(𝛾 − 𝛿) cos(𝜖)/(𝛾 − 𝛿) 1 − 𝛿(𝛾 − 𝛿) 𝛾/2 − 𝜒𝜇 /2 (T4a)
Modified linear 𝛾/2 − 4𝜒𝜇/(3𝜋𝜆) (T4b)
Hybrid (T1) (T2) (T3) 𝛾/2 − 4𝜒𝜇 /(9𝜋𝜆) − 𝜒𝜇 /3 (T4c)

Constant cross-section
Quasi-nonlinear

−𝜆/𝛿 − cos(𝜖)/𝛿 1 + 𝛿
−𝜒𝜇 /2

Modified linear −4𝜒𝜇/(3𝜋𝜆)
Hybrid −4𝜒𝜇 /(9𝜋𝜆) − 𝜒𝜇 /3

Frictionless (𝛾 < 2) √4/𝛾 − 1 1 1 − 𝛾 /4 𝛾/2
Frictionless (𝛾 ≥ 2) 0 (𝛾 − √𝛾 − 4)/2 0 (𝛾 − √𝛾 − 4)/2
Ideal estuary 1/𝛾 √1/(1 + 𝛾 ) 1 0

Savenije et al. [2008] showed that these equations (corresponding with quasi-
nonlinear model in Table 4.1) can be solved explicitly, with two families of solutions.
The first family consists of a mixed tidal wave with 0 < 𝜖 < 𝜋/2, while the second
family consists of an “apparently standing” wave (𝜖 = 0). Recently, Toffolon and
Savenije [2011] modified the classical linearized solution for tidal hydrodynamics in
convergent channels by exploiting an iterative procedure to determine friction and
a multi-reach approach (corresponding with modified linear model in Table 4.1). It
was demonstrated by Cai et al. [2012a] that the modified linear model overestimates
the tidal damping while the quasi-nonlinear model underestimates it, and the hybrid
model provides the best predictions when compared with numerical results. Figure
4.1 describes the variation of the main dependent dimensionless parameters as a
function of shape number 𝛾 and friction number 𝜒, obtained with different analytical
models. Unlike the discontinuous behaviour (i.e., with two families of solutions)
and the transition towards a standing wave (i.e., the wave celerity approaching
infinity) predicted by Savenije et al. [2008], both linear and hybrid models provide
a continuous solution in the transition zone of critical convergence [Jay, 1991] where
𝛾 is close to 2. This is important since it enables the linear and hybrid models to be
applicable in the zones where convergence exceeds critical convergence.

It is important to note that the two independent variables 𝛾 and 𝜒 depend on the
tidally averaged depth ℎ and tidal amplitude to depth ratio 𝜁, respectively. In Figure
4.1 we adopted a multi-reach approach in which the damping number 𝛿 is integrated
in short reaches over which the estuary shape number 𝛾 and friction number 𝜒
are considered constant. This is done by simple explicit integration of the linear
differential equation over a distance Δ𝑥 (e.g., 1 km), leading to a tidal amplitude at
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Table 4.2: The definition of dimensionless parameters

Dimensionless parameters
Independent Dependent

Velocity number
𝜇 = 𝜐/(𝑟 𝜁𝑐 ) = 𝜐ℎ/(𝑟 𝜂𝑐 )

Tidal amplitude at the downstream boundary Damping number
𝜁 = 𝜂 /ℎ̄ 𝛿 = d𝜂𝑐 /(𝜂d𝑥𝜔)
Estuary shape Celerity number
𝛾 = 𝑐 /(𝜔𝑎) 𝜆 = 𝑐 /𝑐
Reference friction number Phase lag

𝜒 = 𝑟 𝑔𝑐 /(𝐾 𝜔ℎ
/
) 𝜖 = 𝜋/2 − (𝜑 − 𝜑 )

or Tidal amplitude
Friction number at the downstream boundary 𝜁 = 𝜂/ℎ
𝜒 = 𝜒 𝜁 [1 − (4𝜁 /3) ] Friction number

𝜒 = 𝜒 𝜁[1 − (4𝜁/3) ] = 𝑟 𝑓𝑐 𝜁/(𝜔ℎ)

a distance Δ𝑥 upstream, which is repeated for the whole estuary [Savenije et al.,
2008]. It should be noted that similar multi-reach approaches for the representation
of topography and friction have been commonly used in literature [e.g., Jay and
Flinchem, 1997; Toffolon and Savenije, 2011].

The classical analytical solution to tides in infinite channels assumes the tidal
wave to be exponentially damped (or amplified) as it progresses into the estu-
ary [e.g., Hunt, 1964; Ippen, 1966; Friedrichs and Aubrey, 1994; Friedrichs, 2010;
Van Rijn, 2011], where the tidal amplitude and velocity amplitude, rewritten in our
notation, are given by:

𝜂 = 𝜂 exp(𝑥𝛿𝜔/𝑐 ) , (4.1)

𝜐 = 𝜐 exp(𝑥𝛿𝜔/𝑐 ) , (4.2)

where 𝜂 , 𝜐 represent the tidal amplitude and velocity amplitude at the estuary
mouth, respectively.

Although widely applied, it can be shown that this assumption is only valid if the
friction number 𝜒 is constant along the estuary axis (i.e., 𝜒 = 𝜒 ), where 𝜒 is the
friction number calculated at the estuary mouth. This can be seen from Figure 4.2,
which shows the dimensionless tidal amplitude 𝜂∗ as a function of dimensionless
distance 𝑥∗, using the quasi-nonlinear method of Savenije et al. [2008], indicated
by (Q), modified linear method of Toffolon and Savenije [2011], indicated by (M),
and hybrid method of Cai et al. [2012a], indicated by (H). It can be seen that
these solutions only coincide with the classical equation if we use a constant friction
number 𝜒 (indicated by a, b and c), where the definitions of 𝜂∗ and 𝑥∗ are:

𝜂∗ = 𝜂/𝜂 , 𝑥∗ = 𝑥𝜔/𝑐 . (4.3)

It is worth noting that in the modified linear model the authors also used ex-
ponential damping, but that as a result of the iterative multi-reach approach with
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Figure 4.1: Main dimensionless parameters (the velocity number (a), damping number (b), celerity
number (c) and phase lag (d) obtained with various analytical relationships as a function of estuary
shape number for different values of friction number . The gray symbols represent the ideal estuary
(see Table 4.1).

variable friction, the error made by assuming exponential damping was small (the
linear model being a good first order approximation).

An important difference between the classical solution and the quasi-nonlinear
approach is that the latter results in an equilibrium amplitude as an asymptotic
solution when approaching infinity, whereas the classical solution approaches zero
for a damped wave and infinity for an amplified wave. This asymptotic solution
implies that the flow adapts itself to the shape of the estuary until it has the same
properties as an ideal estuary, with a constant friction and tidal amplitude.

The condition of an ideal estuary (no damping) is easily set by imposing 𝛿=0
whereafter the relationship between the friction number 𝜒 and the shape number
𝛾 in the hybrid model becomes (see T4c in Table 4.1):

𝜒 = 𝛾/{8/(9𝜋√1 + 𝛾 ) + 2/[3(1 + 𝛾 )]} . (4.4)

In the quasi-nonlinear model this relationship reads (see T4a in Table 4.1):
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Figure 4.2: Longitudinal variation of tidal amplitude obtained with quasi-nonlinear (Q), modified linear
(M) and hybrid (H) models applying constant and variable friction number for =1, =0.1, =30
m / s . For comparison, the three classical solutions have been calculated with the boundary conditions
for corresponding to the quasi-nonlinear model (a), the modified linear model (b), and the hybrid
model (c).

𝜒 = 𝛾(𝛾 + 1) . (4.5)

Similarly, in the linearized model it reads (see T4b in Table 4.1):

𝜒 = 3𝜋𝛾√𝛾 + 1/8 . (4.6)

It is worth noting that these methods use different definitions of the dimen-
sionless friction factor 𝑓 (i.e., equation (2.10)) incorporated in the friction number
𝜒. The Lorentz’s linearization considers a time-invariant depth in the friction term,
which is the same as taking 𝜁=0 in (2.10), i.e.,𝑓 ≈ 𝑔/(𝐾 ℎ

/
) [Toffolon et al.,

2006; Toffolon and Savenije, 2011].
Using the definition of the friction number 𝜒 (see Table 4.2) in equation (4.4)

yields the expression of the asymptotic tidal amplitude for the hybrid model [Cai
et al., 2012a]:
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𝜂 =
−9𝑚 + 3√9𝑚 + 64𝑚

32𝑚 ℎ , (4.7)

𝑚 = 𝑟 𝑔𝑐 , (4.8)

𝑚 = 𝛾𝐾 ℎ
/
𝜔/{8/(9𝜋√1 + 𝛾 ) + 2/[3(1 + 𝛾 )]} . (4.9)

For small tidal amplitude to depth ratio (𝜁 ≪ 1), so that 𝑓 ≈ 𝑔/(𝐾 ℎ
/
), equa-

tion (4.4) can be simplified whereby 𝜒 is linear in 𝜁. As a result, equation (4.7)
modifies into:

𝜂 ≈ 𝑚 ℎ/𝑚 . (4.10)

The relationship found for the quasi-nonlinear model is similar to equation (4.10)
with only a different expression for 𝑚 :

𝑚 = 𝛾(𝛾 + 1)𝐾 ℎ
/
𝜔 . (4.11)

Similarly, the expression of 𝑚 for the linear model reads:

𝑚 = 3𝜋𝛾√𝛾 + 1𝐾 ℎ
/
𝜔/8 . (4.12)

An example of the asymptotic solutions of these models is given in Figure 4.3
(the Matlab scripts are provided as auxiliary material1). We can see that the three
solutions only differ in the parameter 𝑚 (i.e., 8√1 + 𝛾 /(9𝜋) + 2/3 for the quasi-
nonlinear model and 𝜋/(4√1 + 𝛾 ) + 1/3 for the modified linear model), resulting
in a slightly different asymptotic value.

4.3. Explicit Solution to the Tidal Damping Equa-
tion

In principle, the explicit solution to the tidal damping equation can be derived for
all three analytical models, i.e., quasi-nonlinear, modified linear and hybrid models.
In the following we focus on the hybrid model since it provides the best predictive
results [Cai et al., 2012a]. The derivation for the other models are summarized in
the Appendixes A.4 and A.5.

For an infinite length estuary and assuming that the freshwater discharge is
small compared to tidal discharge, Cai et al. [2012a] derived an expression for tidal
damping or amplification through the envelope method:

1
𝜂
𝑑𝜂
𝑑𝑥 [1 +

𝑔𝜂
𝑐𝜐 sin(𝜖)] =

1
𝑎 −

2
3𝑓

𝜐
ℎ𝑐
[ 43𝜋 + sin(𝜖)] , (4.13)

1Auxiliary materials are available in the online version at http://onlinelibrary.wiley.com/doi/10.1002/2013JC008772/suppinfo
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Figure 4.3: Longitudinal variation of tidal amplitude obtained with quasi-nonlinear (Q), modified linear
(M) and hybrid (H) models for =1, =0.1, =30 m / s . The black lines represent the corresponding
asymptotic lines obtained with equation (4.7). The blue lines represent the classical solutions for the
three different boundary conditions of corresponding with the quasi-nonlinear model (a), the modified
linear model (b), and the hybrid model (c).

which is identical to the dimensionless damping equation (T4c) for 𝛿 in Table 4.1.
Until now, the tidal amplitude and velocity amplitude variation along the estuary

axis were obtained by step-wise numerical integration of the damping number 𝛿.
Here, we revisit the analytical approach proposed by Cai et al. [2012a] and derive
an explicit analytical solution of the tidal damping equation, requiring the following
assumptions:

1. A constant friction factor: 𝑓
2. A constant phase lag: 𝜖
3. A constant wave celerity: 𝑐

4. A constant depth: ℎ

5. The velocity amplitude and tidal amplitude are proportional:
1
𝜐
𝜕𝜐
𝜕𝑥 =

1
𝜂
𝜕𝜂
𝜕𝑥
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The last assumption implies that the ratio of the velocity amplitude to the tidal
amplitude is constant, which applies to estuaries of infinite length [Savenije et al.,
2008]:

𝜐
𝜂 =

𝜐
𝜂 . (4.14)

This relationship is valid for long coastal plain estuaries, which was demonstrated
to be correct by Savenije [1992a, 1993a] based on numerical simulations in a wide
range of convergent estuaries. Moreover, as a result of the multi-reach approach,
e.g. to account for variability in the geometry, a potential error resulting from this
assumption is small.

To simplify equation (4.13), two parameters are introduced:

𝜓 = 1 + 𝑔𝜂
𝑐𝜐 sin 𝜖 = 1 +

𝑔𝜂
𝑐𝜐 sin 𝜖 = 1 +

1
𝜇 , (4.15)

𝛽 = 2
3𝑓
𝜐
ℎ𝑐
[ 43𝜋 + sin(𝜖)] . (4.16)

which are constant under the above assumptions. It can be shown that 𝜓 ≥ 2 since
0 < 𝜇 ≤ 1 [Savenije et al., 2008], while 𝛽 > 0.

Substitution of equations (4.14)-(4.16) into equation (4.13) leads to:

𝑑𝜂∗
𝑑𝑥 = 𝜂∗

𝜓𝑎(1 − 𝑎𝛽𝜂
∗) . (4.17)

It can be seen from equation (4.17) that convergence and friction are in balance
if 𝜂∗ = 1/(𝑎𝛽), which is the case of an ideal estuary where there is no tidal damping
or amplification. In fact, there are two situations where there is no damping. The
first one is the trivial situation where 𝜂∗ = 0, and the other is where 𝜂∗ = 1/(𝑎𝛽).

With 𝜂∗ = 1 at 𝑥 = 0, integration yields an explicit solution for the tidal ampli-
tude:

𝜂∗ = 1
𝑎𝛽 + (1 − 𝑎𝛽) exp [−𝑥/(𝜓𝑎)] =

𝜂∗

1 − (1 − 𝜂∗ ) exp [ − 𝑥/(𝜓𝑎)] , (4.18)

where the infinite tidal amplitude 𝜂∗ = 1/(𝑎𝛽) and the damping scale 𝜓𝑎 are
constants.

Introducing the dimensionless parameters used in Table 4.2, equation (4.18)
can be rewritten as:

𝜂∗ = 𝛾/[8𝜒 𝜇 𝜆/(9𝜋) + 2𝜒 𝜇 𝜆 /3]
1 − {1 − 𝛾/[8𝜒 𝜇 𝜆/(9𝜋) + 2𝜒 𝜇 𝜆 /3]} exp [ − 𝛾𝜇 𝑥∗/(1 + 𝜇 )]

. (4.19)

Subsequently, the solutions of tidal amplitude 𝜂 and velocity amplitude 𝜐 are:
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𝜂 = 𝜂 𝜂∗ , (4.20)

𝜐 = 𝑟 𝑐 𝜇
ℎ

𝜂 = 𝑟 𝑐 𝜇
ℎ

𝜂 𝜂∗ , (4.21)

where equation (4.21) has been obtained from the definition of the velocity number
in Table 4.2.

Figure 4.4 presents the computed tidal amplitude along the estuary for the case
of modest convergence (𝛾=0.5) resulting in a damped tidal wave, and for the case
of strong convergence (𝛾=2), resulting in an amplified wave. The drawn lines cor-
respond with the new explicit equation (4.19) whereas the dashed lines correspond
with the classical exponential equation (4.1). It can be seen clearly that the two
approaches have the same asymptote at 𝑥∗=0, but that the difference lies in the
asymptote when 𝑥∗ approaches infinity. With equation (4.1) the tidal amplitude
approaches zero for a damped wave and infinity for an amplified wave, whereas
equation (4.19) has an asymptotic tidal amplitude that reflects the balance be-
tween friction and channel convergence. However, for an estuary with constant
cross section (i.e., 𝛾=0 without channel convergence) equation (4.19) is no longer
applicable, but continuous damping leads to an asymptote of 𝜂∗ = 0.

4.4. Asymptotic Behavior of the Damping Equation
4.4.1. Upstream asymptotic behavior

In the asymptotic situation with no river discharge, the infinite dimensionless
tidal amplitude 𝜂∗ reads:

𝜂∗ = 1
𝑎𝛽 = 𝛾/[8𝜒 𝜇 𝜆/(9𝜋) + 2𝜒 𝜇 𝜆 /3]

= 𝛾/[8𝜒 𝜇 𝜆 /(9𝜋) + 2𝜒 𝜇 𝜆 /3] = 𝜒
𝜒 , (4.22)

where the last step in (4.22) follows from using the expressions for 𝜒 in equation
(4.4) and for 𝜇 and 𝜆 of an ideal estuary [Cai et al., 2012a]:

𝜇 = 1
1 + 𝛾 , 𝜆 = 1 , (4.23)

where the subscript 𝐼 stands for the ideal estuary. This implies that in the upstream
asymptotic situation the amplitude tends to an ideal estuary with constant ampli-
tude. If 𝜂∗ > 1 (or 𝜒 > 𝜒 , 𝑎𝛽 < 1), then the estuary is amplified; if 𝜂∗ < 1
(or 𝜒 < 𝜒 , 𝑎𝛽 > 1), then it is damped; and if 𝜂∗ = 1 (or 𝜒 = 𝜒 , 𝑎𝛽 = 1), the
estuary is ideal.

Using (4.4) for 𝜒 of an ideal estuary, the amplitude then becomes:
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Figure 4.4: Comparison of longitudinal tidal amplitude between the proposed explicit equation (4.19)
and the classical equation (4.1), for strong ( =2) and modest ( =0.5) convergence with =0.1, =30
m / s .

𝜂 = 𝜒
𝜒 𝜂 =

𝛾/{8/(9𝜋√1 + 𝛾 ) + 2/[3(1 + 𝛾 )]}
𝜒 𝜂

= 𝜔
𝑐
ℎ
𝑟 𝑓𝛾/{8/(9𝜋√1 + 𝛾 ) + 2/[3(1 + 𝛾 )]} , (4.24)

or

𝜁 = ℎ
𝑎

1
𝑟 𝑓{8/(9𝜋√1 + 𝛾 ) + 2/[3(1 + 𝛾 )]}

, (4.25)

which is an expression that only depends on the geometry and the friction, and is
independent on the boundary conditions. The caveat is that the equation applies

to long (infinite) estuaries where we may assume that
1
𝜐
𝜕𝜐
𝜕𝑥 =

1
𝜂
𝜕𝜂
𝜕𝑥 . We can see
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that in deep convergent estuaries (with large 𝛾), this can lead to a large equilibrium
amplitude. Equation (4.24) is the same as equation (4.10) for small value of 𝜁,
where equation (2.10) is reduced to 𝑓 ≈ 𝑔/(𝐾 ℎ

/
). Using the scaling equation

(T2) in Table 4.1 together with (4.23) yields the expression for the asymptotic
velocity amplitude:

𝜐 = ℎ
𝑎

𝑐
𝑓{8/(9𝜋) + 2/[3√1 + 𝛾 ]}

. (4.26)

It is interesting to note that if an estuary is long enough, the system will adjust
itself until the condition of the ideal estuary is achieved. This is an indication that
the ideal estuary is the energetically stable state of an estuary to which the forces of
nature converge. Also note that the variables in these equations are all independent
variables related to the geometry and the friction, and hence that the asymptotic
state is independent of the tidal forcing.

4.4.2. Downstream asymptotic behavior
Near the estuary mouth, we can also look at the asymptotic behavior. To

what extent is the damping exponential? We can approach the longitudinal damp-
ing/amplification of the tidal amplitude by a Taylor series:

𝜂∗ ≈ 𝜂∗ + 𝑑𝜂
∗

𝑑𝑥 𝑥 +
𝑑 𝜂∗
𝑑𝑥

𝑥
2 + ... . (4.27)

On the basis of (4.17) we can determine the second derivative of 𝜂∗:

𝑑 𝜂∗
𝑑𝑥 = 1

(𝜓𝑎)
[2𝑎 𝛽 𝜂∗ − 3𝑎𝛽𝜂∗ + 𝜂∗] . (4.28)

Substitution of (4.17) and (4.28) into (4.27) with 𝜂∗ = 1 yields:

𝜂∗ ≈ 1 + (1 − 𝑎𝛽) 𝑥𝜓𝑎 +
1
2(2𝑎 𝛽 − 3𝑎𝛽 + 1)( 𝑥𝜓𝑎) + ... . (4.29)

In a region close enough to the mouth where 𝑥 < 𝜓𝑎, we can see that the
damping or amplification behaves as a linear function of 𝑥. If 𝑎𝛽 is very small,
then the slope is 1/(𝜓𝑎). For large values of 𝑎𝛽, the gradient becomes negative
and the steeper it gets, the less linear the behavior. A small value of 𝑎𝛽 occurs in
deep and strongly converging estuaries, which are generally amplified. Hence we
see that amplification is often linear, as is the case in the Scheldt [Savenije, 2001].
The region where amplification is linear may extend over quite some distance into
the estuary. The nonlinear effect only becomes apparent when we move further
upstream. In contrast, we see that the process of damping is never linear but closer
to an exponential function.
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It is interesting to compare the above Taylor series with the Taylor series of
the classical exponential damping equation (4.1). We can develop the exponential
equation in a Taylor series as well (making use of (4.17)):

𝜂∗ ≈ 1 + (1 − 𝑎𝛽) 𝑥𝜓𝑎 +
1
2(1 − 𝑎𝛽) (

𝑥
𝜓𝑎) + ... . (4.30)

We can then see that the first two terms are the same, but that the higher
order terms are different. Figure 4.5 compares the factors of the second order
terms. We can see from Figure 4.5 that the two expressions are only the same in
two situations: the ideal estuary (where 𝑎𝛽 = 1) and the frictionless wave (where
𝑎𝛽 = 0). The first case is trivial, because in the ideal case there is no damping,
while the second case is an unrealistic case. As a result, the exponential damping
assumption is only acceptable if the estuary is near ideal (almost no damping or
amplification), or has very low friction. In the next section we shall show that in
real estuaries the use of the classical equation can lead to substantial errors.
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Figure 4.5: Comparison of the Taylor expansion between the new (4.29) and the classical (4.30) damping
equations.
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4.5. Results
4.5.1. Accounting for Local Variability

The depth, celerity, phase lag and friction of an estuary are seldom considered
constant along the estuary axis. To follow along-channel variations of the estuary
geometry or friction, we can split the channel into a series of reaches with different
(but constant) friction, phase lag, celerity, depth, etc. [e.g., Souza and Hill, 2006;
Savenije et al., 2008; Toffolon and Savenije, 2011; Cai et al., 2012a]. Since we
derived the explicitly analytical solution for tidal propagation based on only the
seaward boundary condition, it can be readily applied in a multi-reach model moving
the origin of the axis for every reach.

For given geometry, friction and tidal amplitude at the seaward boundary 𝜂 ,
we are able to compute the shape number 𝛾 and the friction number at the estu-
ary mouth 𝜒 . We thereby assume constant values of 𝜇, 𝜆, 𝜖 within each reach
(calculated at the origin of each reach), which can be computed by solving the set
of equations in Cai et al. [2012a]. Unlike Cai et al. [2012a] who solved the lon-
gitudinal tidal amplitude by numerical integration of the damping number 𝛿 over
a length step Δ𝑥, we calculate the tidal amplitude variation along the estuary axis
directly from the new equation (4.19). The use of the explicit equation (4.19) leads
to an updated tidal amplitude 𝜂 (hence friction number 𝜒 ) at a distance interval
Δ𝑥 (e.g., 1 km) upstream, which is repeated for the whole estuary.

For the case of negligible river discharge, it is customary that classical stud-
ies [e.g., Hunt, 1964; Ippen, 1966; Friedrichs and Aubrey, 1994; Friedrichs, 2010;
Van Rijn, 2011] use the exponential function (4.1) to describe the longitudinal varia-
tion of the tidal amplitude along the estuary axis. It is important to note that in these
studies the damping number, the celerity number and the phase lag are assumed
to be constant for the entire estuary reach. The two undetermined parameters
(i.e., the Manning-Strickler friction coefficient 𝐾 and the storage width ratio 𝑟 ) are
subsequenlty calibrated by comparing the computed results against observations of
tidal amplitude and travel time of the tidal wave. While the damping/amplification
is sensitive to both friction and storage width ratio, the wave celerity is specifically
sensitive to the 𝑟 . The method presented here differs from these earlier studies
in that we derive local solutions depending on the local tidal amplitude to depth
ratio 𝜁, which enables the model to take account of along-channel variations of the
estuary geometry (e.g., the depth and the storage width ratio) or the friction. The
whole estuary can be divided into multiple reaches of length Δ𝑥 (e.g., 1 km) with
constant depth and friction while the variable tidal amplitude is obtained by the
explicit equation (4.19). The same method can be applied using the classical linear
solutions [see, for instance, Toffolon and Savenije, 2011].

Incorporating the new explicit equation (4.19) into a multi-reach approach with
Δ𝑥= 1 km, the Hybrid model [Cai et al., 2012a] has been applied to the Scheldt
estuary. The total length of the estuary is about 180 km from the estuary mouth at
Vlissingen to the estuary head near Gent (closed by a weir). The annual observa-
tions of tidal amplitude and travel time at HW and LW along the Scheldt between
1955 – 2006 have been used to calibrate and verify the model. The cross-sectional
area of the estuary can be well represented by an exponential function (1.2) with
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a convergence length 𝑎=27 km in the seaward part (0 – 90 km) and 𝑎=18 km (90
– 180 km) in the upstream part [see also Horrevoets et al., 2004]. The reduction
of the convergence length is due to the shallowing, whereby the upstream part
has experienced less dredging. Until 90 km from the estuary mouth (𝑥= 0 km,
Vlissingen) it is observed that the flow depth is approximately constant, while more
landward the depth gradually reduces (until about 3 m) as the estuary becomes
more riverine in character. Table 4.3 presents the geometric and flow characteris-
tics as well as the calibrated parameters, including the storage width ratio 𝑟 and
Manning-Strickler coefficient 𝐾 on which the computation is based. During the ex-
amined period (1955 – 2006), according to the cross-sectional survey, the annually
averaged depth of the seaward part (𝑥= 0 – 90 km) was deepened from 10.5 m to
12.3 m.

Table 4.3: Parameters used for analytical models in the Scheldt estuary (1955 – 2006)

Reach (km) Convergence
length 𝑎 (km)

Averaged depth ℎ
(m)

Tidal amplitude at Vlissin-
gen 𝜂 (m)

Storage width ratio
𝑟

Manning-Strickler coeffi-
cient 𝐾 (m / s )

0 – 90 27 10.5 – 12.3 1.87 – 1.96 1.5 – 1.9 39
90 – 180 18 5.4 – 6 1.3 – 1.5 20

In Figures 4.6 and 4.7, the analytically computed tidal amplitudes are compared
with the observations along the Scheldt estuary. We can see that the correspon-
dence with observed values is good, both in the seaward part (𝑥= 0 – 90 km) where
the depth is close to constant and in the landward part (𝑥= 90 – 180 km) where the
depth gradually reduces. The model fits the observations with constant values of
Manning-Strickler coefficient, i.e., 39 m / s in the seaward part and 20 m / s
in the landward part, respectively (see Table 4.3). It is worth noting that the cali-
brated friction coefficient in the upstream part is rather small (𝐾=20 m / s , hence
big friction), which is due to the neglect of river discharge in the equations. The
neglect of river discharge can be compensated by increasing the friction [Cai et al.,
2012b]. Further work will be needed to include the effect of river discharge in this
model.

To demonstrate the practical importance of the proposed multi-reach method,
Figure 4.8 compares the performance of two analytical models (both with fine (#1,
#2) and coarse (#3, #4) discretization) applied to the Scheldt estuary, compared
against annual observations of tidal amplitude and travel time for HW and LW in
2000 (the Matlab scripts are provided as auxiliary material). The models #1 and
#2 use a multi-reach approach with a small length step Δ𝑥=1 km, #1 adopting
the explicit equation (4.19) and #2 the exponential damping equation (4.1) for the
tidal amplitude, respectively. Models #3 and #4 use a large length step (i.e., 90
km in the seaward part 𝑥=0 – 90 km and 30 km in the upstream part 𝑥=90 –
180 km), making use of the explicit equation (4.19) and the exponential damping
equation (4.1), respectively. The damping number 𝛿 in the exponential equation
(4.1) was estimated by the hybrid model of Cai et al. [2012a]. All models use the
same roughness values as presented in Table 4.3. It can be seen from Figure 4.8
that the performance of model #1 and model #2 is almost identical for small length
step, which indicates that equation (4.1) is a good first order approximation of the
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Figure 4.6: Comparison between the analytically computed tidal amplitude and measurements in the
seaward part (0 – 90 km) of the Scheldt estuary at different locations.

proposed explicit equation (4.19) as long as Δ𝑥 is small. For the model of #3, the
correspondence with observed tidal amplitude is surprisingly good even using large
length steps. The reason why the fit is not perfect is because in #3 𝑓 is rather
constant, whereas it is 𝜁-dependent to cater for the tidal depth variability in the
denominator of the friction term. In model #3 we have to assume that 𝑓 remains
constant over a reach. Model #4 is less accurate for larger length steps. This is
because the new method has asymptotic values both for amplified and damped
conditions, whereas the classical method tends to infinity for an amplified wave
and to zero for a damped wave. For the travel times, the methods do not differ
much. It is worth noting that model #4 can be made to fit observations, but only
by adjusting the roughness values for the different reaches. It would have required
a larger roughness coefficient in the downstream part and a smaller roughness in
the upstream part to fit the observations.
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Figure 4.7: Comparison between the analytically computed tidal amplitude and measurements in the
upstream part (90 – 180 km) of the Scheldt estuary at different locations.

4.5.2. Over-amplification Induced by Deepening
The tidal amplitude along the Scheldt estuary can be well simulated by the ana-

lytical model, which suggests that the analytical solution presented in this paper is
a very powerful instrument to assess the possible influence of human interference
in the estuarine system, such as dredging and deepening of navigation channels.
During the past century, the navigation channel to the port of Antwerp in Belgium
was deepened several times and at present it is maintained by annual dredging.
Due to the effect of depth increase, the tidal amplitude and wave celerity have
greatly increased over the last half-century. However, tidal amplification is not
a straightforward function of depth. There appears to be a critical depth, which
causes maximum amplification, beyond which the amplification is reduced as the
wave gradually assumes the properties of a standing wave. To minimize the en-
vironmental impacts of tidal wave amplification, we need to fully understand the
non-linear relationship between deepening and tidal amplification. The new ana-
lytical equation (4.19) is an excellent tool for this. Since they provide direct insight
into the threshold, the asymptotic value and the functional relationship that governs
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Figure 4.8: Comparison between different analytical models and observations: (a) tidal amplitude, and
(b) travel time at HW and LW in the Scheldt estuary observed in 2000. Models #1 (using equation
(4.19))and #2 (using equation (4.1)) make use of multi-reach approach with small length step = 1
km, while models #3 (using equation (22)) and #4 (using (4.1)) use large length steps =90 km (in
the seaward part =0 – 90 km) and 30 km (in the landward part = 90 – 180 km).

amplification.
To evaluate the effect of deepening on tidal dynamics in the Scheldt estuary,

various computations have been made under different depths (ranging from 5m to
25 m) using the proposed hybrid analytical model and the 1D numerical model [as
described in Toffolon et al., 2006] with the same tidal amplitude at the seaward
boundary (1.9 m corresponding with the annual average tidal amplitude between
1955 and 2006) and fixed storage width ratio of 1.6 (estimated by fitting the av-
erage annual tidal observations during 1955 – 2006). Figure 4.9 shows the effect
of deepening on the tidal damping/amplification ratio (𝜂/𝜂 ) at different locations
along the primary navigation channel (0 – 90 km). We can see that the analytically
computed values are in good agreement with the measured tidal amplification ra-
tio at the different stations. The results of the numerical model are also shown in
Figure 4.9. In general, the correspondence between the analytical model and the
numerical model is good, although the analytical results are slightly overestimated
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for averaged depth between 12 m and 18 m and more so in the upstream part.
This is due to the deformation of the wave which the analytical model does not
consider. The analytical model shows that tidal damping (𝜂/𝜂 < 1) occurs for a
depth smaller than about 7 m due to the dominant effect of friction, while the wave
becomes amplified (𝜂/𝜂 > 1) for a depth larger than 7 m when the convergence
is stronger than friction. We can demonstrate that a depth increase only leads to
increased amplification (larger 𝜂/𝜂 ) until a maximum value is reached at a critical
depth ℎ defined by the condition

𝜕𝜂
𝜕ℎ

= 0 . (4.31)
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Figure 4.9: Observed tidal amplification ratio as function of averaged depth along the primary navi-
gation channel in the Scheldt estuary, compared to the amplification computed with the hybrid model
(continuous lines) and the 1D numerical model (dashed lines).

For the quasi-nonlinear model, this condition for maximum amplification is simi-
lar to the one defined by Savenije et al. [2008] as the threshold for the critical con-
vergence at which the tide switches from mixed wave to the “apparently standing”
wave (the wave is not a formally standing wave generated by the superimposition
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of incident and reflected waves; rather it is an incident wave that mimics a stand-
ing wave having a phase difference of 90 ∘ between water level and velocity and
a wave celerity tending to infinity). Rewriting their equation (44a) for the critical
shape number 𝛾 as a function of ℎ leads to:

ℎ = 𝑟 𝛾 𝜔 𝑎 /𝑔, 𝛾 = 1
3𝜒(𝑚 /2 − 1 + (24𝜒 + 2)/𝑚 ),

𝑚 = [108𝜒 + 288𝜒 − 8 + √432𝜒 (𝜒 − 2) (27𝜒 − 4)]
/
. (4.32)

This value based on critical convergence rather than on the critical depth defined by
(4.31) provides a slightly smaller value of ℎ . It is worth noting that the system
flips suddenly to a frictionless standing wave after reaching maximum amplification
(i.e., ℎ ≥ ℎ ) due to the discontinuous transition to a standing wave predicted
by Savenije et al. [2008].

It is worth noting that the critical convergence defined by Jay [1991] is the rate
at which the topographic convergence is balanced by the effect of acceleration,
where the estuary shape number 𝛾=2, which is the same value as obtained by our
hybrid model for a frictionless wave system.

The tidal amplification ratio reduces for a depth larger than the critical depth,
i.e. about 15 m for the main navigational channel. And it can be seen from Figure
4.9 that the maximum amplification increases in landward direction, from about
1.1 in Terneuzen to 1.7 in Schelle. Cai et al. [2012a] classified estuaries having
a depth ℎ > ℎ as ‘over-amplified’, where increasing the depth reduces the
tidal amplification. The same phenomenon of ‘over-amplification’ was observed by
Van Rijn [2011] using an energy-based method, which in fact is identical to the
linear solution. Instead of using a multi-reach implementation (as described by
section 5.1), Van Rijn [2011] obtained the longitudinal tidal amplitude by applying
the exponential equation (4.1).

Since the hybrid model consists of four implicit equations (see Table 4.1), the
reaction of tidal wave propagation to the deepening cannot be observed directly
from these equations. To illustrate the effect of deepening in the Scheldt estuary
(0 – 90 km), we present the trajectory of the four main dimensionless parame-
ters as function of averaged depth (5 ≤ ℎ ≤ 25 m) in Figure 4.10. We can see
that the velocity number and the damping number increase until a maximum value
is reached. A further increase of the depth reduces the tidal amplification (both
tidal amplitude and velocity amplitude) until critical convergence is reached asymp-
totically, where the celerity number and the phase lag approach zero (see Figure
4.10cd), corresponding with a frictionless standing wave system. For the case of
critical convergence, the solutions are identical to those obtained by the Savenije
et al. [2008] for the second family of solution (“apparently standing” wave) and the
solutions are completely determined by the convergence alone, i.e.,

𝜆 = 𝜖 = 0 , 𝜇 = 𝛿 = (𝛾 − √𝛾 − 4)/2 . (4.33)
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Figure 4.10: Trajectories of the main dimensionless parameters as function of averaged depth in the
Scheldt estuary (0 – 90 km, red segments) in: (a) velocity number diagram, (b) damping number
diagram, (c) celerity number diagram, and (d) phase lag diagram. The green square symbols indicate
the initial position with averaged depth of 5 m, while the green circle symbols represent the final position
with averaged depth of 25 m. The background shows the lines of the hybrid model with different values
of the friction number .

When the estuary shape number 𝛾 goes to infinity (e.g, ℎ approaches infinity),
we can see that both 𝜇 and 𝛿 approach zero asymptotically. From a physical point of
view, we can derive from the dimensional damping equation (4.13) that if depth is
increased (hence friction becomes smaller), the friction term on the right-hand side,
i.e. 2𝑓𝜐[4/(3𝜋) + sin(𝜖)]/(3ℎ𝑐), becomes smaller, leading to more amplification.
However, the term contained in the parenthesis on the left-hand side, i.e. 1 +
𝑔𝜂/(𝑐𝜐 sin(𝜖)) = 1 + 1/𝜇 , becomes larger with increasing depth, leading to less
amplification. The term 1/𝜇 reflects the ratio of gravity to acceleration and only
becomes dominant for small values of 𝜇. The maximum amplification stems from
the trade off between these terms.

In Figure 4.11 we present the analytical values of the velocity amplitude and tidal
amplitude as well as their corresponding dimensionless numbers (velocity number
and damping number) as a function of the averaged depth at Bath (𝑥=50 km). As
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the depth increases, both the velocity amplitude and tidal amplitude increase until
a maximum value is reached at critical depth. The critical depth for the velocity
amplitude and the velocity number are about 12 m, while the critical depth for the
tidal amplitude is about 15 m, which is slightly smaller than the critical depth of
the damping number at 16 m depth. These differences follow directly from the
definitions of 𝛿 and 𝜇 as function of depth (see Table 4.2).
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Figure 4.11: The velocity amplitude as well as the velocity number (a) and the tidal amplitude along
with the damping number (b) as function of averaged depth at Bath (x=50 km) in the Scheldt estuary.

4.5.3. Classification of Estuary
The asymptotic tidal amplitudes 𝜂 and velocity amplitude 𝜐 of a selection of

estuaries are shown in Table 4.4, where 𝜂 is calculated with equation (4.7) while
𝜐 is computed with equation (4.26). Qualitatively, we can determine whether
an estuary is amplified or damped by comparing the difference between the tidal
amplitude at the estuary mouth 𝜂 and the asymptotic (or ideal) tidal amplitude
𝜂 . For amplified estuaries where 𝜂 < 𝜂 (𝑎𝛽 < 1), such as Bristol Channel,
Columbia, Outer Bay of Fundy, Scheldt, Severn, St. Lawrence, and Tees, a larger
asymptotic tidal amplitude 𝜂 and velocity amplitude 𝜐 is obtained. For damped
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estuaries where 𝜂 > 𝜂 (𝑎𝛽 > 1), like Fraser, Ord, Gambia, Pungue, Lalang, Tha
Chin, Incomati, and Chao Phya, we can see 𝜂 and 𝜐 achieve a lower asymptotic
value. We can also see that the Gironde, Hudson, Potomac, and Maputo are very
close to ideal estuaries with 𝜂 ≈ 𝜂 (𝑎𝛽 ≈ 1).

Table 4.4: Characteristic values of alluvial estuaries and classification

Number Estuary 1 𝑇(ℎ𝑜𝑢𝑟) 𝜂 (m) ℎ (m) 𝑎 (km) 𝐾 (m / s ) 𝜁 𝛾 𝑎𝛽 𝜂 (m) 𝜐 (m/s) Type
1 Bristol Channel 12.4 2.6 45 65 33 0.06 2.3 0.1 25.09 12.16 Amplified
2 Columbia 12.4 1 10 25 38 0.1 2.81 0.22 4.63 1.54 Amplified
3 Deltaware 12.5 0.64 5.8 40 51 0.11 1.35 0.68 0.94 0.47 Amplified
4 Elbe 12.4 2 10 42 43 0.2 1.68 0.76 2.64 2.68 Amplified
5 Fraser 12.4 1.5 9 215 31 0.17 0.31 17.16 0.09 0.13 Damped
6 Gironde 12.4 2.3 10 44 38 0.23 1.6 1.16 1.99 2.4 Close to ideal
7 Hudson 12.4 0.69 9.2 140 67 0.08 0.48 0.96 0.72 0.46 Close to ideal
8 Ord 12 2.5 4 15.2 50 0.63 2.83 1.46 1.71 2.23 Damped
9 Outer Bay of Fundy 12.4 2.1 60 230 33 0.04 0.75 0.21 9.91 6.73 Amplified
10 Potomac 12.4 0.65 6 54 56 0.11 1.01 0.91 0.71 0.42 Close to ideal
11 Scheldt 12.4 1.9 11 27 39 0.17 2.16 0.56 3.39 3.23 Amplified
12 Severn 12.4 3 15 41 40 0.2 2.1 0.48 6.24 6.51 Amplified
13 St. Lawrence 12.4 2.5 70 183 44 0.04 1.02 0.09 28.88 18.95 Amplified
14 Tees 12 1.5 7.5 5.5 36 0.2 10.72 0.28 5.44 0.87 Amplified
15 Thames 12.3 2.7 8.9 24 51 0.3 2.32 0.69 3.92 5.21 Amplified
16 Gambia 12.4 0.62 8.7 121 64 0.07 0.48 1.21 0.51 0.35 Damped
17 Pungue 12.4 3 4.3 20 33 0.7 2.11 5.42 0.55 1.18 Damped
18 Lalang 12.4 1.5 10.6 217 70 0.14 0.33 2.31 0.65 0.89 Damped
19 Tha Chin 12.4 1.2 5.3 87 50 0.23 0.56 6.95 0.17 0.26 Damped
20 Incomati 12.4 1.35 3 42 63 0.45 0.75 10.62 0.13 0.3 Damped
21 Limpopo 12.4 0.55 7 50 43 0.08 1.18 0.73 0.75 0.32 Amplified
22 Maputo 12.4 1.4 3.6 16 70 0.39 2.41 0.87 1.61 1.56 Close to ideal
23 Chao Phya 12.4 0.9 8 109 51 0.11 0.51 2.95 0.31 0.31 Damped

1 Data are modified from Cai et al. [2012a].

4.5.4. Application to real estuaries
Figures 4.12 and 4.13 show longitudinal computations applied to the Scheldt,

Thames, Pungue, Lalang, Tha Chin, Incomati, Maputo, and Chao Phya estuaries
where tidal damping observations were available. Details on the geometric param-
eters used for these calculation are shown in the supporting information2. It can be
seen from Figures 4.12 and 4.13 that the model fits the observed tidal amplitude
very well and the estimated asymptotic tidal amplitude (4.24) is in good agreement
with the observations. The fact that the Lalang shows larger amplitude upstream
is due to an increasing depth in the upstream direction [Savenije, 1992b]. On the
other hand, the strong upstream damping in the Scheldt and Thames is due to
upstream shallowing. The jump in the asymptotic value near 𝑥∗=1.7 (Scheldt) and
𝑥∗=1.3 (Thames) is due to the change of the convergence length, which generates
an almost standing wave over a short distance before the depth reduction further
upstream again reduces the asymptotic amplitude.

It is worth noting that the proposed hybrid analytical model is able to accurately
reproduce the main tidal hydrodynamics by following along-channel variation of
estuarine sections (e.g., the depth). For instance, Figure 4.12a shows the computed
and measured tidal amplitude along the Scheldt estuary, even in the upstream part,
where the depth gradually reduces. We can see that the seaward part (0 – 90 km)
can be classified as amplified, with a large asymptotic tidal amplitude, while the
2Auxiliary materials are available in the online version at http://onlinelibrary.wiley.com/doi/10.1002/2013JC008772/suppinfo
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Figure 4.12: Observed and computed longitudinal variation of tidal amplitude in selected estuaries (a:
Scheldt; b: Thames; c: Pungue; d: Lalang). The red dashed line represents the asymptotic tidal
amplitude obtained with equation (4.24) as a function of the locally observed geometry.

upstream part (90 – 180 km) is significantly damped with a much smaller asymptotic
tidal amplitude.

4.6. Conclusions
In this chapter we have presented fully explicit expressions for tidal amplitude

and velocity amplitude along the estuary axis. The derived equations provide di-
rect insight into the hydrodynamics of estuaries. The solutions depend on two
parameters, i.e., the shape number 𝛾 and the friction number at the estuary mouth
𝜒 . These simple expressions can be easily incorporated in the model proposed by
Cai et al. [2012a] with a multi-reach technique, i.e., subdividing the estuary into
multiple reaches. The multi-reach implementation enables the analytical model to
take account of local variability (e.g., the depth or friction) and performs much bet-
ter than the classical exponential equation (4.1) applied to the entire estuary (i.e.,
single reach).

We have compared the performance between the classical linear solution and
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Figure 4.13: Observed and computed longitudinal variation of tidal amplitude in selected estuaries (e:
Tha Chin; f: Incomati; g: Maputo; h: Chao Phya). The red dashed line represents the asymptotic tidal
amplitude obtained with equation (4.24) as a function of the locally observed geometry.

those proposed by Savenije et al. [2008], Toffolon and Savenije [2011] and Cai
et al. [2012a]. It is found that exponential damping is only valid when assuming a
constant friction number 𝜒 along the estuary axis, which in fact implies a constant
amplitude, and hence an ideal estuary. The more realistic situation is that estuaries
converge towards an asymptote where the impact of convergence is balanced by
friction.

We have also shown that the upstream asymptotic state is basically independent
of tidal forcing, which indicates that an estuary adjusts the tidal amplitude to the
estuary shape until it has the same properties as in an ideal estuary with spatially
constant parameters. For the downstream asymptotic behavior of the damping
equation, it has been shown that damping/amplification is linear in a region close to
the estuary mouth, particularly in the case of amplification, such as in the seaward
part of the Scheldt estuary. The nonlinear effect only becomes significant in the
upper reaches of the estuary. The analysis of the downstream asymptotic behavior
of tidal damping demonstrates that the classical exponential damping equation (4.1)
is only valid when there is almost no damping or amplification (which is trivial) or
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for a frictionless wave (which is unrealistic).
The analytical solutions are compared with half a century of observations in the

Scheldt estuary, which was substantially deepened over that period. The corre-
spondence with observations is very good. The analytical model has subsequently
been applied to investigate the effect of further deepening on the tidal dynamics.
Interestingly, there is a critical depth beyond which the amplification is reduced until
critical convergence (frictionless and standing wave system) is reached asymptoti-
cally. Finally, the asymptotic behavior can be used to classify estuaries as damped,
amplified or ideal by comparing the tidal amplitude at the estuary mouth with that
of an ideal estuary.



5
Linking the river to the

estuary: influence of river
discharge on tidal damping

The effect of river discharge on tidal damping in estuaries is exploredwithin the frame-
work of four implicit equations, i.e., the phase lag, the scaling, the damping and the
celerity equation. In this framework it is possible to show that river discharge affects
tidal damping primarily through the friction term. It appears that the residual slope
due to nonlinear friction can have a substantial influence on tidal wave propagation
when including the effect of river discharge. An iterative analytical method is pro-
posed to include this effect, which significantly improved model performance in the
upper reaches of an estuary. The application to the Modaomen and Yangtze estu-
aries demonstrates that the proposed analytical model is able to describe the main
tidal dynamics with realistic roughness values in the upper part of the estuary where
the ratio of river flow to tidal flow amplitude is substantial, while a model with neg-
ligible river discharge can be made to fit observations only with unrealistically high
roughness values.

5.1. Introduction
The natural variability of river flow into estuaries is greatly modified by hu-

man activities, such as dam construction, flow diversion and freshwater withdrawal.
These activities impact on tidal damping and tidal wave propagation. In addition,
they influence salt intrusion and even storm surge propagation into an estuary
[Zhang et al., 2011, 2012; Cai et al., 2012b]. Hence, understanding the effect

Parts of this chapter have been published in:
Cai, H., Savenije, H.H.G., Toffolon, M. (2014), Linking the river to the estuary: influence of river dis-
charge on tidal damping, Hydrol. Earth Syst. Sci., 18, 287-304, doi:10.5194/hess-18-287-2014.
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of river discharge on tidal hydraulics is important. Most studies on the analyti-
cal solution of tidal wave propagation neglect the effect of river discharge, such
as Hunt [1964], Dronkers [1964], Ippen [1966], Friedrichs and Aubrey [1994],
Savenije [1998, 2001], Lanzoni and Seminara [1998], Prandle [2003], Savenije
et al. [2008], Toffolon and Savenije [2011], Van Rijn [2011] and Cai et al. [2012a].
Only few studies analysed the influence of river discharge on tidal wave propagation
in estuaries. Of these, most authors used perturbation analysis, where the scaled
equations are simplified by neglecting higher order terms, generally discarding the
advective acceleration term and linearizing the friction term [e.g., Dronkers, 1964;
Leblond, 1978; Godin, 1985, 1999; Jay, 1991]. Others used a regression model
to determine the relationship between river discharge and tide [Jay et al., 2011;
Kukulka and Jay, 2003]. In contrast, Horrevoets et al. [2004] and Cai et al. [2012b]
provided analytical solutions of tidal damping accounting for the effect of river dis-
charge without simplifying the equations, based on the envelope method originally
developed by Savenije [1998].

The treatment of the nonlinear friction term is key to finding an analytical solu-
tion for tidal hydrodynamics. The nonlinearity of the friction term has two sources:
the quadratic stream velocity in the numerator and the variable hydraulic radius in
the denominator [Parker, 1991]. The classical linearization of the friction term was
first obtained by Lorentz [1926] who, disregarding the variable depth, equated the
dissipation by the linear friction over the tidal cycle to that of the quadratic friction.
An extension to include river discharge was provided by Dronkers [1964]. In this
seminal work, he derived a higher order formulation using Chebyshev polynomials,
both with and without river discharge, resulting in a close correspondence with the
quadratic velocity. Godin [1991, 1999] showed that quadratic velocity can be well
approximated by using only the first and third order terms of the non-dimensional
velocity. However, none of the above linearizations took into account the effect
of the periodic variation of the hydraulic radius (to the power 4/3 in the Man-
ning–Strickler formulation) in the denominator of the friction term. On the other
hand, Savenije [1998], using the envelope method (see Appendix A.6), obtained
a damping equation that takes account of both the quadratic velocity and the time-
variable hydraulic radius in the denominator.

This chapter builds on a variety of previous publications on analytical approaches
to tidal wave propagation and damping. A first attempt to include the effect of river
discharge by Horrevoets et al. [2004] used the quasi-nonlinear method of Savenije
[2001], assuming constant velocity amplitude, wave celerity and phase lag. Cai
et al. [2012b] applied this model to the Modaomen estuary. In the present paper
we make use of the analytical framework for tidal wave propagation by Cai et al.
[2012a], but including for the first time the effect of river discharge in a hybrid
model that performs better. Moreover, fully analytical equations accounting for four
spatial variables (velocity amplitude, tidal amplitude, wave celerity and phase lag) of
tidal propagation are now presented demonstrating that the effect of river discharge
is similar to that of friction. In addition, building on the research by Vignoli et al.
[2003] on nonlinear frictional residual effects on tidal propagation, the influence
of residual slope on tidal wave propagation has been taken into account, which
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significantly improved performance, especially in the upstream part of estuaries
where the effect of river discharge is considerable.

In the following section, we present the damping equations that take account of
river discharge. The method to include the residual slope in the analytical solution is
reported in Section 5.3. Section 5.4 presents a comparison of the different analytical
approaches and a sensitivity analysis. The model is subsequently compared against
the fully nonlinear numerical results and applied to two real estuaries where the
effect of the river discharge is apparent in the upstream part of the estuary. The
paper closes off with conclusions in Section 5.5.

5.2. New Damping Equations Accounting for the Ef-
fect of River Discharge

In the following, we extend the validity of the damping equations by introducing
the effect of river discharge into the different approximations of the friction term.

In a Lagrangean approach, we assume that the water particle moves according
to a simple harmonic wave and the influence of river discharge on tidal velocities is
not negligible. As a result, the instantaneous flow velocity 𝑉 for a moving particle
is made up of a steady component 𝑈 , created by the discharge of freshwater, and
a time-dependent component 𝑈 , contributed by the tide:

𝑉 = 𝑈 − 𝑈 , 𝑈 = 𝜐 sin(𝜔𝑡) , 𝑈 = 𝑄 /𝐴 , (5.1)

where 𝑄 is the freshwater discharge, directed against the positive 𝑥-direction.
The dimensionless river discharge 𝜙 is defined as:

𝜙 = 𝑈
𝜐 . (5.2)

We show the procedure for including the effect of river discharge within the
envelope method in Appendix A.6.

For a more concise notation, we refer to a general formulation of the damping
parameter of the form:

𝛿 = 𝜇
1 + 𝜇 𝛽(𝛾𝜃 − 𝜒𝜇𝜆Γ) , (5.3)

where we introduce the dimensionless parameters 𝛽, 𝜃, and Γ. Both 𝛽 and 𝜃
are equal to unity if 𝜙 = 0. The parameter 𝛽 corrects the tidal Froude number
𝜇 = [𝜐/(𝑐 𝑟 𝜁)] [Savenije et al., 2008] for the influence of river discharge:

𝛽 = 𝜃 − 𝑟 𝜁 𝜙𝜇𝜆 . (5.4)

The correction factor 𝜃 accounts for the wave celerity not being equal at HW and
LW, which depends on 𝜙 by:

𝜃 = 1 − (√1 + 𝜁 − 1) 𝜙𝜇𝜆 . (5.5)
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This parameter has a value smaller than unity, but is close to unity as long as 𝜁 ≪ 1
although 𝜇𝜆 = sin(𝜖) is also less than 1. In practical applications, we can typically
assume 𝜃 ≈ 1, but this is not a necessary assumption in our method. Finally,
the parameter Γ depends on the specific approach, as it is discussed in the next
sections.

5.2.1. The Quasi-nonlinear Approach
Savenije et al. [2008] presented a fully analytical solution for tidal wave prop-

agation without linearizing the friction term through the envelope method. The
method was termed quasi-nonlinear because it still made use of a regular harmonic
function to describe the flow velocity. Horrevoets et al. [2004] introduced the effect
of river discharge in the quasi-nonlinear model. Using the dimensionless parame-
ters presented in Table 4.2, Cai et al. [2012b] developed this solution into a general
expression for tidal damping, where two zones are distinguished depending on the
value of 𝜙 defined by equation (5.2).

In the tide-dominated zone, where 𝜙 < 𝜇𝜆, the parameter Γ introduced in equa-
tion (5.3) reads

Γ = 𝜇𝜆[1 + 83𝜁
𝜙
𝜇𝜆 + (

𝜙
𝜇𝜆) ] , (5.6)

while in the river discharge-dominated zone, where 𝜙 ≥ 𝜇𝜆, it becomes

Γ = 𝜇𝜆[43𝜁 + 2
𝜙
𝜇𝜆 +

4
3𝜁(

𝜙
𝜇𝜆) ] . (5.7)

5.2.2. Lorentz’s Approach
The Fourier expansion of the product 𝑈|𝑈| in the friction term is [Dronkers,

1964, 272–275]:

𝑈|𝑈| = 1
4𝐿 𝜐 + 12𝐿 𝜐𝑈 , (5.8)

where the expressions of coefficients 𝐿 and 𝐿 when 0 < 𝜙 < 1 are:

𝐿 = [2 + cos(2𝛼)] (2 − 4𝛼𝜋 ) +
6
𝜋 sin(2𝛼) , (5.9)

𝐿 = 6
𝜋 sin(𝛼) +

2
3𝜋 sin(3𝛼) + (4 −

8𝛼
𝜋 ) cos(𝛼) , (5.10)

with
𝛼 = arccos(−𝜙) , (5.11)

where 𝜋/2 < 𝛼 < 𝜋 because 𝜙 is positive. In case 𝜙 ≥ 1,

𝐿 = −2 − 4𝜙 , 𝐿 = 4𝜙 , (5.12)

while the case of 𝜙=1 (i.e., 𝑈 = 𝜐) corresponds with 𝛼 = 𝜋 and leads to 𝐿 = −6
and 𝐿 = 4.
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As a result, the development of the Lorentz’s friction term accounting for the
effect of river discharge reads:

𝐹 = 1

𝐾 ℎ
/ (

1
4𝐿 𝜐 + 12𝐿 𝜐𝑈 ) , (5.13)

where the subscript L stands for Lorentz.
If the river discharge is negligible, i.e., 𝑈 = 0 and 𝛼 = 𝜋/2, equation (5.13)

reduces to the classical Lorentz linearization and hence 𝐿 = 0 and 𝐿 = 16/(3𝜋):

𝐹 = 8
3𝜋

𝜐

𝐾 ℎ
/ 𝑈 . (5.14)

With the envelope method, making use of friction term equation (5.13), it is possible
to derive the parameter Γ in the damping equation (5.3) (see Appendix A.6):

Γ = 𝐿
2 . (5.15)

Extending Lorentz’s solution with the periodic variation of the depth in the denom-
inator of the friction term (i.e., 𝐾 ℎ / ) is also possible. The resulting expression
is reported in Table 5.1, where 𝜅 = 1 yields the time-dependent case, while equa-
tion (5.12) is recovered by setting 𝜅 = 0.

Table 5.1: Comparison of the terms in the damping equation (5.3) for different analytical methods. The
effect of the time-dependent depth in the friction term for Lorentz’s, Dronkers’ and Godin’s method is
accounted for by setting =1 in the expressions for , whereas =0 describes the time-independent
case.

Model(1) Friction term Γ without river discharge (𝜙 = 0) Γ with river discharge (𝜙 > 0), introducing 𝜓 = 𝜙/(𝜇𝜆)

Savenije , , , | |
/ 𝜇𝜆 {

𝜇𝜆(1 + 𝜁𝜓 + 𝜓 ) (𝜓 < 1)
𝜇𝜆( 𝜁 + 2𝜓 + 𝜁𝜓 ) (𝜓 ≥ 1) T1

Lorentz / ( 𝜐 + 𝜐𝑈 ) 8/(3𝜋) − 𝜅𝜁 T2

Dronkers / (𝑝 𝜐 + 𝑝 𝜐𝑈 + 𝑝 𝑈 + 𝑝 𝑈 /𝜐) + (𝜇𝜆)
⎧⎪
⎨⎪⎩

{ − 𝑝 + 𝑝 (1 + 𝜅𝜁𝜓)
−2𝑝 𝜙[1 + 𝜅𝜁( + 𝜓)]

+𝑝 𝜙 [3 + + 4𝜅𝜁( + )]}
T3

Godin / [ + 2( ) ] + (𝜇𝜆) 𝐺 + 𝐺 (𝜇𝜆) + 𝜅𝜁(𝐺 𝜇𝜆 + ) T4

Hybrid | |
/ + / ( 𝜐 + 𝜐𝑈 ) 𝜇𝜆 + {

𝜇𝜆(1 + 𝜁𝜓 + 𝜓 ) + − (𝜓 < 1)
𝜇𝜆( 𝜁 + 2𝜓 + 𝜁𝜓 ) + − (𝜓 ≥ 1)

T5

𝛽 = 1, 𝜃 = 1 𝛽 = 𝜃 − 𝑟 𝜁𝜓, 𝜃 ≈ 1
(1) Savenije [1998]; Horrevoets et al. [2004]; Savenije et al. [2008]; Cai et al. [2012b]; Lorentz [1926]; Dronkers [1964]; Godin [1991,
1999]; Cai et al. [2012a]

We also tested higher order formulations of the friction term, such as proposed
by Dronkers [1964] and Godin [1991, 1999], which we implemented in the envelope
method arriving at tidal damping equations accounting for river discharge. For
further details on these damping equations, readers can refer to the Supplement1

(see also Table 5.1).
1Auxiliary materials are available in the online version at http://www.hydrol-earth-syst-
sci.net/18/287/2014/hess-18-287-2014-supplement.pdf
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5.2.3. Hybrid Method
Cai et al. [2012a] showed that a linear combination of the traditional Lorentz

approach [e.g., Toffolon and Savenije, 2011] with the quasi-nonlinear approach
[e.g., Savenije et al., 2008] gives good predictive results. In this study, we expand
this method to account for river discharge. Consequently, the new nonlinear friction
term reads:

𝐹 = 2
3𝐹 +

1
3𝐹 = 1

𝐾 ℎ / [
2
3𝑈|𝑈| +

1
3(
𝐿
4 𝜐 + 𝐿2 𝜐𝑈 )] , (5.16)

where the subscript H stands for hybrid. Applying the envelope method with this
friction formulation, we are able to derive a new river discharge dependent damping
equation:

Γ = 2
3Γ +

1
3Γ , (5.17)

where Γ is given by T2 (see Table 5.1) with 𝜅 = 1, and Γ by either equation (5.6)
or (5.7) in the downstream tide-dominated zone (𝜙 < 𝜇𝜆) or in the upstream river
discharge-dominated zone (𝜙 ≥ 𝜇𝜆), respectively.

5.3. Influence of Nonlinear Friction on the Averaged
Water Level

The tidally averaged free surface elevation does not coincide with mean sea
level along the estuary due to the nonlinear frictional effect on averaged water
level, even if river discharge is negligible [Vignoli et al., 2003]. Vignoli et al. [2003]
derived an analytical expression for the mean free surface elevation (see Appendix
A.7):

𝑧(𝑥) = −∫ 𝑉|𝑉|
𝐾 ℎ / 𝑑𝑥 , (5.18)

which is also valid when accounting for the effect of river discharge (the overbar
denotes the average over the tidal period).

A fully nonlinear one-dimensional numerical model accounting for river discharge
has been used to investigate the effects of the friction term on the tidally averaged
water level. The numerical model uses an explicit MacCormack scheme and is
second order accurate both in space and time [Toffolon et al., 2006]. As a simple
case, we considered a channel with horizontal bed, where the width is assumed to
decrease exponentially in landward direction as:

𝐵 = 𝐵 + (𝐵 − 𝐵 ) exp(−𝑥/𝑏) , (5.19)

where 𝐵 is imposed to keep a minimum width when the convergence is strong
and the estuary is long. The length of the estuary is 2000 km. In the landward
part, we imposed a slight bed slope and higher friction in order to reduce spurious
reflections due to the landward boundary condition.
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Figure 5.1 presents a comparison between the numerically calculated tidally av-
eraged water level and the values obtained from equation (5.18), both with (5000
m s ) and without river discharge. For simplicity, we calculated the tidally aver-
aged friction using the Eulerian velocity 𝑈 rather than the Langranean velocity 𝑉
with (5000 m s ) and without river discharge. It can be seen from Figure 5.1 that
the correspondence between them is reasonable. The deviation is mainly due to
the fact that we calculated the tidally averaged friction using the Eulerian velocity
𝑈, instead of integrating the Lagrangean velocity 𝑉 as in equation (5.18). We can
see from Figure 5.1 that due to river discharge the residual water level slope is
significantly increased, suggesting that the residual effects on the averaged water
level is particularly important when river discharge is substantial.
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Figure 5.1: Tidally averaged free surface elevation calculated from the numerical model (solid lines)
and evaluated through equation (5.18) both with and without river discharge for given values of =60
m / s , =352 km, =0.2, =10 m, =5000 m, =300 m.
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5.4. Results
5.4.1. Analytical Solutions of the New Models

The different damping equations introduced above should be combined with the
phase lag, scaling and celerity equations of Table 4.1, to form the system of the
hydrodynamic equations:

tan(𝜖) = 𝜆
𝛾 − 𝛿 , (5.20)

𝜇 = sin(𝜖)
𝜆 = cos(𝜖)

𝛾 − 𝛿 , (5.21)

𝜆 = 1 − 𝛿(𝛾 − 𝛿) . (5.22)

In this way we have a new set of four implicit analytical equations that account for
the effect of river discharge. As shown in Savenije et al. [2008], equations (5.20)
and (5.21) can be combined to eliminate the variable 𝜖 to give

(𝛾 − 𝛿) = 1
𝜇 − 𝜆 . (5.23)

A fully explicit solutions for the main dimensionless parameters (i.e., 𝜇, 𝛿, 𝜆, 𝜖)
can be derived in some cases [Toffolon et al., 2006; Savenije et al., 2008], but an
iterative procedure is needed to obtain the solution in general. The following proce-
dure usually converges in a few steps: (1) initially we assume 𝑄 = 0 and calculate
the initial values for the velocity number 𝜇, celerity number 𝜆 and the tidal velocity
amplitude 𝜐 (and hence dimensionless river discharge term 𝜙) using the analytical
solution proposed in Cai et al. [2012a] (see Sect. 3); (2) taking into account the
effect of river discharge 𝑄 , the revised damping number 𝛿, celerity number 𝜆, ve-
locity number 𝜇 and velocity amplitude 𝜐 (and hence 𝜙) are calculated by solving
equations (5.3), (5.22) and (5.23) using a simple Newton–Raphson method; (3)
this process is repeated until the result is stable and then the other parameters
(e.g., 𝜖, 𝜂, 𝜐) are computed.

It is important to realise that the solutions for the dependent dimensionless
parameters 𝜇, 𝛿, 𝜆 and 𝜖 are local solutions because they are obtained by the four
implicit equations that depend on local quantities that vary along the estuary (i.e.,
the local tidal amplitude to depth ratio 𝜁, the local estuary shape number 𝛾 and
the local friction number 𝜒). To reproduce wave propagation correctly along the
estuary, a multi-reach approach has to be used to follow along-channel variation,
dividing the estuary in a number of reaches [e.g., Toffolon and Savenije, 2011].
With the damping number 𝛿, it is possible to calculate a tidal amplitude 𝜂 at a
distance Δ𝑥 (e.g., 1 km) upstream by simple explicit integration of the damping
number:

𝜂 = 𝜂 + 𝑑𝜂𝑑𝑥Δ𝑥 = 𝜂 + 𝜂 𝜔𝛿𝑐 Δ𝑥 . (5.24)

In a Lagrangean reference frame, tidally averaged friction can be estimated by the
average of friction at HW and LW, based on the assumption that the water particle
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moves according to a simple harmonic, yielding:

𝑉|𝑉|
𝐾 ℎ / ≈ 1

2[
𝑉 |𝑉 |

𝐾 (ℎ + 𝜂)
/ + 𝑉 |𝑉 |

𝐾 (ℎ − 𝜂)
/ ] . (5.25)

Substitution of different approximations of the friction term, described in the Sect.
4, into (5.25) and combination with (5.18) ends up with an equal number of ana-
lytical solutions for the tidally averaged depth along the estuary:

ℎ (𝑥) = ℎ(𝑥) + 𝑧(𝑥) , (5.26)

which modifies the estuary shape number. Making use of equation (5.26) an it-
erative procedure can be applied to obtain the tidal dynamics along the estuary
accounting for the effect of the residual water level slope.

5.4.2. Comparison among Different Approaches
Table 5.1 summarizes the damping equations with and without the effect of river

discharge for the different friction formulations, leading to different forms of the
damping equation. The substitution of 𝜙 = 0 yields the same damping equations
as in Table 4.1 (general case), as it can be derived by exploiting the phase lag and
scaling equations [Cai et al., 2012a].

As an illustration, the relation between the dependent dimensionless parameters
and the dimensionless river discharge 𝜙 is shown in Figure 5.2 for given values of
𝜁 = 0.1, 𝛾 = 1.5, 𝜒 = 2 and 𝑟 = 1. We can see that for increasing river discharge
all the analytical models approach the same asymptotic solution, which is due to
the fact that the approximations to the quadratic velocity 𝑈|𝑈| is close to 𝑈 when
the effect of tide is less important and the current no longer reverses. Actually, we
can see that the parameter Γ in the friction term in T1, T2 and T5 (see Table 5.1)
tends to (4/3)𝜁𝜙 /(𝜇𝜆) when 𝜙 approaching infinity. Moreover, it can be seen from
Figure 5.2 that the performance of the hybrid model is close to the average of
Lorentz’s and the quasi-nonlinear method, which is to be expected since the hybrid
tidal damping represents a weighted average of these two solutions. In addition,
we note that the different methods tend to converge for large values of 𝜙.

It is important to realise that the different approaches use different expressions
for the dimensionless friction 𝑓 (i.e., equation 2.10) as a result of the variation of
the depth over time. While the effect of a variable depth is taken into account in
the envelope method, the original Lorentz method assume a constant depth in the
friction term, which is the same as considering 𝜁 = 0 in equation (2.10):

𝑓 = 𝑔/(𝐾 ℎ
/
) . (5.27)

The damping equations accounting for time variability, which is related to the term
𝜁 in equation (2.10), are presented in Table 5.1.
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Figure 5.2: The main dimensionless parameters (damping number , velocity number , celerity number
and phase lag ) obtained with the different analytical methods as a function of dimensionless river

discharge with . , . , and .

5.4.3. Sensitivity Analysis
In this section we discuss the effect of changing the frictional and geometrical

features of the estuary. Although in principle all the presented methods can be
used, in the following we will consider the hybrid model, if not explicitly mentioned.

The relation between the dependent dimensionless parameters (i.e., the damp-
ing number 𝛿, the velocity number 𝜇, the celerity number 𝜆 and the phase lag 𝜖)
and the friction number 𝜒 for different values of 𝜙 is shown in Figure 5.3 for given
values of 𝜁 = 0.1, 𝛾 = 1.5 and 𝑟 = 1. In general, the river discharge intensifies
the effect of friction, i.e., inducing more tidal damping (hence less velocity ampli-
tude and wave celerity). The phase lag 𝜖 = arcsin(𝜇𝜆) increases with increasing
𝜙 except for small 𝜒 when the values of 𝜇𝜆 are decreased. However, we can see
that the curves show an anomaly for very small value of 𝜒. If 𝜒 is very small, the
river discharge term in the numerator of the damping equation (5.3) is negligible
but becomes important in 𝛽, defined in equation (5.4). For this case, an increase
of the river discharge has an opposite effect, particularly on the phase lag. In fact,
for the case of a frictionless estuary (𝜒 = 0) the damping equation (5.3) reduces to
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𝛿 = 𝜇 𝛾𝜃/(1 + 𝜇 𝛽) in which 𝛽 is decreased with river discharge.
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Figure 5.3: Relationship between the main dimensionless parameters and the friction number obtained
by solving the equations (5.3) (with ), (5.22) and (5.23) for different values of the dimensionless
river discharge term with . , . and .

The friction number 𝜒 is also a function of 𝜁 (see Table 4.1). In order to illustrate
the effect of 𝜁 we introduce a modified (time-invariant) friction number 𝜒 as:

𝜒 = 𝜒[1 − (4𝜁/3) ] /𝜁 = 𝑟 𝑔𝑐 /(𝐾 𝜔ℎ
/
) . (5.28)

Figure 5.4 describes the effect of the dimensionless tidal amplitude 𝜁 for given val-
ues of 𝜒 = 20, 𝛾 = 1.5 and 𝑟 = 1. Larger 𝜁 intensifies the effect of river discharge
and friction as well, which induces more tidal damping, less velocity amplitude and
wave celerity, and increases the phase difference between HW and HWS (or LW and
LWS). For small value of 𝜁, the phase lag decreases with increasing river discharge,
also due to the effect on 𝛽.

Figure 5.5 shows the effect of the estuary shape number 𝛾 on the main dimen-
sionless parameters for different river discharge conditions 𝜙 and for given values
of the other independent parameters (𝜁 = 0.1, 𝜒 = 20 and 𝑟 = 1). In general,
the damping number 𝛿 and the velocity number 𝜇 decrease with river discharge,
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Figure 5.4: Relationship between the main dimensionless parameters and the dimensionless tidal am-
plitude obtained by solving the equations (5.3) (with ), (5.22) and (5.23) for different values
of the dimensionless river discharge term with , . and , where is defined
with equation (5.28).

which means more tidal damping and less velocity amplitude. On the other hand,
the celerity number 𝜆 is increased (hence slower wave celerity) due to increasing
river discharge. For the phase lag 𝜖, we can see from Figure 5.5d that it decreases
with river discharge for small values of 𝛾 while it increases for larger values of 𝛾.
Cai et al. [2012a] found the same relationship between the main dimensionless
parameters and the friction number 𝜒, which confirms our point that including river
discharge acts in the same way as increasing the friction.

From an analytical point of view, it is easy to show that the influence of river
discharge on the tidal dynamics is very similar to that of the friction number 𝜒.
Referring for sake of simplicity to the quasi non-linear model and considering an
artificial friction number 𝜒 due to river discharge, the damping equation (5.3) can
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Figure 5.5: Relationship between the main dimensionless parameters and the estuary shape number
obtained by solving the equations (5.3) (with ), (5.22) and (5.23) for different values of the

dimensionless river discharge term with . , and .

be written, with equation (5.6) for the case 𝜙 < 𝜇𝜆, as

𝛿 = 𝜇
1 + 𝜇 𝛽[𝛾𝜃 − (𝜇𝜆) 𝜒(1 +

8
3𝜁

𝜙
𝜇𝜆 + (

𝜙
𝜇𝜆) )] =

𝜇
1 + 𝜇 𝛽 [𝛾𝜃 − (𝜇𝜆) 𝜒 ] .

(5.29)
This relationship shows that the effect of river discharge is basically that of in-
creasing friction by a factor that is a function of 𝜙. Expressing the artificial friction
number as 𝜒 = 𝜒+Δ𝜒 provides an estimation of the correction of the friction term

Δ𝜒
𝜒 = 8

3𝜁
𝜙
𝜇𝜆 + (

𝜙
𝜇𝜆) , (5.30)

which is needed to compensate for the lack of considering river discharge. In fact,
increasing 𝜙 is analogous to changing 𝜒, and the expected non-physical adjustment
of the Manning–Strickler coefficient 𝐾 can be estimated for models that do not
consider 𝑄 .
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5.4.4. Comparison with Numerical Results
To investigate the performance of the analytical hybrid solutions, the results

have been compared with a one-dimensional numerical model. Since we used
equation (5.19) to describe the width convergence along the estuary, the estuary
shape number accounting for width convergence becomes a function of distance:

𝛾 =
𝑐 (𝐵 − 𝐵 ) exp(−𝑥/𝑏)

𝑏𝜔[𝐵 + (𝐵 − 𝐵 ) exp(−𝑥/𝑏)]
. (5.31)

When accounting for river discharge, it is necessary to include depth divergence
(i.e., the residual water level slope, which is particularly important if the bed is
horizontal)

𝛾 = −𝑐𝜔
1
ℎ
𝑑ℎ
𝑑𝑥 . (5.32)

Hence the combined estuary shape number reads:

𝛾 = 𝛾 + 𝛾 . (5.33)

Figure 5.6 compares the performance of two analytical models, i.e., considering
depth divergence (indicated by ‘div’) and without considering depth divergence (de-
noted by ‘nodiv’), against the numerical results (𝑄 =0 and 5000 m s ) for given
tidal amplitude to depth ratios at the estuary mouth (𝜁 =0.2 and 𝜁 =0.5). We can
see from Figure 5.6 that the performance of the analytical models is the same in the
seaward part, where the effect of river discharge is small compared to tidal flow.
Thus the usual assumption that river discharge and residual slope on tidal propa-
gation is negligible in this part of the estuary is reasonable. For the case without
river discharge, it can be seen that the analytical model performs slightly better
when including depth divergence due to residual water level slope, especially in the
upper reach of the estuary (this is due to the nonlinearity of the friction term). On
the other hand, if river discharge is included, the analytical model requires taking
account of depth divergence to accurately simulate the tidal damping. As the tidal
amplitude to depth ratio 𝜁 increases, the numerical simulations indicate that the
deviation from the numerical results increases if we neglect the residual slope. In-
cluding depth divergence, the analytical model performs much better. However, the
correspondence with numerical result is not perfect due to the fact that the analyti-
cal model does not account for wave distortion when the tide propagates upstream.
More detailed comparion between analytical and fully nonlinear numerical results
are presented in the Supplement2.

5.4.5. Application to Real Estuaries
Using the damping equation (5.3) (in the hybrid version, hence Γ = Γ ), the

analytical model has been compared to observations made in the Modaomen and

2Auxiliary materials are available in the online version at http://www.hydrol-earth-syst-
sci.net/18/287/2014/hess-18-287-2014-supplement.pdf
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Figure 5.6: Comparison between different analytical models and numerical results for given values of
=60 / , =352 km, =10 m, =5000 m, =300 m, =0.2 (a) or =0.5 (b). The drawn

black line represents the river velocity to tide velocity amplitude ratio. The label ‘nodiv’ indicates the
models without considering the residual water level slope, while ‘div’ denotes the models accounting for
it using the approach described in Sect. 5.

Yangtze estuaries in China, where the influence of river discharge in the upstream
part is considerable. The Modaomen estuary forms the downstream part of the West
River entering the Pearl River Delta with an annual river discharge of 7115m s at
Makou [Cai et al., 2012b]. The Yangtze estuary drains the Yangtze River basin with
an annual mean river discharge of 28 310m s at Datong [Zhang et al., 2012].

The computation depends on the three independent variables, i.e., 𝛾, 𝜒 and
𝜙. Given the flow boundary conditions (i.e., the tidal amplitude at the seaward
boundary and river discharge at the landward boundary) and the geometry of the
channel, the values of 𝛾, 𝜒 and 𝜙 can be computed. Hence, the set of four implicit
analytical equations (5.3) (with Γ = Γ ), (5.20), (5.21) and (5.22) can be solved
by simple iteration. The tidal amplitude is obtained by numerical integration of the
damping number 𝛿 over a length step (e.g., 1 km).

Table 5.2 presents the geometry and flow characteristics (considering two differ-
ent cases for independent calibration and verification of the model) of the Modaomen
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and Yangtze on which the computations are based. The convergence length of the
cross-sectional area, which is the length scale of the exponential function, is ob-
tained by fitting equation (1.2), where the parallel branches separated by islands
are combined, as recommended by Nguyen and Savenije [2006] and Zhang et al.
[2012]. The calibrated parameters including the storage width ratio 𝑟 and the
Manning–Strickler friction 𝐾 are presented in Table 5.3. In general, the storage
width ratio 𝑟 ranges between 1 and 2 [Savenije, 2005, 2012]. It is noted that
a relatively small roughness value of 𝐾 = 70m / s (Table 5.3) was used in the
Yangtze estuary, which is due to the fact that it is a silt-mud estuary, while the bed
consists of sands in the Modaomen estuary. The reason for a small roughness value
of 𝐾 = 78m / s used in the middle reach of the Modaomen estuary (43–91 km)
is probably due to the effect of parallel branches [see Cai et al., 2012b].

Table 5.2: Geometric and flow characteristics of the estuaries studied.

Tidal amplitude at the mouth (m) River discharge 𝑄 (m s )
Estuary Reach (km) Depth ℎ (m) Convergence length 𝑎 (km) Calibration Verification Calibration Verification

Modaomen
0–43 6.3 106

1.31 1.09 2259 257043–91 7 infinite
91–150 10.3 110

Yangtze
0–34 7 42

1.8 2.3 13 100 17 60034–275 9 140
275–600 11 200

Table 5.3: Calibrated parameters of the estuaries studied.

Estuary Reach (km) Storage width ratio 𝑟 (–) Manning–Strickler friction 𝐾 (m / s ), 𝑄 > 0 Manning–Strickler friction 𝐾 (m / s ), 𝑄 = 0

Modaomen
0–43 1.5 48 45
43–91 1.4 78 75
91–150 1.3 35 30

Yangtze
0–34 1.8 70 70
34–275 1 70 70
275–600 1 45 26

Figure 5.7 shows the longitudinal computation of the tidal amplitude, the travel
time (both at HW and LW) and damping number applied to the Modaomen es-
tuary. Observations of tidal amplitude and travel time of the tidal wave on 8–9
February 2001 were used to calibrate the model, while the observed data on 5–6
December 2002 were used for verification. Both the model with river discharge
and the model without river discharge can be made to fit the observations if a suit-
able friction coefficient is used, as discussed in the previous section. However,
such calibrations yield significantly lower values of the Manning–Strickler coeffi-
cients upstream. For the model without river discharge we would have required an
unrealistically low Manning–Strickler value of 𝐾 = 30m / s to fit the data in the
upstream part of Modaomen estuary (91–150 km). In Figure 5.7, the new model
accounting for the effect of river discharge is compared to the original model with
the same roughness, but without river discharge. In the lower part of the estuary
the models behave the same (e.g., see the dimensionless damping number in Fig-
ure 5.7c, f), but behave differently in the upper reach where the river discharge
is dominant. Without considering river discharge, the model underestimates tidal
damping upstream.
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Figure 5.7: Comparison of analytically calculated tidal amplitude (a, d), travel time (b, e) with measure-
ments and comparison of two analytical models to compute the dimensionless damping number (c, f)
on 8–9 February 2001 (calibration) and 5–6 December 2002 (validation) in the Modaomen estuary. The
dashed line represents the model where river discharge is neglected. The continuous line represents
the model accounting for the effect of river discharge. Both models used the same friction coefficients
calibrated while considering river discharge.

In Figure 5.8, we can see that the analytically calculated tidal amplitude in the
Yangtze estuary is in good correspondence with the observed data on 21–22 Decem-
ber 2006 (calibration) and 18–19 February 2003 (verification). For the travel time,
the correspondence with observations at HW is very good, but the correspondence
for LW shows a big deviation from the measurements, with an underestimation of
the celerity for LW. The reason for the deviation should probably be attributed to
significant tidal wave distortion due to the strong river discharge, which is critical for
the assumption that the celerities at HW and LW times are symmetrical compared
with the tidal average wave celerity (see equation A.58 in Appendix A.6). Without
considering the river discharge, a much higher and unrealistic roughness (implying
a lower value of 𝐾 = 26m / s ) would be necessary in the upstream part of the
estuary (275–600 km) to compensate the influence of river discharge.
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Figure 5.8: Comparison of analytically calculated tidal amplitude (a, d), travel time (b, e) with measure-
ments and comparison of two analytical models to compute the dimensionless damping number (c, f) on
21–22 December 2006 (calibration) and 18–19 February 2003 (validation) in the Yangtze estuary. The
dashed line represents the model where river discharge is neglected. The continuous line represents
the model accounting for the effect of river discharge. Both models used the same friction coefficients
calibrated while considering river discharge.

5.5. Conclusions
In this chapter, we have extended the analytical framework for tidal hydrody-

namics proposed by Cai et al. [2012a] by taking account of river discharge. With the
envelope method [Savenije, 1998], different friction formulations considering river
discharge can be used to derive expressions for the envelopes at HW and LW and
subsequently to arrive at the corresponding damping equations. When combined
with the phase lag equation, the scaling equation and the celerity equation, these
damping equations can be iteratively solved for the dimensionless parameters 𝜇, 𝛿,
𝜆 and 𝜖, which are related to tidal velocity amplitude, tidal damping, wave celerity,
and phase lag, respectively. Thus, for given topography, friction, tidal amplitude
at the seaward boundary and river discharge at the landward boundary, we can
reproduce the main tidal dynamics along the estuary.

Unlike previous studies [e.g., Godin, 1985, 1999] that neglect higher-order term,
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the envelope method retains all terms although it still requires a small tidal ampli-
tude to depth ratio. This allows for including river discharge in a fully analytical
framework. It is also worth recognising that the friction term has two nonlinear
sources, the quadratic velocity 𝑈|𝑈|, and the variation of the hydraulic radius (ap-
proximated by the flow depth ℎ) in the denominator [Parker, 1991]. Lorentz’s
friction formulations disregarded the tidally varying depth and only focus on the
quadratic velocity. By using the envelope method, we are able to take this second
nonlinear source into account and end up with a more complete damping equation
accounting for river discharge.

We also note that the averaged water level tends to rise landward and that this
effect has a considerable influence on tidal wave propagation, particularly when
accounting for the effect of river discharge, since river discharge affects depth con-
vergence and friction at the same time. An iterative analytical method has been
proposed to include the residual water level slope into the analysis, which signifi-
cantly improved the performance of the analytical model.

With respect to e.g. Cai et al. [2012a], where we did not consider the effect of
river discharge, this method is an improvement that is important especially in the
upstream part of the estuary where the influence of river discharge is considerable.
This is clearly demonstrated by the application of the analytical model to two real
estuaries (Modaomen and Yangtze in China), which shows that the proposed model
fits the observations with realistic roughness value in the upstream part, while the
model without considering river discharge can only be fitted with unrealistically high
roughness values.





6
A coupled analytical model

for salt intrusion and tides in
alluvial estuaries

In this chapter we develop a coupled analytical model for salinity and tidal prop-
agation in estuaries where the cross-sectional area varies exponentially. A simple
analytical model for tidal dynamics has been used to estimate the tidal excursion,
which has an important influence on the salt intrusion process since it determines
the extreme salinities (i.e., salinity distribution for high water slack and low water
slack). The objective of the coupling is to reduce the number of calibration parameters,
which subsequently strengthens the reliability of the salt intrusion model. Moreover,
the fully analytical solution for hydrodynamics allows immediate estimation of the
tidally averaged depth and friction coefficient for given water level recordings and
salinity measurements. This is particularly useful when a geometric survey is not
available. The coupled model has been applied to 6 estuaries in Malaysia and the
results show that the correspondence between analytical estimations and observa-
tions is very good. Thus, the coupled model may become a useful tool to obtain a first
estimate of salt intrusion in estuaries based on a minimum amount of information
required.

6.1. Introduction
The longitudinal distribution of salinity and the maximum salt intrusion length in

an estuary are important environmental concerns for policy makers and managers
since they influence water quality, water utilization and agricultural development
in estuarine environments and the potential use of water resources in general. To

Parts of this chapter have been published in:
Cai, H., Savenije, H.H.G., Gisen, J. I. A. (2014), A coupled analytical model for salt intrusion and tides
in alluvial estuaries, Hydrological Sciences Journal, submitted.
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assess the effects of geometry, fresh water discharge and tide on the salinity dis-
tribution in an estuary, predictive analytical models can be useful, which do not
require as much data as numerical model and the parameters used are relatively
easy to obtain. Such analytical models have been proposed by many researchers,
such as Prandle [1981], Savenije [1986, 1989, 1993b, 2005, 2012], Lewis and Un-
cles [2003], Gay and O’Donnell [2007, 2009], Kuijper and Van Rijn [2011]. These
solutions are based on the steady-state conservation of mass equation which in-
dicates that the dispersive and advective transports of salt are in equilibrium and
the effective longitudinal dispersion coefficient incorporates all mixing mechanisms,
where the dispersion coefficient along the estuary axis is either constant [e.g. Gay
and O’Donnell, 2007] or variable [e.g. Van der Burgh, 1972; Savenije, 1986]. In this
chapter we build on the salt intrusion theory developed by Savenije [1986, 1989,
1993b, 2005, 2012], which has been applied successfully to 17 different estuaries
worldwide [Savenije, 2005, 2012], even in some multi-channel estuaries [Nguyen
and Savenije, 2006; Zhang et al., 2011]. Recently, this method has been tested in
6 previously un-surveyed Malaysian estuaries and the analytical results show good
agreement with observations [Gisen et al., 2014].

It should be noted that many predictive analytical models are derived under
tidal average (TA) conditions, while the salt intrusion reaches its maximum and
minimum at high water slack (HWS) and low water slack (LWS), respectively. Hence
the salinity distribution curve for the TA situation should be shifted landward or
seaward over half of the tidal excursion to obtain the curves for the HWS and LWS
[e.g. Savenije, 2005]. The method requires the tidal excursion as an additional
calibration parameter (i.e., the distance travelled by a moving particle between
LWS and HWS), which is usually assumed to be constant along the estuary. In
this chapter, we propose coupling the salt intrusion model developed by Savenije
[1986, 1989, 1993b, 2005, 2012] to a hydrodynamic model proposed by Cai et al.
[2012a] and Cai and Savenije [2013], where a simple analytical solution for the tidal
dynamics can be used to predict the velocity amplitude and hence the longitudinal
tidal excursion.

It is important to note that for given friction, geometry and tidal forcing at the
seaward boundary, the hydrodynamics model proposed by Cai et al. [2012a] can be
used to reproduce the main tidal dynamics (i.e., tidal damping, velocity amplitude,
wave celerity and phase lag) along the estuary by solving a set of four dimension-
less equations. On the contrary, if observed tidal damping (estimated from water
level recordings) and velocity amplitude (estimated from salinity measurements at
HWS and LWS) are known, it is possible to predict some important hydraulic param-
eters (e.g., the tidally averaged depth and friction) by rewriting the set of hydraulic
equations.

The chapter is organized as follows. In the following section, we briefly introduce
the theory for the salt intrusion model in a convergent estuary for the TA situation.
The coupled model for predicting salt intrusion at HWS and LWS is described in
section 6.3. Section 6.4 presents the comparison of analytically computed axial
salinity distribution with salt intrusion measurements from 6 estuaries in Malaysia
and the method for predicting tidally averaged depth and friction. Final conclusions
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are drawn in section 6.5.

6.2. Salt Intrusion Model
The tidally averaged cross-sectional mass flux of salt 𝐹 can be expressed as

[e.g. Savenije, 2005, 2012]:

𝐹 = −|𝑄 |𝑆 − 𝐴𝐷𝜕𝑆𝜕𝑥 , (6.1)

where 𝑥 is the longitudinal coordinate measured in landward direction, 𝑄 is the
fresh water discharge, 𝑆 the tidally averaged salinity, 𝐴 the tidally averaged cross-
sectional area, D the longitudinal dispersion coefficient. The first term on the right-
hand side of equation (6.1) represents the advective flux, which is always negative
(since 𝑥 points in upstream direction), while the second term represents the dis-
persive flux, which flows from regions of high salinity to low salinity (note 𝜕𝑆/𝜕𝑥 is
negative in upstream direction).

We seek the solution for the concentration of longitudinal salinity in a convergent
estuary, where the cross-sectional area can be described by an exponential function
(1.2).

In a steady state situation where there is no net mass flux of salt (i.e., 𝐹 = 0),
equation (6.1) can be rearranged as:

d𝑆
𝑆 = −

|𝑄 |
𝐴𝐷

𝑑𝑥 . (6.2)

It should be noted that the longitudinal dispersion coefficient 𝐷 is in principle vari-
able. Different assumptions for 𝐷 as a function of 𝑥 can be made [See Prandle,
1981].

Savenije [1986, 1989, 1993b, 2005, 2012] adopted Van der Burgh’s relation
to account for the variable dispersion coefficient along the estuary axis:

𝜕𝐷
𝜕𝑥 = −�̂�

|𝑄 |
𝐴

, (6.3)

which in combination with (6.2) yields the following equation [Savenije, 2005,
2012]:

𝐷/𝐷 = (𝑆/𝑆 )̂ , (6.4)

where �̂� is the dimensionless Van der Burgh’s coefficient.
Integration of equation (6.3) in combination with equations (1.2) and (6.4) leads

to the averaged salinity along an estuary [Savenije, 2005, 2012]:

𝑆
𝑆 = (1 −

�̂�|𝑄 |𝑎
𝐴 𝐷

[exp(𝑥/𝑎) − 1])
/̂

. (6.5)

Making use of the dimensionless parameters
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𝑆∗ = 𝑆
𝑆 , 𝛾 = 𝑐

𝜔𝑎 , 𝐷∗ =
|𝑄 |𝑐
𝐷 𝐴 𝜔 , 𝑥∗ = 𝑥𝜔

𝑐 , (6.6)

equation (6.5) can be scaled as:

𝑆∗ = (1 − 𝐷
∗�̂�
𝛾 [exp(𝑥∗𝛾) − 1])

/̂

, (6.7)

where 𝑆∗ is dimensionless salinity that is normalized by the salinity at the estuary
mouth, 𝛾 is the estuary shape number representing the convergence of an estuary,
𝐷∗ is the dimensionless dispersion at the downstream boundary condition, 𝑥∗ is the
dimensionless longitudinal coordinate that is scaled by the frictionless wavelength in
prismatic channels and 𝑐 is the classical wave celerity of a frictionless progressive
wave defined in (2.9). Here the asterisk denotes a dimensionless variable.

The salt intrusion length (i.e., the distance from the estuary mouth to the lo-
cation where the water is totally fresh) can be determined by setting 𝑆∗ = 0 in
equation (6.7):

𝐿∗ = 1
𝛾 ln(

𝛾
𝐷∗�̂�

+ 1) , (6.8)

or

𝐿 = 𝑎 ln( 𝐷 𝐴
�̂�𝑎|𝑄 |

+ 1) = 𝑎 ln(𝐷 𝐵 ℎ
�̂�𝑎|𝑄 |

+ 1) . (6.9)

6.3. Coupled Model for Salt Intrusion
6.3.1. Analytical Solution for Tidal Excursion 𝐸

Since tidal dynamics in convergent estuaries can be reproduced reasonably well
by one-dimensional analytical solutions, in principle the output of such model can
be used to predict the longitudinal tidal excursion 𝐸, defined as [Savenije, 2005,
2012]:

𝐸 = 2𝜐/𝜔 , (6.10)

where 𝜐 is the velocity amplitude and 𝜔 is the tidal frequency. In this chapter,
we adopted the hybrid model proposed by Cai et al. [2012a] and Cai and Savenije
[2013] for estimating the velocity amplitude 𝜐 (hence the tidal excursion 𝐸) as
this model offers the best prediction when compared with numerical results (see
chapters 3 and 4).

6.3.2. Coupled Equations for Salt Intrusion at HWS and LWS
The assumption that the salt intrusion curves for the HWS and LWS situations

can be obtained by shifting the curve for the TA situation upstream or downstream
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over half the tidal excursion was first proposed by Van der Burgh [1972] and sub-
sequently was demonstrated by Savenije [1986, 1989, 1993b, 2005, 2012]. Hence
the envelope curves for HWS and LWS are given by:

𝑆∗ (𝑥∗) = 𝑆∗ (𝑥∗ + 𝐸∗/2) , (6.11)

𝑆∗ (𝑥∗) = 𝑆∗ (𝑥∗ − 𝐸∗/2) , (6.12)

where 𝐸∗ is the dimensionless tidal excursion scaled by the frictionless tidal wave
length, defined as:

𝐸∗ = 𝐸𝜔
𝑐 = 2 𝜐𝑐 . (6.13)

Unlike previous studies that usually assumed the tidal excursion is independent
of 𝑥 and needs to be calibrated, the proposed analytical model for tidal hydro-
dynamics can be used to predict a variable velocity amplitude 𝜐 (and hence tidal
excursion 𝐸) for given tidal amplitude at the seaward boundary, estuary shape and
friction.

6.4. Results
6.4.1. Application to Malaysia Estuaries

Figure 6.1 shows the locations and the sketches of the 6 estuaries in Peninsular
Malaysia to which the coupled analytical model has been applied. Most of the
estuaries are located on the west coast with only one on the east coast. The tidal
behaviour differs between the west and east, where it is semi-diurnal on the west
and a combination of diurnal and semi-diurnal on the east. The topography of the
catchments draining on the estuaries also varies, with more mountainous area in
the Perak and Kurau, and more flat land in the others. Data collection was carried
out from June to August 2012 and February to March 2013 during the dry period
at spring tide. The collected data were water level, river cross-section and salinity
by a moving boat method.

In Figure 6.2 the variations of the cross-sectional area, width and averaged
depth along the axes of the studied estuaries are shown. We see that the geometric
parameters can be well fitted by the exponential functions (1.1) and (1.2). In
general, it can be seen from Figure 6.2 that each of estuary can be divided into two
reaches. The first reach near the estuary mouth has a shorter convergence length
(indicated by 𝑎 and 𝑏 ) while the second reach has a longer convergence length
(indicated by 𝑎 and 𝑏 ). The point where the geometry changes is the inflection
point indicated by 𝑥 (see also Figure 6.1), where the subscript 1 indicates values at
the inflection point. The characteristic geometrical values of the 6 studied estuaries
are summarized in Table 6.1, where < ℎ > represents the spatially averaged depth.

Figure 6.3 shows the computed tidal amplitude against the available tidal ob-
servations obtained with a hybrid model using a variable depth along the estuary.
Since the first reach of the estuaries studied is usually short (few kilometres inland)
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Figure 6.1: Locations of the 6 studied estuaries in Peninsular Malaysia (data obtained from Google Map).
The dashed red lines represent the approximated location of the topographical inflection point.

and no observed tidal data is available in this reach, we assumed the tidal propaga-
tion in this reach is in ideal condition. Hence, the main tidal dynamics in this short
distance is uniform and identical to the values at the inflection point 𝑥 . It is worth
noting that the tidal excursion tends to decrease landward while the tidal amplitude
increases in Bernam (Figure 6.3a) and Perak (Figure 6.3e). This is mainly due to
the depth divergence in landward direction. In Figure 6.4 we present the variation
of the estuary shape number for the depth, defined as 𝛾 = 𝑐 /(𝜔𝑑) and the phase
lag 𝜖 along the estuary. As the depth increases, we see that in these two estuaries
the phase lag approaches 0 asymptotically, which suggests that the estuary tends
to become a frictionless standing wave system [Cai and Savenije, 2013]. In fact,
according to the dimensional scaling equation (identical to T2 in Table 4.1)

𝜐 = 𝑟 𝜂𝑐 sin(𝜖)
ℎ

, (6.14)

we can derive a formula that determines the damping for the velocity amplitude:

1
𝜐
d𝜐
d𝑥 =

1
𝜂
d𝜂
d𝑥 + Δ , (6.15)
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Table 6.1: Geometric characteristics of studied estuaries

Estuaries 𝑥 (km) 𝐴 (m ) 𝐴 (m ) 𝑎 (km) 𝑎 (km) 𝑏 (km) 𝑏 (km) 𝑑 (km) 𝑑 (km) ℎ (m) < ℎ > (m)
Bernam 4.3 15800 4500 3.4 25 2.9 16.7 -19.7 -50.3 3.6 5.2
Selangor 2.8 2200 1200 3.5 13.4 2 13.4 -4.7 infinity 3.75 3.6
Muar 3.9 3300 1600 5.3 118 2 30.8 -3.2 -41.7 6 7.9
Kurau 3.6 1800 700 3.6 62 1.5 28 -2.6 -51.1 5.2 5.7
Perak 4 20500 10000 5 40 2.7 21 -5.9 -44.2 4.45 6.4
Endau 4.8 6600 2100 4 80 1.7 36 -3 -65.5 6.44 7.1

with

Δ = Δ − 1
ℎ
dℎ
d𝑥 =

1
𝑐
d𝑐
d𝑥 +

1
sin(𝜖)

d sin(𝜖)
d𝑥 − 1

ℎ
dℎ
d𝑥 . (6.16)

where Δ is the error made if we assume that = [which is in fact an
assumption made for open ended estuaries in the envelope method, see Savenije,
2012]. The last term on the right-hand side relates to the depth gradient, which is
equal to −1/𝑑 (considered constant). This term is implicitly taken into account by
using the cross-sectional area convergence 𝑎 rather than the width convergence 𝑏
(see Appendix A.1). So if the method uses the cross-sectional area convergence,
then the error made in the envelope method is Δ while if the width convergence is
used the error is Δ.

In Figure 6.5 we compare the error term Δ and the convergence term 1/𝑎 (i.e.,

) along the estuary. We see that the error term Δ can be negligible compared
with 1/𝑎 in Selangor (Figure 6.5b) while in other estuaries it is comparable with
1/𝑎 . In particular, Δ is even bigger than 1/𝑎 in Muar and Kurau. As a result, the
potential error Δ could be considerable. However, this error is usually compensated
by the calibrating the friction coefficient in the analytical model [see Savenije, 2012,
59–62].

Making use of the computed longitudinal velocity amplitude from equation (4.21),
the tidal excursion can be estimated from equation (6.10) (also presented in Fig-
ure 6.3 on the right-hand vertical scale). Subsequently, the tidal excursion can
be applied in the salt intrusion model in order to simulate the longitudinal salinity
distribution in the studied estuaries. Table 6.2 presents the calibrated parameters
for the hydrodynamics model (i.e., the Manning-Strickler friction coefficient 𝐾 and
Storage width ratio 𝑟 ) and salt intrusion model (the Van der Burgh coefficient �̂�
and tidal dispersion coefficient at the estuary mouth 𝐷 ). As can be seen from
Figure 6.6, the results show that the analytically computed salinity distribution at
HWS and LWS is in good agreement with the observed values. This suggests that
the proposed coupled analytical model is applicable and useful. The tidal excursion
is no longer a calibration parameter but determined on the basis of observed water
levels. The reduced degrees of freedom strengthen the reliability and performance
of the salt intrusion model.

We also examine the performance of the explicit analytical model (i.e., equa-
tions (4.20) and (4.21)) using a spatially averaged depth < ℎ > presented in Table
6.1. The results also show good agreement with the observed tidal amplitude in



..

6

112
6. A coupled analytical model for salt intrusion and tides in alluvial

estuaries

0 10 20 30 40 50 60
10

0

10
5

 

 
A B h

0 10 20 30
10

0

10
2

10
4

0 10 20 30 40 50
10

0

10
2

10
4

0 10 20 30 40
10

0

10
2

10
4

0 10 20 30 40
10

0

10
5

x  (km)
0 10 20 30 40

10
0

10
2

10
4

x  (km)

a)

c)

e)

b)

d)

f)

Figure 6.2: Semi-logarithmic plot of cross-sectional area (m ), width (m) and averaged depth
(m) along the estuary axis with fitted trend lines (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak;
f: Endau).

6 estuaries while exploiting the same Manning-Strickler friction coefficient as the
hybrid model using a variable depth. For further details on the comparison between
computed tidal amplitude and observations and the resulting salt intrusion for TA,
HWS and LWS, readers can refer to the Appendix A.8.

The coupled model is subsequently used to explore the effect of depth variation
(such as dredging for navigational channel) on salt intrusion in 6 estuaries studied.
We assumed that all the calibrated parameters (e.g., 𝐾, 𝑟 and �̂�), the tidal forcing
in the seaward boundary, the river discharge and the estuary shape (i.e., 𝑎 and
𝑎 ) remain the same and the river bed is horizontal. Based on the empirical relation
for the tidal dispersion coefficient at the mouth obtained by Savenije [2005, P166],
the other assumption we made is that 𝐷 is proportional to the spatially averaged
depth multiplied by the square of velocity amplitude at the mouth, i.e., 𝐷 ∝< ℎ >
√𝜐 . Figure 6.7 shows the effect of deepening on salt intrusion length (TA, HWS
and LWS) based on the coupled model. It can be seen from Figure 6.7 that the
salt intrusion length is increased with increasing depth since it is a monotonically
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Figure 6.3: Comparison between computed and observed longitudinal tidal amplitude in 6 studied estu-
aries (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau) based on a hybrid model using
a variable depth along the estuary.

increasing function of depth (see equation (6.9)). We also see that the effect of
depth increase on the salt intrusion length is not linear: the influence on the TA
situation is different from those in the HWS and LWS situations. In particular, we
noted that a maximum tidal excursion (the vertical distance between HWS and
LWS in Figure 6.7) is reached at a critical depth in Bernam, Selangor and Perak.
A further increase of depth reduces the tidal excursion. We termed this as ‘over-
amplification’in chapter 3. This is mainly due to the nonlinear effect of the depth
on the velocity amplitude (hence tidal excursion) in the hydraulic system (T1)—
(T4c) in Table 4.1. As can be seen from Figure 6.8, in these three estuaries the
velocity amplitude reaches its maximum value at a critical depth beyond which
the velocity amplitude is reduced. A similar phenomenon can be observed for the
influence of depth on tidal amplitude (see Figure 6.8). Both the damping of the
velocity amplitude and tidal amplitude follow equation (6.15). The fact that the
amplification patterns of Bernam, Selangor and Perak are substantially different is
an indication that Δ has a significant value in these estuaries. For more detailed
information about over-amplification, readers can refer to Cai et al. [2012a] and Cai
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Figure 6.4: Longitudinal variation of the depth divergence and phase lag in 6 studied estuaries (a:
Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau).

and Savenije [2013].

6.4.2. Estimation of Tidally Averaged Depth and Friction Co-
efficient in an Estuary with (near) Constant Depth

Observations of tidal damping and salt intrusion are usually done independently.
In the previous section 6.4.1 we showed that the computed tidal excursion 𝐸 from
an analytical hydrodynamics model can be used to reduce the number of calibra-
tion parameters in a salt intrusion model. Inversely, if observed salinity (or tidal
excursion) and tidal damping are known, we can use equations (T1)—(T4c) in Table
4.1 to estimate the unknown tidally averaged depth and Manning-Strickler coeffi-
cient. In this case the average depth and the depth convergence are assumed to
be unknown, so we have to assume that 𝑎 ≈ 𝑏.

With available water level recordings along an estuary, it is possible to estimate
the damping of tidal amplitude, which is defined as:

𝛿 = 1
𝜂
d𝜂
d𝑥 . (6.17)
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Figure 6.5: Longitudinal variation of the error term caused by the assumption made in the envelope
method in 6 studied estuaries (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau). The
red dashed line represents the convergence term / .

The tidal damping can be estimated for a reach of Δ𝑥 with pressure recorders
(temporary divers or tidal stations) at location 1 and 2:

𝛿 = 1
(𝜂 + 𝜂 ) /2

𝜂 − 𝜂
Δ𝑥 , (6.18)

where 𝜂 is the tidal amplitude in the seaward part while 𝜂 is the tidal amplitude
Δ𝑥 upstream.

On the other hand, the tidal excursion 𝐸 can be estimated by fitting the salinity
model to observations at HWS and LWS moments against the distance. Figure 6.9
shows the process of estimating tidal excursion. We firstly fixed the salt intrusion
curve at TA by calibrating the parameters of �̂� and 𝐷 since they determine the
general shape of the salt intrusion curve. To obtain the curves at HWS and LWS,
the TA curve has been shifted upstream or downstream over half of the tidal excur-
sion (𝐸/2), where here we assumed that 𝐸 is independent of 𝑥. The tidal excursion
𝐸 is calibrated until the best fit is obtained (i.e., with maximum coefficient of de-
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Table 6.2: Inputs and calibrated parameters used for the coupled analytical model

Estuaries Date 𝑆 (kg/m ) 𝜂 (m) 𝑇 (s) 𝑄 (m s ) 𝐾 (m / s ) Storage width ratio 𝑟 �̂� 𝐷 (m s ) 𝐸 (km)
Bernam 21/06/2012 29 1.3 44400 23 70 1.1 0.2 154 15
Selangor 24/07/2012 25 1.6 44400 39 40 1.1 0.3 280 11
Muar 03/08/2012 24 1 44400 11 45 1.1 0.25 100 11
Kurau 27/02/2013 26 1 44400 28 30 1.1 0.55 216 8.8
Perak 13/03/2013 18 1.25 44400 132 65 1.1 0.15 75 13
Endau 27/03/2013 29 1 44400 6 60 1.1 0.45 30 13

termination 𝑅 ). It then follows from equation (6.10) that the averaged velocity
amplitude 𝜐 = 𝐸𝜔/2. Such a calibration method was also adopted by Gisen et al.
[2014] to calibrate the salt intrusion model in 6 Malaysian estuaries.

The phase lag 𝜖 can be eliminated by combining equations (T1) and (T2), which
yields [Savenije et al., 2008]:

(𝛾 − 𝛿) = 1
𝜇 − 𝜆 . (6.19)

When including the error term Δ from (6.15) accounting for the difference be-
tween the damping of tidal amplitude and the damping of velocity amplitude, the
celerity equation (T3) in Table 4.1 becomes:

𝜆 = 1 − 𝛿(𝛾 + Δ𝑐𝜔 − 𝛿) . (6.20)

The two equations (6.19) and (6.20) can then be combined into a single, second-
order equation of the tidally averaged depth ℎ when rewriting the equation in a
dimensional form, where 𝑏 has been used to replace 𝑎 in 𝛾 = 𝑐 /(𝜔𝑏:

𝑔(2𝛿 𝑏 − 3𝛿 𝑏 − 𝛿 𝑏 Δ + 1)
𝑟 𝜔 𝑏

ℎ + ℎ − 𝑟 𝑔𝜂𝜐 = 0 , (6.21)

which gives the positive solution of tidally averaged depth as:

ℎ =
−1 + √1 + 4𝑔 𝜂 (2𝛿 𝑏 − 3𝛿 𝑏 − 𝛿 𝑏 Δ + 1) /(𝜔 𝑏 𝜐 )

2𝑔(2𝛿 𝑏 − 3𝛿 𝑏 − 𝛿 𝑏 Δ + 1) /(𝑟 𝜔 𝑏 )
, (6.22)

where the expression underneath the square root sign is non-negative.
Substitution of the corresponding dimensionless parameters in wave celerity

equation (6.20) yields the expression for wave celerity:

𝑐 = 𝑐 𝜔√
𝑏

𝜔 𝑏 − 𝛿 𝑐 + 𝛿 𝑐 𝑏 − 𝛿 𝑐 𝑏Δ
. (6.23)

Next, the phase lag 𝜖 can be directly calculated by the dimensional phase lag
equation (T1):
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Figure 6.6: Comparison between computed and observed salinity curves at HWS and LWS in 6 studied
estuaries (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau) where the tidal excursion
is computed with a hybrid model using a variable depth along the estuary. represents the tidal
excursion at the inflection point .

tan(𝜖) = 𝜔𝑏/𝑐
1 − 𝑏𝛿 . (6.24)

Finally, we can estimate the Manning-Strickler friction factor 𝐾 with the dimen-
sional damping equation (T4c) in Table 4.1 (including the error term Δ):

𝛿 [1 + 𝑔𝜂
𝑐𝜐 sin(𝜖)] =

1
𝑏 − 𝑓

𝜐
ℎ𝑐
[23 sin(𝜖) +

8
9𝜋] + Δ , (6.25)

where 𝑓 is the friction factor defined in (2.10).
After some algebra, it is possible to obtain the expression for 𝐾:

𝐾 = √
𝑔𝜐[6 sin(𝜖) + 8/𝜋]

ℎ
/
𝑐[9 − 16(𝜂/ℎ) ] {1/𝑏 + Δ − 𝛿 [1 + ( ) ]}

. (6.26)
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Figure 6.7: The influence of the tidally averaged depth on the salt intrusion length for TA, HWS
and LWS in 6 studied estuaries (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau).
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Figure 6.8: The influence of the tidally averaged depth on the velocity amplitude and the tidal
amplitude at the location of maximum salt intrusion length in 6 studied estuaries (a: Bernam; b:
Selangor; c: Muar; d: Kurau; e: Perak; f: Endau).

It is worth noting that even if observed water level data are not available, it is still
possible to have a first estimate of these hydraulic parameters by performing the
explicit equations presented in in this section. This is made possible by assuming
that the estuary functions more or less as an ideal estuary with constant properties
(e.g., tidal amplitude, tidal excursion, friction etc.) (see Appendix A.9).

We adopted the width convergence for the second reach (i.e., longer conver-
gence length 𝑏 in Table 6.1) and estimated the damping factor 𝛿 from equation
(6.18) . Combining these parameters with predicted velocity from salinity mea-
surements, explicit equations (6.22), (6.23), (6.24) and (6.26) can be exploited to
obtain a first-order estimate of tidally averaged depth ℎ, wave celerity 𝑐, phase lag
𝜖 and Manning-Strickler friction coefficient 𝐾 if we assume Δ ≈ 0.

The results for the depth and friction coefficient estimations are presented in
Figures 6.10 and 6.11. The spatially averaged values of these predictive hydraulic
parameters are presented in Table 6.3. In Figure 6.10 we see that the estimated
results correspond well with the observed depth in Bernam, Selangor, Perak and
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Figure 6.9: Curve fitting of the salinity measurements at HWS and LWS in 6 studies estuaries (a: Bernam;
b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau). The black line indicates the calibrated salt
intrusion curve at TA. The horizontal distance between blue and red lines represents the estimation of
tidal excursion . The gray lines show the curve fitting using a wide range of (5—15 km).

Endau estuary. On the other hand, the model apparently underestimated the tidally
averaged depth in the Muar and Kurau estuary. For the estimated friction coefficient,
we can see from Figure 6.11 that the predicted values are in reasonable agreement
with the corresponding values by calibration. The underestimation of depth in Muar
and Kurau could be caused by assuming Δ ≈ 0. Since the depth convergence
in (6.16) can be combined with the width convergence into the cross-sectional
area convergence [see Savenije, 2012, 59—62], we also presented the estimated
depth based on the cross-sectional area convergence a1 presented in Table 6.1 (see
Figures 6.11 and 6.11). The remaining deviation from the observed depth may be
caused by the error term Δ in equation (6.16) or observational errors. As can be
seen from Figure 6.10c the performance of equation (6.22) in Muar is much better
when including the depth convergence, which suggests that the underestimation
of depth is mainly due to the significant increase of depth along the estuary. On
the other hand, we see that the correspondence between estimated and observed
depth in Kurau (see Figure 6.10d) becomes only slightly better when accounting
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for the depth convergence. This indicates the error term Δ could have substantial
influence on the estimated depth in Kurau.

Table 6.3: Estimation of the spatially averaged estuary parameters

Estuaries 𝛿 𝐸 (km) 𝜂 (m) 𝜐 (m/s) ℎ (m) 𝑐 (m/s) 𝜖 (∘) 𝐾 (m / s )
Bernam 1.82E-06 13 1.34 0.91 3.66 6.62 21 62
Selangor 7.74E-07 12.5 1.58 0.88 3.69 6.86 18 58
Muar -6.61E-06 10.5 0.89 0.74 3.94 5.13 36 54
Kurau -1.72E-05 9 0.84 0.63 3.16 3.69 37 45
Perak 7.26E-06 12 1.43 0.84 6.39 23.79 10 60
Endau -1.63E-06 11 1.02 0.77 5.66 6.71 35 48

To explore the sensitivity of the estimated depth ℎ to the error Δ , we derive the
gradient:

dℎ
dΔ = − 𝛼

2√𝛼 − 𝛼 Δ (𝛼 − 𝛼 Δ )
+
(−1 + √𝛼 − 𝛼 Δ )𝛼

(𝛼 − 𝛼 Δ )
, (6.27)

with

𝛼 = 1 + 4𝑔 𝜂 (2𝛿 𝑎 − 3𝛿 𝑎 + 1) /(𝜔 𝑎 𝜐 ) , (6.28)

𝛼 = 4𝑔 𝜂 𝛿 𝑎 /(𝜔 𝑎 𝜐 ) , (6.29)

𝛼 = 2𝑔(2𝛿 𝑎 − 3𝛿 𝑎 + 1) /(𝑟 𝜔 𝑎 ) , (6.30)

𝛼 = 2𝑔𝛿 𝑎 /(𝑟 𝜔 𝑎 ) . (6.31)

In Figure 6.12 we show how the estimated depth ℎ develops as a function of
Δ and the corresponding gradient according to (6.27) for given spatially averaged
parameters 𝛿 , 𝜂, 𝜐 presented in Table 6.3. It can be clearly seen from Figure
6.11 that in Bernam and Selangor the estimated ℎ is insensitive to the error term
Δ (small values of |dℎ/dΔ |) while in other estuaries the sensitivity to Δ could be
rather high (big values of |dℎ/dΔ |)). The Δ that corrspondens to the observed
< ℎ > is also shown in Figure 6.12, where we see the corresponding values of
|dℎ/dΔ |) in Muar and Kurau are actually big. Further study to reduce the influence
of Δ should be explored in the future.

6.5. Conclusions
In this chapter, we propose a coupled model for tide and salt intrusion. The

fully analytical hydrodynamics model proposed by Cai et al. [2012a] and Cai and
Savenije [2013] has been used to estimate the tidal excursion along the salt intru-
sion length. Subsequently, the salt intrusion curve at TA can be shifted by half a
tidal excursion to reproduce the curves at HWS and LWS. Such a coupling approach
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Figure 6.10: Comparison between the estimated depth from equation (6.22) (blue squares using and
red triangles using ) and observations (blue lines) in Malaysian estuaries (a: Bernam; b: Selangor; c:
Muar; d: Kurau; e: Perak; f: Endau).

reduces the number of calibrated parameters (i.e., the tidal excursion 𝐸), which re-
duces the degree of freedom and subsequently strengthens the reliability of the salt
intrusion model. The application of the coupled analytical model in 6 estuaries in
Malaysia shows good correspondence against measurements, which suggests that
the proposed model can be a useful method for analyzing salt intrusion with mini-
mum information available. Moreover, the coupling with the hydrodynamics model
enables us to investigate the potential influence of deepening (such as dredging)
on the maximum salt intrusion length.

For given tidal water level recordings and observed salinity at both HWS and
LWS situations, it is even possible to obtain a first estimate of the average depth
and the friction coefficient by manipulating the set of hydraulic equations (T1)—
(T4c) in Table 4.1. This method could be very useful in situations where there are
not sufficient data (e.g., detailed geometry) available to set up a hydraulic model,
or as a first-order estimate of estuary depth and friction.
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Figure 6.11: Comparison between the estimated Manning-Strickler friction coefficient from equation
(6.26) (blue squares using and red triangles using ) and calibrated values in studied estuaries (a:
Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau).
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Figure 6.12: Blue line and the left scale show the dependence of on according to equation
(6.22). Red dashed line and the right scale show the sensitivity analysis of the estimated spatially
average depth to the error term in studied estuaries (a: Bernam; b: Selangor; c: Muar; d:
Kurau; e: Perak; f: Endau). The green symbols represent for the observed
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Conclusions and further

research

This thesis has laid out a new analytical framework for tidal damping in convergent
estuaries, which aims to enhance our understanding of tidal process and to develop
a simple yet reliable analytical model to predict the most relevant features of the
tidal wave along the estuary. One of the most important factors of tidal dynamics,
the friction, was clarified in a Lagrangean reference frame. This approach allows
for retention of the nonlinear friction term. We realize that friction is in principle a
function of tidal amplitude and depth and hence it varies along the estuary. To ac-
count for variable friction (hence depth), a multi-reach approach has been adopted
to follow along-channel variation of estuarine sections by simply using an explicit in-
tegration of the obtained damping number over a short distance (e.g., 1 km). This
allows the model to reproduce realistic tidal hydrodynamics in an estuary where
both width and depth are exponentially convergent. With the results presented in
the previous chapters, the main objectives as mentioned in Chapter 1 have been
met and the main conclusions and further research are summarized in this chapter.

7.1. Conclusions
1. Different analytical approaches developed to date can be compared by rewrit-
ing the solutions in the form of a set of four implicit dimensionless equations
for phase lag, velocity amplitude, damping, and wave celerity, as a function
of two parameters describing friction and convergence.

2. In principle, all the linear models exploiting Lorenz’linearization are identical.

3. The envelope method that subtracts the envelope expressions at high water
and low water can be used to derive damping equations based on a variety
of friction term approximations, resulting in as many analytical solutions, and
thereby building one consistent theoretical framework.
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4. It was demonstrated that the hybrid model as a weighted average of the
linearized and the fully non-linearized friction term, with an optimum weight
of the linearized friction term being 1/3, and 2/3 of the fully nonlinear friction
term, allows for the best predictions when compared with numerical results.

5. Analysis of the asymptotic behaviour of the equations shows that an equi-
librium tidal amplitude exits that reflects the balance between friction and
channel convergence.

6. The usual assumption of exponential damping for tidal amplitude and velocity
amplitude is only valid for two trivial cases: an ideal estuary (where there is
no damping) and the frictionless estuary (where does not exist in reality).

7. It is found that an estuary becomes over-amplified when it has a depth larger
than the critical depth (condition for maximum amplification). In this case,
a further increase of the depth reduces the tidal wave amplification until a
frictionless standing wave system is reached asymptotically, where the tidal
dynamics is completely determined by the convergence alone.

8. Within one consistent theoretical framework, we demonstrated that the in-
fluence of river discharge on tidal damping is similar to that of increasing
friction.

9. The residual water level slope resulting from nonlinear friction can have sub-
stantial influence on tidal hydrodynamics when including the effect of river
discharge.

10. The proposed hydrodynamics model is particularly useful in combination with
the salt intrusion model since the coupling reduces the number of calibration
parameters and strengthens the reliability of the salt intrusion model.

7.2. Further Research
1. Analytical solution for tidal wave propagation in a semi-closed estuary

It is important to note that a large number of analytical models are already
available concerning the tidal hydrodynamics in a semi-closed estuary [e.g.
Van Rijn, 2011; Toffolon and Savenije, 2011; Winterwerp and Wang, 2013].
Most researchers linearized the St Venant equations and adopted an effective
friction coefficient so that the solutions for the whole estuary are derived. It
is suggested to investigate the dynamics of the tidal wave in a semi-closed
estuary as dependent on local quantities, such as tidal amplitude, estuary
depth, friction, convergence, and as a function of distance to the head of
the estuary. A multi-reach approach (similar to the present thesis) could be
adopted to follow variations of the estuarine sections along the estuary by
simple integration of the obtained damping factor over a distance interval,
which is repeated for the entire length of the estuary.
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2. Tidal propagation in a branched estuary

We realized that the simple analytical model for the channel networks pro-
posed by Hill and Souza [2006] and Alebregtse et al. [2013], exploiting a con-
stant friction coefficient and imposing a closed end upstream boundary, could
be further studied by including the effects of width and depth convergence.
By developing such an analytical model to multiple branching estuaries, it is
possible to provide valuable information about the behaviour of network sys-
tems. For instance, the effects of secondary channels on the tidal dynamics
in the main channel could be investigated, which is crucial when considering
constructing a secondary channel to reduce potential negative effects (such
as reducing tidal range).

3. Energy consideration in tidal wave propagation

As tidal waves propagate along the channel of an estuary, their energy is
also transported. Consideration about energy transport and dissipation in
estuaries is important as it provides insight into the formation and longitudinal
variation of tidal wave propagation as well as its long-term morphodynamic
evolution [van der Wegen et al., 2008]. In addition it has direct relation to
the exploitation of tidal wave energy (e.g., tidal electricity generation). It
is recommended to investigate the tidal wave propagation from the energy
point of view, especially how the potential and kinetic energy develop along
the estuary.

4. 2D analytical model for tidal wave propagation in a semi-closed basin

An idealized model for tidal propagation in a semi-closed basin has been pro-
posed by Roos et al. [2011] and Roos et al. [2011]. The variations of width
and depth along the basin are implicitly taken into account by dividing the
whole basin into a sequence of different rectangular compartments with uni-
form depth. It is suggested to study the tidal propagation in such a basin
by applying a continuous geometry, hence explicitly accounting for the width
and depth convergence. This allows one to understand the wave behaviour
in the light of externally defined, dimensionless parameters, describing the
friction and channel convergence (geometry).

5. The influence of tidal hydrodynamics on sediment transport in convergent
estuaries

The issue of tidal morphodynamics has been explored by many researchers
with both analytical [e.g., Friedrichs et al., 1998; Wang and Townend, 2012;
Schuttelaars and De Swart, 1996; Schuttelaars and de Swart, 2000; Schramkowski
and de Swart, 2002] and numerical models [e.g., van der Wegen and Roelvink,
2008; Todeschini et al., 2008; Huijts et al., 2011; Seminara et al., 2010; Tow-
nend, 2012]. It is worth noting that the present analytical model for tidal
hydrodynamics accounts for the influence of river discharge (especially the
seasonal variation), which could be potentially of use to investigate the long-
term morphodynamic response to the tidal evolution in an estuary with signif-
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icant river discharge. This requires detailed observations of the longitudinal
tidal damping and estuarine geomtry.
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A.1. Derivation of the Quasi-nonlinear Damping Equa-
tion by the Envelopemethod (modified from [Savenije,
2012, 59–62])

We can rearrange continuity equation in a Lagrangean approach as follows:

d𝑉
d𝑡 = 𝑟

𝑐
ℎ
dℎ
d𝑡 −

𝑐𝑉
𝑏 + 𝑐𝑉𝜐

d𝜐
d𝑥 . (A.1)

We shall nowmake use of the dimensional scaling equation (3.2): 𝜐 = 𝑟 𝜂𝑐 sin(𝜖)/ℎ,
stating that the damping of the velocity amplitude is almost equal to the damping
of the tidal range (including an error term Δ):

1
𝜐
d𝜐
d𝑥 =

1
𝜂
d𝜂
d𝑥 + Δ , (A.2)

with

Δ = Δ − 1
ℎ
𝑑ℎ
𝑑𝑥 =

1
𝑐
𝑑𝑐
𝑑𝑥 +

1
sin(𝜖)

𝑑 sin(𝜖)
𝑑𝑥 − 1

ℎ
𝑑ℎ
𝑑𝑥 . (A.3)

This error term is zero when the wave celerity 𝑐, the phase lag 𝜖, the tidally
averaged depth ℎ and the damping/amplification are constant (implying exponential
damping or no damping). This assumption is valid in long estuaries that gradually
transform into a river. Making use of this assumption, (A.1) becomes:

d𝑉
d𝑡 = 𝑟

𝑐
ℎ
dℎ
d𝑡 −

𝑐𝑉
𝑏 + 𝑐𝑉( 1𝐻

d𝐻
d𝑥 + Δ) . (A.4)

The Lagrangean momentum balance equation when written in a Lagrangean
reference frame reads:
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d𝑉
d𝑡 + 𝑔

𝜕ℎ
𝜕𝑥 + 𝑔(𝐼 − 𝐼 ) + 𝑔

𝑉|𝑉|
𝐾 ℎ / = 0 . (A.5)

Combination of (A.4) and (A.5), and making use of the Lagrangean relationship
𝑉 = d𝜐/d𝑡, yields:

𝑟 𝑐𝑉𝑔ℎ
dℎ
d𝑥 −

𝑐𝑉
𝑔 (

1
𝑏 −

1
𝐻
d𝐻
d𝑥 − Δ) +

𝜕ℎ
𝜕𝑥 + 𝐼 − 𝐼 +

𝑉|𝑉|
𝐾 ℎ / = 0 . (A.6)

To derive an explicit relation for the tidal damping, we shall condition this dif-
ferential equation for the occurrence of HW and LW. We shall then obtain two
differential equations describing the envelopes of the water levels at HW and LW.
At HW and LW the special condition applies that 𝜕ℎ/𝜕𝑡 = 0, and hence:

dℎ
d𝑥 | ,

= 𝜕ℎ
𝜕𝑥 | ,

. (A.7)

Using this relation we can write (A.6) completely in Lagrangean derivatives for
the conditions of HW and LW. Moreover, since the tidal range 𝐻 is the difference
between ℎ and ℎ , the Lagrangean gradient of the tidal range is defined by:

dℎ
d𝑥 − dℎ𝑑𝑥 = d𝐻

d𝑥 . (A.8)

And similarly because the sum of the two depth is twice the average depth (for a
symmetrical wave), which we may assume to be correct if the tidal amplitude to
depth ratio is small:

d ℎ
𝑑𝑥 + dℎd𝑥 ≈ 2dℎ̄d𝑥 = 2𝐼 , (A.9)

where 𝐼 is the residual water level slope. Finally the following conditions apply for
HW and LW if the tidal amplitude to depth ratio is not too large:

ℎ ≈ ℎ + 𝜂 , (A.10)

ℎ ≈ ℎ − 𝜂 , (A.11)

where 𝜂 = 𝐻/2. Moreover, if the velocity has a sinus shape:

𝑉 = 𝜐 sin 𝜖 , (A.12)

𝑉 = −𝜐 sin 𝜖 . (A.13)

Combination of (A.6), (A.7), (A.10) and (A.12) yields for the condition of HW:

𝑟 𝑐𝜐sin𝜖
𝑔(ℎ + 𝜂)

dℎ
d𝑥 − 𝑐𝜐sin𝜖𝑔 (1𝑏 −

1
𝜂
d𝜂
d𝑥 − Δ)+

dℎ
d𝑥 + (𝜐sin𝜖 )

𝐾 (ℎ + 𝜂) /
= −𝐼 +𝐼 . (A.14)
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This is the differential equation that describes the upper envelope of all water
levels in the estuary, because no water level can rise above the point of HW. Similarly
for the condition of LW we find the envelope for LW, which is the lower boundary
of all the water levels in the estuary:

−𝑟 𝑐𝜐sin𝜖
𝑔(ℎ − 𝜂)

dℎ
d𝑥 +𝑐𝜐sin𝜖𝑔 (1𝑏 −

1
𝜂
d𝜂
d𝑥 − Δ)+

dℎ
d𝑥 − (𝜐sin𝜖 )

𝐾 (ℎ − 𝜂) /
= −𝐼 +𝐼 . (A.15)

Subtraction of these two envelopes yields:

𝑟 𝑐𝜐sin𝜖
2ℎ

(dℎd𝑥
ℎ

(ℎ + 𝜂)
+ dℎd𝑥

ℎ
(ℎ − 𝜂)

)−𝑐𝜐sin𝜖
ℎ

(ℎ𝑏 −
ℎ
𝜂
d𝜂
d𝑥 − Δ)+𝑔

d𝜂
d𝑥+𝑓

(𝜐sin𝜖 )
ℎ

= 0 ,

(A.16)
with:

𝑓 = 𝑔
𝐾 ℎ̄ / (1 − (

1.33𝜂
ℎ

) ) . (A.17)

The coefficient 1.33 in this equation follows from a Taylor series expansion of (ℎ +
𝜂) . ≈ ℎ . (1+1.33𝜂/ℎ), if 𝜂 < ℎ. Due to the factor 1.33, this equation only makes
sense as long as 𝜂/ℎ < 0.75 and may only be applied for smaller amplitude to depth
ratios. We can see that if the tidal amplitude to depth ratio is small 𝑓 ≈ 𝑔/(𝐾 ℎ

/
).

The part between brackets in the first term of (A.16) can be replaced by the
residual water level slope 𝐼 defined in (A.9), provided 𝜂/ℎ < 1. Elaboration yields:

ℎ
𝜂
d𝜂
d𝑥(1 +

𝑔𝜂
𝑐𝜐sin𝜖 ) =

ℎ
𝑏 − 𝑓

𝜐sin𝜖
𝑐 − 𝑟 𝐼 − ℎ̄Δ . (A.18)

The width and the depth convergence in this equation can be combined into the
cross-sectional area convergence. For small values of 𝑟 this leads to the simplified
equation:

ℎ
𝜂
d𝜂
d𝑥(1 +

𝑔𝜂
𝑐𝜐sin𝜖 ) =

ℎ
𝑎 − 𝑓

𝜐sin𝜖
𝑐 − ℎ̄Δ . (A.19)

Regarding the term ℎΔ . It is zero in a near ideal estuary where: a) there is
no bottom slope, b) the tide is modestly damped/amplification or is constant,
and c) the phase lag is constant. In long coastal plain estuaries this is generally an
acceptable assumption. If there is amplification or damping in a coastal plain estu-
ary, then this is generally modest. In that case the term ℎΔ is non-zero, but since
the gradient of the tidal velocity amplitude is small compared to the convergence
length ( 𝑏 < 0.1), ℎΔ is still much smaller than ℎ/𝑎. In short (amplified) estuar-
ies, there may be a bottom gradient, a gradient in the phase lag (gradually moving
towards a standing wave) and a gradient in the tidal velocity amplitude (gradually
reducing to zero). So in short estuaries the ℎΔ term may become prominent and
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may need to be accounted for. In coastal plain estuaries, however, particularly in
the downstream part, this term may be disregarded.

Hence, the analytical solution of the St. Venant’s equations yields:

1
𝜂
d𝜂
d𝑥(1 +

𝑔𝜂
𝑐𝜐sin𝜖 ) =

1
𝑎 − 𝑓

𝜐sin𝜖
ℎ𝑐

. (A.20)

This is a differential equation describing the damping of the tidal amplitude as a
function of the estuary shape, the friction and the residual slope. The subtraction of
the two envelopes for HW and LW resulted in a differential equation that describes
the tidal range.

Making use of the dimensionless parameters defined in section 2.2, equation
(A.20) can be written as:

𝛿 = 𝛾
2 −

1
2𝜒𝜇 . (A.21)

This is the so-called quasi-nonlinear damping equation.
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A.2. Derivation of the Linear Tidal Damping Equa-
tion by the Envelope Method

Using a Lagrangean approach for the analysis of tidal flow instead of the more
common Eulerian one, as proposed by Savenije [2005], the continuity equation can
be written as

d𝑉
d 𝑡 = 𝑟

𝑐
ℎ
d ℎ
d 𝑡 −

𝑐𝑉
𝑎 + 𝑐𝑉1𝜂

d 𝜂
d 𝑥 . (A.22)

The momentum equation can be written in a Lagrangean reference frame as well,
providing the differential equation

d𝑉
d 𝑡 + 𝑔

𝜕ℎ
𝜕𝑥 + 𝑔(𝐼 − 𝐼 ) + 𝑔

𝑉|𝑉|
𝐾 ℎ / = 0 . (A.23)

where 𝐼 is the water level residual slope resulting from the density gradient.
Combination of equations (A.22) and (A.23), and using 𝑉 = d𝑥/ d 𝑡 yields:

𝑟 𝑐𝑉𝑔ℎ
dℎ
d 𝑥 −

𝑐𝑉
𝑔 (

1
𝑎 −

1
𝜂
d 𝜂
d 𝑥) +

𝜕ℎ
𝜕𝑥 + 𝐼 − 𝐼 +

𝑉|𝑉|
𝐾 ℎ / = 0 . (A.24)

If we consider the situation at HW and LW, then the following relations apply.
The tidal range 𝐻 (𝐻 = 2𝜂) is the difference between ℎ and ℎ :

2d 𝜂d 𝑥 =
dℎ
d 𝑥 − dℎd 𝑥 , (A.25)

where ℎ is the tidal average water level. Moreover, at HW and LW

𝜕ℎ
𝜕𝑡 | , = 0 (A.26)

by definition, and hence

dℎ ,
d 𝑥 = 𝜕ℎ

𝜕𝑥 | , . (A.27)

If the dimensionless tidal wave (scaled by the tidal range) is considered unde-
formed (which is the case when 𝜂/ℎ ≪ 1), the damping is symmetrical with respect
to the tidal average water level ℎ, which may still have a residual slope 𝐼 = dℎ/ d 𝑥
such that

dℎ
d 𝑥 + dℎd 𝑥 ≈ 2dℎd 𝑥 = 2𝐼 , (A.28)

with

ℎ ≈ ℎ + 𝜂 , ℎ ≈ ℎ − 𝜂 (A.29)

These three approximations are not critical to the derivation, and acceptable if
𝜂/ℎ ≪ 1.
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For the tidal velocity at HW and LW the expressions (3.13) can be derived.
Furthermore, we have to realize that the celerities of propagation at HW (𝑐 ) and
LW (𝑐 ) are not equal (as a result of the different depths), but we may also assume
that they are symmetrical compared to the tidal average wave celerity 𝑐, and hence
that for small tidal amplitudes

𝑐
ℎ ≈ 𝑐

ℎ ≈ 𝑐
ℎ
, (A.30)

𝑐 + 𝑐 ≈ 2𝑐 . (A.31)

In order to compare the solution obtained using Savenije [2005] approach with
the linear models, we adopt the usual Lorentz’s linearization of the bed shear stress
[Lorentz, 1926],

𝑉|𝑉|
𝐾 ℎ / = 8

3𝜋
𝜐

𝐾 ℎ
/ 𝑉 . (A.32)

Combination of equations (A.24), (A.27), and (3.13) yields the following expression
for the envelope curve at HW:

𝑟 𝑐 𝜐 sin(𝜀)
𝑔(ℎ + 𝜂)

d ℎ
d 𝑥 − 𝑐 𝜐 sin(𝜀)

𝑔 (1𝑎 −
1
𝜂
d 𝜂
d 𝑥) +

+dℎd 𝑥 + 8
3𝜋
𝜐 sin(𝜀)

𝐾 ℎ
/ = −𝐼 + 𝐼 . (A.33)

Similarly, combination of equations (A.24), (A.27), and (3.13) provides the envelope
curve at LW:

−𝑟 𝑐 𝜐 sin(𝜀)
𝑔(ℎ − 𝜂)

d ℎ
d 𝑥 + 𝑐 𝜐 sin(𝜀)

𝑔 (1𝑎 −
1
𝜂
d 𝜂
d 𝑥) +

+dℎd 𝑥 − 8
3𝜋
𝜐 sin(𝜀)

𝐾 ℎ
/ = −𝐼 + 𝐼 . (A.34)

Subtraction of these envelopes, taking into account the assumption of the wave
celerity being symmetrical (equations (A.30) and (A.31)), yields the following ex-
pression:

𝑟 𝑐𝜐 sin(𝜀)
ℎ

(d ℎd 𝑥 + dℎd 𝑥 ) − 2𝑐𝜐 sin(𝜀)(1𝑎 −
1
𝜂
d 𝜂
d 𝑥) +

+𝑔d𝜂d 𝑥 +
16
3𝜋𝑓

𝜐 sin(𝜀)
ℎ

= 0 , (A.35)

where 𝑓 has been defined in (2.15).
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The parameters between parentheses in the first term of equation (A.35) can
be replaced by 2𝐼 of equation (A.28), provided 𝜂/ℎ < 1. Further elaboration yields

1
𝜂
d 𝜂
d 𝑥(

1 + 𝛽
𝛽 ) = 1

𝑎 −
8
3𝜋𝑓

𝜐
ℎ𝑐
, (A.36)

where 𝛽 = 𝑐𝜐 sin(𝜀)/(𝑔𝜂) is a tidal Froude number.
By scaling, the linear damping equation (A.36) reads:

𝛿 = 𝜇
1 + 𝜇 (𝛾 − 8

3𝜋𝜒𝜇𝜆) . (A.37)

Making use of the trigonometric equation [cos(𝜀)] = 1 + [tan(𝜀)] , the phase lag
and scaling equations ((3.3) and (3.2) in section 3.2) can be combined to eliminate
the variable 𝜀 to give

(𝛾 − 𝛿) = 1
𝜇 − 𝜆 . (A.38)

Introducing the celerity equation (3.4) and equation (A.37) into equation (A.38),
we end up with:

𝜆[𝛿𝜆(1 − 1
𝜇 ) + 8

3𝜋𝜒𝜇(1 − 𝜆 )] = 0 , (A.39)

which can be simplified for 𝜆 ≠ 0. Subsequently, equation (A.39) along with equa-
tion (A.37) yields a simple relationship between 𝛿 and 𝜇, 𝜆:

𝛿 = 𝛾
2 −

4
3𝜋
𝜒𝜇
𝜆 , (A.40)

which is reported as (3.6) in section 3.3.1.

A.3. Derivation of the Tidal Damping Equation Us-
ing Dronkers’ Friction Formulation by the En-
velope Method

Higher order formulation, like that proposed by Dronkers [1964], can be repre-
sented using Chebyshev polynomials as follows:

𝑉|𝑉|
𝐾 ℎ / = 16

15𝜋
𝜐

𝐾 ℎ
/ [
𝑉
𝜐 + 2(

𝑉
𝜐 ) ] . (A.41)

Here it has been assumed that the effect of the periodic variation of the depth may
be disregarded and that the average depth may be used instead, as long as the
tidal amplitude to depth ratio is small. Applying equation (A.41) in the derivation
of damping equation as described in the Appendix A.2, one can easily obtain the
following expression:
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𝛿 = 𝜇
1 + 𝜇 (𝛾 − 16

15𝜋𝜒𝜇𝜆 −
32
15𝜋𝜒𝜇 𝜆 ) . (A.42)

After some algebra, it is possible to obtain a simpler relation between 𝛿. 𝜇 and 𝜆:

𝛿 = 𝛾
2 −

8
15𝜋

𝜒𝜇
𝜆 − 16

15𝜋𝜒𝜇 𝜆 . (A.43)
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A.4. Derivation of the Explicit Solution to the Quasi-
nonlinear Tidal Damping Equation

Based on the full nonlinear St. Venant equations, Savenije [1998, 2001, 2005]
determined an analytical expression for tidal damping by subtracting high water
(HW) and low water (LW) envelopes:

1
𝜂
𝑑𝜂
𝑑𝑥 [1 +

𝑔𝜂
𝑐𝜐 sin(𝜖)] =

1
𝑎 − 𝑓

𝜐 sin(𝜖)
ℎ𝑐

, (A.44)

Using the same assumptions made in section 4.3 and introducing a new param-
eter

𝛽 = 𝑓𝜐 sin(𝜖)
ℎ𝑐

, (A.45)

equation (A.44) can be simplified as:

𝑑𝜂∗
𝑑𝑥 = 𝜂∗

𝜓𝑎(1 − 𝑎𝛽 𝜂∗) . (A.46)

Equation (A.46) can be integrated by separation of variables. Applying the
boundary condition 𝜂∗ = 1 at 𝑥=0, integration yields an explicit solution for tidal
damping:

𝜂∗ = 1
𝑎𝛽 + (1 − 𝑎𝛽 ) exp [−𝑥/(𝜓𝑎)]

=
1/(𝑎𝛽 )

1 − [1 − 1/(𝑎𝛽 )] exp [ − 𝑥/(𝜓𝑎)] .

(A.47)
Introducing the dimensionless parameters defined in Table 4.1, equation (A.47)

can be rewritten as:

𝜂∗ = 𝛾/(𝜒 𝜇 𝜆 )
1 − [1 − 𝛾/(𝜒 𝜇 𝜆 )] exp [ − 𝛾𝜇 𝑥∗/(1 + 𝜇 )]

, (A.48)

which gives the asymptotic tidal amplitude 𝜂∗ = 𝛾/(𝜒 𝜇 𝜆 ) when 𝜒∗ goes to
infinity.

A.5. Derivation of the Explicit Solution to the Linear
Tidal Damping Equation

Cai et al. [2012a] adopted the envelope method using the usual Lorentz’s lin-
earization for the friction term and derived the linear tidal damping equation:

1
𝜂
𝑑𝜂
𝑑𝑥 [1 +

𝑔𝜂
𝑐𝜐 sin(𝜖)] =

1
𝑎 −

8
3𝜋𝑓

𝜐
ℎ𝑐
, (A.49)
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Following the derivation as described in Appendix A.4, one can easily obtain the
following explicit solution of the linear tidal damping equation:

𝜂∗ = 3𝜋𝛾/(8𝜒 𝜇𝜆)
1 − [1 − 3𝜋𝛾/(8𝜒 𝜇𝜆)] exp [ − 𝛾𝜇 𝑥∗/(1 + 𝜇 )] , (A.50)

We can see from equation (A.50) that 𝜂∗ = 3𝜋𝛾/(8𝜒 𝜇𝜆) when 𝑥∗ approaches
infinity.
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A.6. Derivation of Lorentz’s damping equation in-
corporating river discharge using the envelope
method

Using a Lagrangean approach as in Savenije [2005, 2012], the continuity equa-
tion can be written as:

d𝑉
d𝑡 = 𝑟

𝑐
ℎ
dℎ
d𝑡 −

𝑐𝑉
𝑏 + 𝑐𝑉1𝜂

d𝜂
d𝑥 . (A.51)

The momentum equation can also be written in a Lagrangean form, yielding:

d𝑉
d𝑡 + 𝑔

𝜕ℎ
𝜕𝑥 + 𝑔(𝐼 − 𝐼 ) + 𝑔

𝑉|𝑉|
𝐾 ℎ / = 0 , (A.52)

where 𝐼 is the bottom slope and 𝐼 is the water level residual slope resulting from
the density gradient. Combination of these equations, and using 𝑉 = d𝑥/d𝑡, yields:

𝑟 𝑐𝑉𝑔ℎ
dℎ
d𝑥 −

𝑐𝑉
𝑔 (

1
𝑏 −

1
𝜂
d𝜂
d𝑥) +

𝜕ℎ
𝜕𝑥 + 𝐼 − 𝐼 +

𝑉|𝑉|
𝐾 ℎ / = 0 . (A.53)

Next, we condition Eq. (A.53) for the situation of high water (HW) and low water
(LW). The following relations apply to ℎHW and ℎLW:

dℎHW
d𝑥 − dℎLWd𝑥 = 2d𝜂d𝑥 , (A.54)

dℎHW,LW
d𝑥 = 𝜕ℎ

𝜕𝑥 |HW,LW
, (A.55)

dℎHW
d𝑥 + dℎLWd𝑥 ≈ 2dℎd𝑥 , (A.56)

with ℎHW ≈ ℎ+𝜂 and ℎLW ≈ ℎ−𝜂. These three equations are acceptable if 𝜂/ℎ ≪ 1.
The tidal velocities at HW and LW the following expressions can be expressed

as
𝑉HW ≈ 𝜐 sin(𝜖) − 𝑈 , 𝑉LW ≈ −𝜐 sin(𝜖) − 𝑈 , (A.57)

where the river flow velocity 𝑈 is negative (it is in ebb direction). Further we
assume that wave celerity is proportional to the square root of the depth:

𝑐HW
√ℎHW

≈ 𝑐LW
√ℎLW

≈ 𝑐
√ℎ

, (A.58)

In this example we use Lorentz’s linearization Eq. (5.13) of the bed friction [Lorentz,
1926], but also take into account the effect of the periodic variation of the hy-
draulic radius in the denominator of the friction term (i.e., 𝐾 ℎ / ). Combination
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of Eqs. (A.53), (A.55), and the first of Eq. (A.57) yields the following envelope for
HW:

𝑟 𝑐HW[𝜐 sin(𝜖) − 𝑈 ]
𝑔(ℎ + 𝜂)

dℎHW
d𝑥 − 𝑐HW

[𝜐 sin(𝜖) − 𝑈 ]
𝑔 (1𝑏 −

1
𝜂
d𝜂
d𝑥) +

dℎHW
d𝑥

+ 1

𝐾 (ℎ + 𝜅𝜂)
/ [
1
4𝐿 𝜐 + 12𝐿 𝜐 sin(𝜖)] = −𝐼 + 𝐼 (A.59)

where 𝜅 = 1 corresponds to the time-dependent case, while 𝜅 = 0 to the time-
independent case. Similarly, for LW, combination of Eqs. (A.53), (A.55), and the
second of Eq. (A.57) yields the LW envelope:

− 𝑟 𝑐LW
[𝜐 sin(𝜖) + 𝑈 ]
𝑔(ℎ − 𝜂)

dℎLW
d𝑥 + 𝑐LW

[𝜐 sin(𝜖) + 𝑈 ]
𝑔 (1𝑏 −

1
𝜂
d𝜂
d𝑥) +

dℎLW
d𝑥

+ 1

𝐾 (ℎ − 𝜅𝜂)
/ [
1
4𝐿 𝜐 − 12𝐿 𝜐 sin(𝜖)] = −𝐼 + 𝐼 (A.60)

Subtraction of these envelopes, using a Taylor series expansion of ℎ / , and taking
into account the assumption on the wave celerity yields the following expressions:

𝑟 𝑐𝜐 sin(𝜖)
ℎ

( 1
√1 + 𝜁

dℎHW
d𝑥 + 1

√1 − 𝜁
dℎLW
d𝑥 )

− 𝑟 𝑐𝑈
ℎ

( 1
√1 + 𝜁

dℎHW
d𝑥 − 1

√1 − 𝜁
dℎLW
d𝑥 )

− [2𝑐𝜐 sin(𝜖) + 2𝑐𝑈 (1 − √1 + 𝜁)] (1𝑏 −
1
𝜂
d𝜂
d𝑥)

+ 2𝑔d𝜂d𝑥 + 𝑓 [
𝐿 𝜐 sin(𝜖)

ℎ
− 𝜅2𝐿 𝜐 𝜁

3 ℎ
] = 0 (A.61)

with the dimensionless friction factor 𝑓 defined as

𝑓 = 𝑔/(𝐾 ℎ
/
) [1 − (𝜅4𝜁/3) ] . (A.62)

The parts between brackets in the first and second terms of Eq. (A.61) can be
replaced by the residual water level slope dℎ/d𝑥 defined in Eq. (A.56) and dℎ/d𝑥
defined in Eq. (A.54), respectively, provided 𝜁 ≪ 1. Elaboration yields:

1
𝜂
d𝜂
d𝑥(𝜃 − 𝑟

𝜙
sin(𝜖)𝜁 +

𝑔𝜂
𝑐𝜐 sin(𝜖)) =

𝜃
𝑏 − 𝑟

1
ℎ
dℎ
d𝑥

− 𝐿2 𝑓
𝜐
ℎ𝑐
+ 𝜅𝐿3 𝑓

𝜐𝜁
ℎ𝑐

1
sin(𝜖) (A.63)
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The dimensionless parameters 𝜙 and 𝜃 have been defined in the main text. The
first two terms on the right hand side of Eq. (A.63) represent the width and depth
convergences and can be written as:

𝜃
𝑏 − 𝑟

1
ℎ
dℎ
d𝑥 =

𝜃
𝑏 +

𝑟
𝑑 ≈ 𝜃

𝑎 . (A.64)

Here, it has been assumed that both 𝜃 and 𝑟 are close to unity. Substitution of
Eq. (A.64) into (A.63) yields

1
𝜂
d𝜂
d𝑥(𝜃 − 𝑟

𝜙
sin(𝜖)𝜁 +

𝑔𝜂
𝑐𝜐 sin(𝜖)) =

𝜃
𝑎 −

𝐿
2 𝑓

𝜐
ℎ𝑐

+ 𝜅𝐿3 𝑓
𝜐𝜁
ℎ𝑐

1
sin(𝜖) (A.65)

Making use of the dimensionless parameters and adopting the scaling equation
sin(𝜖) = 𝜇𝜆, Eq. (A.65) reduces to the following expression:

𝛿 = 𝜇
1 + 𝜇 [𝜃 − 𝑟 𝜙𝜁/(𝜇𝜆)] [𝛾𝜃 − 𝜒(

1
2𝐿 𝜇𝜆 − 𝜅

1
3𝐿 𝜁)] , (A.66)

or

𝛿 = 𝜇
1 + 𝜇 𝛽(𝛾𝜃 − 𝜒𝜇𝜆Γ ) , Γ = 𝐿

2 − 𝜅𝜁
𝐿
3𝜇𝜆 . (A.67)

A.7. Derivation of the Mean Free Surface Elevation
due to Nonlinear Frictional Effect

Integration of the Lagrangean momentum equation (A.52) over a tidal period
leads to:

𝑉(𝑡 + 𝑇) − 𝑉(𝑡) + 𝑔 𝜕𝜕𝑥 ∫ 𝑧𝑑𝜎 + 𝑔 ∫ 𝑉|𝑉|
𝐾 ℎ / 𝑑𝜎 = 0 . (A.68)

which can be simplified as:
𝜕𝑧
𝜕𝑥 = −

𝑉|𝑉|
𝐾 ℎ / . (A.69)

when tidally averaged conditions achieve a regime configuration. Making use of
the boundary condition 𝑧 = 0 at 𝑥=0, integration of equation (A.69) yields an
expression for the mean free surface elevation:

𝑧(𝑥) = −∫ 𝑉|𝑉|
𝐾 ℎ / 𝑑𝑥 . (A.70)
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Figure A.1: Comparison between computed and observed longitudinal tidal amplitude in 6 studied es-
tuaries (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau) based on an explicit model
using a spatially averaged depth.

A.8. Coupled Analytical Model Using an Explicit So-
lution for Tidal Dynamics
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Figure A.2: Comparison between computed and observed salinity curves at HWS and LWS in 6 studied
estuaries (a: Bernam; b: Selangor; c: Muar; d: Kurau; e: Perak; f: Endau) where the tidal excursion is
computed with an explicit model using a spatially averaged depth. represents the tidal excursion at
the inflection point .
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A.9. Predictive Hydraulic Equations for an Ideal Es-
tuary

For an ideal estuary where 𝛿 = 0 (hence 𝜆 = 1 and tan(𝜖) = 1/𝜆), substituting
𝛿 = 0 into equation (6.22) yields an analytical solution for the ideal depth:

ℎ =
𝑟 𝜔𝑏(−𝜔𝑏 + √𝜔 𝑏 + 4𝑔 𝜂 /𝜐 )

2𝑔 , (A.71)

where the subscript 𝐼 stands for the solution in an ideal estuary.
Then the ideal celerity is given by:

𝑐 = √𝑔ℎ𝑟 =
√𝜔𝑏(−𝜔𝑏 + √𝜔 𝑏 + 4𝑔 𝜂 /𝜐 )

2 . (A.72)
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Substitution of equations (A.71) and (A.72) into (6.26) ends up with the expres-
sion of ideal Manning-Strickler friction coefficient:

𝐾 = √
𝑔𝜐𝑏[6 sin(𝜖 ) + 8/𝜋]

ℎ
/
𝑐 [9 − 16(𝜂/ℎ ) ]

, (A.73)

with

sin(𝜖 ) = √ 1
𝛾 + 1 = √

𝜔 𝑏
𝑐 + 𝜔 𝑏

. (A.74)
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Summary

The ultimate aim of this thesis is to enhance our understanding of tidal wave
propagation in convergent alluvial estuaries (of infinite length). In the process, a
new analytical model has been developed as a function of externally defined dimen-
sionless parameters describing friction, channel convergence and river discharge.
This model has been used to investigate the potential influence of human inter-
ventions such as dredging, land reclamation, and freshwater withdrawal on tidal
dynamics. The method allows to reproduce the most relevant features of the tidal
wave (tidal amplitude, velocity amplitude, wave celerity and phase lag) along the
estuary with a minimum requirement of information, such as geometrical data and
the tidal forcing at the estuary mouth.

Analytical solutions to the one-dimensional St. Venant equations for tidal hydro-
dynamics in convergent alluvial estuaries with negligible river discharge can be cast
in the form of a set of four implicit dimensionless equations for phase lag, velocity
amplitude, damping, and wave celerity, as a function of two localized parame-
ters describing friction and convergence (dependent on tidal amplitude and depth).
This method allows comparison of different analytical approaches by rewriting the
different solutions in the same format. In this thesis, both classical and more re-
cent formulations are compared, showing the differences and similarities in view
of their specific simplifications. The envelope method that subtracts envelopes at
high water and low water can be used to derive damping equations that use differ-
ent friction approximations, resulting in as many analytical solutions, and thereby
building one consistent theoretical framework. It is important to note that a multi-
reach approach has to be adopted to follow variations of the estuarine amplitude
and depth along the estuary by simple integration of the damping over a distance
interval (e.g., 1 km), which is repeated for the entire length of the estuary.

The asymptotic behaviour of tidal damping has also been investigated. A new
asymptotic solution of the tidal amplitude has been found that reflects the balance
between friction and channel convergence when the distance from the mouth ap-
proaches infinity. As a consequence, the usual assumption that the tidal amplitude
and velocity amplitude along the estuary axis can be described by an exponen-
tial function appears only to be valid for an ideal or frictionless estuary. We also
found that tidal amplification is increased with deepening until a maximum value is
reached at a critical depth (corresponding to the maximum tidal amplitude). A fur-
ther increase of depth reduces the tidal amplification until the frictionless standing
wave system is reached asymptotically.

The theoretical framework has subsequently been extended to take into account
the effect of river discharge, which allows the analytical solutions to be applicable
even in the upstream part of an estuary where the influence of river discharge is not
negligible. It is observed that the residual water level slope resulting from asym-
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metric friction has substantial influence on tidal wave propagation when including
the effect of river discharge. The application to the Modaomen and Yangtze estuar-
ies indicates that the proposed model fits the observations with realistic roughness
values upstream, while a model with negligible river discharge can be made to fit
observations only with unrealistically high roughness values.

The new hydrodynamics model is particularly useful in combination with a salt
intrusion model because the coupling reduces the number of calibration parame-
ters and subsequently strengthens the reliability of the salt intrusion model. The
application in 6 Malaysian estuaries shows good correspondence between the com-
puted tidal excursion with observed salinities. Conversely, if observed salinities are
known, the hydraulic parameters (depth, friction) may possibly be estimated via an
inverse model using observed tidal excursion and tidal amplitudes.

In summary, the new framework for analytical solutions of the tidal hydrody-
namics equations is more accurate than the explicit analytical model based on the
Lorentz linearization. It has been expanded to include river discharge and the effect
of variable depth, and it has been coupled with an analytical salt intrusion model.
This analytical framework has been proved to perform well in a wide range of es-
tuaries where it has direct value in allowing the assessment of the consequence of
human interventions, such as by dredging or water abstractions. More importantly,
it provides direct insight in cause-effect relations which are often nonlinear and it
is a valuable educational tool to give insight into the inner functioning of a complex
hydrodynamic system.



Samenvatting

Het overkoepelende doel van dit proefschrift is om het begrip van de voortplan-
ting van het getij in taps-toelopende alluviale estuaria te vergroten. Al doende is
een nieuwe analytische methode ontwikkeld die gebruik maakt van extern gedefini-
eerde dimensieloze parameters voor: wrijving, convergentie en rivierafvoer. Deze
analytische methode is gebruikt om de mogelijke invloed die menselijk handelen
zoals uitbaggering, landaanwinning en wateronttrekking heeft op getijdebeweging.
Deze methode is in staat om de meest relevante eigenschappen van de getijde-
golf (getijamplitude, snelheidsamplitude, voortplantingssnelheid en faseverschil) te
reproduceren op basis van een minimum aan informatie, zoals geometrische gege-
vens en de getijde amplitude aan de monding van het estuarium.

Analytische oplossingen van de een-dimensionale St. Venant vergelijkingen voor
getijdebeweging in taps-toelopende alluviale estuaria met geringe bovenafvoer kun-
nen worden omgewerkt in vier impliciete dimensieloze vergelijkingen voor het fase-
verschil, de snelheidsamplitude, de demping, de voortplantingssnelheid, als functie
van twee lokale parameters die wrijving en convergentie beschrijven (als functie van
diepte en getijamplitude). Met deze benadering kunnen alle analytische methodes
in hetzelfde formaat beschreven worden, wat een vergelijking tussen de metho-
den vergemakkelijkt. In dit proefschrift worden klassieke en recente formuleringen
vergeleken, waarbij hun verschillen en overeenkomsten worden belicht alsmede
de onderliggende aannames. De omhullenden methode, waarbij de omhullenden
van hoog en laag water worden afgetrokken, wordt gebruikt om evenzovele dem-
pingsvergelijkingen te verkrijgen als het aantal verschillende parametrisaties van
de wrijvingsterm. Een multi-traject methode wordt gebruikt om de variatie van de
diepte en de getijamplitude langs de lengteas van het estuarium te volgen.

Het asymptotisch gedrag van de getijdedemping is eveneens bestudeerd. Een
nieuwe asymptotische oplossing voor de getijamplitude is gevonden die de balans
tussen wrijving en convergentie weergeeft als de afstand vanaf de monding naar
oneindig gaat. Dientengevolge blijkt de algemeen gebruikte aanname dat de dem-
ping exponentieel verloopt niet houdbaar en alleen geldig voor het triviale geval van
een ideaal of wrijvingsloos estuarium. Wij hebben ook geconcludeerd dat opslin-
gering ten gevolge van verdieping van het estuarium een maximale kritieke waarde
bereikt. Verdere verdieping leidt tot een afname van de opslingering tot het sys-
teem asymptotisch een wrijvingsloze staande golf benadert.

Het theoretisch kader is vervolgens uitgebreid door rekening te houden met
een substantiële bovenafvoer, waardoor de methode ook analytische oplossingen
oplevert in het bovenstroomse deel van een estuarium waar de boevenafvoer niet
meer verwaarloosbaar is. Wij concluderen dat door de bovenafvoer de opzet van
het waterniveau ten gevolge van de asymmetrie van de wrijvingsterm een sub-
stantiële invloed heeft op de getijdevoortplanting. De toepassing in de estuaria

155



156 Samenvatting

van de Modaomen (Pearl river) en de Yangtze laten zien dat het nieuwe model de
waarnemingen goed weergeeft met realistische waarden voor de ruwheid in het
bovenstroomse deel, terwijl een model dat de bovenafvoer niet in beschouwing
neemt dit slechts kan met onrealistisch hoge ruwheden.

De nieuwe methode is bij uitstek geschikt om gecombineerd te worden met
een analytisch zoutindringingsmodel omdat het koppelen van de twee modellen
het aantal ijkparameters reduceert en aldus de betrouwbaarheid van het zoutin-
dringingsmodel versterkt. De toepassing in zes niet eerder bemeten Maleisische
estuaria laat een goede overeenkomst zien tussen de voorspelde en gemeten ge-
tijweg. Omgekeerd, als zoutmetingen voorhanden zijn kunnen met deze methode
de diepte en de wrijving van het estuarium bepaald worden op basis van de waar-
genomen getijweg en getijamplitude.

Samengevat is de nieuwe impliciete analytische methode nauwkeuriger dan alle
klassieke expliciete methodes gebaseerd op de Lorentz linearisatie. Deze methode
is uitgebreid om rekening te houden met de rivierafvoer en variabele diepte. Bo-
vendien is het gekoppeld met een analytisch zoutindringingsmodel waardoor de
vrijheidsgraden in de ijking verder worden beperkt. Dit analytisch kader heeft zich
bewezen in een breed scala aan estuaria, waar het nuttig is om het effect van men-
selijke interventies, zoals door uitbaggeren of wateronttrekkingen, te analyseren.
Bovendien stelt het ons in staat rechtstreeks oorzaak en gevolg van niet-lineaire
betrekkingen te doorzien, en is het daardoor een waardevol onderwijskundig in-
strument om inzicht te verwerven in het functioneren van het complexe hydrody-
namische systeem.
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