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ABSTRACT

For certain production fleldsandenvironments Gravity Based Structures
(GBS) arestilithepreferred type of structure. Critical in thedesign of a
GBS is the deck elevation. If the deckdoes not rise high enough above
the water surface,intolerable wave loadingonithesensitive equipmenton
deck willoccUr. If the deckistoo high, unnecessary costsareinvolved.

Inthe past it hasibeen shown that diffiaction theory can quitetaccu-
ratelypredict wave amplification indirectsurroundings of the structure
due to the under water caisson. This study' will use a combination of
diffiactionitheory and a Navier-Stokes solverwith improved Volume Of
Fluid method (iVOF)to predict run-up on the.columns ofaGBS due to
the amplified incoming waves lnthat case output from diffiaction calcu-
lations is used as input on theiboundariesof the Navier-Stokes domain.
In this way waves can enter as well as leave the domain with' few re-
flections Thenumerical results for the wave run up on the columns are
compared to measurement data.
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INTRODUCTION

The designer of production platforms forthesea-based exploitationof oil
andgas fields hasa number of different types'of structure to choose from,
either fixed orfloating. In a flumberofcircumstances, whenthe sea, for
instance, is not toodeep,when theenvironment is particularly harsh and'
whenstorage on site isrequired, a Gravity BasedStructure (GBS)canbe
the optimal solution for a certain production field As the name implies
these structUres, being composed of concrete in most cases, remain in
position byno other means than'thattheyare tooheavyto slide away or
toppleover.

Critical in the design of a GBS isthedeck elevation. The criterionfor
its elevation is that during the GBS's life span the probability of waves
impacting the deck is below a certain, value. Measurements on site can
easily generate enoughstatistical information about the wave climate to
predict the maximum wave height in, say, a thousand or ten-thousand
years. 'But the underwater caisson and the massivecylindiical columns
extendingthrough the free:surface also have their influenceon'the waves.

The process of waves being distorted by the presence of a body in
the flow is called difllaction. Ditifaction can amplil the waves near
the structure and when 'this amplificationtakesplacenear a free-surface
piercing body, like a column, itiscalléd run-up. This means that infor-
mationofthe waveclünate alonecannot lead to:asafe deck elevation. In
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order to assesstheimpact the'presence of a GBShas oOthewaves, often,
modelitests are performed.

Model tests, of course, are expensive. During the design process, one
might want to evaluate multiple configurations of caisson and columns
and thecosts of performing model tests for all configurations Would be
intolerably high Therefore a need for calculation methods exists that
can determine wave amplification in the direct vicinity of the structure.
Preferably at Plower costs than the experiment.

van Iperenetal. (2004)'haveshown that linear diffraction theory can
quite accurately predict wave amplificationdue to a GBS. Hecompared
normalizedamplitudes,calculated withilinear diffraction software, along
the centerline of the Shell Lunskoyefield GBS, to those obtained from
experiments. Walkeret aI. (2006)used second orderdiffraction theory to
predict run-up on the columnsof thesamestructure. Diffraction theory,
however, hasiitslimitations: it cannot account for wavesovertopping the
colUmns, nor can' it deal with energy.dissipation due breaking waves.

Foranumberof years'a utility named ComFlow has been under de
veloprnent. ComFlow is based on the non-linear Navier-Stokes equa-
tions for an incompressible, viscous fluid, which have beendiscretized
by means of the finite volume method. The freesurfaceisdisplacedlby
the Volume Of Fluid (VOF) method and to avoid jetsam and flotsam the
VOF method is combined with a local height function ComFlow s first
application was to simUlate flUid sloshing in the 'fuel tank ofa satellite
andiit hasbeenused tosimulate bloodflow through arteries, 'wedge entry
problems, sloshingin anti-roll tanks and greenwater Ioadingonships.

Forthis paper ComFlow was usedto simUlate the fluid flow in the
direct surroundings of the GBS. This 'approach also has itsdrawbacks,
becauseaitimedUmain sirnulationrequires boundary conditions tointro-
duce waves to the numerical1 domain. If, at the extremities of the nu-
merical domain, thetotal wavesignal is decomposed inthe undisturbed
wavesand the waves thatare difli-actedidUe topresence of the structure,
then the 'boundary conditions wili:have tomanage both ,ihe undisturbed
and the diffracted wave At any position along the boundary waves will
have toenter as well as leave thedomainwith as few refiectiOnsas pos-
sible.

The traditional approach to boundary conditions in numerical do-
mains is to use damping zones oflallsidesofthedomainthatgradually
reducethe total wave signal to somespecified, undisturbed wave. This
requires largeidomainsbecause the distance over which thedampingis
built up, is usually as long as the 'significant wave length encountered
during the simulation. Thedomain can be reduced considerably if the
velocities in the fluid at some distance from the structure were known
beforehand. Forthesimulation of the fluid flowaround the GBS,there-



Figure I: Model of the Lunskoye OBS

suIts of a linear diffraction calculation were used to drive the waves in the
numerical Navier-Stokes domain. Frequency domain transfer functions
for the fluid velocities are Fourier transformed to the time domain and ap-
plied as Dirichlet boundary condition for the velocity at every time step.
These velocities already comprise the total wave signal: the undisturbed
wave is compensated for waves due to the wave diffracting structure.

GOVERNING EQUATIONS COMFLOW

Flow of a homogeneous, incompressible, viscous fluid is described by
the continuity equation and the Navier-Stokes equations. The Continu-
ity equation describes conservation of mass and the Navier-Stokes equa-
tions describe conservation of momentum. In conservative form, they are
given by:

u ndS = 0 (I)

Jv+/uuT.nds=
l'(PnVu.n)ds+fFdv (2)

Here, OV is the boundary of volume V. u = (u, v, w) is the velocity
vector in the three coordinate directions, n is the normal of volume V, p
denotes the density, p is the pressure. V is the gradient operator. Further
p denotes the dynamic viscosity and F = (Fx, Fy, Fz) is an external
body force, for example gravity.

Boundary conditIons

At the solid walls of the computational domain and at the objects inside
the domain, a no-slip boundary condition is used. This condition is de-
scribed by u = 0 for fixed boundaries, and u = u6 for moving objects
with lAb the object velocity. Some of the domain boundaries may let fluid
flow in or out of the domain. Especially, when performing wave simu-
lations, an inflow boundary is needed where the incoming wave is pre-
scribed and at the opposite boundary a non-reflecting outflow condition
should be used. When using the domain decomposition, the velocities at
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the boundaries of the COMFLOW domain are prescribed using the wave
kinematics calculated by the far field solver.

Free surface

If the position of the free surface is given by s(x, t) = 0, the displace-
ment of the free surface is described using the following equation:

Ds + (. V) a =0 (3)

At the free surface, boundary conditions are necessary for the pressure
and the velocities. Continuity of normal and tangential stresses leads to
the equations:

p + 2L = Pa + 2yHp ( +
8u \

(4)
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Here, u, is the normal component of the velocity, pa is the atmospheric
pressure, -y is the surface tension and 2H denotes the total curvature.

NUMERICAL MODEL IN COMFLOW

To solve the Navier-Stokes equations numerically, the computational do-
main is covered with a fixed Cartesian grid. The variables are staggered,
which means that the velocities are defined at cell faces, whereas the
pressure is defined in cell centers. The body geometry is piecewise linear
and cuts through the fixed rectangular grid. Volume apertures (F") and
edge apertures (A,, A,,, and A,) are used to indicate for each cell which
part of the cell and cell face respectively is open for fluid and which part
is blocked by solid geometry. To track the free surface, the volume-of-
fluid function F, is used, which is 0 if no fluid is present in the cell, I if
the cell is completely filled with fluid and between 0 and I if the cell is
partly filled with fluid. The Navier-Stokes equations are solved in every
cell containing fluid. Cell labeling is introduced to distinguish between
cells of different characters. First the cells which are completely blocked
by geometry are called B(oundary) cells. These cells have volume aper-
ture Fb = 0. Then the cells which are empty, but have the possibilityof
letting fluid flow in are labeled E(mpty). The adjacent cells, containing
fluid, are S(urface) cells. The remaining cells are labeled as F(luid) cells.
Note that these cells do not have to be completely filled with fluid. In
Figure 2 an example ofthe labeling is given.

Figure 2: Cell labeling: dark gray represents the body, light gray the fluid

Discretisatlon of the continuIty equation

The continuity and Navier-Stokes equations are discretised using the Il-
nite volume method. The natural form of the equations when using the
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finite volume method is the conservative formulation as given in Eq. (I)
and (2). In this paper, the discretisation is explained in two dimensions.
In most situations, this can be extended to three dimensions in a straight-
forward manner.

A,avj

Aäx

Figure 3: Conservation cell for the continuity equation.

In Figure 3 a computational cell is shown, which is cut by the body geom-
etly. When applying conservation of mass in this cell, the discretisation
results in

,At5y + v,,Aöz - uA,6y - vAäx+
b (A - A) äp + vb (A - A) & = 0 (5)

where the notation is explained in Figure 3.

Discretisatlon of the momentum equations

The momentum equations are discretised in a control volume with the
velocity as center. In Figure 4 the control volume is drawn for the x-
momentum equation for an open cell (left) and a cell that is partly cut by
the geometly (right). All the terms of the Navier-Stokes equations are
discretised in these control volumes using the finite volume method. The
discretisations of the different terms are explained in (Kleefsman et al.
2005).

A'ôy

Ij Xj1 Xi_t

vn

slur
=1+1

Figure 4: A control volume for the discretisation of the Navier-Stokes
equation in x-direction in the case of an uncut cell (left) and a cut cell
(right).

subsectionTemporal discretisation and solution method The continu-
ity and Navier-Stokes equations are discretised in time using the forward
Euler method. This first order method is accurate enough, because the
order of the overall accuracy is already determined by the first order ac-
curacy of the free surface displacement algorithm. Using superscript n
for the time level, the temporal discretisation results in

M°u1 = (6)

n+1 -
at

C(u,u6)u - ! ((M0)Tp _,iDs4) +F (7)
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The continuity equation is discretised at .the new time level to ensure
a divergence free velocity field. The spatial discretisation is written in
matrix notation where M is the divergence operator with M° working
on the interior velocities and M" on the boundary velocities, Il contains
cell volumes, C contains the convection coefficients (which depend on
the velocity vector) and D contains diffusive coefficients. To solve the
system of equations, the equations are rearranged to:

Uh =Uhni-i -n +atu'! (M0)Tp+1
p

(8)

where

= - our' (C(u)u - Du - F) (9)

First, an auxiliary vector field ü is calculated using Eq. (9). Next,
Eq. (8) is substituted in Eq. (6) which results in a Poisson equation
for the pressure. From this equation the pressure is solved using the
SOR (Successive Over Relaxation) method where the optimal relaxation
parameter is determined during the iterations. Once the pressure field is
known, the new velocity field is calculated from ü using the pressure
gradient.

HANDLING OF THE FREE SURFACE

After the new velocity field has been calculated, the free surface can be
displaced. This is done using an adapted version of the volume-of-fluid
method first introduced by Hirt and Nichols (1981). A piecewise con-
stant reconstruction of the free surface is used, where the free surface is
displaced by changing the VOF value in a cell using calculated fluxes
through cell faces. The original VOF method has two main drawbacks.
The first is that flotsam and jetsam can appear, which are small droplets
disconnecting from the free surface (Rider and Kothe 1998). The other
drawback is the gain or loss of water due to rounding of the VOF fiunc-
tion. By combining the VOF method with a local height function (1(leef-
sman et al. 2005), these problems do not appear any more. The local
height function is adopted in the following way. For every surface cell,
locally a height fiunction is defined, which gives the height of the water in
a column of three cells as in Figure 5. The direction in which the function
is defined is the direction of the coordinate axis that is most normal to the
free surface. Then not the individual fluxes of the three cells are updated,
but the height function is updated using fluxes through the boundaries
of the column of the three cells (the dashed-lined region in Figure 5).
The individual VOF values of the three cells are then calculated from
the height of the water in the column. When using this adopted fluid dis-
placement algorithm, the method is strictly mass conservative and almost
no flotsam and jetsam appear.

3;

Figure 5: The VOF function in cells near surface cells is updated using a
local height function.
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MOVING OBJECTS IN COMFLOW

In the domain an object, which moves according to a prescribed or cal-
culated motion, can be present. Every time step the object is moved, so
new geometry apertures for the cell volumes F' and the cell edges A,
A5 have to be calculated. This calculation must be as accurate as possi-
ble, because this has a large influence on the smoothness of the pressure
field. When the apertures are not calculated exactly, the object seems to
be breathing in time, which causes irregularities in the pressure signal.
In two dimensions, the apertures can be calculated almost exactly. In
Fekken (2004) a procedure has been explained how to do this. When us-
ing an exact calculation of apertures in three dimensions, cross-sections
of polyhedrons with the rectangular grid are needed, which can not be
determined in a very straightforward manner. Therefore, in three dimen-
sions a more simple method is adopted, which approximates the three-
dimensional body geometry. The general procedure can be described in
three steps. First, the starting geometry is stored in a special way using
markers. Then, every time step the volume apertures are calculated by
moving the markers. Finally, the edge apertures are calculated, based on
the volume apertures. At the start of a simulation, the geometry is built
from the finite element description given by the user. To calculate the
volume and edge apertures, the object is filled with a subgrid of mark-
ers. For every cell the number of markers of the cell inside the object is
counted, determining the part of the cell that is occupied by an object.
If a moving object is present in the domain, the geometry of the object
should be stored, such that it can be displaced every time step. Therefore,
the markers inside a moving object are stored in an array. Around each
marker, a small rectangular volume is defined, such that the union of all
the volumes forms the object. To prevent unnecessary storage, the mark-
ers in a computational cell that is completely solid will be replaced by
one marker with accompanying volume equal to the volume of the com-
putational cell. During the simulation the volume and edge apertures in
the computational grid change every time step. New volume apertures
must be calculated with the use of the markers and volumes defined at
the start of the simulation. First, the markers are moved according to
the motion of the rigid object. In case of a rotation of the object, also
the volumes belonging to the marker cells should be rotated. To calcu-
late volume apertures, the cross-sections of the marker volumes with the
computational cells should be calculated. For a general rotated volume,
this is very complicated in three dimensions. To avoid the calculation of
these difficult cross-sections, the marker volumes are not rotated, but are
staying grid aligned as in the right of Figure 6. The errors introduced by
keeping the volumes grid aligned, namely small holes or small overlap-
ping regions, are not very large.

UU.....
Figure 6: Rotation of a square: starting situat on (left); exact rotation
(middle); rotation where the marker volumes are kept grid aligned (right).

After the volume apertures have been calculated at the start of every time
step, the edge apertures must be determined. The edge apertures are
calculated using a piecewise linear reconstruction of the geometry. This
method is often used for the reconstruction of the interface between two
fluids, as explained in (Rider and Kothe 1998). First, in every cell the
normal of the body is calculated based on the filling ratios of adjacent
cells. Using this, a linear approximation of the body geometry in the
cell is created where the filling ratio of the cell is needed. The edge
apertures are determined by the fractions of the cell faces that are cut by
the linear approximation. In (Fekken 2004) it has been shown that the
edge apertures calculated in this way behave smoothly in time.
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EXPERIMENTAL DATA

A number of model tests with different sea states and for several deck
elevations were performed at the CHC facility in Canada. Of these tests
only the regular tests with the characteristics mentioned in Table I were
used. The deck was elevated to its topmost position to prevent any pos-
sible impact with the waves.

1ype Wave HeIght Imi Period Isi
regular 14 12.7
regular 10 12.7

Table I: Experiment characteristics.

As can be seen from Figure I the structure consists of a box shaped
under-water caisson with four large diameter concrete columns extending
from the caisson through the water surface. The caisson measures 120m
by hOrn and is l5m high. The columns arc 26m in diameter where they
intersect with the caisson and 24m in diameter at mid-height. They are
spaced 68m apart in front-to-back direction and 40m apart in the side-to-
side direction. Because the water depth during the experiments was 53m
and the columns were 45m tall, they extend about 7m above the mean
surface level. Steel columns are mounted to the concrete substructure to
eventually carry the deck. The positions of the wave run-up probes dur-
ing the experiments are shown in Figure 7. Waves travel in the positive
x-direction.

Figure 7: The layout of the concrete substructure and the positions of the
wave run-up probes

LINEAR DIFFRACTION

The diffraction calculations were performed using standard 3D linear
radiation-diffiaction software in the frequency domain. Figure 8 shows
the panel model that was used to perform the calculation; it consists of
around 2000 panels for one fourth of the total structure.
The surface elevation ij is obtained from:

1 8
(10)

In Eq. hO ci, is the total potential, which consists of the undisturbed and
the diffracted potential:



Figure 8: Panel modelofthe GBS

(11)

Thediffracted potential, intthii,, cOmes from:

q5i(x,y, z) = -. ff 2)C(z,y, z, )dS0 (12)

where is the initially unknown source strength, So is the mean wetted
area of the body, C is the Green's function, which satisfies the Laplace
equation, the linearized boundary conditions at the freesurface and the
sea bed, and the radiation condition to infinity. The velocities in each
direction follow from the derivatives of the totalpotential in that direc-
tion, (u, v, w)T = V. In Figure 9 the transfer functions for the sur-
face elevation obtained from linear diffiactioñ along the center line of
the structure are compared to the normalized amplitudes fronlithe mea-
suredregular wavetests with both H lOm and H 14m.
Along the center line thereisafairly goodagreement between the calcu-
latedtransfer functionsandthe measUrements. Theshift in zdirection
of the minimum in front ofthe first columns has already been addressed
in (van Iperen et al. 2004). No explanation for this shift was found.
Behindthe latter columns the difference between thecalculatedand the
measured normalized amplitudes increases. This could be the result of
local energy dissipationdue towavebreaking.

BOUNDARY CONDITION

Toinvestigate the phenomena of the shift of minimum and thedisagree-
ment between themeasured and calculatedresults beyondx = 40m, a
more detailed simulation was:required. Because the overall: match be-
tween the diffiaction resultsand the measurements was quite good, the
diffraction results in terms of velocities were used to drive a fully non-
linear simulation with ComFlow The velocities obtained from diffiac
tion are used as Dirichlet boundary condition for the velocity. In this
way alocaLboundary condition is created thatintroduces the undisturbed
waves to the ComFlow domain while compensating for the outgoing
diffracted waves. The required number of gridcells for the numerical
simulation at the same resolution can besmaller because no numerical
damping;zones have tobe present.
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Amplitudes of diffracted wave field along nte,1ine of GOS

-60 -40 -20 0
a(m)

diffrecfion
8 -H14m

: Hl0m

Figure 9: Transfer iuinctionsof the surface elevationalong the center line
of the structure compared to normalized amplitudes.from the experiments

The frequency domain results are Fourier transformed to the time
dornain The simulation starts from a fully developed flow field at t =
0 with the velocitiesand surface elevations obtained from transformed
linear diffraction results The velocities at the boundaries are updated
at every consecutive time step. Because velocities in linear diffraction
are onlydefined tip tOthemean surface, an:engineering;approach called
Wheeler stretchingis used to determine the velocities up to the actualfree
surface. With Wheeler stretching the vertical coordinate is transformed
by meansof the f011owing relation:

z'h(ql) hz = whereq = --- (13)

In Eq 13 h isthemean water depth andi is theelevation:oftheactual
surface above z = 0. In this way all verticalcoordinates arestretched
towards the actual free surface.

RESULTS COMFLOW SIMULATION

Thenumericalsimulationwasperformed on a grid consisting of 500,000
cells with a resolution of about (dx,dy, dz) = (1, 1, 1). Some stretch-
ing was applied in the vertical direction, where the grid was the most
dense around themean surface. The initial condition at t = Os consists
of the surface elevations and the Wheeler stretched velocities from the
diffiaction calculation The simulation was for regular waves withwave
height H = 14m andperiodT = 12.7s. Two periods were simulated
takingabout three hourscomputational time on a regular desktop with a
3GHz processor. Figure 10 showsthe flow at consecUtivetime instances.
Severalstages can be observed: the wave builds upasit passes the struc-
ture and overtops the concrete columns on the downstream side of the
structure.

Theresults of the simulation forthe wave probes along the center line
are compared to the results from the experiments. In Figure 11 a,graph
similar to the onein Figure9 is shown. Onecansee that thenormalized
arnplitudesfrom the simulation are quite close to the ones obtained from
the experiment.
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Figure 10: Snapshots of the simulation at different time instances.
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The surface elevation near the columns was compared to both the ex-
perimental data and the diffraction results. The normalized amplitudes
aresummanzed in Table 2. Diffraction overestimatestherun-up onthe
columns as can be expected: the structure is modeled up to the mean
surface and no overtopping of fluid can!beaccounted for. The simulation
compares nicelyto theexperiments

Amplitudes of diffracted wave Said along cenieztlne of GBS

Table 2: Normalized amplitudes of the surface elevation near the
columns

CONCLUSION AND EISCUSSION

Inthispaperit wasshown that.lineardiffiactionresults, in tenns:ofsur-
face elevations and velocities, can be used to drive a fully non-linear
Volume Of Fluid simulation. The initial condition for the simulation is
composed entirely of the velocities and surface elevations from linear
diffraction. At every consecutive time steponly the velocities and the
surface elevations at theboundariesof thedomain areupdated

Linear diffraction by itself already gives a reasonable estimate of
the surface elevations-nearthe structure, but itcannot account forwave
breaking and overtopping of the columns. It wasshown that a VOF sim-
ulation of the flow in the direct surroundings of the GBS has a better
agreement withthe exper ment than linear-diffraction.

A significant reduction of computational time can be obtained by
combining linear diffi-action results and a VOF simulation This is due
to the fact-that no numerical dampingzonesare required to account for
theoutgoing waves. Numerical damping zones-are usually at least one
wavelength long. The linear diffraction based boundary condition is a
local boundary condition thatintroduces;waves to thenurnericaldomain
while,at the same time, compensating for the outgoing waves. In addi-
tion; the siinulationdoes nothave to be startedwith the fluid at rest. It
would take one or two penods togradually buildup the simulationao the
desired wave height. Startingwitha fully developedflow field, instead,
alsosavesa-considerableamount of computationalitime.
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Nonetheless, some remarks haveto be mñde. The linearsolution at
= 0 is not the exact solition. Because -it is forced upon the domain

at the start of the simulation, some spurious waves will be introduced.
These waveswiil tIillyreflect.baek intothe dornain-whenthey reach the
boundaries, since they are not included in the lineardiffraction results.
In this case, withaGBS inregularwaves, thespuriouswavesare small.

The Wheeler stretching procedure, furthermore, is notatransforma-
tion technique with a sound physicalbackground. By Wheeler stretching
the velocities to the actual free surface some errors in the form of spu-
rious waves will be introduced to the domain, which again will not be
dealt with-at the boundaries. All mall thismeansthat if the simulation
will go on for long enough, at onepointthe spurious waves-will startto
dominate the solution and unreaJisticresuIts will be obtained.

Atthis point in the development of Computational Fluid Dynamics
(CFD), where-we-have-to restrict ourselves to simulating-snapshotevents
in restricted- domains because of computer-time- and memory, the linear
diffraction type boundary condition agrees well- with our needs. When
simulations willbe performed in larger domains and for longer periods
of time, thenimoreaccurate boundary conditions willbe-necessaiy.
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