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ABSTRACT

For certain production fields:and environments Gravity Based Structures
(GBS) are still: the preferred type of:structure. Critical in the'design of a
GBS is the deck elevation. If the deck does not rise high enough above
the water surface, intolerable wave loading:onithe sensitive equipment-on
deck willioccur. If the deck.isitoo high, unnecessary costs are:invol ved.

Inithe past it hasibeen shown that diffraction theory can quite:accu-
rately predict wave amplification in:direct surroundings of the structure
due to the under water caisson. This study will use a combination of
diffractionitheory and a Navier-Stokes solver-with improved Volume Of
Fluid method (iVOF) to predict run-up on the:columns of a GBS due to
the amplified incoming waves: Inithat case output from diffraction calcu-
lations is used as input on the:bourdaries:of the Navier-Stokes domain.
In this way waves can enter as- well as leave the domain. with: few re-
flections: Thieinumerical results for the wave run up.on the columns are
compared to measurement data.

KEY WORDS: CFD; VOF; diffraction;/boundary.conditions; riun-up:

INTRODUCTION

The designer of production platforms for.the:sea-based exploitation of cil
and gas fields has-anumber of different types of structure to choose from,
either fixed orifloating. In a number of circumstances, when the sea, for
instance, is not too deep, when the:environment is particularly harsh and:
when:storage on site isrequired, a Gravity BasedStnicture (GBS).can:be:
the:optimal solution for a certain production.field. Asithe name implies,
these structures, being composed! of concrete in most cases, remain in
position by no other means than-that they-are too'heavy-to slide away or
topple:over.

Critical in the design of.a GBS isithe deck elevation. The criterion:for
its elevation is that during the GBS’s life:span the probability of waves.
impacting the deck is:below. a:certain. value. Measuremeiits:on site can
easily generate enoughstatistical information.about the wave climate to
predict the; maxitum wave height in, say, a thousand or ten-thousand
years. ‘But the underwater-caisson and the massive:cylindrical columns
extendingithrough the free:surface also have their inflilence:on'the waves.

The process of waves being distorted by the presence of a body in
the flow is called diffraction. Diffraction can amplify the waves near
the structure and when this amplification:takesiplace:near a free-siirface
piercing body, like a.column, it:is:called run-up. This means that infor-
mation:of the wave climate alone:cannot lead to:a safe deck elevation. In
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order to assessitheimpact the presence of a GBS has on the waves, often,
modelitests are performed.

Model tests, of course, are expensive. During the design process, one
might want to evaluate: multiple configurations of caisson and columns
and the:costs of performing model tests for all configurations would be
intolerably high. Therefore -a need for calculation methods . exists that

.can determine wave amplification in the direct vicinity of the structure.

Preferably at.lower costs than the experiment. .

van Iperen:et-al. (2004)have:shown that linear diffraction:theory can
quite accurately predict wave amplification:due to a GBS. He:compared
normalized amplitudes; calculated with linear diffraction:software;. along
the center line of the Shell Lunskoye field GBS, to those obtained from
experiments. Walker.et al. (2006).used second order.diffraction theory to
predict run-up on the columns:of the.same:structire. Diffraction theory,
however, hasiitsilimitations: it cannot account for waves:overtopping the
coliimis, nor can-it deal with energy.dissipation due breaking waves.

For-anumber of years:a-utility named ComFlow has been under de:
velopment. .ComFlow is based on the non-linear Navier-Stokes equia-
tions for an incompressible, viscous fluid; which have been.discretized
by means of the finite volume metlhod. The. free:surface;is.displacediby
the Volume Of Fluid (VOF) method andito avoid jetsam and flotsam:the
VOF method is combined with a local height function, ComFlow’s first
application was to simulate fluid sloshing in the fuel tank of'a satellite
and'it has'been used to-simulate blood flow through arteries, wedge entry
problems, sloshing:in anti-roll tanks and green water loading,on:ships.

For'this paper ComFlow ‘was used:to simulate the fluid flow in the
direct surroundings of the GBS. This :approach also has its: drawbacks,
because:aitime-domain simulation requires boundary conditions toiintro-
duce waves to the numerical domain. If, at the extremities of the nu-
merical domain, the.total wave:signal is decomposed in:the undisturbed
waves'and the waves thatare diffractedi due tojpresence of the structure,
thén the boundary conditions will have to:manage both the undisturbed
and the diffracted wave. At any position along the boundary, waves will
have to.enter as well as leave the:domain‘with as few reflections:as pos-
sible.

The traditional approach to boundary .conditions in numerical do-
mains is to use-damping Zones oi all sides:of the:domain that:gradually
reduce :the total wave signal to some:specified, undisturbed wave. This
requires large:domainsibecause the distance over which the-damping.is
built up, is tisually as long as the 'significant wave length encountered

during the simulation. The-domain can be reduced -considerably if the:
velocities in the fluid at some distance from. the structure were known.

beforehand. For'the simulation of the fluid flow around the GBS, the're-




Figure 1: Model of the Lunskoye GBS

sults of a linear diffraction calculation were used to drive the waves in the
numerical Navier-Stokes domain. Frequency domain transfer functions
for the fluid velocities are Fourier transformed to the time domain and ap-
plied as Dirichlet boundary condition for the velocity at every time step.
These velocities already comprise the total wave signal: the undisturbed
wave is compensated for waves due to the wave diffracting structure.

GOVERNING EQUATIONS COMFLOW

Flow of a homogeneous, incompressible, viscous fluid is described by
the continuity equation and the Navier-Stokes equations. The continu-
ity equation describes conservation of mass and the Navier-Stokes equa-
tions describe conservation of momentum. In conservative form, they are
given by:
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Here, 9V is the boundary of volume V, u = (u,v,w) is the velocity
vector in the three coordinate directions, n is the normal of volume V, P
denotes the density, p is the pressure, V is the gradient operator. Further
p denotes the dynamic viscosity and F = (Fz, Fy, Fz) is an external
body force, for example gravity.

Boundary conditions

At the solid walls of the computational domain and at the objects inside
the domain, a no-slip boundary condition is used. This condition is de-
scribed by u = 0 for fixed boundaries, and v = uj for moving objects
with us the object velocity. Some of the domain boundaries may let fluid
flow in or out of the domain. Especially, when performing wave simu-
lations, an inflow boundary is needed where the incoming wave is pre-
scribed and at the opposite boundary a non-reflecting outflow condition
should be used. When using the domain decomposition, the velocities at
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the boundaries of the COMFLOW domain are prescribed using the wave
kinematics calculated by the far field solver.

Free surface

If the position of the free surface is given by s(z,t) = 0, the displace-
ment of the free surface is described using the following equation:

s
=t V)s=0 ®)

At the free surface, boundary conditions are necessary for the pressure
and the velocities. Continuity of normal and tangential stresses leads to
the equations:
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Here, u., is the normal component of the velocity, po is the atmospheric
pressure, v is the surface tension and 2H denotes the total curvature.

NUMERICAL MODEL IN COMFLOW

To solve the Navier-Stokes equations numerically, the computational do-
main is covered with a fixed Cartesian grid. The variables are staggered,
which means that the velocities are defined at cell faces, whereas the
pressure is defined in cell centers. The body geometry is piecewise linear
and cuts through the fixed rectangular grid. Volume apertures (F2) and
edge apertures (Az, Ay, and A.) are used to indicate for each cell which
part of the cell and cell face respectively is open for fluid and which part
is blocked by solid geometry. To track the free surface, the volume-of-
fluid function F, is used, which is 0 if no fluid is present in the cell, 1 if
the cell is completely filled with fluid and between 0 and 1 if the cell is
partly filled with fluid. The Navier-Stokes equations are solved in every
cell containing fluid. Cell labeling is introduced to distinguish between
cells of different characters. First the cells which are completely blocked
by geometry are called B(oundary) cells. These cells have volume aper-
ture F = 0. Then the cells which are empty, but have the possibility of
letting fluid flow in are labeled E(mpty). The adjacent cells, containing
fluid, are S(urface) cells. The remaining cells are labeled as F(luid) cells.
Note that these cells do not have to be completely filled with fluid. In
Figure 2 an example of the labeling is given.

E E E E E

F F F F F

Figure 2: Cell labeling: dark gray represents the body, light gray the fluid

Discretisation of the continuity equation

The continuity and Navier-Stokes equations are discretised using the fl-
nite volume method. The natural form of the equations when using the



finite volume method is the conservative formulation as given in Eq. (1)
and (2). In this paper, the discretisation is explained in two dimensions.
In most situations, this can be extended to three dimensions in a straight-
forward manner.

A&’,J.c Un
Azsy] o
Fb6 ) m
1 w0y AZdy —> U
Ub
———
Avsz Vg

Figure 3: Conservation cell for the continuity equation.

InFigure 3 acomputational cell is shown, which is cut by the body geom-
etry. When applying conservation of mass in this cell, the discretisation
results in

ueAZ0y + va AYSzT — uy, AL Oy — v, A¥Sz+
up (A7 — AQ) 0y +vp (AL ~ AY)éz =0 (5)
where the notation is explained in Figure 3.

Discretisation of the momentum equations

The momentum equations are discretised in a control volume with the
velocity as center. In Figure 4 the control volume is drawn for the x-
momentum equation for an open cell (left) and a cell that is partly cut by
the geometry (right). All the terms of the Navier-Stokes equations are
discretised in these control volumes using the finite volume method. The
discretisations of the different terms are explained in (Kleefsman et al.
2005).

v
o X

Figure 4: A control volume for the discretisation of the Navier-Stokes
equation in x-direction in the case of an uncut cell (left) and a cut cell
(right).

subsectionTemporal discretisation and solution method The continu-
ity and Navier-Stokes equations are discretised in time using the forward
Euler method. This first order method is accurate enough, because the
order of the overall accuracy is already determined by the first order ac-
curacy of the free surface displacement algorithm. Using superscript n
for the time level, the temporal discretisation results in

MO%ultt = _ pbypt! (6)
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The continuity equation is discretised at the new time level to ensure
a divergence free velocity field. The spatial discretisation is written in
matrix notation where M is the divergence operator with M® working
on the interior velocities and M® on the boundary velocities, {2 contains
cell volumes, C contains the convection coefficients (which depend on
the velocity vector) and D contains diffusive coefficients. To solve the
system of equations, the equations are rearranged to:

it =an + JtQ"% (M®)" g ®)
where
P = up — st (c (uR)uk - £ Dug - F,’.‘) ©

First, an auxiliary vector field @}, is calculated using Eq. (9). Next,
Eq. (8) is substituted in Eq. (6) which results in a Poisson equation
for the pressure. From this equation the pressure is solved using the
SOR (Successive Over Relaxation) method where the optimal relaxation
parameter is determined during the iterations. Once the pressure field is
known, the new velocity field is calculated from i} using the pressure
gradient.

HANDLING OF THE FREE SURFACE

After the new velocity field has been calculated, the free surface can be
displaced. This is done using an adapted version of the volume-of-fluid
methed first introduced by Hirt and Nichols (1981). A piecewise con-
stant reconstruction of the free surface is used, where the free surface is
displaced by changing the VOF value in a cell using calculated fluxes
through cell faces. The original VOF method has two main drawbacks.
The first is that flotsam and jetsam can appear, which are small droplets
disconnecting from the free surface (Rider and Kothe 1998). The other
drawback is the gain or loss of water due to rounding of the VOF func-
tion. By combining the VOF method with a local height function (Kleef-
sman et al. 2005), these problems do not appear any more. The local
height function is adopted in the following way. For every surface cell,
locally a height function is defined, which gives the height of the water in
a column of three cells as in Figure 5. The direction in which the function
is defined is the direction of the coordinate axis that is most normal to the
free surface. Then not the individual fluxes of the three cells are updated,
but the height function is updated using fluxes through the boundaries
of the column of the three cells (the dashed-lined region in Figure 5).
The individual VOF values of the three cells are then calculated from
the height of the water in the column. When using this adopted fluid dis-
placement algorithm, the method is strictly mass conservative and almost
no flotsam and jetsam appear.

=

Figure 5: The VOF function in cells near surface cells is updated using a
local height function.



MOVING OBIJECTS IN COMFLOW

In the domain an object, which moves according to a prescribed or cal-
culated motion, can be present. Every time step the object is moved, so
new geometry apertures for the cell volumes F® and the cell edges AZ,
AV have to be calculated. This calculation must be as accurate as possi-
ble, because this has a large influence on the smoothness of the pressure
field. When the apertures are not calculated exactly, the object seems to
be breathing in time, which causes irregularities in the pressure signal.
In two dimensions, the apertures can be calculated almost exactly. In
Fekken (2004) a procedure has been explained how to do this. When us-
ing an exact calculation of apertures in three dimensions, cross-sections
of polyhedrons with the rectangutar grid are needed, which can not be
determined in a very straightforward manner. Therefore, in three dimen-
sions a more simple method is adopted, which approximates the three-
dimensional body geometry. The general procedure can be described in
three steps. First, the starting geometry is stored in a special way using
markers. Then, every time step the volume apertures are calculated by
moving the markers. Finally, the edge apertures are calculated, based on
the volume apertures. At the start of a simulation, the geometry is built
from the finite element description given by the user. To calculate the
volume and edge apertures, the object is filled with a subgrid of mark-
ers. For every cell the number of markers of the cell inside the object is
counted, determining the part of the cell that is occupied by an object.
If a moving object is present in the domain, the geometry of the object
should be stored, such that it can be displaced every time step. Therefore,
the markers inside a moving object are stored in an array. Around each
marker, a small rectangular volume is defined, such that the union of all
the volumes forms the object. To prevent unnecessary storage, the mark-
ers in a computational cell that is completely solid will be replaced by
one marker with accompanying volume equal to the volume of the com-
putational cell. During the simulation the volume and edge apertures in
the computational grid change every time step. New volume apertures
must be calculated with the use of the markers and volumes defined at
the start of the simulation. First, the markers are moved according to
the motion of the rigid object. In case of a rotation of the object, also
the volumes belonging to the marker cells should be rotated. To calcu-
late volume apertures, the cross-sections of the marker volumes with the
computational cells should be calculated. For a general rotated volume,
this is very complicated in three dimensions. To avoid the calculation of
these difficult cross-sections, the marker volumes are not rotated, but are
staying grid aligned as in the right of Figure 6. The errors introduced by
keeping the volumes grid aligned, namely small holes or small overlap-
ping regions, are not very large.

Figure 6: Rotation of a square: starting situation (leR); exact rotation
(middle); rotation where the marker volumes are kept grid aligned (right).

After the volume apertures have been calculated at the start of every time
step, the edge apertures must be determined. The edge apertures are
calculated using a piecewise linear reconstruction of the geometry. This
method is often used for the reconstruction of the interface between two
fluids, as explained in (Rider and Kothe 1998). First, in every cell the
normal of the body is calculated based on the filling ratios of adjacent
cells. Using this, a linear approximation of the body geometry in the
cell is created where the filling ratio of the cell is needed. The edge
apertures are determined by the fractions of the cell faces that are cut by
the linear approximation. In (Fekken 2004) it has been shown that the
edge apertures calculated in this way behave smoothly in time.
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EXPERIMENTAL DATA

A number of model tests with different sea states and for several deck
elevations were performed at the CHC facility in Canada. Of these tests
only the regular tests with the characteristics mentioned in Table | were
used. The deck was elevated to its topmost position to prevent any pos-
sible impact with the waves.

Type  Wave Height Jm]  Period |s]
regular 14 12.7
regular 10 12.7

Table 1: Experiment characteristics.

As can be seen from Figure 1 the structure consists of a box shaped
under-water caisson with four large diameter concrete columns extending
from the caisson through the water surface. The caisson measures 120m
by 110m and is 15m high. The columns are 26m in diameter where they
intersect with the caisson and 24m in diameter at mid-height. They are
spaced 68m apart in front-to-back direction and 40m apart in the side-to-
side direction. Because the water depth during the experiments was 53m
and the columns were 45m tall, they extend about 7m above the mean
surface level. Steel columns are mounted to the concrete substructure to
eventually carry the deck. The positions of the wave run-up probes dur-
ing the experiments are shown in Figure 7. Waves travel in the positive
z-direction.

10 R k22
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Figure 7: The layout of the concrete substructure and the positions of the
wave run-up probes

LINEAR DIFFRACTION

The diffraction calculations were performed using standard 3D linear
radiation-diffraction software in the frequency domain. Figure 8 shows
the panel model that was used to perform the calculation; it consists of
around 2000 panels for one fourth of the total structure.

The surface elevation 7 is obtained from:

16
=25 (10)

In Eq. 10 @ is the total potential, which consists of the undisturbed and
the diffracted potential:



Figure 8: Panel model of the GBS

b = do +¢a (11)

The:diffracted potential, in:titn, comes from:

satew 2= - [[ 084,900,589, 2)450 (1)

where o is the initially unknown source strength, Sg is the mean wetted
area of the body, G is.the Green's function, which satisfies the Laplace
equation, the linearized boundary conditions. at the free.surface and the
sea bed, and the radiation condition to infinity. The velocities in.each
direction follow from the derivatives of the total .potential-in that direc-
tion, (u,v,w)" = V®. In Figure9 ke transfer functions for'the sur-
face elevation. obtained from linear diffraction along the .center line of
the structure are compared‘to the normalized amplitudes froniithe mea-
surediregular waveitests with both H = 10m and H = 14m.

Along the center line thereis.a fairly good agreement between the calcu-
latedtransfer functions:and'the measurements. The:shift in —z-direction
of the minimum in front of the first columns has already:been. addressed
in (van Iperen et al. 2004). No explanation. for ‘this shift was found.
Behind'the latter columns: the difference between the-calculated and the
measured normalized amplitudes- increases. This.could be the result:of
local energy dissipation. due toiwave breaking.

BOUNDARY CONDITION

Totinvestigate the phenomena of the shift of minimum and the:disagree-
ment between the measured and: calculated' results beyond.z = 40m, a
more detailed simulation was:required. Because the overall match be-
tween the diffraction results:and thie: measurements was quite good; the
diffraction results in terms of velocities wer¢ iised to drive:a fiilly non-
linear simulation with ComFlow. The velocities obtained from diffrac-
tion are used as Dirichlet boundary condition for the velocity; In this
way atlocaliboundary condition is created thatintrodiices the undisturbed
waves to the ComFlow domain while compensating for the oitgoing,
diffracted waves, The: required. number of grid. cells for the numerical
simulation at the same resolution can be:smaller because no numerical
dampingizones have to:be present.
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Amplitudes of difiracted wave field along centerline of GBS

X : diffraction
: |~ © —H=14m

60  -40 -20 0 20 40 60
x{m}

Figure 9: Transfer functions of the surface elevation'along the center line
of the structure compared to normalized amplitudes-from the experiments

The frequency domain. results are Fourier transformed to the time
domain: "Thesimulation starts from a fully developed. flow field at ¢t =

‘0 with the velocities.and surface elevations .obtained from transformed

linear diffraction results. The velocities at the boundaries are updated

-at every consecutive time step. Because velocities-in linear diffraction
-are only-defined 1ip to thé:mean surface; an:engineering approach called

Wheeler stretchingis used to determine the velocities up to the actual free

surface. With Wheeler siretching the vertical coordinate is transformed
by means:of the following relation:

= 2hal) where,g = ht7 "

In'Eq; 13 h is:the mean water depth and' is the.elevation:of the.actual

surface-above z = 0. In this way all vertical coordinates are stretchied
towards the actual free surface.

RESULTS COMFLOW SIMULATION

Thenumerical:simulation was-performed ona grid consisting of 500,000
cells with a resolution of ‘about (dz,dy, dz) = (1,1,1). Some stretch-
ing was applied in the vertical -direction, where the grid was the most
dense around the mean surface. The:itiitial condition at ¢ = 03 consists
of the surface elevations and the Wheeler stretched velocities from the
diffraction'calculation:. The simulation was for regular. waves with-wave
height i = 14m and period T = 12.73: Two periods: were simulated
taking:about three hours computational time on a regular. deskiop with a
3GHz processor. Figure 10 showsithe flow at consecutiveitime instances.
Several:stages.can be observed: the wave builds upasiit passes:the struc-
ture and overtops the concrete colimiis on'the downstream side of the
structure.

Thieresults of the simulation for the wave probes along the center line

-are compared to‘the results from the experiments. :In Figure 11 a;graph

similar to the one-in Figure:9 is:shown. One.can see that the normalized
amplitudes.from the simulation are quite close to the ones obtained from
the experiment,
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Figure 10: Snapshots of the simulation at different time instances.
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The surface: elevation near the columns was compared to both the ex-
perimental data and-the diffraction. results. The normalized amplitudes
are summarized in Table 2. Diffraction overestimates the: run-up on-the
columns as can be expected: the structure is' modeled up to the mean
surface and no overtopping of fluid canbe accounted for. The simulation
compares nicelyto the:éxperiments.

Amplitudes of difffacted wave field along centertine of GBS

=== gimulation
1~ © —Hs14m
o iHe10m

=

-60 -40° ~20 0 20 40 60
x(m)

Figure 11: Simulated-normalized amplitudes of ‘the surface elevation’
along the center line of the structure compared to normalized amplitudes:
from the experiments

Probe Simulation  Diffraction. Experiment

RI 0.84 0.89 1.09
RS 0.95 0.92 1.16
R21. 1.40 1.34 1.56
R25 .05 LIk 1127

Table 2: Normalized -amplitides: of the surface elevation near the
columns

CONCLUSION AND DISCUSSION

In-this.paper it was:shown that lineardiffractioniresults; in terms:of sur-
face elevations and velocities; can. be used to drive a fully non-linear
Volume Of Fluid simulation. The initial condition for the simulation: is
composed :entirely of the: velocities and surface: elevations .from linear
diffraction. At every consecutive time step.only the velocities and the
surface elevations at the:boundaries;of the.domain are-updated;

Linear diffraction by itself atready gives: a reasonable estimate of
the surface elevations- near-the structure, but it.cannot account for:wave
breaking and overtopping of the columns. It was shown that a VOF sim-
ulation of the flow in the direct surroundings of the GBS has a better
agreement with:the experiment.ihan linear. diffraction.

A significant reduction of computational time can be obtained by
combining linear:diffraction results: and a VOF simulation. This is due
to the fact-that no numerical damping zones: are required to account for
the-outgoing waves. Numerical damping zones-are usually at least one
wavelength long. The linear diffraction based boundary condition: is a
local boundary condition that introduces:waves to the numerical:domain
while,.at the same time, compensating: for the outgoing waves. In addi-
tion, the simulation;does: not.have to- be started with.the fluid at rest. It
would take one or two periods to,gradually buildip-the simulationito the
desired wave height. Starting with'a fully developed'flow field, instedd,
also:saves.a-considerable:amouiit of computationalitime.
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Nonetheless, some remarks havé:to be made. The linearsolution at
t = 0 is not the exact.solution. Because it is forced upon the doiain:
at the start of the simulation, some spurious waves willi be introduced.
These waves:will fully reflect.back into:the domain when: they reach the
boundaries, since they are not included .in the linear diffraction results.
In this case, with-a.GBS in regular waves, the spurious:waves-are small.

The Wheeler stretching procedure, furthermore, lis. not.a\transforma-
tion technique with a sound physicalibackground. By Wheeler stretching
the velocities to the actual free surface sonie.errors in the form of spu-
rious waves will be introduced to the domain, which again will not be
dealt with-at the boundaries. All in:all this:means: that if the simulation
will go on for long enough; at one-point the spirrious waves-will start to
dominate the solution andiunrealisticiresults will be obtained.

At:this point in the developnientiof Computational’ Fluid Dynamics
(CFD), where we have.{o restrict ourselves to simulating:snapshot events
in restricted domains because of computer-time:and memory, the linear
diffraction type boundary condition agrees well with. our needs. When
simiilations will'be performed ‘in larger domains and for longer periods
of time, thenimore-accurate boundary conditions will be-necessary.
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