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Abstract 

 

  With a high demand of oil, optimization of oil output in the reservoir field is urgent 

and significant. Practical production problems often involve large, highly complex 

reservoir models, with up to thousands of unknowns and many constraints. 

Moreover, our understanding of the reservoir is always highly uncertain, and this 

uncertainty can be reflected in the reservoir models. Consequentially, performance 

prediction and performance optimization, which are the ultimate goals of the entire 

modeling and simulation process, depend a lot on the data assimilation process and 

uncertainty from reservoir models themselves. 

  In this thesis, the main goal is to discuss two ways of optimizing oil production and 

do research on the uncertainty of optimization according to data assimilation and 

reservoir models. Chapter 2 states an efficient method of data assimilation—

Asynchronous Ensemble Kalman Fliter and its application in a square reservoir model. 

Chapter 4 and 5 discuss the two aspects of production optimization respectively: 

optimization of control of well settings and optimization of well placement. I use 

gradient-based method and implement it into simsim simulator, which is a simple 

simulator of reservoir model. In Chapter 5, I apply Particle Swarm Optimization 

method to optimize well placement given a fixed well settings. In Chapter 6, I do a 

research on the uncertainty of optimization results due to data assimilation and then 

study on the optimization process given a true permeability and porosity field. I 

found a stable performance of the optimization when applying field data estimated 

by data assimilation and demonstrate the effects of two types of optimization. Some 

disadvantage and future recommendations are presented in the last part. 
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1. Introduction 

  These years it is more demanding to increase the production from petroleum 

reservoirs as a sequence of resource shortage. From 1950s, the numerical reservoir 

simulation became applicable to solve the complicated filtration problem in 

petroleum reservoir, which can provide a scientific reference to exploit oil 

underground efficiently, and this thesis provides an efficient way to achieve the 

optimal production through a model-based dynamic optimization of well placements 

and their production settings. 

1.1 Demands for oil 

  After more than 150 years when it was discovered for the first time, oil continues 

to play an essential role in the global economy. While it remains the top source of 

energy, oil has fallen off its pedestal since the energy shocks of the 1970s and 1980s, 

which proved how reliant the developed world had become on petroleum products, 

and how vulnerable it was to shortfalls in supplies. The figure below from EIA gives 

the forecast of demand of oil and other sources next 20 years, which implies that 

there is still a very urgent requirement to promote the production of petroleum 

reservoirs. The Exploration and Production industry is struggling to keep up with this 

demand.  

 

 

Figure 1.1 the forecast of global demand of energies(" Energy Projections 2006 – 2030",EIA) 

   

A brief introduction of scheme and history of E&P process is given as follows. 
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1.2 Reservoir management 

 

Figure 1.2 reservoir management depicted as a model-based controlled process(Jansen et 

al(2005)) 

 

  The figure above describes the reservoir management as a model-based controlled 

process. Since the subsurface is very heterogeneous and the parameters relevant to 

flow are correlated at different length scales, the uncertainties in the model 

parameters of the subsurface part are very large. It is therefore necessary to 

construct multiple subsurface models to simulate the low of fluids according to 

different geological conditions. The table 1.1 shows the related terminology. 

   

Name Description 

inputs Decisions on wells, surface facilities, infrastructure 

outputs Oil and gas production 

State variables Fluid pressure and saturations 

parameters Fluid and geological properties 

Table 1.1 

It is possible to make a decision for the oil recovery process, which concerns 

determining the location and number of injection and production wells or the 

optimal water injection and oil production flow rates over the whole life the 

reservoir.  

In the process of oil production, measurements are performed at the top of the 

well and in the facilities and gives an indication of pressures and phase rates in the 
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surface part of the production system. In the past, these measurements are 

performed monthly or quarterly without a good accuracy. During these years, after 

introducing an increasing amount of sensors into the reservoir system, the 

measurements become nearly continuous both at surface and subsurface to some 

extent. Moreover, there are also other measurement techniques emerging that can 

give a depiction of the changes in reservoir pressure and fluid saturation between 

the wells. With the aid of systematic algorithms for data assimilation, it is possible to 

adjust the parameters of individual grid blocks of the numerical models to some 

extent so that the simulated response matches the measured data better. In further 

discuss, it is hopeful to give a well forecast of the future system response. 

As a result, the optimization process is model-based, since reservoir models are 

used to measure the effect of field development and production operation decisions 

on future hydrocarbon production. 

1.3 Model-based optimization 

1.3.1 Optimal control of production system settings 

Given a reservoir model and a certain configuration and fixed location of wells, 

optimal control of production settings is to find the time-varying production settings 

over a lifecycle of the reservoir that maximize the recovery factor and then the 

production. There are several methods to compute the solutions to optimal control 

problems involving nonlinear systems and non-quadratic performance measures, 

such as the gradient, simultaneous, shooting or dynamic programming methods 

(Bryson and Ho(1975),Srinivasan et al.(2002b)). Among these methods, only the 

gradient method is applicable when dealing with extremely large number of reservoir 

model states. The idea of gradient method is to iteratively improve upon an initial 

guess of the optimal control using a gradient-based method until a local optimal 

solution is reached. Conceptually, the easiest approach is to approximate each 

individual component of gradient by finite differences, however, it is demanding 

since each approximation requires an evaluation of the performance measure, which 

in turn needs a reservoir simulation. So the available approach is to compute the 

gradient using a so-called adjoint model.(Kirk(1970),Stengel(1986).) 

There are many applications of adjoint-based optimization of production settings 

in the petroleum engineering literature. Some of the earliest ones are by Ramirez 

and co-workers , summarized in Ramirez(1987), who considered tertiary recovery 

techniques. 

This was quickly followed by Asheim(1987), Asheim(1988),Virnovsky(1991),Zakirov 

et al(1996), and Sudaryanto and Yortsos(2000) who considered secondary recovery 

techniques/ Although the type of production setting differ(e.g. from concentrations 

of injected chemicals to water injection rates), they are all applications of the same 

technique: gradient-based optimization with gradients computed using an adjoint 

model. In this respect, it is interesting that the method had not received significant 
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attention until Brouwer and Jansen(2004) demonstrated the possibility to 

significantly increase the recovery factor using smart wells. Numerous applications 

emerged then, several of which involve the particularly difficult problem of including 

state constraints - see Sarma et al. (2006a), de Montleau et al. (2006), and 

Kraaijevanger et al. (2007). Since state constraints (e.g. bounds on the reservoir 

pressure or the amount of produced water) are particularly important in production 

operations, state constraint handling is a topic of ongoing research. Another relevant 

open issue is the shape of optimal solutions: Sudaryanto and Yortsos (2000) and 

Sudaryanto and Yortsos (2001) state that these will sometimes be of the bang-bang 

(i.e. on-off) type, which have an obvious advantage over smooth solutions in that 

they can be implemented with simple on-off valves. Interestingly, this statement is 

supported by some, but not all, applications in Brouwer (2004) and Brouwer and 

Jansen (2004). In other words, it is unclear why and under what conditions optimal 

production setting problems can be expected to have bang-bang optimal solutions. 

This is important, because variable-setting valves are much more expensive than 

simple on-off ones. 

1.3.2 Optimization of well placements 

  During the modeling process, reservoirs are essentially divided into a finite 

number of ‘grid blocks’, the properties of which are assumed to be homogeneous. 

Wells are then simply source or sink terms (depending on whether they produce or 

inject fluids) into or from certain of these grid blocks. Optimization of the well 

trajectory and its location is thereby an integer problem - Kosmidis et al. (2005), 

Bangerth et al. (2006). For example, if a single well is to be placed in 1 out of N grid 

blocks, the problem clearly involves N discrete possible choices. Determining the 

number of wells is also clearly an integer problem, and the combination with the 

optimization of production settings leads to a mixed-integer nonlinear problem, or 

MINLP. MINLP’s also frequently arise in the chemical process industry, and there are 

several methods to deal with them - see Kallrath (2000). Most of these methods, 

however, require far too many evaluations of the performance measure to be 

applicable to reservoir models. In practice, well optimization is therefore mostly 

done manually, although there are several publications on automatic well 

optimization. These applications can be broadly classified into local or global 

optimization methods. Local optimization methods try to iteratively improve upon 

an initial well configuration, much as in the previous optimization of production 

settings, until a local optimal solution is reached. The main challenge in this 

application, again as in the optimization of production settings, is to effectively find 

improving directions3 in which to alter the well configuration. Global methods, on 

the other hand, will sometimes tolerate lower performance measures in the hope of 

finding the global, as opposed to local, optimal solution. There are many applications 

of global methods to the well optimization problem: Beckner and Song (1995) 

applied simulated annealing, Centilmen et al. (1999) neural networks, Bittencourt 

and Horne (1997),Montes et al. (2001) and Aitokhuehi et al. (2004) genetic 



13 
 

algorithms, and Yeten (2003) a combination of the latter two. Although these 

applications have the virtue of simplicity (a global optimization algorithm of choice is 

coupled with a reservoir simulator to evaluate the performance measure), they 

generally require many reservoir simulations to converge to an adequate solution. 

Bangerth et al. (2006) compares two local methods for optimizing the location of 

vertical wells in a 2D reservoir model. The first one is the Finite Difference Gradient 

(FDG) method, which as the name suggests tries to find improving directions by 

perturbing each well location by one grid block in each direction. This has the 

obvious drawback of requiring m + 1 reservoir simulations to compute an improving 

direction of m to-be-placed wells. The second method is the simultaneous 

perturbation stochastic approximation (SPSA) method of Spall (1992), which basically 

chooses a random direction to alter the wells and, if this does not yield an 

improvement in the performance measure, assumes that the opposite direction will. 

The obvious advantage is that an improving direction is almost always found in at 

most 2 reservoir simulations, with the disadvantage that this direction is generally 

far from the ‘steepest’ one. In other words, an efficient method to find (almost) 

steepest improving directions using a limited number of reservoir simulations is 

currently lacking. 

1.4 Problem Formulation 

In this thesis, we suppose a 5-spot (1 injection well, 4 production wells) reservoir 

system, and detect an efficient tool for dynamic optimization of well locations and 

their production settings to maximize the recovery factor of petroleum reservoirs 

based on uncertain reservoir models.   

Steps to solve the problem: 

Step1. Set the reservoir model 

  Formulate the reservoir models as well as the production constraints used 

throughout the thesis. 

Step2. Applying data assimilation with EnKF to petroleum reservoir 

model 

Step3. Optimal control of production settings 

  Investigate the robust optimization of production settings to reduce the negative 

effect of model uncertainty given a fixed well location. 

Step4. Optimal well placement 

Investigate how we can effectively find optimal well locations when we fix the 

Bottom Hole Pressure(BHP) and flow rates of injection and production. 
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Step5. Combination of the two optimizations and case study 

Step6. Conclusions and recommendations 

  Reach a conclusion that is useful for further study of the optimization methods for 

reservoir models. 
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2. Reservoir Model 

Mathematical models of petroleum reservoirs have been applied since the late 

1800s, which contains a series of equations that describe the flow of fluids in the 

reservoir. In this section we discuss the black oil formulation that contains only oil 

and water in the reservoir system without considering several important physical 

aspects such as gravity, capillary pressure and the presence of an aquifer. The 

application of finite difference methods to fluid flow in porous media that we present 

in this chapter is mostly based on the textbook by Peaceman(1977) and Aziz and 

Settari(1979).  

2.1 The black oil formulation 

2.1.1 Mass balance equations 

  The equations as follows give a brief overview of water(w)-oil(o) flow according to 

the mass balances. 

                

_

( ) ( ) , { , }i i i i iS u q i o w
t
 


   


                   (2.1) 

where t denotes time,   the porosity, i  the density of phase i, iS  the 

saturation of phase i,  the divergence operator, 
_

iu  the superficial velocity and 

the source/sink terms iq  is called the Neumann boundary conditions. In this model, 

we assume there is no flow across the boundaries of the reservoir geometry over 

which (2.1) has defined, other than through the source/sink terms.(the so called 

“Neumann boundary conditions”)The superficial velocity can be computed by the 

semi-empirical Darcy’s equation( Muskat(1937), Hubbert(1956)): 

                       

_

, { , }ri
i i

i

k
u k p i o w


                              (2.2) 

and ip  is the pressure of phase I, k the permeability, rik  the relative permeability, 

and i  the viscosity of phase i. Generally the relative permeability are highly 

nonlinearly dependent on the saturation and in an interval [0,1]. The figure below 

depicts a typical curves of ,ro rwk k . 
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Figure 2.1 typical curves of relative permeability on saturations 

 

 From the assumption that there are only 2 phases and that we ignore the 

capillary pressure which dependent on water saturation, we have the following 

functions: 

                          1o wS S                                         (2.3) 

                           w op p                                        (2.4) 

  We take water saturation and oil pressure according to the common practice in 

reservoir simulation and lead to the following PDE’s: 

                   

( (1 )) ( )

( ) ( )

ro
o o o

o

rw
w w w

w

k
S k p q

t

k
S k p q

t

 


 



    




   



                       (2.5) 

2.1.2 Discretization of state vector 

In order to solve (2.5), we need to pay attention that the geological properties in 

oil reservoirs generally vary significantly over space, which is so-called 

“heterogeneous”. It cannot be solved analytically, but numerically instead. In this 

case, it is necessary to make a spatial discretization by dividing the reservoir area into 

a finite number of grid blocks with homogeneous geological properties. We denote 

the state vector with N grid blocks by x: 

                     
: [ ]T T Tx p s                                    (2.6) 

                      

1 2: [ , ,..., ]Np p p p                              (2.7) 
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1 2: [ , ,..., ]Ns s s s                                 (2.8) 

where p and s denote the oil pressure and water saturation in all grid blocks.  

We have the following nonlinear equations: 

       

( ) ( ) 0

( ) ( ) 0

wp ws w w

op os o o

V s V T s qp p

V s V T s s q
s

                          

                         (2.9) 

where V and T are matrices containing accumulation terms and transmissibility terms 

which are functions of s, and wq , oq regard to the flow rate(water and oil) that can be 

controlled separately. 

  For example, grid block (i,j) contains flow rates with units in 3 /m s : 

                 
,

,

[...( ) ,...],

[...( ) ,...],

T

w w i j

T

o o i j

q q

q q
                                    (2.10) 

The accumulation and transmissibility matrices are: 

, ,

, ,

( )[0,...0, ( ) ,0,...,0];

( )[0,...0, (1 ) ,0,...,0];

wp w r i j w i j

op w r i j w i j

V V c c S

V V c c S





 

  
                        (2.11) 

,

,

[0,...,0, ,0,...,0];

[0,...,0, ,0,...,0];

ws i j

os i j

V V

V V




                                           (2.12) 

where V denotes the volume of a grid block.  

1 1 1 1 1 1 1 1
, , , , , , , ,

2 2 2 2 2 2 2 2

( ) ,... ( ) ,(( ) ( ) ( ) ( ) ), ( ) ,..., ( ) ;o o o o o o o w w
i j i j i j i j i j i j i j i j

T T T T T T T T T
       

 
       
 

 

                                                                          (2.13) 

and , 1
,

2

( ) ( )w i j rw
i j

w

y h
T kk

x  




                                             (2.14) 

, , 1,

1
,

1, , 1,2

( )
( ) ,

( )

rw i j i j i j

rw
i j

rw i j i j i j

k if p p
k

k if p p




 

  


  

                                         (2.15) 

where h, x , y denotes the height, length, width of a grid block. 

For convenience, we would like to rewrite (2.9) as: 
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1 1

2 2

( ( )) 0 ( ( ))
( ) ( );

( ( )) 0 ( ( ))

(0) initial

A x t B x t
x x t q t

A x t B x t

x x

   
   

  



                              (2.16) 

with 

1

1

2

0( ( )) 0
( )

( ( )) 0 0

wp ws w

op os s

V V TA x t
A t

A x t V V T


     

     
       

                             (2.17) 

1

1

2

( )
( )

( )

wp ws

op os

V VB t
B t

B t V V


  

    
    

                                               (2.18) 

( )
( )

( )

w w

t

o o

q t F
q t q

q t F

   
    
   

                                                    (2.19) 

If an injection well is located in grid block i, we can directly control the source 

terms i

oq  and i

wq (in 3/kg m s ). Only water is injected so the oil flow rate is 0. 

0;

( )
,

i

o

i
i iw
w inji

q

p
q q i N

v





 
           

                                          (2.20) 

If a producer well is perforated in grid block j, then we can indirectly control the 

flow rates as: 

o

( )

:
( ) ( )

+

( )
(1 ) ;

( )
,

j

rw

j w
w j j

rw r

w o

j
j j jo

o wj

j
j j jw
w w prodj

k s

f
k s k s

p
q f q

v

p
q f q i N

v



 







 

 

                                                 (2.21) 

  Here, j

wf  is the fractional flow rate of water, ,inj prodN N denote the number of 

injection well and production wells separately. 

2.1.3 Time discretization 

  To solve an equation as (2.16) by computer, it is common to make a discretization 

of time t and then do the analysis. Here we use the first-order Euler scheme to 

discrete by t as: 

                      
(( 1) ) ( )

( )
x k t x k t

x t
t

   



                          (2.22) 

where t  denotes the time step size.  
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  We can get: 

1 1 1 0( ) , ;k k k initp I A t p B tq p p                                (2.23) 

1 2 2 0( ) , ;k k k inits I A t s B tq s s                                  (2.24) 

where ( )kq q k t  ,and the time discretization step is usually set as follows to get a 

more accurate capture of all dynamics, which is named as “Nyquist-Shannon 

sampling time”.(Astrom, Wittenmark(1990)). 

                       
min 1 min 2

0.5

max( ( ) , ( ) )
t

A A 
                         (2.25) 

 

2.2 The well model 

2.2.1 General equation 

For the case of prescribed bottom hole pressures and well flow rates, the flow 

rates q at time t in the grid block of the production wells where we want to prescribe 

the pressure have a general formulation as: 

                              
( )t p wellq J p p


 
                            (2.26)

 

where pJ  is called well index or production index denoting the well geometric 

factors and geological factors like rock and fluid properties (permeability and 

saturation ,etc) around the well. 

well
p


 is the prescribed bottom hole pressure, and p is the grid block pressure. For 

convention followed by the statements above, a negative flow rate indicate 

production here. 

  For the grid block of the injection wells where we prescribe the injection rates, 

similarly we have the relative formulation as: 

                              t well
q q



                                    (2.27) 

where 
well

q


, a positive value, denotes the prescribed injection rates of the injection 

wells. 

  In addition, we can also compute the bottom hole pressure in the wells where the 

flow rates are prescribed , in this case, we need a diagonal matrix of well indices Jq. 

( )q wellwellq J p p


   and thus we obtain:  
1

well q wellp p J q


                   (2.28) 

  In this thesis, through injection wells generally only water is injected, thus the 
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amount of water injected can be controlled directly. In a production well, however, 

the amount of the oil and water that will be produced are influenced by their flow 

around the well and by pressure. 

 

2.2.2 State space representation 

  Concerning (2.9), we can rewrite the equation as: 

* * * * ** * *

* * *

** * * * * *
*

( ) ( ) 0
( )

0( ) ( )

w w w

osop o o o

wp pws

q p weill

p

V s T s F J FV p p
I J q

VV s T s F J s F
s

                                       (2.29) 

where the input vector of the prescribed terms is:               

 

*

0

well well

well

q q

p





 
 
 
 
 
 

                              (2.30) 

 ,and the other two factors in (2.26) are defined below: 

* *

0 0 0 0 0 0

0 0 , 0 0 0

0 0 0 0 0

q p

p

I I J

J




   
                         (2.31) 

  To bring equations above in state space form, we define the input vector as u and 

the state vector as x: 

* *,
well

well

q p
u x

s
p





 
                                     (2.32) 

and the location matrix as: 

                      *

0 0

0

0
q u

L I

I

 
 
 
  

                                     (2.33) 

  We denote *y  as the output vector, in our case, we extend it to include the 

prescribed pressure and flow rates.:  
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_

_

,

_

,*

,

,

well

well w

well o

well

well w

well o

p

q

q
y

p

q

q







 
 
 
 
 
 
 
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 
 
  

                          (2.34) 

Then we have equations in state space form as: 

* * * * *x A x B u                                    (2.35) 

                      
* * * * *y C x D u                                    (2.36) 

where 

1 1
* * * * ** * *

* * * *

** * * * * * * *

* *

,33

* *
* ,33
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F J

F J
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 

      
          

            
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,33
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 
 
 
 
 
 
 
 

      (2.37) 

2.2.3 Well settings constraints 

  It is common sense that in reality, there are constraints of the input values 

concerning the limits of the ability of the surface facilities. Water injection wells are 

often operated on pressure constraints to avoid the fracturing of the formation 

around the wells. Production wells are often constrained to operate at a tubing head 

pressure above a certain minimum, which is determined by the working pressure of 

the first separator and some additional pressure to transport the liquid through the 

tube. Although in practice, the situation is more complicated since the constraints 

may change because the changes in the reservoir pressure, in reservoir simulation 

we can prescribe the pressures and flow rates between a minimum and a maximum. 

So it will be reflected by mathematical formulation as: 
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min max( ) ,u u t u for t                       (2.38) 

2.3 Computational aspects 

  Equations (2.31) and (2.32) can be implemented in a simple two-dimensional, 

two-phase MATLAB simulator “simsim”, which can simulate the flow in a horizontal 

rectangular reservoir. We discuss some numerical aspects(two-phase system) as 

follows: 

(1) Most of the matrices we concern so far are sparse: the accumulation 

sub-matrices are diagonal, the transmissibility sub-matrices are penta-diagonally 

banded with two sub-diagonals with two diagonals, and the fractional flow and 

well index sub-matrices are sparse. Most of the elements in matrices are 0 and 

thus can save the computational time and occupy less memory. 

(2) The reordering of vector and matrix elements with permutation matrices is not 

very essential in the computer implementation. We may just use matrices with 

elements that correspond to the relevant state or input variables at the 

appropriate locations 

(3) Computation of an element of a transmissibility sub-matrix corresponding to a 

specific grid block involves computing the transmissibility for flow to or from the 

four neighboring grid blocks. Therefore, assembly of the transmissibility matrices 

requires knowledge of the connectivity of the grid blocks. 

(4) The elements in the two-phase state vector [ ]T T Tx p s   have different physical 

dimensions and strongly varying magnitudes. If we express the pressure in Pa, 

they are in the order of 6 710 ~10 , however, the saturation values are between 0 

and 1.This may influence the accuracy of the result because of the different 

magnitudes. We can avoid this problem by rescaling the elements of p and s in 

order to reduce the difference of magnitudes. 

(5) In an injection well, we have t wq q , and we expect that soon after injection has 

started the fractional flows for water and oil close to the injection will approach 0 

and 1 respectively. However, before injection, the initial condition for the 

saturation is usually equal to the connate water saturation, which mean that 

fractional flows for water and oil are 0 and 1 respectively. In theory, it would then 

be impossible to ever inject water. This paradox is solved by a strategy 

implemented in simsim. 

In next few chapters, we will base our experiments on simsim. For more details, it 

is better to refer to Systems theory for reservoir management by Jan-Dirk Jansen. 
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3 Data assimilation with EnKF and its 

diagnostics tool for sensitivity 

3.1 Asynchronous data assimilation with EnKF 

  Before EnKF was applied in the reservoir history matching, Bayesian framework is 

usually used in the inverse problem of estimating parameters combined with state 

vectors in the model. The Ensemble Kalman Filter(EnKF) was introduced by 

Evensen(1994) for updating non-linear models. The EnKF uses a Monte Carlo 

approach for representing and evolving the joint probability density function for the 

model state and parameters, and it computes the recursive updates steps by 

introducing an approximation where only the first and second order moments of the 

predicted pdf are used to compute the update increments. 

Figure 3.1 The procedure of Synchronous assimilation with EnKF 

 

 

  The figure above shows the process of Synchronous assimilation with EnKF, or “3D” 

assimilation, indicating that observations are assumed to be taken at the assimilation 

time. In the following section, we will introduce the Asynchronous data assimilation 

with EnKF used in this thesis, that is, observation vectors can be taken at the same 

time with measurement vectors. The 1, 2,,k j k jd d   in the above figure can be 

replaced by other time points(see Figure 2). The reservoir simulation model need 
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asynchronous data assimilation and EnKF turns out to work well.(P.Sakov et al,2010) 

 

Figure 3.2 Synchronous data assimilation and asynchronous data assimilation 

  

3.1.1 State vector formulation 

In this thesis we settle state vectors combined state variables with parameters for 

history matching as: 

,

,

( )
log( log( ))

log( )

k

k

k i j

i j

p

s
x

k



 
 
 
 
 
 

                                            (3.1) 

Where kp denotes the pressure at time k, ks  the saturation at time k,   the porosity, k the 

permeability and thus 
,( )k i jx denotes the state and parameter vector at time k in grid 

block (i,j). Consequentially, the total number of variables and parameters to be 

estimated is 4 times the number of active grid blocks. 

3.1.2 State vector update with AEnKF 

System model 

The non-linear statistic model and measurement function are: 

  Measurement Function:           1 , ,( )f u

k j k jx F x        
               (3.2)

 

  Observation Function:         , , ( )f

k j k k jd H x v k                     (3.3) 
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where 1,

f

k jx   mean the forecasting state vector at time k+1, j represents the jth 

realization of the ensemble, the ensemble size is N, and thus j=1,2,…,N. f denotes 

forecasting one and u denotes updated one. ,

f

k jx  consists of N vertical vectors, 

,1 ,2 ,3 ,[ , , ,..., ]f f f f f

k k k k k Nx x x x x . 
,k jd  denotes the observation vector, and kH is called 

“measurement vector”, which links the observation vector and measurement vector. 

F() represents the relationship between the neighboring time points. v(k) is the 

observation derivation, which is a white noise. 

Recurrence Formula 

  Measurement Covariance matrix:  
_ _

,

1
( )( )

1

f f f f f T

x j k k k kC x x x x
N

  


         (3.4) 

  EnKF gain:                     
1

, , ,( )
k

f T f T

k x k k x k k d kK C H H C H C              (3.5) 

  Measurements update:         , , , ,( )u f f

k j k j k k j k k jx x K d H x                  (3.6) 

  Covariance matrix update:       , ,( )u f

x k k k x kC I K H C                       (3.7) 

  Here, 
,x kC is the covariance matrix of measurement error. N is the ensemble 

number. 
_
f

kx  is the average value of measurement vectors. kK  is the Kalman Filter 

at time k.The number of grid blocks is Ng, updated state vector contains porosity, 

permeability, and then every ensemble has 2Ng parameters. Water saturation and 

reservoir pressure belongs to the production data, and the number is N0. As a result, 

the state vector is a (2Ng+No)×Ne matrix, and the observation vector is a N0×Ne 

matrix. kH is the observation factor, which is a Ne × (2Ng+N0) matrix, 

0 02[ | ]k Ne Ng N NH O I  . 

  Here we can use asynchronous observations and run the simulation in the 

following sections. 
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3.1.3 Experimental setup and AEnKF results 

 

Figure 3.3 a 21 by 21 grids reservoir with fixed well locations 

 We set a twin experiment to describe 2D 2 phase (water-oil) flow. In this thesis, 

we consider a square reservoir of 700(m)×700(m)×2(m) vertically homogeneous, 

with heterogeneous permeability and porosity fields modeled with uniform Cartesian 

grid of 441(2121) blocks, as we can see above, in which case we neglect gravity 

forces and capillary pressure. 

 

  Take the comparison of 30 and 60 ensembles for an example, we can see the initial, 

AEnKF, and true one of permeability and porosity of the reservoir separately. 
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Figure 3.4 permeability(in log(-log())) after AEnKF compared to true one 

(above:10 ensembles;down:60 ensembles) 

 

 

 
Figure 3.5 porosity(in log())after AEnKF compared to true one 

(above:10 ensembles;down:60 ensembles) 

 

  From Figure 3 and Figure 4, we see that AEnKF performs a well simulation of the 

parameters in the reservoir model. However, obviously it is more close to the true 

distribution when there are 60 ensembles than 10. In the following section, we 

would like to do a research on what is influential to the history matching and how 

large is the influence. 

3.2 Influence-matrix diagnostic of the data assimilation  

 

The data assimilation with EnKF has already developed for years. Since the system 

is complicated, it is necessary to monitor the data assimilation (DA) process 

effectively. A set of complex measures is needed to indicate how different variables 

and parameters influence the process. The influence-matrix that we will regard as 

follows provides an effective tool to analyse the DA process. 
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3.2.1 Observational influence and self-sensitivity for DA with EnKF 

 Self-sensitivity 

  As mentioned above, the measurements update with EnKF can be written:  

  ( )f u ux x K d Hx   , with 
1( )u T u T

x x dK C H HC H C             (3.7) 

  where ux denotes prior information, fx  estimate of the state, d the 

observations, K the Kalman filter, H the observational matrix, u

xC  measurements 

covariance matrix, H the observation factor. 

  Analysis estimate in the observation space: 

       (3.8) 

  Sensitivity matrix: 

                          
T Td

S K H
d




 


                            (3.9) 

  According to (4.3), iiS  denotes the rate of change of estimate 
id



 with regard to 

variations in the corresponding measurement iy . 

  Similarly, the analysis sensitivity w.r.t the background information is given by: 

                   
( )

T T

p pf

d
I K H I S

Hx




   


                       (3.10) 

where p is the number of the observations. This is easy to understand, for example，

if the self-sensitivity with respect to ith observation is iiS , then the self-sensitivity 

with respect to the background is 1- iiS . 

Trace diagnostic 

  We define the globally averaged observation influence (GAI): 

                           

( )tr S
GAI

p


                                  (3.11) 

  GAI gives a diagnostic of the total observational influence on the DA scheme and 

sequentially the average background global influence to the analysis at the 
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observation points is 1-GAI.  

  Another index of interest is the partial influence for any selected subset of data is 

given by: 

iii I

I

S
PAI

p




                                 (3.12) 

where Ip is the number of data in subset I. This shows the influence of a chosen 

group of data set to the analysis. We can use GAI and PAI as a diagnostic tool to 

analyze DA scheme with EnKF in this thesis. 

3.2.2 Experiment and Results 

  In this section, we will do research on how large is the influence of the ensemble 

size, the prior and observational data on the data assimilation process. 

 

The influence of the ensemble size 

  We do five independent experiments, and each one contains 10 to 100 ensembles. 

We will test the root mean square derivation (RMSE) of the parameters of the 

reservoir as permeability and porosity and GAI. 

 
Figure 3.6 RMSE of permeability and porosity 

  As can be seen from the figure 5, when the ensemble size is larger than 60, the 

RMSE of both permeability and porosity is fluctuating around a relatively small value. 

However, when the ensemble size is large, it is time-consuming to get the result. 

Consequently, we can choose ensemble size as 60 to get the parameters more close 
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to the true one effectively. 

 

 
Figure 3.7 Global average influence to analysis of different ensemble size 

  According to Figure 6, it is not difficult to notice that when the ensemble size is 

larger than 60, the GAI will not change too much and reaches a relatively high value 

as 0.12, which means the observational data plays 12% influence of the data 

assimilation and the prior information 88%.  

GAI of other variables 

 

 
Figure 3.8 Global average influence of different time intervals 

We choose an experiment of 60 ensembles and compute GAI with a time step of 
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120 days  in order to find the rule of the observational data ‘s influence to the 

analysis. In figure 7, it shows the global average influence to the analysis doesn’t 

react very sensitively to different time intervals, and after 270 days, it reaches a 

comparatively high GAI value. As a result, the history matching process becomes 

more sensitive to the observation data as time goes on.   

 

Figure 3.9 GAI of different measurement types 

  In Figure 8, it shows the DA sensitivity to different types of measurement, 

including bottom hole pressure of injection well and oil and water production rates 

of four production wells. From the graph, the DA is more sensitive to the 

measurement in the production wells. 

 

Figure 3.10 GAI of bottom hole pressure in injection well 
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Figure 4 GAI of oil production rates in different well locations 

 

Figure 5.12 GAI of water production rates in different well locations 

  In Figure 9,10,11, they shows the data assimilation’s sensitivity to the same 

measurement type in different well locations. Figure 9 indicates that the 

measurement of bottom hole pressure is not influential to DA. From Figure 10 and 11, 

we can see that the DA is more sensitive to North-east(NE) and South-west(SW) wells 

for oil production rates and more sensitive to South-east(SE) and North-west(NW) 

wells for water production rates. 

  In conclusion, for our model in this thesis, we choose the ensemble size as larger 

than 60, and get the global average influence as around 8.8% at the end of DA times. 

In addition, the DA is not sensitive to the measurement in injection well and shows 

different sensitivity to the production well locations referring to oil and water 

production rates. 
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4 Optimal control of well settings 

  The urgent need for the energy and the real-time reservoir management entail the 

optimization of the economic output under geological uncertainty, which can be 

achieved by control the well settings. In this section, we will refer to the procedure of 

dealing with production optimization and model updating along with it. We define 

the cost function as J, which is to be optimized. In this thesis, it is applicable to use 

Net Present Value(NPV) as J. Through controlling the well rates and bottom hole 

pressure, we can maximize J to get an optimal economic output. 

4.1 Mathematical formulation  

  The optimization problem under uncertainty can be formulated as a mathematical 

model. It requires us to find set of controlled vector u, which contains bottom hole 

pressure and water and oil flow rates. We usually set the objective function as NPV, 

which is defined as the total oil revenue minus the total injection and production 

costs, combined with a discount factor d. Let , ,oil wi wpr r r denote the oil revenue, 

water-injection cost, water-production output per unit volume respectively, 

, , , , , ,, ,o j n wp j n wi j nq q q denotes the oil production rates, water production rates and water 

injection rates in well j at nth time step. Here, we denote an objective function to 

maximize: 

 

oil  revenue water   injection  cost water disposal costs

_ _ _

{ }, , , , , ,
1 1 1 (1 )

n

n t

T

n u n u n u
t

J o o j n wi wi j n wp wp j n
j j j d

r q r q r u 


   

   

    (4.1) 

, where _n u is the total number of wells, including production and injection wells. 

We set injection rates positive and production rates negative and thus the oil 

revenue is positive and water injection cost and water disposal cost are negative. The 

objective function is positive, and we want to maximize it. In this thesis, we consider 

the optimal control problem with fixed terminal time and free terminal states. 

Optimal control is a way to find some input values like bottom hole pressure in 

production well and injection flow rate minimizing the cost function. Here, we 

denote a function that accumulates over time as: 

                

1 1

0 0

( ( )) ( , )
N N

n n n n

n n

J J q t J x u
 

 

               (4.2) 

,where n is the time step to control the production setting and N is the number of 

the control steps. nx and nu are  state vector and production setting at nth step of 
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time respectively. 

  Thus the problem can be formulated as follows: 

    

                                          (4.3) 

The objective function is subjected to:  

      
                                                                           (4.4) 

  It is a constrained optimization problem, where the constrained term is ng ,which 

are basically the reservoir simulation equations for each grid block at each time 

step.In Chapter 2, we have already got governing equation as: 

                      ( ( )) ( ( )) ( )x A x t x B x t q t                           (4.5) 

  And thus we can get ng : 

  
1 1( , , ) ( ( ) ) ( ( ) ) 0n n n n n n n n n

qug x x u x A x t I x B x tL u                          (4.6) 

4.2 Gradient-based optimization method 

To solve the above problem, the existing optimization algorithms can be generally 

classified into two categories: stochastic algorithms like Genetic Algorithm and 

Simulated Annealing, and gradient-based algorithms like Steepest Descent and 

Quasi-Newton algorithms. The formal one usually requires a large amount of forward 

simulations since it is stochastic, which is really time-consuming especially when the 

number of grid blocks is large. However, the shortcoming of the latter one is that the 

optimal control we get is sometimes not a global one. In practice, the number of grid 

blocks can be very large, and thus a single simulation can take many hours, it is not 

realistic to use a stochastic algorithm. As a result, even if what we get from the 

Gradient-based algorithms is not a global one, it can improve the whole system a lot.  

4.2.1 Gradients with the Adjoint Model 

A time step in a control step 
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We add the constrained term with Lagrange multipliers n . Thus the modified 

objective function becomes: 

1_
1 1

0

[ ( , ) ( ) ( , , )]
N

n n n n T n n n n

n

J J x u g x x u


 



                          (4.7) 

  We denote 1 1( , ) ( ) ( , , )n n n n n T n n n nL J x u g x x u                          (4.8) 

as an auxiliary function.        

  Then we can get the first order partial derivation of J as a term of 1 1, , ,n n n nx x u   : 
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  And thus we can change (4.9) a bit as: 
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  It is not difficult to find that 
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,which is called the Final Condition. And the first term of (4.10) can also be 

set to 0 by imposing: 
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  Substitute (4.8) into (4.11), we get: 
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                      (4.12) 

  We can use the Final Condition to get N  and use (4.12) can compute backward 

to get all ,n for n  : 
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                              (4.13) 

After all the Lagrange Multipliers are computed, we can simplified (4.9) as: 
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  In order to get an optimized objective function, we have known that if the controls 

nu  are not constrained and so we have: 

                             0
n

T

n

L

u





                                (4.15) 

  If the controls are constrained, the optimal control policy optimizes nL . For the 

problem, we can get n

optu : 

1 1 1 1( , , , ) ( , , , )n n n n n n n n n n

optL x x u L x x u                           (4.15) 

 

More time steps in a control step 

 

More generally, when the time steps and control steps are not equivalent, in other 

words, there are more than one time step in one control step. The other conditions 

are as the same as what we discussed above. As a result, the production optimization 

process will be formulated as: 
1 1

, , 1

0 0

, , 1 ,

0,0

0,0

1

max ( , )

:

( , , ) 0

( )

( , ) 0

(0,1,..., 1) (0,1,... 1)

n

N M
n m n m n

u
n m

n m n m n m n

n n n

n

n

J J x u

subject to

g x x u

x x initial condition

c x u

Au b

LB u UB

for m N and n M

 


 











 





 

      



                      (4.16) 

  Where M is the number of time steps for each control step, m and n are the time steps and 

control steps respectively. The backward equations for Lagrange Multipliers are: 

  (4.17)

 

The gradient of the NPV function is consequentially as: 
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Note that , 1,0 1,1 ,,n M n n n Mx x     . In this case, we can choose the control steps as 

we expect without considering the time steps. 

4.2.2 The optimization procedure 

 

  The procedure of this optimization problem is a bounded value optimization. 

Solution is got through repeating the following steps: 

1. Find the numerical simulation of the dynamic system behavior in the time 

interval [0,T]. The initial conditions are 0,x u . 

2. Get the objective value J with results of the forward simulation. 

3. Using the Final condition to get N and get the Lagrange multipliers by backward 

numerical solution of (3.9). 

4. Calculation of 
n

n

L

u




 and then get an updated control vector u. 

5. Repeating step 2-4 until the global optimization n

optu  reached. 

4.3 Case Study (441 grids case) 

  As shown before, the reservoir is divided into 441 grid blocks. The five wells (four 

production wells in the corners and an injection well in the center) are fixed. 

4.3.1 Set up the Experiments  

  The experiment is set up similarly with Chapter 3, but we extend experiment time 

to 1500 days. We intend to control the production settings—bottom hole pressures 

in four production wells in the corner and injection flow rate in injection well in the 

center of the reservoir—in order to optimize the NPV. We use the gradient-based 

optimization method as discussed above to get the optimal well production settings. 

For simplicity, we choose the control step number as 1 at time 0.  

As we discussed in Chapter 2, it is reasonable to choose the minimum and 

maximum of the prescribed settings. For production settings, considering the surface 

facilities, we choose the minimum as 610  Pa and maximum is constrained by the 
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pressures of the surrounding grid blocks in order to get an out flow. For injecting 

settings, the injection flow rate can be infinitely fast, however, considering the cost of 

the injection, it is naturally constrained in a reasonable interval. For initialization, we 

can choose it randomly. 

The values we take for variables are shown in the tables as follows.  

Table 1 shows the geological variables like porosity and viscidity, etc. Table 2 shows 

the oil revenue, water production output and water injection cost per unit volume 

(cubic meter) 

Table 1-Rock and Fluid Properties 

  
0.2   

, ,o w rc c c  91.0 10  
 

1/ Pa  

,o w   
 

1000  

3/kg m  

o  30.5 10  
 

Pa s  

w  31.0 10  
 

Pa s  

0
rok  

 

0.9  

 

0
rwk  

 

0.6  

 

,or wcS S  
 

0.2  

 

Table 4.1 the rock and fluid properties 

 

Table 2-Values for computing NPV 

or  
 

300  
3USD/m  

wpr  
 

15  
3USD/m  

wir  
 

5  
3USD/m  

 

b  

 

0  

 

  Table 4.2 the values for computing NPV 

The table above shows the oil revenue price, water disposal cost and water 

injection cost per volume. b denotes the discount rate, here we suppose the discount 

rate is 0 for convenience. 
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4.3.2 Experimental results and analysis 

  We set the initial prescribed bottom hole pressures in four corner wells as 

72.5 10 Pa and the injection rate as 30.002 /m s . Considering a relatively precise 

result, it is better to choose a smaller updating step size. When we choose the step 

as improving 510 USD  every step (the total in a unit of 710 USD ), the NPV graph we 

get for all iterations shows: 

 

 

Figure 4.1 improving NPV with gradient-based optimization 

 

 Initialization optimum 

NW pressure 
72.5 10  61.0 10  

NE pressure 
72.5 10  61.1 10  

SW pressure 
72.5 10  61.2 10  

SE pressure 
72.5 10  61.0 10  

Injection rate 0.002 0.0027 

NPV 
74.3926 10  74.7559 10  

Table 4.3 optimization with “ 510 ” step 
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When the updating step changes, what will happen to the precision?  

Next we choose the size as improving 610 USD every step. The figure turns out: 

 

Figure 4.2 improving NPV with gradient-based optimization 

 

 

 Initialization optimum 

NW pressure 
72.5 10  61.0 10  

NE pressure 
72.5 10  62.0 10  

SW pressure 
72.5 10  63.4 10  

SE pressure 
72.5 10  61.0 10  

Injection rate 0.002 0.0028 

NPV 
74.46 10  74.7503 10  

Table 4.4 optimization with “ 610 ” step 

It turns out that the output will not differ from the previous optimum much when 

we choose the step size as improving 610 USD every step. However, it will save the 

cost of time a lot since the iteration number will be reduced to 17 iterations. 

 

What happened if the initialization values change? 

  For example we set a random setting different from previous one and the updating 
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step keeps as improving 610 USD every step. 

 

Figure 4.3 improving NPV with gradient-based optimization 

 

 

 Initialization optimum 

NW pressure 
72.0 10  61.0 10  

NE pressure 
72.0 10  61.87 10  

SW pressure 
72.0 10  63.08 10  

SE pressure 
72.0 10  61.0 10  

Injection rate 0.001 0.0025 

NPV 
73.49 10  74.7535 10  

Table 4.5 optimization with a different initial setting 

 

After several experiments, we can conclude that all the different initializations can 

converge to an optimal NPV around 74.75 10 USD as we expect. A step of improving 

510 USD for a step is acceptable considering precision. 

In conclusion, gradient-based method with adjoint model works well and stably in 

simple simulation of reservoir field. Actually, there are numerous applications of 

adjoint-based optimization of production settings in the petroleum engineering 

literature. Some of the earlier ones are by Ramirez and co-workers,summarized in 
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Ramirez(1987), who considered tertiary recovery techniques. This was quickly 

followed by Asheim(1987), Asheim(1988), Virnovsky(1991), Zakirov et al.(1996), and 

Sudaryanto and Yortsos(2001), who considered secondary recovery rechniques 

Although the type of production settings differ from each other, they are all 

applications of the same technique: gradient-based optimization with gradients 

computed using an adjoint model. It received significant attention after 

Brouwer(2004) and Jansen(2004) demonstrated the possibility to significantly 

increase the recovery factor using smart wells. 
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5 Optimal well placement 

Determining optimal well locations with fixed well settings is an efficient way to 

increase the Net Present Value as modeled in the reservoir simulator. Usually we 

have a reservoir model with a large amount of grid blocks, so it is reasonable to use 

stochastic optimization method such as genetic algorithm (Holland,1992),ant colony 

optimization(Dorigo&Gambardella,1997),etc. In this chapter, firstly, we introduce a 

search method based on natural systems—“Particle Swarm Optimization” 

(PSO)(Eberhart&Kennedy,1995), which is a population-based, self-adaptive search 

optimization method motivated by the observation of simplified animal social 

behaviors. It is becoming very popular because of the quick convergence and a 

relatively good solution 

 

5.1 Particle Swarm Optimization 

5.1.1 A brief introduction of PSO 

  Particle Swarm Optimization (PSO) was originally developed by Kenedy and 

Eberhart in 1995, which is a population-based evolutionary algorithm inspired by 

social behavior of bird flocking or fish schooling. PSO shares many similarities with 

evolutionary computation techniques such as Genetic Algorithms (GA). The system is 

initialized with a population of random solutions using uniform distribution and 

searches for optimal solution by updating generations. PSO is found to be very robust 

in solving nonlinear, multiple optimization and high dimensional problems through 

adaption. In a PSO system, multiple candidate solutions coexist and collaborate 

simultaneously. Each solution is called a “particle”, which flies towards the search 

space and find an optimal location to land. A particle adjusts its position according to 

its own “experience” and others’ “experience” 

 The key terms used in PSO are: 

(1) Particle( individual, agent): each individual in the swarm 

(2) Position/Location: a particle’s n-dimensional coordinates which represents a 

solution to the problem 

(3) Swarm: the entire collection of particles 

(4) Fitness: the fitness function gives the interface between the physical problem 

and the optimization problem. It is a value representing the goodness of a given 

solution given by a position in solution space 

(5) Generation: each iteration of optimization procedure using the PSO 

(6) Pbest (personal best): the position in parameter space of the best fitness 

returned for a specific particle 

(7) Gbest (global best): the position in parameter space of the best fitness returned 
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for the entire swarm 

(8) maxV : the maximum velocity value allowed in a given direction 

(9) Velocity: a vector relating to the updating of the location of a particle. 

 

Each particle keeps track of its coordinates in the problem space which are 

associated with the best solution it has achieved so far, pbest and gbest. The pso 

algorithm, at each time step, changes the velocity of each particle moving around its 

pbest and gbest locations. Velocity is weighted by random terms, with separate 

random numbers being generated for acceleration toward pbest and gbest locations, 

respectively. The procedure for implementing the global version of PSO is given by: 

(1) Initialize a swarm of particles with random choose among the solution space. 

(2) For each particle, evaluate the fitness value. 

(3) Compare each particle’s fitness value to the current particles pbest. If the 

current value is better than gbest, then set its pbest value as the current value 

and the pbest location to the current location in n-dimensional space. 

(4) Compare the fitness value with the swarm’s overall previous best. If current 

value is better than the gbest, then set gbest as the current value,. 

(5) Change the velocity and position of the particle according to the following 

equations: 

1 2( 1) ( ) [ ( ) ( )] [ ( ) ( )]i i d i i d g iv t w v t c u p t x t c U p t x t                     (5.1) 

( 1) ( ) ( 1)i i ix t x t t v t                                          (5.2) 

Where i=1,2,… is the particle index, t is the time index, t is chosen to be 1.

1 2( ) [ ( ), ( ),..., ( )]T

i i i inx t x t x t x t denotes the physical location of the i-th particle.

1 2( ) [ ( ), ( ),..., ( )]T

i i i inv t v t v t v t  represents the velocity of the i-th particle and 

1 2( ) [ ( ), ( ),..., ( )]T

i i i inp t p t p t p t  stands for the best previous position of the i-th 

particle. The index g shows the index of the best particle among all the particles 

in the group at time t. 1c  and 2c  are positive constants, which are called 

cognitive learning rate and social learning rate respectively. du  and dU  are 

two separately generated uniformly distributed random numbers in the interval 

[0,1] generated according to a uniform probability distribution. w is the inertia 

weight factor. (5.2)shows the position update using its previous and velocity. 

(6) Step 1-5 until a certain criteria is reached. 

 

After a brief introduction to the particle swarm optimization, it is reasonable to get 

a try on applying it to real cases. Take 441-grid reservoir we discuss above as an 

example, we do the experiment to test this optimization method. 
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5.1.2 Parameter Selection in PSO 

  By observing (5.1) more carefully, it can be seen that the maximal velocity allowed 

actually serves as a constraint that controls the maximum global exploration ability 

that PSO method can have. By setting a large maximum velocity extent, PSO can have 

a large range of exploration ability to select. However, the inertia weight affects the 

searching directly and maximum velocity limitation affects indirectly. 

  According to “Parameter selection in Particle Swarm Optimization”(Yuhui Shi and 

Russell C Eberhart), a lot of experiments result in a conclusion that when Vmax is 

small, and inertia weight approximate to 1 is a good choice, while the Vmax is not 

small, then a smaller inertia weight is more appropriate. When we lack the 

knowledge of Vmax, we usually set Vmax a value of maximal moving distance of one 

direction and an inertia weight around 0.5 is a good choice. Furthermore, if a time 

varied inertia weight is applied to the experiment, a better performance is expecting. 

In this case, I choose inertia weight as a randomly value distributed normally in an 

interval. 

  In many PSO models, cognitive learning rate and social learning rate are usually set 

with the same value, which makes the self “experience” learning rate be in equilibrium 

with social experience. 

5.2 Experiment and results 

5.2.1 Set up the model 

  We still take the case of 441-grid reservoir model. In order to optimize the Net 

Present Value, we will determine the optimal well locations (4 production wells and 1 

injection well). 

  In this case, we fix the well settings as: prescribed BHP as 72.5 10 Pa for 4 

production wells and prescribed injection rate as 0.002 3 /m s . 

  The objective function is still the NPV value function. 

Initialization of the swarm 

  Since it is 2-dimensional reservoir model, the particle can be formulated as the 

coordinates of the five wells (in the order of four production wells and injection well) 

  We define the swarm as: swarm (index, [location, velocity, best position, best 

value], [x, y components], well index), where index indicates the index of the 

particles in a swarm. [location, velocity, best position, best value] shows the 

properties of the individual particle. [x,y components] means the x and y coordinates 

corresponding to the location. Well index is from 1 to 5. Well 1 to 4 is production well 

and 5 is injection well. 
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  I choose the swarm size as 16(considering there are only 441 grids blocks in the 

model) and initialize the swarm as follows: 

 

Figure 5.1 initialization of the swarm 

Update of the swarm 

  The formula of the update velocity function (5.1) reads: 

1 2( 1) ( ) [ ( ) ( )] [ ( ) ( )]i i d i i d g iv t w v t c u p t x t c U p t x t          
               (5.3) 

For code, it can be transformed to:
 

swarm(i,2,w,j)=rand*inertia*swarm(i,2,w,j)+correction_factor*rand*(swarm(i,3,w,j)-

swarm(i,1,w,j))+correction_factor*rand*(swarm(gbest,3,w,j)-swarm(i,1,w,j));  (5.3)                                         

where w=1,2, i=1～swarm size, and j=1～4. “rand” means the randomly number 

between 0 and 1 chosen from a uniform distribution. In this case, I set the cognitive 

learning rate and social learning rate the same value, which is correction_factor as 

2.swarm(i,3,w,j) is the personal best position of the particle i, well j. 

swarm(gbest,3,w,j) is the global best position of the best particle. Consequently the 

updating function for the position of particle i, well j is: 

  swarm(i,1,w,j)=swarm(i,1,w,j)+swarm(i,2,w,j).                          (5.4)       
 

  It is illustrated well in the following figure, which shows the velocity update in 

2-dimensional space. 
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Figure 5.2 update of the velocity of particle 

 

5.2.2 Results and Analysis 

  We can see the process of the PSO optimization as shown by figures: 
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Figure 5.3 the process of PSO 

 

  This group of figures shows the steps of particle swarm optimization. After 17 

steps, the particles in the swarm converge to a single one, which indicates that it is 

the optimal well placement from the experiment. 

The change of the NPV value is as follows: 

 
Figure 5.4 the curve of global best NPV by steps 

  For another example when we change the well settings as the optimal one as table 

4.5 in Chapter 4. The optimization result becomes: 
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Figure 5.5 optimal well placement with optimized initial settings 

 

   
It seems that we improve the NPV by selecting well placement to a very limited 

extent compared to changing well settings, considering the uncertainty of the 

reservoir model, it seems not necessary enough to change the well location if the 
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wells have already been fixed. 

  In conclusion, the different production settings can affect the well placement, that 

is to say, a well configuration that is optimal when the wells are operated with one 

type of settings may be far from optimal when the wells are operated with another 

type of settings. Furthermore, there is another category of methods used in 

optimizing well placement. The method used in this Chapter(PSO) is categorized as 

one of the global methods, which consist of methods like simulated annealing 

(Beckner and Song 1995), genetic algorithms(Montes et al.2001,Guyaguler et al.2002, 

Yeten et al.2003),and neural networks (Centilmen et al.1999). The other category 

consists of local methods such as finite-difference-gradient (FDG) (Bangerth et 

al.2006), simultaneous-perturbation-stochastic-approximation (Bangerth et al.2003, 

Spall 2003) and Nelder-Mead Simplex(Spall 2003) methods. The second catergory is 

generally very efficient, requiring only a few forward reservoir simulations, and 

increases NPV at each iteration. However, these methods can get stuck in a local 

optimal solution. The first category can, in theory, avoid this problem but has the 

disadvantages of not increasing NPV at each iteration and requiring many forward 

reservoir simulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



52 
 

6 Case study  

This Chapter presents a discussion about the optimization of the 5-spot reservoir. 

As we know, there are many uncertainties when we are confronted with real 

problems, e.g. the permeability and porosity field might be unknown at the 

beginning. 

In section 6.1 we intend to start the experiment from a random hypothesis of the 

permeability and porosity field with fixed well placement and use data assimilation 

to estimate the true geological properties of the field. The experiment begins from 

the bottom right of the figure below. As the figure shows, after the data assimilation 

we perform the optimization of the well settings. It is interesting to compare the NPV 

using optimized production settings with the true one based on the true field. The 

uncertainty according to data assimilation and optimization process is important to 

discuss. 

In Section 6.2, we start from the left bottom of the figure (the true permeability 

and porosity field), and then optimize the NPV by determining well placements and 

controlling well settings. 
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6.1 Optimization with estimated field data 

As discussed in Chapter 3, it is better to choose more than 60 ensembles to 

estimate permeability and porosity distribution. In this case, 100 ensembles have 

been used to get the estimated rock property field of the reservoir. We compare the 

estimated results with the true permeability and porosity field. 

  The experiment is still done on the 441-square reservoir field as we discussed in 

the previous chapters. In Chapter 3, data assimilation with AEnKF has been studied, 

and now we use estimated permeability and porosity to start the optimization. The 

well locations are fixed in these experiments. (four production wells in the corner 

and one injection well in the center) 

Original well placement 

  The ensemble size we choose as 100 and the data assimilation time is from 0 to 

300 days. The figure 6.2 shows the estimated filed and the true one. 

 
Figure 6.2 estimated field with AEnKF 

    

Applying a gradient-based method to optimize the control of well settings using 

the estimated permeability and porosity field, we produce the results shown below: 
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Figure 6.3 gradient-based optimization of well settings 

 

 

 Initialization optimum 

NW pressure 
72.5 10  61.0 10  

NE pressure 
72.5 10  61.1 10  

SW pressure 
72.5 10  61.2 10  

SE pressure 
72.5 10  61.0 10  

Injection rate 0.002 0.0032 

NPV 
74.35 10  74.7723 10  

Table 6.1 optimize NPV by well settings using estimated permeability and porosity 

field 

 

 The optimal NPV is still around 74.77 10 , when the settings are applied with the 

real permeability and porosity field, the output becomes 
74.6884 10 .It is 

interesting to carry out more experiments of the AEnKF to get more insight into the 

performance of the method. 
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Figure 6.4 Optimal NPV from estimated model of 60 experiments 

  The line in the figure is 74.77 10y   .It is shown in above figure that the 

fluctuation interval of the optimal NPV is 7 7(4.61 10 ,4.78 10 )  , which is acceptable 

compared to the magnitude of NPV. 

Optimal well placement 

  It is discussed in Chapter 5, with the well settings as prescribed pressure of

72.5 10 Pa in the four production wells and prescribed flow rate of 30.002 /m s in 

the injection well, the optimal well location is shown in Figure 5.3. In this part, I will 

generate data with AEnKF with optimal well location given in Figure 5.3 and get 

another estimated permeability and porosity field. What will happen to the result? 
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  The optimization results shows below: 

 

  As shown in the figure, the change of well placement will influence the data 

assimilation results and thus the optimization results to a limited extent. The 
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optimization of the well placement seems not to improve the NPV a lot in our model 

with our parameters. 

 

 

 Initialization optimum 

NW pressure 
72.5 10  61.0 10  

NE pressure 
72.5 10  61.1 10  

SW pressure 
72.5 10  61.4 10  

SE pressure 
72.5 10  61.0 10  

Injection rate 0.0020 0.0029 

NPV 
74.4244 10  74.7789 10  

Table 6.2 optimize NPV by well settings using estimated data(optimal locations) 

 

  When we apply the settings we get in the above procedure with the real 

permeability and porosity field, we will get the NPV as 74.7192 10 USD, a little 

higher than what we get from the previous one in original well locations. 

 
The above figure shows that the value of the NPV using the optimal well settings 

given by the estimated field falls into 7 7(4.65 10 ,4.76 10 )  , which demonstrates 

that the data assimilation is effective with another well configuration. 

In conclusion, when the reservoir is modeled with different well placement, the 

estimated output will differ from each other due to the change of the placement, 

however, when the settings are applied to the real model, the NPV will fall into a 
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reliable interval. 

6.2 Optimization with true field data  

  Given the true field data of permeability and porosity, the first step to optimize the 

output is to determine the optimal well placement. As we have seen in Chapter 5, 

the optimal well location for the initial well settings is given as: 

 

Figure 6.4 

  When the locations are determined, the next step is to control well settings to 

improve the output value. The result is shown below: 
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 Initialization optimum 

NW pressure 
72.5 10  61.0 10  

NE pressure 
72.5 10  61.16 10  

SW pressure 
72.5 10  61.13 10  

SE pressure 
72.5 10  61.0 10  

Injection rate 0.002 0.0030 

NPV 
74.43 10  74.7344 10  

Table 6.2 

The results seem not to improve the NPV compared to the original well locations after a few 

iterations. 

 

 
Figure 6.6 comparison figure 

  Compared to the original well placement, PSO can improve the output with initial well settings, 

however, the advantage of the optimization is weakened when the settings are also optimized. 

On the other hand, when the field property is known, determining the optimal well location is 

urgent and worthy. 
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Figure 6.7 a random well location decision 

 
Figure 6.8 comparison figure 
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  It can be seen from the above figure that well locations indeed influence the output a lot, 

consequentially, if wells are determined randomly, it could result in an economic loss. AS a result, 

when the true field is known, it is better to determine the well placement beforehand to make 

the reservoir more profited. A more effective way to get the NPV enhanced is by adjusting well 

settings. 
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7. Conclusions and Recommendations 

The thesis focus on optimizing the output (NPV) in a reservoir field by two 

different ways: well placement and production settings, taking into account the 

uncertain of the reservoir models which can be estimated by using data assimilation. 

In this chapter, conclusions and recommendations are presented. 

7.1 Conclusions 

7.1.1 Estimation of field data with Asynchronous EnKF 

  For uncertain reservoirs, data assimilation is a very effective way to analyze the 

data of the field. Asynchronous EnKF provides an ensemble of updated reservoir 

realizations conditioned on the production data, as well as improved estimations of 

the model parameters, the state variables and the noise.  

7.1.2 Optimal control of production settings 

  For optimal control of well settings, I presented a gradient-based method rather 

than a stochastic one, since the searching space is large and continuous. It works well 

with continuous and constrained optimization problem. I apply adjoint models for 

the efficient calculation of gradients. I also compared several different initial 

conditions and step size. The method is proved to be stable and efficient for the 

21 21 -grid reservoir model when the well placement is fixed. 

7.1.3 Optimal control of production settings 

  When it comes to the optimization of well placement, I choose a stochastic 

searching method Particle Swarm Optimization instead of other ones since it is 

simple to implement, time-saving and efficient to solve the current problem. It is also 

proved that the type of production settings significantly affects the well placement 

problem. In other words, a well configuration that is optimal when the wells are 

operated with one type of settings maybe far from ones with another well setting. 

 

7.2 Recommendations 

  Although I have discussed two different ways of improving economic outputs and 

they both can solve some problems, the research in this area still has a long way to 
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go. I recommend several aspects of further research. Firstly, since there are many 

sources of uncertainty in reservoir models, it is strongly recommended that this topic 

will be discussed in depth in order to be more close to reality. In addition, it is 

unclear which estimation technique is the most reliable one for history-matching of 

reservoir models. Secondly, in real reservoir management, the well settings are 

controlled step by step and will not be determined just at the beginning. Thirdly, the 

Particle Swarm Optimization method used in this thesis still needs improve with 

parameter selection and cost of the time to get the NPV enhanced to a higher stage. 

Fourthly, saving the computational load of a reservoir simulation would be very 

attractive and beneficial for practical application and further research. Fifthly, the 

model I use in this thesis is too constrained and we still need to do a lot of work to 

test other types of reservoirs. 
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