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Abstract
Electromagnetic metasurfaces in recent years have drawn significant attention in the Optics community
due to their novel optical properties and miniaturized integration advantages. Since the optical properties
of those materials are complex to model and require finer theory than what implied in geometrical optics,
systematic integration study of those solutions is not reported in Literature and motivates this research.
In previous work, the design of polarization-sensitive spectral filters based on metasurfaces devices and
integrated into Bragg reflectors has been reported. The use of such a spectropolarimeter concept may
lead to significant miniaturization improvements in Space applications, where launches of small satellites
are becoming accessible to not-governmental companies and trending. Typical spectral and polarimetric
functionalities are currently integrated with several additional components required for the propagation
of light. The metasurface based spectropolarimeter concept operates in a division of focal plane and
can be integrated on off-the-shelf CMOS sensors, when opportune factors are taken into considerations,
with the use of a single lithographic step. The main difficulty in their use arises from the limited
bandwidth dictated by the Bragg reflector and the polarization response of the metasurface, as well as
strict requirements of telecentricity to limit angle-dependence at the focal plane.
In the present work, we offer novel modeling tools to predict the electromagnetic performance of the
device in terms of diffraction and spectral response. We explicit how those tools, in comparison with
other approaches like Finite Element Methods, can provide an efficient and physical-based assessment
for the design of the spectro-polarimetric filters. We apply then such tools to analyze the diffraction of
the filters and the integration of the sensor in a Space Mission for aerosol detection in the VIS and SWIR
range, by designing a set of filters able to overcome the bandwidth limitations above mentioned, finally
providing simple engineering figures in terms of integration requirements to be considered.
The work sets the bases for further improvements, on one side, in the modeling of those structures and
on the other side in their integration in complex systems.

2



Preface
The report presents a 1-year work in terms of performance characterization and integration of a metasurface-
based spectral filter, which has been financed and carried out at TNO (Delft) with additional support
of TU Delft. Due to clarity in presenting the variety of topics, the report is presented in Parts. With
the vision that physical phenomena shall not be simplified much more than necessary for their descrip-
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present a self-consistent formulation, when not overly lengthy, we derive results from basic principles.
Some preliminary knowledge of the reader in wave, diffractive optics and algebra is however implicitly
assumed. We suggest an electronic view of this report. The numerical codes used for implementation in
Python may be published on Github at the end of the embargo period. They shall, however, be easily
implementable with the provided information. Even when thoroughly proof-checked, we are aware that
errors are always around the corner. Feel free to contact me in case you determine one.
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on the rear principal plane. As demonstrated through the limit operations (6.11) and
(6.12) the two points of view are consistent for a telecentric optical system in image space
with a collimated input field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.7 The figures represents the (geometrical) operating principle of a complex optical system
which is telecentric in image space. It also models the optical system that will be con-
sidered from now on for the performance estimation of the metasurface. Since chief-rays
are (ideally) parallel for all sub-bundle of rays, the exit pupil is positioned at infinity by
definition. It, however, subtends a finite etendue due to conservation of energy. Hence
also its diameter will tend to infinity. The focusing of this system can in first approxima-
tion be related to a single lens positioned on the rear principal plane and appropriately
displaced. If the input field is further collimated, like in the present case, the dimensions
of this effective aperture is equal to the size of the entrance pupil. In a real system higher
geometrical displacement are surely present and the operation principle will slightly differ
from the ideal one presented . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.8 Illustration of the mapping of coordinates, geometrical interpretation of Jf and point’s
velocity in the tangent space. The local detector versors are in the same plane delimited
the the satellite versors îs, k̂s depicted in Figure 6.10 (introduced later in the report). The
vector r̃ob (same appearing in Figure 6.1 upon normalization) parametrizes the object
space domain and its tangent space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.9 a) The figure illustrates the detector grid remapped in the qu, qv plane, with a smaller
number of pixel for illustration purposes for a FOV = 80◦ and altitude of hs = 500km.
The radial distortion is naturally induced by the observation geometry.
b) The figure illustrates the variation of effective ground sampling distance (defined as in
(6.17)) for various altitudes and FOV. The mapping distortion is only a weak function of
the altitude and is simil-parabolic in the FOV. FOV > 90◦, as already pointed, present
high radial distortion and shall be avoided within all ranges of altitudes. . . . . . . . . . . 70

6.10 a) [Arranged from the web] Illustration of an SSO orbit and its precession along with
Earth’s revolution, for different time realizations.
b) [Arranged from the web] Illustration of the orbital parameters used for the description
of the circular orbit under consideration. The reference frame jointed with the satellite is
also depicted with the along and cross-track directions. The angular motion of the satellite
and Earth is also depicted (both objects rotate in the represented frame). The other orbital
parameters (true anomaly, eccentricity...) are not of interest for this preliminary analysis . 72

6.11 Illustration of the ground-tracks during an SSO orbit of a satellite at hs = 500km,Ω(t0) =
0. The second-order effect of orbital precession has been neglected in the limited simulated
step of height orbital periods. The FOV projection is represented. The present solution
does not achieve full consecutive coverage at center latitudes. Full coverage, however, may
be possible using a constellation of 3− 4 satellites, if required. . . . . . . . . . . . . . . . 73
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6.12 a) Velocity streamlines on ground at the equator and relative velocity distribution in
space. For other orbital points, the distribution would slightly differ, oscillating in the x
directions. It will be from now on assumed that the attitude control system corrects for
the small deviation inherent with the Earth’s rotation.
b) The variation of the inertial relative ground velocity vgt0 and the inclination of an SSO
orbiting satellite for various altitudes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.13 a) Time of permanence of a front of points entering the detector at t = 0 and their
streamlines, calculated from transforming the ground-streamlines. Radial distortion and
disuniformity is present far from the nadir region. We refer to a SSO orbiting satellite at
hs = 500km, entering at the maximum elevation u = π/2. Since we have assumed the
deviation at the equator to be corrected by the ACDS system, the provided distribution
is mostly consistent for all points in the orbit with just minor deviations.
b) Velocity distribution (non-dimensionalized on its ideal value) of the object points ve-
locity on the detector. Due to the inverse of the magnification factor present due to the
viewing geometry, the velocity decays for off-axis points. The integration time require-
ment shall hence be set at the nadir pixel for the most conservative case. The increase
in permanence time for off-axis pixels further suggest a way to counteract the increase in
GSDρ by means of time integration delay and other post-processing techniques . . . . . . 75

6.14 a) The figure illustrates qualitatively the correlation between a moving object region
mapped on the detector and a pixel, observed for a given integration time, with no de-
viation of the velocity vector. Points at various coordinates ξ have different permanence
times during this measurement.
b) Plot of the spatial distribution of the permanence time for the case discussed in a).
During an integration time, the permanence time is a trapezoidal function of ξ and the
distribution acts as a spatial windowing in the object space domain. Various windows are
overlapped through different measurements (and also different pixels). In the limit vd → 0
the distributions tends to a square of extension lp for all measurement as expected. More-
over, the mean averaged time of each point is constant to lp/vd once all measurements are
considered, as expected.
c) Qualitative illustration of the correlation in the case of not-aligned point-object velocity.
The distribution would, in this case, be a function of the two variables ξ, η. Such operation
regime can be characteristic of the off-axis points as the streamlines in 6.13 depict. . . . . 76

7.1 a) Plot of the real refractive index of all materials and imaginary refractive index of aSi : H
in the spectrum b) Plot of imaginary refractive index of TiO2 and SiO2 in the wavelengths
of interest. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.2 Proposed multi-DBR integration concept. For reference, each DBR would contain a few
dozens of pixels. Some spacers between angular bands may also be required to avoid light
shadowing and vignetting effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7.3 Resonances curves of all DBRs designs in Table 7.1. The Usable Channel Bandwidth is
also represented in white. The values of permittivities cavities represented are in the range
of the matrix-inclusion materials. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.4 Top) Intensity transmission spectrum over an angle, in colour-plot for the p polarization
(left) and the s polarization (right). Center) Intensity transmission spectrums in line-
plots for normal angle and at θ = 30◦ for the two polarizations Bottom) Plot in the
complex plane of the amplitude transmission at λ = 1.1µm for an angle envelope. Point
representation of two points at same wavelength and angle of θ = 10◦. . . . . . . . . . . . 85

7.5 Left) Polarization dependence plane-wave transmissivity factor in the polar angle. Right)
Spectrum of the same quantity for an angle of θ = 10◦ . . . . . . . . . . . . . . . . . . . . 86

7.6 a) Contour plot of the spectral focused transmissivity in the spectrum for the various NA
of focusing b) Variation of the peaks transmission, peak shift and FWHM in relation to
the half-cone angle. Also ideal filter apodization is presented for comparison c) Spectral
focused transmissivity for angles of θmax = 0◦, 10◦, 20◦, 30◦ and location of maximas. . . 87

7.7 Band transmission integrated over the wavelengths. The ideal apodized filter transmission
is also represented for comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
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7.8 Focal fields, from left to right, of x, y, z components respectively, upon uniform illumination
of x polarized input light, for a wavelength of λ = 1.098µm and an NA = 20◦, chosen to
be the peak wavelength at the given NA respectively. The scale bars are associated with
the value of the normalized scaled field ef |Σ0/(kf sin2 θmax). Dimensional units may be
found in accordance to scaling factors in Equation 5.3 in relation to the spectral radiance. 88

7.9 Zernike expansions module of the scalar functions appearing in the Jones matrix of the
device, for the three function (vertically) and two modes (horizontally). Higher order
modes are qualitatively similar, stable, and increasing towards higher NAs . . . . . . . . . 89
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malized on its maximum value at the origin, in logaritmic scale. At the center, the con-
tribution M1 associated with the Stokes parameter s1, normalized on the same quantity.
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column, represents PSFs at a wavelength of λ = 1.078µm, right outside of the spectral
transmission region. Central column, a bigger wavelength of λ = 1.098, (peak wavelength
for θmax = 20◦) and on the right column for the plane-wave normal peak wavelength
λ0 = 1.104µm. In all cases, focusing NA is θmax = 20◦. Dimensional units in microns and
same colorscales used for every row, apart form the M1,M2 coefficients at λ = 1.104µm,
which have been amplified of 5× for clarity. Zoom in for improved visibility. . . . . . . . . 91

7.11 a) On top, intensity distributions of the unpolarized term M0 (left) and M1 (right) for
various focusing half-cone angles for a wavelength of λ = 1.098µm. All the distributions
are normalized (differently) on the origin value for illustration purposes and compared
with the Airy distribution. b) Same intensity plots at a fixed focusing half-cone angle for
various wavelengths. Zoom in for improved visibility . . . . . . . . . . . . . . . . . . . . . 92

7.12 Finite transmittances spectrums in various focusing angles for three enclosing radiuses,
increasing from left to right. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7.13 On the left column, finite transmittances spectrums for various NAs (in rows) and encircled
radiuses (in colours). On the right column, ratios between finite transmissivities and wide
focal transmittances in the spectrum within the same quantities variations. . . . . . . . . 94

7.14 Top) MTF contributions for unpolarized input light at various wavelengths, for a θmax =
15◦ (left) and the peak wavelength and various NAs (right). Bottom) Real part of OTF
contributions due to linearly x polarized light, for φk = 0 and various wavelengths for a
given NA (left) and various NA for the peak wavelength (right). . . . . . . . . . . . . . . 95

7.15 Azimuthal dependance of transmission coefficients of case study a) at λ = λx in the polar
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Terminology and Symbols
In Appendix G, we report a comprehensive list of Constants and Symbols, in alphabetic order, used
throughout the report. We invite the reader to refer to those when the meaning of a symbol is not clear
from the context. The following the acronyms used:

3MI Multi-viewing, Multi-channel, Multi-polarization Imager

AOT Aerosol Optical Thickness

APD Avalanche Photo-diode Detector

ATF Amplitude Transfer Function

CMOS Complementary Metal Oxide Semiconductor

DBR Distributed Bragg Reflector

FEM Finite Element Method

FOV Field of View

FPA Focal Plane Array

LEO Low-Earth Orbit

NIR Near Infrared (Spectrum)

OMU Opto-Mechanical Unit

OTF Optical Transfer Function

PSF Point Spread Function

SNR Signal to Noise ratio

SPEX Spectropolarimeter for Planetary Exploration

SSA Aerosol Single Scattering Albedo

SWIR Short Wave InfraRed

SZA Solar Zenith Angle

TM-p Electric field p polarization, in the incidence plane

TE-s Electric field s polarization, perpendicular to incidence plane
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TRL Technology Readiness Level

VIS Visible (Spectrum)

VISIR Integrated Visible and Infrared detectors
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1
Introduction

In this Master Thesis Project, we investigate the modeling and the integration of a polarization-dependent
spectral filter, proposed and preliminarily designed in [1] for a Space sensing application. The concept
is promising due to its high miniaturization potential, so that we investigate its performance more thor-
oughly in the framework of a feasibility study for aerosol applications, sharing similar spectral ranges
and requirements to the ones achievable with such concept. Nevertheless, the modeling techniques and
characterization of the structure is in great part applicable also for very different applications.
This report is organized in Parts, Chapters and Sections. In Part I, after performing a concise design
review of the concept in [1], we formulate clear research questions and a research framework from analysis
of similar concepts and a systematic requirements analysis, based on the 3MI hyperspectral instrument
and science requirements of Sentinel 7. Upon design review, it becomes clear that to perform a feasibil-
ity study of various spectral channels, pixels and configurations, a systematic and efficient performance
modeling of the filter upon focusing is required. Metasurface-based design in fact usually relies on ex-
pensive FEM simulations, which even though accurate become quickly impractical for an extensive set
of configurations.
We hence formulate in the Theory disclosure Part II, a threefold analytically model, based on an effective
medium formulation, a transfer matrix method and a preliminary diffraction model, which shows great
improvement in simulations times. The final scope of the modeling is the determination of an optimal
reconstruction matrix from electromagnetic considerations, including diffraction-focusing effects. Even
though based on a few assumptions and relatively complex, we demonstrate that the model can well
predict the plane-wave performance of manufactured structures when the correct parameters are used
(Chapter 8). In Part III, we perform an analysis of the system parameters (mission and orbital analysis,
preliminary optical system sizing) for providing reasonable inputs for the feasibility study. We hence
apply the previously mentioned theory to the science requirements under consideration by designing
a variety of pixels covering, with the use of six DBRs, the required spectral range. We analyze sys-
tematically the performance parameters of those designs. We explicit measures to overcome the main
limitations cited in [1], by analyzing the spot size and filtering techniques. Finally, we put in application
the introduced modeling to experimental results of preliminary manufactured structures and suggest
further experimental studies.
In Part IV, we switch point of view to a system perspective. We down-select a feasible detector archi-
tecture and perform its noise and power budget in combination with the spectral filter. We clarify on
preliminary temperature requirements, dictated by the choice of the detector. We also investigate, from
a simplified 1D analysis, uniform thermal expansion effects. Unfortunately, an optimized and realistic
optical system for this case study could not be fully designed in the time-frame of this project, hence
results of the combined optical performance of optics and filter are not available. However, the modeling
techniques discussed in Part II would be still applicable. The integration analysis results in the exposure
of some integration requirements, which shall be considered by optical designers when using the filters.
Performance maps and parameters of the spectral filter are also reported, which summarize the filter
behavior without required preliminary knowledge of the details of the modeling. A few considerations
on the mass targets of the Space concept are also drawn in the conclusion of this part, with the under-
standing that those are rather preliminary. An estimation of cost of the system is deliberately avoided
since it can’t yet be estimated with any confidence level, being strongly dependent on aspects out of our
control.
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Design and Requirements Review
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2
Design Review

In the present Chapter, we perform a concise review of the design proposed in [1], in order to identify
areas of improvement and further activities to perform. In particular, we analyze the process-flow which
leads to the choice of the modulation technique and the design, highlighting further required analysis.

2.1. Choice of a modulation technique
The main driver for the design of a miniaturized spectropolarimeter device is the necessity of a mul-
tifunctional single device able to perform all at once the spectral and polarization measurements of a
given scene. Whereas, separately, solutions for spectrometers or polarizers are implemented and widely
used in space and on ground, integrated spectropolarimeter measurement with full Stokes retrieval is yet
very complex to implement. As reported in [1], [6] typical solutions consist of introducing modulation
in the spectrum or the polarization at a certain stage of the optical system. Those modulations may be
introduced with the use of filters at the detector focal plane (division of focal plane) or at the aperture
(division of aperture). In the latter case, for example, the beam itself can be split and undercome differ-
ent filtering, being focused on separate detectors. Modulation can be also performed on the amplitude of
the field (division of amplitude) with the use of beam-splitters and intermediary analysis of the signal [6].
One may use a color filter on a moving wheel to apply different filtering to the beam at different times,
by though jeopardizing time resolution. Other polarimetry methods are based on channeled imaging po-
larimetry, where polarization is spatially modulated in interference fringes due to diffraction of specially
engineered gratings.
Many of those concepts require bulky optical systems and multiple devices and, as all optical instru-
ments, result in a tradeoff between temporal, spatial and spectral resolution.
Parameters which influence the choice of modulation technique have been addressed in [1], who high-
lighted instrument volume, complexity, polarization accuracy and aliasing as main driver criteria for the
tradeoff, which leads to the choice and design of a division of focal plane solution. Other important
parameters influence the behavior of the spectro-polarimeter: requirements imposed on the optical sys-
tem, signal to noise, aberration control, diffraction performance, cross-talk between measurements, angle
dependence, manufacturing complexity and tolerancing, integration, costs, aging, thermal and radiation
stability etc...The uncertainty over the estimations of those performance parameters can be minimized
only once a complete optical system is designed and used as a demonstrator for the concept proposed
in [1]. Nevertheless, we highlight that a few preliminary considerations regarding the above additional
criteria can be drawn by more detailed modeling of the device performance and some knowledge on
generic aerosol mission requirements, which is the motivation for the work undertaken in this report and
the detailed analysis in the next Chapters.
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2.2. Design implementation
Having selected a division of focal plane array as the driving choice for modulation technique, [1] evalu-
ates a metasurface based filter composed of two polarization units and a spectral unit. The spectral unit
consists in a narrow spectral band DBR design to provide a bandgap of ∼= 300nm with a spectral reso-
lution ∼= 5nm, depending on the number of mirrors used. The polarizer units consist in an anisotropic
cavity modifying the spectral response of the DBR by means of inclusions and a waveplate array to
induce phase-shift for the measurement of circular polarization. Intensity is reconstructed from a grid of
4 distinct measurements, one for each Stokes parameter, as represented in Figure 2.1

Figure 2.1: Metasurface design proposed in [1] and its integration on the detector FPA. Each pixel is composed of multiple
metasurface resonators both in the cavity between the DBR mirrors and in the wave-plate array at the top of the structure.

The reconstruction can be achieved in various ways. Differently polarized light, as we will also exten-
sively demonstrate theoretically, gets transmitted predominantly at different spectral peaks. In either
case, the device works by modulating the polarization information in the amplitude of the transmitted
light:

• Concept 1 : If both x and y polarized peaks are used, one must couple the spectral measurements
with the polarization ones. For n spectral measurements, the matrix contains 4n entries and
is usually degenerate, because of linear dependence of the measurements. As a matter of fact,
without filtering at least one of the peaks, the required polarization contrast in the measurements
is never achieved, since the whole spectrum is always measured at the detector. To avoid such
degeneration, a grating can be used or another element with a high permittivity contrast in the
cavity or on the waveplate array, to induce a spectral peak outside of the integration range. The
use of this concept is limited by condition number of the reconstruction matrix, but reconstruction
has been demonstrated experimentally in [4]. In this concept, more light reaches the single pixel
but the information is harder to retrieve, resulting in general in a lower SNR. On the other hand,
all spectrum data-points are retrieved simultaneously (so that the filter is more compact) and the
statistical uncertainty over their average value after reconstruction is lower with this concept.

• Concept 2 : By means of filtering one of the spectral peaks, spectral measurements can be decou-
pled and reconstruction carried independently for all polarization states, which is the main design
proposed in [1]. Such design offers a better condition number, since polarization contrast between
the measurements is maximized. However, integration of multiple bands is more cumbersome since
all undesired spectral peaks must be suppressed for the different spectral pixels, which requires
special considerations. If a bandpass filter is used for the purpose with a single DBR design, the
measurement technique is mainly limited in bandwidth and practical realizations of pixel-dependent
bandpass filters. However, we propose changes in the design to avoid this intrinsic limitation, in
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Section 7.4. In Concept 2, roughly half of the light reaches the single pixel, however, the condition
number is greatly improved because of the eliminated inter-dependence between the measurements.
As a result, the SNR achievable in the reconstructed Stokes parameters is higher. If filtering is not
optimal, however, there is more uncertainty on the statistical mean of the retrieved spectrum.

The focus of the research is on the second measurement technique, since it naturally offers a better re-
construction, maximizing SNR and has already been downselected in previous work [1] for the purpose.
We point out that the methods for the analysis of the concept are similar: even in the second concept,
some undesired polarized light is always transmitted and influences the condition number also. So all
present methods will be equally applicable for both cases by using different reconstruction methods.
The proposed design has the advantage of integration on the detector and integration of both measure-
ments in once. Moreover, it allows achieving very narrow spectral resolution in polarization measure-
ments, which instead on typical aerosol scattering devices is more coarse than the unpolarized intensity
measurement. We have observed that in [7], [8] the polarization spectral resolution requirements are less
strict than the intensity ones. According to [6] polarimetric information is not as wavelength dependent
as spectral intensities. Nevertheless, an improved spectral resolution in the polarized channel is expected
to enhance the reconstruction accuracy of aerosol properties.
The use of DBR mirrors, which are widely implemented and manufactured for spectrometer devices,
provides flexibility in the manufacturing, with some changes to the process in order to deposit the inclu-
sions and the waveplate array. Of course, the advanced integration does not come for free and the fact
that a grid of distinct spatial measurements is used for reconstruction introduces aliasing in the measure-
ments and possible crosstalk between the measurements. The imager arrangement must be thoughtfully
designed in parallel with the buffering units in order to match the measurements during an integration
time. We review a possible imager arrangement selected for the case aerosol mission considered in this
report, in Chapter 6.
We further report that the use of the waveplate array is not necessary in cases in which the circular
polarization of the field is negligible and must not be retrieved. Even though measurement of circular
polarization has additional benefits, as in applications for exoplanets detection [9], the magnitude of the
third Stokes parameter s3 is order of magnitudes smaller than the linear polarized components [10]. The
deletion of the waveplate array component, with an opportune redesign of the cavity inclusions, results
in simplified manufacturing and design of the metasurface and also an improved condition number. We
review such considerations also in Chapter 6 and implications of such choice on the condition number in
Section 5.3.4.

2.3. Optimization of the design
Once the design has been selected, [1] analyzes a few optimization parameters in order to enhance the
performance and the reconstruction. In particular, parameters which have been considered are the con-
dition number of the Mueller Matrix associated with a normal incidence plane wave, shape of the cavity
to achieve uniformity of angle response, sampling of the grid in relation to the standard deviation of the
measurements, choice of sizes of the inclusions in order to minimize mechanical tolerancing effects and
spectral drifts at normal incidence.
The condition number is indeed an important parameter in the performance estimation. The retrieved
intensity measurements are not directly the Stokes parameters, but related to it by means of the Mueller
matrix of the device. Mathematical details on such formalism are revisioned in Chapter 4.4. The Stokes
parameters are hence estimated from inversion of such matrix from the input, noisy, measurements,
which lead [1] to select an equidistant arrangement of the resonator cell. In the condition number study,
moreover, the presence of the additional spectral peak has not been previously considered in the defini-
tion of the Mueller Matrix, assuming that a bandpass filter could be engineered for every pixel design.
We will review this hypothesis, offering a design choice that may lead to the natural extinction of such
a peak. It is finally important to calculate the condition number of reconstruction over a focused beam
and upon accurate estimations of the polarization integrals involved in the treatment. We perform this
analysis in Chapter 7.
The power budget performed in [1] requires a link with the Jones matrices of the electromagnetic prop-
agation (to account for the partial admittance of light due to polarization filtering) and shall be further
generalized in our study to account for the focusing geometry. The sizing criteria used in [1] assumes
Rayleigh diffraction with a Nyquist sampling for the superpixel (the composition of the four polariza-
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tion pixel cells). This sampling criteria is strongly dependent upon a diffraction analysis and heavily
influences the overall transmittance behavior of the integrated solution. Moreover, [1] suggests the use
of a telecentric diffraction-limited optical system, which is of too complex realization over wide ranges
of wavelength. In results in Chapter 7, we suggest from the formal diffraction solution to use a signif-
icantly oversized pixel to limit diffraction cross-coupling. The overall pixel size is however not affected
significantly, since [1] sized the pixels at significantly lower NA than what we suggest. As a result,
the telecentric optical system is not strictly diffracted limited anymore and, we conjecture, of simpler
realization.

2.4. Further required analysis
Further required analysis is suggested in [1], in particular in additional study of multiangular concept,
performance upon focusing and diffraction and better characterization of the device. Within the Chapter,
we have also highlighted some additional activities and interesting analysis to be performed in order to
characterize the structure and its integration. In particular:

• Downselecting high-level requirements of integration from the system (top-down approach) and
clarifying on constraints of the metasurface integration in terms of imposed requirements (bottom-
up approach). Mainly discussed in Chapter 3.

• Downselecting, from heritage instruments with similar mission requirements, an optical system for
a sound feasibility study of the integration of the device. This activity could not be carried in the
provided time-frame.

• Performing some preliminary mission analysis, in terms of orbit and observation geometry, at
the level required for analysis purposes of the metasurface design and its power budget. Mainly
discussed in Chapter 6.

• Expanding the operating bandwidth of the concept and provide a clear design of the required
spectral channels in VIS and SWIR, for a given science case set of requirements. Mainly discussed
in Chapter 7.

• Determining a new arrangement design for a multiangular measurement science case in the required
spectral channel which does not require s3. Discussed in Section 6.7.

• Characterizing the electromagnetic behavior of the metasurface structure with more accuracy in
terms of polarization and angle dependency (also azimuthal). Mainly discussed in Chapter 7 with
concepts introduced from the methods in Chapter 4.

• Perform a polarization sensitivity analysis with respect to focusing angle, uniformity of the input
signal and aberrations induced by the filter. Also discussed in Chapters 7, 4.

• Performing a formal diffraction study to verify the pixel sizing criteria used in [1] and determine
cross-talk between pixels due to diffraction. Discussed in Chapters 7.

• Undertaking a formal power budget study to determine the correlation between angle dependence,
spectral resolution, diffraction and NA of the focused beam undergoing a transformation in the
filter. Mainly discussed in Chapter 7 and Section 9.1.

• Feed-back the results of the analysis in a list of integration requirements by means of simple
engineering parameters. Discussed mainly in Part IV.
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3
Requirements Analysis

In the present Chapter, we review general requirements for aerosol scattering retrieval in the VIS-NIR
and SWIR. The treatment is mainly based on [7], which deduces high-level requirements for the Sentinel-7
mission. We mainly discuss generic Science Requirements and main physical parameters of importance in
aerosol retrieval. The discussion is on purpose relatively broad and high-level at the present stage. From
Literature Resources, we extrapolate Optical Requirements in order to meet those Science Requirements
and adapt them for the case study under consideration in the Research. The 3MI case, which presents
more relaxed specifications with respect to Sentinel-7, is then reviewed and its design and requirements
further discussed. The use of spectral bands and the architecture of the module is discussed, as well as
the Optical System architecture and thermo-mechanical integration.

3.1. Scope of Science Case
Spectropolarimeter measurements in space are used for a variety of applications:

• Characterization of Earth atmosphere and scatterers: the presence of particles in the
atmosphere results in scattering of light. The measurement of the spectrum and polarization
properties of the scattered light (which may be direct sun-light or have been reflected multiple
times on the ground and the atmosphere) offers exceptional insight on the nature of those scatterers
(dimensions, composition, shape, temperature, concentration...). Such measurements are used,
for example, to monitor pollution in the atmosphere, climate change, weather forecasting and
environmental hazards. Many other applications. depending on the mission statement of the
customer requesting the measurements, are possible. In particular, narrow spectropolarimeter
measurements at various observation angles are pivotal in the characterization of aerosol particles,
volcanic ash and similar airborne particles.

• Characterization of Exoplanets: several studies have shown ([11], [12]), that exoplanets re-
trieval can benefit from the knowledge of spectropolarimetric information on the light scattered
from their atmosphere. The application of those measurements is still technically challenging, ac-
curacies required being in the order of 10−4% in s3 [12], and further affected by reflecting surfaces,
background stellar flux and gaseous absorption.

• Defense applications: light impinging on a surface undergoes a process of reflection which in-
fluences the field distribution. Measuring such field and retrieving its spectropolarimeter content
allows, within the use of certain models, to predict to a certain extent the shape and composition
of such surface. It is well known that, for target detection, the use of IR measurements is of great
aid in defense and military applications. Compactness of such solutions is a significant benefit to
be considered when developing new concepts for such applications. We condemn any improper use
of such technology, which shall be well regulated.

We will hereby focus on the use of spectropolarimeter for Earth Observation Remote Sensing for aerosol
retrieval. The choice is by no means restrictive, but somewhat necessary to get a clearer idea on sys-
tem requirements and performance budgets. The majority of the modeling hereby introduced is hence
applicable also for the other cases; when corrections are required, it will be explicitly stated in the report.
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3.2. Science Requirements
In aerosol measurements, it is of interest measuring certain specific properties of the aerosol layers which
we will review:

• Aerosol Optical Thickness (AOT): is a measure of the optical length of a layer of aerosol within
a column of atmosphere. The total optical length is usually known from geometry and atmospheric
modeling. To determine the optical thickness of the aerosol only, it is required to subtract from the
total optical length the one due to Rayleigh Scattering, vapours, ozone, CO2, NO2, methane and
other atmospheric molecules. Detailed modeling of optical thickness of the atmospheric layers is
out of the focus of the research, but is discussed in [13] within a transfer matrix method similar to
the one described in Section 4 and the base for the selection of requirements used in the reference
[7]. We point out that accuracy of < 10% are in the retrieval of AOT are required in [7].

• Aerosol Single Scattering Albedo (SSA): is defined as the ratio between scattering efficiency
and total extinction efficiency (attenuance). It mainly depends on the size of the particle, in
similarity with the Mie Scattering phenomenon discussed in [14]. It is a useful parameter for
determining radiative forcing, a measure of the absorbed sunlight in relation to the emitted one
used in climate models and green-house estimations [15]. In the Sentinel-7 requirements, accuracy
of 3% is used as a threshold for this parameter.

• Aerosol effective radius: as the name suggests, is a measure of the effective size of a spherical
particle with the same volume. As already described in the simplified Rayleigh scattering model,
the size drastically affects the scattering properties of the aerosol, in particular the water uptake
[7]. An accuracy of < 10% (0.1µm) is suggested in [13], [7]. The determination of effective size
does also applies for missions where atmospheric hazards (e.g. fire and smoke for aero-navigation)
are of interest, even though requirements for such cases may differ.

• Variance: the measure of an effective radius of parameters for the atmospheric layer does not carry
any other information than a statistical mean of that property. Further insight on the distribution
of aerosol is usually required by analysis of the variance of those parameters (for fine and coarse
modes). Such variance is usually strongly dependant on the Stokes parameters that are required
to be measured. The accuracy in variance measurement, according to [7] shall be < 50%.

• Refractive index: the measurement of refractive index is required for the identification of the
aerosol type and its water uptake [7], in both real and imaginary parts. Accuracy on those mea-
surements is of 2% for the real part and 15% for the imaginary part.

• Column and height properties: additionally, one may require further characterizing of the layer
height to determine light path

As such, those high-level science requirements still need to be translated into recognizable figures for
the Optical System design. As already mentioned, a modeled characterization of those parameters with
the Stokes parameters at the entrance pupil would be required for a more detailed analysis of achievable
reconstruction performance, but is out of the scope for this research due to limited available time.
Fortunately, some studies performed in [16], [17] help in the process of requirements flow-down.
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3.3. Payload Requirements
In [18], it is demonstrated that to achieve the Science Requirements before mentioned a multi-angular
spectral measurement is required, in the VIS-NIR and SWIR range. The number of required spectral
bands and resolution differs depending on the choice of angles.
As we can conceptually understand, the Stokes parameters are strongly influenced by angle variations
of the sunlight path even when the same point-source on ground is considered, hence the importance of
retrieving Stokes parameters for various angular bands. According to [7], the product between angular
bands and spectral bands is a good indication of the information content of the measurement. [7] offers
a concise overview of what optical requirements are required in order to provisionally meet the Science
requirements above mentioned:

• The lower the band (VIS or even UV), the higher the accuracy in fine mode aerosols and layer
height.

• Inclusion of a SWIR, even though not strictly necessary and not used in HARP or some other
concepts, improves C02 retrieval, aerosol size retrieval and sensitivity to coarse modes and could
be traded-off with other bands or angular bands [7].

• Only linear degree of polarization is required to be measured (not necessarily s1 and s2 separately)

• A spectral range of > 350nm is required, possibly with more than 8 spectral measurements in the
band

• Radiance varies more rapidly with wavelength than polarization does [7], so spectral resolution of
polarization may be coarser. That’s not possible in the design under consideration for the research
though (DBR design of all pixels is the same for a given superpixel, [1]).

• A non-equidistant angular band distribution is preferred, with nadir band for calibration purposes
and maximum extent up to±50◦. The minimum suggested number of angular bands is 5, depending
on the number of spectral bands and overall achievable spectral resolution

• A ground sampling distance better than 1×1km2 shall be achieved for all viewing angles, once radial
distortion and smearing effects are taken into consideration. The radial distortion for the required
viewing angles and a small altitude may be severe, which motivated our geometrical observation
study in Chapter 6.

In conclusion, to meet the science requirements, it is suggested to use more than 5 viewing-angles with
a wide FOV (> 90◦) and a spectral resolution of 5nm [7]. The following specifications obviously also
depend on the considered orbital parameters, which we’ll review in Chapter 6.
The required polarimetric error is more strict on the SNR budget than the radiometric one. In [7], a
required polarimetric error of < 0.3% is required for meeting the Science Requirements with a SNR of
> 500 on the reconstructed degree of polarization. Such requirements are likely to be relatively strict
for the metasurface design proposed in [1]: in the metasurface concept, spectral bands is the same
for polarized and unpolarized channels, and a reconstruction is required, which leads to a significantly
higher required SNR on the signal at the pixel depending on the condition number of the reconstruction
process. The polarization error requirements further impose rather stringent requirements in terms of
anti-reflection coatings and angle-dependence at the spectral filter, as known in the design of 3MI [2].
Meeting such requirements requires an involved optical system analysis and, likely, ad-hoc developed
anti-reflection coatings. Hence, a study on the polarization dependence of the metasurface is also down-
selected as a driving activity for assessment of the integration.
Even though the requirements here presented are rather stringent and realistic of a real mission, we
will propose a relaxation of the spectral requirements due to practical losses in the dielectric design
proposed in [1] and also of the SNR requirements. A more accurate estimation of the real science case
requirements for the integration of the metasurface must be developed in parallel with the choice of a
project framework.
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3.4. The 3MI case study: Design Review
In the upcoming Section, we review the design of the 3MI Optical System from available literature. 3MI
stands for multi-viewing, multi-channel, multi-polarisation imager. The 3MI is part of the payloads of the
ESA/Eutmetsat MetOp Second Generation Programme, supporting environment monitoring [19]. Along
with other payloads characterizing clouds, CO2, land surfaces, humidity, 3MI main driver is the measure
of the aerosol properties, surface albedo (via measurement of the bidirectional reflectance distribution
function, BRDF), water vapors and cirrus clouds, to support Numerical Weather Prediction (NWP) and
calculations of Air Index Quality and Aerosol Load Masses for scientific communities [20].

3.4.1. Science Specifications and Bandwidth
The report [20] also identifies polarization retrieval as an important parameter for characterization of
the ice-water clouds and estimations of aerosol sizes once information on the molecular scattering and
the ground polarization contributions are properly characterized [19]. The instrument operates over
VNIR and SWIR bands, which science scope is discussed in [19] and channels represented in Table
3.1. With respect to the Sentinel-7 requirements, the 3MI concept operates over the SWIR module
also and with 0.4µm channels for ash clouds, finer aerosol particles and albedo determination. The
addition of a SWIR channel allows for the determination of water vapor and cirrus clouds, as well as
finer modes of the aerosol. The channel on 0.91µm is duplicated for coregistration purposes, necessary
because of the use of two modules. In comparison with the requirements imposed in Sentinel-7, the
spectral resolution is significantly degraded in this design. Nevertheless, similar specs have only been
previously achieved by Polder, a prior mission for aerosol detection without as many spectral channels
and angular bands. The possibility of improving spectral resolution and eliminating co-registration is
a further reason for investigating the use of a metasurface as an alternative to the 3MI measurement
concept. We further observe that polarized channels (channels for which measurement of s1 and s2 are
required) have in general a coarser spectral resolution. This is likely due to science requirements and
power budget considerations. The pixel pitches used in the detectors of 3MI, in fact, are relatively big
(25µm for the VNIR module and 30µm for the SWIR module). The SNR ratio on the reconstructed
Stokes parameters is also degraded to 200 at some unknown reference radiances values, with respect to
the Sentinel-7 requirements. Those requirements are more realistic also for the present case-study and
will be used as a hard threshold for the feasibility conclusions. We further point out that the FWHM
requested in 3MI is at times bigger than the channels interval in Table 3.1. Even though transmissivity
spectrums of the filters are not documented, we conjecture that such configuration is still required to
resolve the overlapping spectral peaks and FWHM has been traded-off in power budget estimations in
some of the design phases of the 3MI concept.

3.4.2. Measurement and Observation Geometry
In 3MI, the measurement is based on a mechanical filter wheel, with a 7sec delay between the acquisition
of measurements. Due to this concept, the number of angular samples (even if angular oversampling is
implemented in the SWIR channel) in 3MI required to be traded-off and their displacement is not uni-
form in the FOV, as discussed in [20]. The required angular and time-coregistration of the two modules
is also a significant challenge. The filter wheel further requires appropriate bearings and certified clean-
liness levels [20] of its sealings and lubricants. Those difficulties offer opportunities to improve on in the
metasurface based design, where we claim a single module would be present and no filter wheel would be
necessary. The mission design of 3MI sets on a LEO orbit at ∼= 800km, higher than the one of Parasol,
with an eccentricity of e = 0.001165 [20]. The achieved swath corrected for severe radial distortion of an
idealized system is Sw = 2200km [20]. As depicted in [20], it is important to consider radial distortion
and non-linear projection effects of the observation geometry when performing calculations, in particular
to depict the degradation of spatial resolution off-axis. The main important science requirements that
the mission design shall accomplish are specific Sun Zenith Angles (SZA) and Scattering Angles of the
observation, which allow specific reconstruction methods. Even though those specific requirements have
not been reported in Literature, we have determined small variations of those angles through simple
trigonometry for typical LEO altitudes. Choosing a smaller altitude would allow for the use of smaller
instruments and simpler launch platforms, more in line with the philosophy of this case study. The
choice shall however be always considered in unison with some clear science requirements and based also
on observation geometry, ground-track communication, etc...
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Central Wavelength [µm] Channel Spectral Width, FWHM [nm] Polarization Science Use

VNIR

0.410 20 Yes - Aerosol Absorption
- Ash Clouds

0.413 20 Yes - Aerosol Absorption
- Height Indicators

0.490 20 Yes

- Aerosol
- Albedo
- BRDF
- Cloud Optical Depth

0.555 20 Yes Surface Albedo
0.670 20 Yes Aerosol Properties
0.754 20 No Cloud and Aerosol Height
0.763 10 No Cloud and Aerosol Height, O2A band

0.865 40 Yes

-Vegetation
-Aerosol
-Clouds
-Surface Features

0.910 20 No - Water Vapour
- Atmospheric Correction

SWIR

0.910 20 No - Water Vapour
- Atmospheric Correction

1.370 40 Yes - Cirrus Clouds
- Water Vapour

1.650 40 Yes - Ground Characterization
for aerosol inversion

2.130 40 Yes

- Ground Characterization
for aerosol inversion
- Clouds
- Vegetation
- Fire effects

Table 3.1: Spectral Channels used in 3MI

3.4.3. Design of the Optical System
The Optical System of 3MI presents significantly sharp design features and is the result of complex
trade-offs due to the wide FOV, stringent polarization sensitivity requirements and chromatic distortion.
The Optical System is divided into two units, a Galilean telescope and a focusing group, for a total of
12 lenses, some of them non-spherical.
Incidence angle is maintained to a minimum throughout the system to minimize induced polarization
from the optics as much as possible, even though affecting stray-light and ghost-images. Ad-hoc anti-
reflection coatings have been also developed for the purpose according to [2]. A wide FOV of 104◦ is
achieved by the Optical System. With such field of view, the radiometric fall-off is considerable and must
be corrected. The correction in 3MI is achieved by means of a parabolic lens (L2) which increases the
pupil area of axis with a magnification of 10× at the edge but has the drawback of introducing lateral
chromatism [2]. Strong radial distortion must be corrected for various wavelengths, and it is proven in
[2] that such correction negatively affects the polarization accuracy. The beam angles further increases
in the second section of the Galilean Telescope and in the focusing group, likely to correct for Petzval
Curvature or other aberrations. The system achieves a worst-case MTF > 0.7 at Nyquist Frequency
across all spectral bands, with degradation towards the SWIR. Distortion is limited to 2% at the edge of
the FOV, which with respect to the geometric radial distortion of the observation geometry is significant.
In [2] is pointed out that the radiometric fall-off is different for the polarized channels. Ultimately, the
design still presents a (smaller) degree of radiance fall-off. Achieved polarization sensitivities are across
the FOV > 0.99, but strongly degrade to ∼= 0.95 at the edge of the FOV even with the use of special
coatings and careful angle design. Polarization sensitivity of the non-polarized channels settles at 3%
(5% for the edge of the FOV). Those values, to our knowledge, are only reported for the VNIR module.
Lenses materials present anomalous chromatic dispersion choice to minimize chromatism and further
possess stringent requirements on the stress birefringence (max 4nm/cm) for limiting induced polar-
ization effects. Fused Silica (Heraeus Suprasil) has been used in L1 for shielding, which according to
[2] shall suffice in the expected operating environment. CaF2 elements are used in the focusing group.
We have also observed significant differences in the lens curvatures between the VNIR and the SWIR
module, likely due to different chromatic trade-offs of the two modules. By using a single module in a
metasurface design, those tradeoffs will likely be affected negatively and additional compromise shall be
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investigated in future work. The 3MI Optical System represented in [2] has been partially retro-back
engineered for the case-study. Unfortunately, a simple ray tracing with reasonable material properties
has not sufficed to yield a similar performance in image space. Due to uncertainties on the use of materi-
als and anti-reflection coatings, we can’t yet provide computable figures for polarization and aberration
response of such a wide-FOV telecentric system, whose design is another activity on its own. We believe
the added value of integration in a simplified and not optimized design is rather questionable, being its
aberrations, spectral and polarization properties not comparable with the 3MI-Harp designs.

3.4.4. Thermal and Mechanical Integration
In 3MI, the main challenge in the thermo-mechanical design is the presence of two modules operating
at significantly different temperatures (SWIR is cooled at −110◦C, VNIR at −10◦C). Two heat pipes
with thermal-straps are used to cool the detectors, which are mounted by means of a DSA (detector
support assembly) on an iso-static mounting that controls their thermal deformation on top of a base
plate, maintained to a stable temperature and connected to the front-end-electronics [21]. The thermal
gradients on the SWIR channels impose a high thermal coupling with the cold sink and high insulation
with the base-plate, to limit thermal losses [21].
A mechanical driver for the design of the mounting architecture of the FPA is related to dynamic cou-
plings, which imposes that the first vibration eigenfrequency of the structure must be > 500Hz [21].
Determining an architecture with the correct thermal-coupling and rigid enough, to be also modular and
reusable for both channels, has been the challenge presented in [21], which downselects a hexapod config-
uration of titanium meeting both requirements. Temperature variations between sinks and detectors are
in the order of 20◦C according to [21], provided that correct insulation with the base-plate is engineered.
That’s an important figure for our case-study.
Some considerations are also important for the mounting of the detector, since the type of mounting
(addition of glue, number of screws) strongly influences the temperature gradients and the heat flows
and may lead to overheating. Gluing is suggested in [21] to limit thermal resistance. The dissipated
power of the detectors is roughly 0.14 − 0.18W in that design. The integrated system is represented in
Figure 3.1.

Figure 3.1: a) Optomechanical Unit of 3MI. b) Hexapod FPA Mounting of the SWIR module of 3MI. Electronic harnesses
and auxiliary proximity electronics are not represented. Adapted from [2] for clarity.
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3.5. SPEXone
For completeness and further comparison with existing systems, we succinctly review also the design
of SPEXone, represented in Figure 3.2 from [3]. The 6-unit CubeSat concept operates in spectral
modulation technique to measure the Stokes parameters in the range [0.385, 0.770]µm, with a spectral
resolution of ∼= 20− 40nm in the reconstructed Stokes. The input field is directed by 5 distinct slits into
5 pre-optics polarization modules, which induces the polarization modulation in the spectrum. A single
pre-optics module consists of a quarter-wave retarder, a multiple order retarder and a beam splitter. It
can be proven ([3], [22]) that the introduction of a retardance at that stage of the optical system results in
a cosinusoidal modulation in the frequency spectrum k = 2π/λ, enabling for a given modulation period
to achieve the reconstruction of the Stokes parameters at a certain spectral resolution. The spectral
modulation is instead achieved by means of a spectrometer design consisting of a slit-array, a collimator
and a diffraction grating. The design is integrated into an aluminum frame with a single detector channel,
to achieve a low-weight but stiff structure (m ∼= 0.9kg), with no moving parts, and must be opportunely
athermalized [22] to achieve good reconstruction.
Due to the fairly different optical architecture of SPEXone and its modulation technique, we have rather
decided to use the 3MI concept for a more detailed comparison, which also operates in a division of focal
plane array. However, we explicit in Section 9.5 some advantages of adapting the SPEX design with the
metasurface filtering concept.

Figure 3.2: Representation of the optical system used in SpexOne and its mechanical design. All copyrights to [3].

3.6. Applications of the Framework for the Metasurface De-
sign

In the application of the research in this project, many relevant science and optical requirements can be
derived from our review. The measuring concept shall be multi-angular and wide FOV. We pertain the
spectral resolution of Sentinel-7, since they seem achievable with the current design and would greatly
improve spectral performance with respect to the 3MI concept. We degrade the requirement of Sentinel-
7 in terms of SNR, MTF and polarization accuracy to the more realistic ones of 3MI. A metasurface
design system would be further different from the 3MI case study, due to the fact that we propose a
single module comprehensive of SWIR and VNIR. Likely, the lower bands of the VNIR module will not be
achievable and the Optical System corrected for chromatic aberrations would require some compromises
which would need further relaxation of the requirements. The selection of a detector possibly covering
both ranges is very challenging and discussed in Section 9.1.2. Regarding the operating environment
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and thermo-mechanical integration, till further details will be available, we borrow specifications of the
3MI architecture, in particular regarding temperature variations and regimes. Table 3.2 summarizes the
main important requirements derived in this Section, given those premises. Some uncertainties are still
present regarding the aberrations and telecentricity requirements to be imposed, which we try to answer
in Chapter III.

3.7. Research Questions
Various research questions can be formulated from our preliminary analysis. The initially developed
research framework was rather broad and required several iterations. It involved a modeling activity to
be carried out in parallel to the integration study, with further optimization of the results and analysis
of experimental results. The following the research objective of the research:

The objective of the research project is to make recommendations for the design of a metasurface spec-
tropolarimeter integrated into a System and improve the design presented in [1]. The necessary

information will be gained by:

• Down-selection of feasible requirements and a mission case concept for the feasibility study.

• Extension of the modeling proposed in [1] to include efficient designs of multiple configurations and
evaluation of focused and diffraction performance, by reported analysis over various illumination
regimes.

• Design changes to overcome bandwidth limitations and focusing uncertainties.

Various the connected research questions:

1. What is the wider mission concept and requirements? Answered in Chapter 6.

• What are reasonable estimates of the performance required from the metasurface? Are those
requirements achievable?
• What is the main mission concept and operating environment of the satellite? (e.g. orbit,
observation time, signal processing, etc...)

2. How to model efficiently the transmittance and focal response of the filter for various angles?
Answered in Part II and with experimental results from Chapter 8.

3. What techniques can be used to overcome bandwidth limitations in the design of [1]? Answered in
Section 7.4 and Chapter 7 mainly.

4. What is the achieved performance of the design, in terms of FWHM, transmission spectrums,
diffraction, polarization response, power budget? Answered in Chapter 7 and Section 9.1 mainly.

5. What are the main concerns in terms of integration of the filter on a given design (e.g. choice and
mounting on a detector, power budget, etc...). Answered mainly in Part IV.
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4
Analytical Methods and Background

Concepts
Optical design relates many different fields of physics, engineering, material science, statistics. The
present section summarizes for future use some of the relevant main concepts from literature, to provide
a common framework for use in the project and select the relevant methods. In particular, nomenclature
and terminology will be defined for future use and to analyze from a breakdown approach the relevance
of the various topics.
Extensive book-based literature has been used for the purpose: [23] in the acclaimed Handbook of Optics
provides an excellent structured overview, ranging from Geometric to Quantum Optics, image detectors
and processing, fabrication and design and many others. [24] and [25] discuss practical guidances and
techniques for Optical Systems Engineering, whereas more detailed information regarding general Space
Applications can be found in [26]. Theoretical foundations in terms of Electromagnetism and Physical
Optics are discussed in [27], [28], [29] and [30]. Various journals and technical notes complement those
resources.
In Section 4.1.1 we revision the Maxwell Equations and their time and space Fourier expansions. Such
revision is required to derive explicit relations for the propagation of the polarized fields in various ma-
terials and to introduce Fourier Optics formulations.
In Chapter 5 the transmission of the metasurface based DBR will be modeled analytically through an
effective model. This process requires transfer matrix methods and the characterization of the propa-
gation of fields in homogeneous media, both isotropic and anisotropic. The laws governing reflection
and transmissions phenomena (such as Fresnel’s and Snell’s law) are derived directly from the Maxwell
Equations and validated with readily available literature formulations. The necessity to do so lies in the
fact that we require explicitly some of the intermediary steps of the derivation for the anisotropic model
and the conventions present in literature in terms of transmissions coefficients easily create confusion and
inconsistencies. The propagation laws in anisotropic media are discussed in Section 4.2. These methods
are all finally merged together in Section 4.2.2 where the analytical solution of a multilayered structure
with anisotropic materials is considered.
We further revision in Section 4.5 the main formulations of diffraction theory and Fourier optics for
polarized light, which are relatively more novel and complex than formulations of scalar theories but
required for the determination of the PSF of the device.
Polarization-dependent intensities are treated in literature in terms of a well-developed framework named
Mueller Formalism. Main aspects of the relevance of the Mueller Formalism are discussed in 4.4. Modern
radiometric theory, which generalizes classical radiometric theory to include electromagnetic theory, has
also been revisioned in Section 4.3, since we have observed a lack of insight in classical radiometric theory
applied to polarizing devices with angle-dependent behavior. In particular, coherence properties of light
are also revisioned and connection of modern radiometry with the Mueller Formalism. The concepts
discussed in that Section are the basis of the finite transmittance calculation, used in the power budgets.
We warn the reader that some of the analytical steps hereby introduced are rather lengthy and involved
and when overly complex are better presented in the Appendix. We have decided to pursue a derivation
from basic principles of all formulas used, to standardize notation and have a structured overview of
the involved hypothesis. Nevertheless, in order not to ’reinvent the wheel’, validation with known liter-
ature results, when available, is always discussed and guides the reader in the verification of the results
presented.
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4.1. Electromagnetic Fields
In this Section, we recall the differential Maxwell Equations in a continuous model and their relevant
main implications for future use in the report. We further introduce the macroscopic effective parameters
in their spectral representations.

4.1.1. Maxwell’s Equations in frequency domain
For sake of clarity, we refer to E, H as polychromatic deterministic electric and magnetic fields (respec-
tively, in [V/m] and [A/m]) in the time domain, obeying to the general Maxwell equations reported [31],
[32]. For a time t, a pulsation frequency ω = 2πf , they assume the Time Fourier representation:

Eω =
∫ ∞
−∞

Eeiωtdt [V · s/m]

E = 1
2π

∫ ∞
−∞

Eωe
−iωtdω [V/m]

(4.1)

and similarly for the magnetic field. With the use of appropriate material constitutive equations,
Maxwell’s laws are derived in the frequency domain in many reference textbooks in time harmonic medias
([27], [29]). Within the present report, it will further be assumed that free sources are not present in the
domain and material properties may be described by use of an (absolute) effective permittivity tensor
←→ε eff,ω, including Ohmic losses due to free currents, and an (absolute) effective permeability tensor←→µ ω.
With such assumptions a formal derivation from the Maxwell equations with (4.1) leads to the following
frequency domain for of the Maxwell Equations (in SI Units):

∇ · (←→ε ωEω) = 0
∇ · (←→µ ωHω) = 0

∇×Eω = iω←→µ ωHω

∇×Hω = −iω←→ε eff,ωEω

(4.2)

The material parameters may also be referred to vacuum by introducing the relative permittivity←→ε rand
permeability tensors ←→µ r as:

←→ε = ε0
←→ε r ←→µ = µ0

←→µ r (4.3)

where ε0 and µ0 are the permittivities and magnetic permeability in vacuum, respectively (in Table G.1).
Within the present assumptions of no surface currents, to ensure that the integral form of the Maxwell’s
equation is met between a surface of normal n̂ij , both electric and magnetic fields transverse components
must be conserved:

n̂ij × (Ej −Ei) = 0
n̂ij × (Hj −Hi) = 0

(4.4)

which applies both in time and frequency domains.

4.1.2. Power Conservation
We revision here for further use some properties of the power conservation of fields, in particular applied
to frequency domain and averaging over significant periods of time. It is known that the carrier of
electromagnetic power is given by the (time-dependent) Poynting-Vector S, defined as:

S = E×H (4.5)

which is shown to obey a conservation law in [27]. In the time spectrum, averaging of the Poynting
Vector over an observation time significant bigger1 than 2π/ω is shown to be given by [27]:

〈Sω〉 = 1
2<{Eω ×H∗ω} (4.6)

1one may argue that ω is arbitrary for a polychromatic field so such conditions does never apply for a real finite pulse. We
however refer to the frequencies ω with a known non negligible field spectrum in the region of interest
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Within the assumption that the field is further spectrally and temporally uncoherent within such obser-
vation time, the total averaged power is given by the Parseval Theorem:

〈S〉 =
∫ ∞
−∞
〈Sω〉dω (4.7)

which will be used extensively in Section 4.3 and in Appendix C.
The treatment for the energy density is, instead, rather more complex if we have to account for the
dispersion of the effective properties in the material, due to kinetic and potential energy stored in the
material. We refer to [27] for such treatment and discussion of other energetic quantities.

4.1.3. Space-Fourier Decomposition
In the characterization of the field and their solution one may further introduce a Space Fourier trans-
formation, which further provides some more insight on the nature of the fields and their oscillations.
Similarly to before, such a decomposition is of values when the geometry of the problem is such that
plane waves are eigenfunctions of the optical response of the system. To apply the decomposition we
require choosing a reference frame x, y, z and a plane of decomposition. We will choose z = constant for
this purpose. If the structures under considerations are not uniform in the transverse plane, the origin
x = y = 0 shall be specified and used consistently for all transforms. The z axis may represent, for
instance, the optical axis of a complex optical system in convenience, or the axis perpendicular to the
layers of a multilayered structure. Such decomposition introduces two degree of freedom, kx, ky, whereas
kz is restrained by the Maxwell equations. The decomposition reads, within our sign conventions2:


Eω,k =

∫ ∞
−∞

∫ ∞
−∞

Eωe
−i(kxx+kyy)dxdy [V ·m · s]

Eω = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

Eω,ke
i(kxx+kyy)dkxdky [V · s/m]

(4.8)

and similarly for all other quantities. The phasors Eω,k,Hω,k are hence only functions depending on z.
We will use this notation and decomposition consistently throughout the report. The Fourier representa-
tion could of course be again introduced in the Maxwell equations, which would explicit the z variations
of the field; in this case, however, the effective properties variations in space are usually not negligible.
In general, cross-terms of the various Fourier components would be present, so that the propagation
of a plane wave at (kx, ky) would result in a full spectrum of plane-waves for a generic distribution of
effective properties, at least in the near field. This result is well known in scattering problems, where
scatterers are said to excite certain (kx, ky) modes depending on the periodicity in the dimensions of
the scatterers themselves. If instead the effective properties are homogeneous in a given medium, fully
contained between two planes z = constant, the systems admit a plane-wave eigenfunction (by inspection
of the Helmholtz equation) and such intercoupling of the spectrums is not present. That’s the case of
multilayered structures with uniform materials.

4.2. Propagation of Fields in medias
We will hence consider classical methods for the solution of those structures, validating usual approaches
with the equations hereby introduced. For the sake of conciseness, we first introduce the general
anisotropic solution, then localizing it to the isotropic one as a special case by recalling its polarization
decomposition for further use in the report. Starting again from the Maxwell equations and introducing
the Space Fourier decomposition, one can arrange the third and fourth Maxwell equations as two sep-
arate linear systems (see Appendix B for demonstration and validation of this formula). In the case of

2The signs and position of the scaling factor 4π2 (required for orthogonality) are far from consistent throughout literature.

21



diagonal permittivity tensor (the general case is treated in Appendix B) such system reads:

d

dz


Ex,i
Ey,i
η0Hx,i

η0Hy,i

 = ik0


0 0 sxsy

εr,zz

(εr,zzµr,yy−s2
x)

εr,zz

0 0 (−εr,zzµr,xx+s2
y)

εr,zz
− sxsyεr,zz

− sxsy
µr,zz

(−εr,yyµr,zz+s2
x)

µr,zz
0 0

(εr,xxµr,zz−s2
y)

µr,zz

sxsy
µr,zz

0 0




Ex,i
Ey,i
η0Hx,i

η0Hy,i


(4.9)(

Ez,i
η0Hz,i

)
=
[
− εr,xzεr,zz

− εr,yzεr,zz

sy
εr,zz

− sx
εr,zz

− sy
µr,zz

sx
µr,zz

−µr,xzµr,zz
−µr,yzµr,zz

]
Ex,i
Ey,i
η0Hx,i

η0Hy,i

 (4.10)

or more concisely, respectively:

d

dz
F̃ i = ik0P̃iF̃ i F̃z,i = M̃z→xyF̃ i (4.11)

where k0 is the wave-number in vacuum for a vacuum velocity of light c0 (k0 = ω/c0) and sx, sx are
cosine directors (also in vacuum):

sx = sin θ0 cosφ0 sy = sin θ0 cosφ0 (4.12)

Arranged in such form the propagation of the fields is a linear differential problem of known solution
with ease numerical implementation. Its solution can be determined by two methods:

• An eigenvalue decomposition, like the one followed in [33]: the eigenvalues of ik0P̃i represent the
four wave-vectors k±z supported in the medium by the anisotropic structure, one for each polar-
ization state, whereas the eigenvectors are the modified directions of polarization of the transverse
fields F̃ i. An eigenvalue decomposition of this propagation matrix is known analytically only for
isotropic mediums or in the general case for φ = 0, π/2. Numerical implementation of such reso-
lution methods for anisotropic structures with arbitrary illumination requires careful managing of
the orders of eigenvalues, their sign and multiplicity to avoid cumbersome numerical instabilities.

• b) The exponential of the matrix Mi = ik0ziP̃i provides the solution [34]:

F̃ i(zi) = ei(k0ziP̃i)F̃ i(0) (4.13)

directly and can be computed numerically by expansion or by means of a Laplace Inverse Transform
of the auxiliary matrix sI−Mi. The exponential of the matrix is defined by generalizing its scalar
series definition:

eMi = I +
∞∑
j=1

Mj
i

j! (4.14)

and usually computed numerically to arbitrary precision by using a Pade Approximation algorithm.
Such a method is of more simple implementation for the anisotropic structure and of much greater
numerical efficiency when operating over wide grids.

Differently from what implied by some authors, an eigenvalue decomposition is not strictly necessary
for all layers. Using the given state-vectors simplifies also the use of the matching matrix reported in
[27], since boundary conditions on the transverse fields are naturally implied by matrix multiplications.
The eigenvalue decomposition is however required for the starting and last mediums of a multilayered
structure, where the fields must be projected in back-reflected and forward propagating components to
correctly retrieve the transmission and reflection coefficients. The inclusion of losses also requires a more
careful managing of the sign of the eigenvalue decomposition for an arbitrary illumination condition. In
all cases under our treatment, the last mediums will be represented by air or other isotropic mediums.
To resolve the eigenvalue decomposition hence we quickly revision the eigenvalue decomposition of the
above matrix for isotropic layers with a novel projection matrix approach, directly implying the Fresnel’s
Laws at the interface.
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4.2.1. Isotropic Mediums
From matrix algebra, the eigenvalues for the isotropic propagation in a medium i, are found to have
double multiplicity:

k±z,i = ±
√
k2
i − k2

x − k2
y (4.15)

with:
ki = ω

√
µiεi = ω

ci
= ni

ω

c0
= 2π
λi

= ni
2π
λ0

= nik0 (4.16)

We have introduced various notation for the refractive index ni, the wavelength in the medium and in
space and the local velocity of light, for which we refer to the Symbols Table G.2. Formally:

ni = √εr,iµr,i c0 = 1/√ε0µ0 (4.17)

However, the definition ni = √εr,i is shown to comply with experimental results in boundary conditions
also in the case of magnetizable materials [35], an effect explainable with microscopic boundary conditions
of the field. So we will use the a-posteriori empirical relation µr = 1. In case of effective medium
formulations, the full permeability tensor shall be retained instead.
The sign in (4.15) refers to the traveling direction of the wave. We further notice that a clear distinction
can be made in terms of the magnitude of kx, ky. A field for which:

k2
x + k2

y ≤ k2
i (propagating) (4.18)

is said to be propagating, since kz,i is real. A field for which

k2
x + k2

y > k2
i (evanescent) (4.19)

is said to be evanescent since, with the complex factor of the Fourier Transform accounted for, the
solutions are exponential damped3. Further defining the wave-vector k±i = (kx, ky, k±z,i) and an index
of polarization m, the polarization directions E±ω,k,i,m,H

±
ω,k,i,m must be restrained (as derived from the

first two Maxwell Equations) to planes perpendicular to the wave-vectors:

E±ω,k,i,m · ki
± = 0 H±ω,k,i,m · k

±
i = 0 ∀m = 1, 2 (4.20)

meaning that the front and back-traveling are transverse. The latter is a rather interesting result, which
further suggests to use k±i and two arbitrary directions of polarization on the plane as a reference system
for both waves.
We may also perform a parameterization of the wave-vectors in order to describe the waves. A parame-
terization we will use throughout the report is the spherical one:

k±i = ki

sin θi cosφ
sin θi sinφ
± cos θi

 = kiŝ±i (4.21)

which satisfies the form of Equation (4.15). This parameterization creates a natural spanned plane in
which the polarizations can be located. We will use such natural reference frame when describing the
multilayered solution within the DBR structure and the focusing of the field on the detector. Due to
reasons relating to the boundary conditions simmetry we’ll select the following reference system:

ŝ±i =

sin θi cosφ
sin θi sinφ
± cos θi

 ε̂‖ =

− sinφ
cosφ

0

 ε̂±⊥,i = ±ε̂‖ × ŝ±i =

cos θi cosφ
cos θi sinφ
∓ sin θi

 (4.22)

which are also represented in Figure 4.1 for clarity. The signs in Equation (4.22) are carefully chosen to
enforce the nature of the solution4. We define an electric field along ε̂‖ as a TE (s-polarized) field and
one along ε̂±⊥,i as a TM (p-polarized) field5.
3once the proper branch of square root operation is taken into account
4there is no physical difference in reflection of the two polarizations at normal incidence, whereas the reference systems
would change handedness due to the reflection if not defined with a change in the sign of one of the versors as we do

5nomenclature may vary. Here the suffix ‖ refers to the versor parallel to the transverse plane (perpendicular to the
incidence plane) as represented in Figure 4.1

23



We further notice that one of the fields can be arbitrarily determined from the other. For example, using
the Third Maxwell Equation we determine, for the versors:

H±ω,k,i,m = ŝ±i × E±ω,k,i,m (4.23)

and for the magnitudes:

H±ω,k,i,m = 1
ηi
E±ω,k,i,m ηi = ωµi

ki
=
√
µi
εi

=
η0
√
µr,i

ni
(4.24)

where we have introduced the wave magnetic impedance ηi of the medium and the wave impedance of
vacuum η0.

Figure 4.1: Incident field decomposition between two isotropic mediums and supported k± with defined versors and angles.
Note that the reflected reference system is left-handed to enforce physical similarity of p−s polarization at normal incidence

We switch attention to the description of the boundary conditions in (4.4) for this case. We transform
the state-vector by eigenvector decomposition in the natural base as (easing notation):

Ex,i
Ey,i
η0Hx,i

η0Hy,i

 =

 ε̂+,xy
⊥,i ε̂

−,[xy]
⊥,i ε̂

[xy]
‖ ε̂

[xy]
‖

ni

(
s+
i × ε̂

+
⊥,i

)[xy]
ni

(
ŝ−i × ε̂

−
⊥,i

)[xy]
ni
(
ŝ+
i × ε̂‖

)[xy]
ni
(
ŝ−i × ε̂‖

)[xy]



E+
p,i

E−p,i
E+
s,i

E−s,i


(4.25)

Or more concisely:
F i = RiF±i (4.26)

In the present formulation E+,−
p/s,i/j represents magnitudes of the electric field in the direction of polar-

ization (with the phase factor eik
±
z,i
z accounted for) and the notation [xy] refers to the x, y projection of

the three-dimensional versors. The boundary conditions on the fields E,H in Equation (4.4) imply the
continuity of the tranverse components so that simply leads, for two mediums i, j, to:

F i = F j (4.27)

All boundary conditions further enforce, due to the necessary continuity of the wavefront for all x, y in
the plane, the condition:

kx,i = kx,j ky,i = ky,j (4.28)
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which in the given parametrization directly provides the Snell’s Law. The provided and rather concise
equations introduced can be used to fully described by means of the transfer matrix approach propaga-
tion in various multilayered systems, since the projection matrix Ri describes the requested eigenvalue
decomposition in the last mediums. To validate our approach, we demonstrated the Fresnel’s Laws from
our perspective and verified consistency with the matching matrix reported in [27], which uses ratios of
the fields in the transverse plane rather than on the full polarization direction.

4.2.2. Fields in Multilayered Systems
With the introduced background, we are able to formulate a solution to a generic homogeneous multilayer
problem. We will assume the input and output medium between the multilayered structure to be the
same and isotropic, with an index of refraction n0. This is representative of air in the model we will
introduce. The input kx, ky wavevectors components are arbitrary and represent plane-waves at various
angular orientations as introduced in the parametrization Equation 4.21.
Irrespectively of whether the medium is isotropic or anisotropic, the transfer matrices of the medium
relating the state vectors F i at the boundaries delimiting the medium are given by:

T[xy]
i =

(
eik0ziP̃i

)
(4.29)

since the state-vectors already enforce the required boundary conditions in Equation (4.27), the total
transverse transfer matrix of a multilayer is given by:

T[xy]
mul = T[xy]

n ...T[xy]
2 T[xy]

1 =
n,left∏
i=1

T[xy]
i (4.30)

When transformed to the polarization base in the ps frame for transmitted and reflected waves, the final
transfer matrix of the state-vectors F±i is given by:

T[ps]
mul = R−1

0 T[xy]
mulR0 (4.31)

Alternatively, one can directly multiply together the matrices T[ps]
mul due to the fact that R0R−1

0 = I.
When using the relations there-depicted the matrix shall be ordered from the bottom layer to the upper
one (to avoid a numerical troublesome inversion). This process provides the transmissions and reflection
Jones matrices of the multilayered structure, once the corresponding scattering matrix is calculated by
means of the procedure highlighted in Appendix A. To validate our formulation, we performed various
FEM simulations of anisotropic multilayered structures with known materials properties and verified to
numerical precision the soundness of the transmission and reflections coefficients.

4.3. Concepts of Modern Radiometry and Coherence Theory
Conventionally, power estimations are treated in terms of radiometric physical quantities (radiance, spec-
tral intensity and powers), which are of practical ease of determination. Power budget in terms of classical
radiometry lacks insight in terms of diffraction, the polarization of light and coherence properties, since
it is mainly applicable for scalar incoherent and unpolarized fields. In order to perform an accurate
power budget of the metasurface design, hence, we must generalize classic radiometry concepts to in-
clude such electromagnetic phenomena, leading to a modern radiometry approach. Modern radiometry
theory has been developed in decades and is well summarized in [36], [37]. [38], in particular, offers an
overview in terms of a diffracting lens and radiometric quantities, as well as [23] (see Coherence Chapter)
describes the propagation laws. We will hereby recall only the main physical quantities playing a role,
application to diffraction theories and also some simplified results. We also determined a radiometric link
relation, which connects the electromagnetic theory with the radiance by means of dimensional scaling.
The approach we used and widely validated in Literature is to associate a deterministic field Ẽω to the
input random signal, such that once integrated in the spectrum over an arbitrary small window the same
(spectral) power is found.
The physical characterization starts with the definition of a cross-correlation tensor, which is a sta-
tistical ensemble average of the vectorial field intensities between two certain points and distinct time
measurements as:

Γ(r1,r2,t1,t2) = 〈E(r1,t1)ET
(r2,t2)〉 [V 2/m2] (4.32)
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where we have used conventional vectorial notation. Similar quantities may be defined for magnetic
fields and mixed correlation between electric and magnetic field (related to the Poynting Vector). In
literature, an hypothesis on the stationary of the fields in the wide sense is usually used, assuming that
the fields are only dependent on the difference τ = t2 − t1. We will assume instead the fields to be quasi
stationary, in the sense that it may vary slowly with the variable t = (t1 + t2)/2 (representative in our
case of the motion of a satellite or some real temporal change).
Similarly to what performed in terms of the electromagnetic fields a Time Fourier transform τ → ω is
introduced for the cross-correlation tensor, which leads to a cross-spectral density function of the fields,
W(r1,r2,ω,t).

W(r1,r2,ω,t) =
∫ ∞
−∞

Γ(r1,r2,τ,t)e
iωτdτ = 〈Ẽ(r1,ω,t)Ẽ

†
(r2,ω,t)〉 [V 2s/m2] (4.33)

We have used the result that the cross-spectral density function can be decomposed in monochromatic
realizations of an observable quantity, pointed out in [23], [37], [38], [39]. That’s an important conclusion
arising from the wave equations of the quasi-stationary fields and is applicable only when the fluctuation
of the intensities (beating periods) are on significant longer time-frames than the frequency of light.

Dimensional Note We point out at the fact that the observable field phasor Ẽ(ri,ω,t) is not an electric
field measured in [V s/m] (as time Fourier transform of a field in [V/m]), as expected for a polychromatic
wave, but is actually measured in [V

√
s/m] as we can conclude by performing dimensional analysis on any

of the formulas reported in the literature considered. That’s not an inconsistency, and is due to the fact
that only one transform in the intensities is performed. The observable Ẽ(ri,ω,t) is a deterministic field
associated with the random energy and is merely a variable of convenience, undergoing to the Maxwell
Equations as an electric field would do. More precisely, by allowing the cross-correlation tensor to slightly
fluctuate in time with some finite set of beating periods Tbeat,i and pulsations ωbeat,i = 2π/Tbeat,i , we
observe that the link between the observable quantity and the real electric fields is of the form:

〈Ẽ(r1,ω,t)Ẽ
†
(r2,ω,t)〉 =

∑
i

1
Tbeat,i

eiωbeat,it〈E(r1,ω)E†(r2,ω)〉 (4.34)

We are in reality not that much interested in what the coherent mode decomposition of the fields is (all
equations are linear in field amplitudes and the powers low), as much on the fact that we can associated
to the spectrum an an effective field Ẽ(r1,ω,t) which well describes the second order statistics (see [39]
in particular for supporting this understanding). If the beating periods would be known the previous
equations would allow to gain insight on what are the real electric fields associated with the random
process. The beating period can be estimated for a coherence spectral width of ∆λco as:

Tbeat ∼=
λ2

c∆λco
(4.35)

It follows that if the fields are assumed to be completely spectrally uncoherent (never realized in practice
neither for a a Lambertian source) a coherent electric field phasor in [V s/m] is intrinsically ill-defined
for such source. Moreover, assuming quasi-stationarity of the field automatically leads to a field which
is very poorly spectrally correlated (∆λco ∼= 0), indication of the fact that also the coherence time (time
where a coherence is observed) tends to zero. The interested reader may further reconsider this derivation
in terms of a more generic non-stationary fields treatment which is not reported for succinctness.

The cross-spectral intensity of the radiated field in a region is defined by setting r2 = r1 = r, but
its propagation generally depends on both variables (demonstrated experimentally in various occasions).
When a transverse direction of the fields can be determined and a transverse plane [ξ, η] can be defined
(for example in the far field), there is a simple relationship between the intensity matrix and the Stokes
Parameters, which is revisioned in the next Section.
The cross-correlation tensor propagates in free space, accordingly to [38]:

W(r1,r2,ω)|ri∈Ap = 1
λ2

0

∫ ∫
As

W(r1ob,r2ob,ω)|riob∈As

(
eik0(d2−d1)

d1d2

)
cos θ1 cos θ2d

2r1obd
2r2ob (4.36)
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where the radiometric cosines are defined by:

cos θi = di · n̂iAs
di

di = ri − riob ∀riob ∈ As,∀ri ∈ Ap (4.37)

and integration is carried over the source area As with local normal n̂i,As . Symbols in Equation (4.36)
are summarized in Figure 4.2.

Figure 4.2: Propagation of cross-correlation tensor from a source area As and symbols used in Equation (4.36). Also the
spectral radiance is represented for a given point-source and a few directions

The variable ∆rob = r2ob−r1ob appearing in Figure 4.2 distinguish between the coherence of the field.
A totally spectrally and spatially incoherent field will have a nill cross-correlation tensor for ∆rob 6= 0
[38], which we will assume in the following Chapters of the report to model in first approximation a
Lambertian source. Note that even an uncoherent field in general gains spatial coherence by propagation
(see Van Cittert-Zernike theorem), as the coherence is also a property of the observation geometry. On
a pupil, the contribution due to a spectral directional intensity (see Table 4.1) is fully coherent (at the
neglection of atmospheric and propagation deviations) and the pupil area acts as a coherence area. Upon
focusing, imaging is possible only because of this finite but not negligible coherence area at the pupils.
Similarly to the propagation of electromagnetic coherent fields, in the far-field, a simple relationship
applies between the far-field cross-correlation tensor and the angular spectrum Fourier transform at the
source plane.
Even if more complicated than electric field propagation, the treatment in terms of the cross-correlation
tensor is necessary for two reasons: to gain understanding on what are the measurables under consider-
ations (in this case, Ẽ(ri,ω,t)) and to correctly account both for polarization effects and incoherence of
the field in the extended source but full/partial coherence of any single point-source contribution. It is
not straightforward to apply classic propagation theories when a polarization-dependent transmittance
is present since results like the classical well-known PSF convolution have been derived under the as-
sumption that no additional transparencies (apart from the pupil function) are present.
The present treatment is consistent with known spectral quantities of interest in classic radiometry,
represented and summarized for the notation in Table 4.1.
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Definition Symbol Description Units

Spectral Radiance Lλ(r,rob,t)

A measure of the energy radiated per unit time and unit area
in a given direction along an infinitesimal solid angle
from a point-source contribution.
Defined for extended sources.

W/(m2 · µm · srad)

Spectral Directional Power Θλ(rob,t)
Measure of the radiance radiated from a point-source
across a certain area. W/(µm · srad)

Spectral Intensity Iλ(r,t)

A measure of the point-wise spectral power per unit area
due to all point-sources contribution.
Equivalently, spectral radiance across the
entire solid angle subtended by the extended source
on a generic point on the area of interest.

W/(m2 · µm)

Spectral Power Φλ
Measure of the power of an extended source across
a certain defined area, per unit wavelength. W/(µm)

Table 4.1: Classic Radiometry variables of interest. Nomenclature may differ in various literature resources.

Relationships that link the quantities to the correlation tensor are rather complex and cumbersome
for coherent light and will not be reported for succinctness, but can be revisioned in [38]. A simpler
treatment is possible in our case due to the Lambertian nature of the source and the fact that a far-field
propagation can be used. Simplified radiometric link relationships for our case have been derived in
Appendix C given the introduced framework.

4.4. Concepts of Mueller Formalism
Mueller formalism is a well-developed tool for the description of partially polarized light. We review
some of the basic principles of this formulation.
Upon propagation, transverse electromagnetic waves can be characterized by their polarization, usually
referred to electric fields. Polarization is an intrinsic physical properties of light providing information
of reflection, sources of the fields and its propagation. The envelope of electric field directions varying in
time across a section generally creates an ellipse, for which in general the field is said to be elliptically
polarized. A useful representation of this most generic polarization state is possible by means of two
spherical angles, the angle of polarization γ and the polar angle of circular polarization χ. The ellipse
tangent directions (representative of the directions of the electric field in the transverse plane for various
phases) spanning the transverse plane perpendicular to the local wave-vector in directions ξ, η, can be
characterized as a complex vector in those two angles as:

e[ξ,η] = eiψ
(

cosχ
(

cos γ
sin γ

)
+ i sinχ

(
− sin γ
cos γ

))
(4.38)

where ψ is an arbitrary phase on the section under considerations. The given field is non-dimensional and
can without loss of generality be representative of a plane-wave, a focal two-dimensional field both in the
spectral or spatial domain, depending on the case under study. In Mueller Formalism, a transformation of
the vectorial field components is performed in terms of linear combination of the components intensities.
Various definitions are possible which are all consistent. In particular a simple concise formulation links
the cross-correlation tensor above discussed with the Stokes parameters, defined for the non-dimensional
field as:

sj = Tr{σj〈ee†〉}[ξ,η] s =


1

p cos(2γ) cos(2χ)
p sin(2γ) cos(2χ)

p sin(2χ)

 (4.39)

where the (re-ordered) Pauli matrices defined by:

σ0 =
[
1 0
0 1

]
σ1 =

[
1 0
0 −1

]
σ2 =

[
0 1
1 0

]
σ3 =

[
0 −i
i 0

]
(4.40)

and p the so defined degree of polarization. Light can also possess an unpolarized component carrying
not-nill power, since the direction of polarization is intrinsically referred to a statistical field. The inter-
ested reader can verify the consistency of the above definitions with other well-known definitions of the
Stokes parameters for the field parametrization hereby chosen. In particular, the phase ψ is lost when
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transforming from a Jones vector to the Stokes representation, which is important to remember when
considering aberrations and other focusing effects.
The Stokes parameters so defined can be represented on a Poincaré sphere, since by definition ps0 =√
s2

1 + s2
2 + s2

3. In literature, s1, s2, s3 are also known as Q,U, V and represent, respectively, linear polar-
ization at ±90◦, at ±45◦ and circular polarized light. They are of important use in optical applications
since directly related to optical measurables of statistical fields.
The Poincaré sphere and the polarization ellipse are represented in Figure 4.3. Upon a linear vectorial
deterministic transformation of the fields (as the one under study within the report), the electric field
directions of the fully polarized field components may variate according to a Jones transformation of the
form:

e′ = Je (4.41)

Since non-polarized light can for those transformation be determined from an averaging ensemble of the
polarized transformation, the transformation can equally be depicted also in terms of the Stokes vector,
by means of a Mueller Matrix:

s′ = Ms (4.42)

where the Mueller Matrix is defined by the algebric operation ([40]):

M =
[
A (J⊗ J∗)

(
A−1)] (4.43)

where ⊗ is the Kronecker Product, ∗ indicates the complex conjugation, and the auxiliary matrix A
(found by permutation of the Pauli matrices) is defined by:

A =


1 0 0 1
1 0 0 −1
0 1 1 0
0 −i i 0

 (4.44)

When operating the above transformation the fields shall be represented with respect to the transverse
plane or a general 2-dimensional plane. Cartesian representation of the plane-wave fields of a focused
beam are instead three-dimensional and can’t in general be represented with only four Stokes param-
eters without generalizing those concepts. Fortunately we are generally interested in the components
of a focused plane-wave field decomposition along the detector plane, which is two-dimensional. When
Mueller formalism is used in spectral representations like the Fourier Transforms above introduced,
known spectral theorems of scalar fields also apply for each components of the Mueller Matrix.

Figure 4.3: On the left, Poincaré sphere and visualization of the Stokes parameters. On the right, polarization angles in
the ξ, η transverse frame and relationship with the local direction of the electric field. Adapted from the Web.

4.5. Concepts of Diffraction Theory
It is well known that the propagation of a generic wave in a given geometry medium with variable
properties results in diffraction, a physical phenomenon for which the path of a photon is redirected by
the surrounding of the medium. In this section, we review the applicable results of Diffraction Theory for
the description of the PSF of the metasurface device and its Power Budget. We will conveniently assume
that the reader is familiar with all concepts related to scalar diffraction theory. Due to the inapplicability
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of scalar wave theories, we will focus attention on the statistical treatment of the cross-correlation tensor,
which includes both polarization and coherence effects. A conventional and historical explanation of
diffraction effects for scalar fields is given by the Huygens-Fresnel principle: across a boundary every
point of the wavefront can be considered as a source of spherical wavelets which do mutually interfere
with each other.
The principle can be proved and generalized to vectorial fields or correlation tensors by considering
the Green’s Function solution of the Maxwell Equation for a magnetic and electric generic excitation,
as performed in [41]. A Green dyadic tensor can be defined which resolves for a given geometry the
Maxwell Equations and represents the field excitation at a certain position due to an arbitrarily oriented
infinitesimal current (which may be physical or artificial). The green dyadic may be corrected as in [42]
to account for special geometries in the near-field. The fields across a point can be then determined as a
composition of surface and volume integrals, reported in [41] and which represents a generalized Kirchoff
Diffraction Integral applicable for both near and far-field and polarized fields. Ideally, one shall apply
such characterization for the metasurface itself once the currents and field distributions in a region are
known. This approach is clearly impractical (due to lack of characterization of the fields and numerical
complexity) so we will hereby use some conventional assumptions to simplify the treatment.
According to [38], any non-linear transformation of an optical system can be described in terms of
a Volterra Series relating the input cross-correlation tensor and the output cross-spectral intensity by
means of a linear integration. In practical applications, the series is truncated to a bilinear transformation
with a good approximation for real optical systems as (see [38], adapted for tensorial notation):

W(r1,r2,ω) =
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

H(r1,r1ob)W(r1ob,r2ob,ω)H∗(r2,r2ob)d
2r1obd

2r2ob (4.45)

which can also be recasted to an expression involving the Mueller Matrix of H and the Stokes parameters
in the two regions. We’ll simplify such formula in the next Chapter to take into account that the fields
are spectrally uncorrelated in the source (Lambertian) and determine a closed expression for the transfer
functions H. The latter can be determined from the free-propagation of the cross-correlation tensor in
space (leading to a generalized Fraunhofer propagation regime of the deterministic fields) and a proper
modeling of the filter transparencies.
Diffraction of the pupil is automatically included in the treatment once a finite extension transmittance
is taken into consideration in such propagation with a certain pupil function, as conventionally done in
scalar diffraction optics. Induced polarization of the optics is also easily included. Consider the case in
which W(r1,r2,ω) is referred to the focal plane. The focal plane spectral intensity is proportional to the
trace of the centered autocorrelation tensor (e.g. the one for which r2 = r1 = r). In Appendix C we
demonstrate the dimensionally sound result that, for a vacuum impedance η0, the spectral intensity is
given by:

Iλ =
(
πc0
λ2

0η0

)
Tr{W(rf ,rf ,ω)} [W/(µm ·m2)] (4.46)

which is proportional to the first Stokes parameter at the focal plane (Tr{W(rf ,rf ,ω)}). Formula (4.46)
is strictly valid as a representation of an intensity associated with the Poynting Vector for small NAs,
or, equivalently, for the energy density once assumed that the magnetic energy density is on average
the same as the electric one. We can compare and validate this result with the one proposed in [43]
(Gaussian Units) for the electric energy density of a monochromatic contribution or with generalized
spectral quantities derived in [38]. We more generally pertained the polychromatic nature of the field
and used spectral quantities in unit wavelengths instead, as natural in classic radiometry.
With such in mind, we can recognize the classical PSF of the system for a point-source contribution
as the Mueller Matrix associated with H(ri,riob) in the Space Domain. In case in which a Fraunhofer
diffraction can be used, then expressions for H(ri,riob) are known as in [38] and represent the inverse
Fourier Transform of an amplitude transfer function (ATF ). The latter is finally the Jones transformation
of the plane-wave fields in our treatment, depending on the transmittances along the way and the pupil
function of the pupils (in Fraunhofer diffraction regime).
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5
Modelling the Optical Response

In the following Chapter, we consider the problem of characterizing the optical response of the opti-
cal system and metasurface device in the Fourier Spectrum, for a coherent plane-wave excitation. The
chapter is meant to be a reference for theoretical formulas used in the results Part III, as also several
performance parameters are introduced for further reference.
The characterization has partially been already performed in [1]. However, a polarization sensitivity
study (with respect to s and p decomposition) has not been fully considered, the effects of azimuthal
angle dependence on the transmission spectrum have not been investigated and the diffraction response
of the device not been discussed. More importantly, an analytical model is required for quick estimations
of hundreds of pixels performances, which is impractical via FEM simulations.
We initially draw some consideration on the input field at the entrance pupil and its coherence prop-
erties in Section 5.1. The source field will be assumed to be Lambertian with a low degree of spectral
and spatial coherence, statistically quasi-stationary in wide-sense. We further relate electromagnetic
quantities of interest to radiometric ones by means of modern radiometry in Section 4.3, simplifying
the treatment by means of the introduced assumption on the input field. A radiometric link between
radiances and the electromagnetic quantities in Appendix C is paramount to quantify the spectral power
and the polarization to be measured.
A preliminary concept of importance is the geometrical vectorial plane-wave p− s decomposition of the
polarized field, introduced in Section 5.2. Such decomposition is used in FEM models for excitation
of the structure and characterization of its response and is of physical importance when depicting the
transformation of a lens or of the metasurface device.
The metasurface modeling, discussed comprehensively in 5.3 requires solution of a cumbersome finite
diffraction coupled problem discussed in 5.3.1. Even though introducing possible numerical means for
its resolution, we simplify the treatment by operating a wide pixel limit to describe the coupling with
the diffraction of the pupil and the aberrations, quantifying our assumptions. Within such a framework,
the transmittance of the device is well described by the combination of an effective medium model, in-
tegrated in a multilayered structure, to provide the amplitude transfer function of the device. Such an
approach leads to resonance curves of the cavity in the multilayer, comprehensive transmittances plots
for the design of the metasurface cavity. With an opportune expansion of the Fraunhofer pupil diffraction
integral, the solution of the diffraction pupil contribution can be found in a closed compact form, which
allows also definitions of various performance parameters.
In particular, focal transmissions at wide pixels are defined in 5.3.4 but also finite transmissions taking
into account the finite of the pixel and the encircled energy in the diffraction pattern. Band transmit-
tances are definable for all of those quantities by opportunely integrating in the band. The latter is likely
to be the closest reconstruction matrices to one of the real structure when we consider the real signal
reconstruction process by image creation.
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5.1. The Input Field
We hereby consider the entrance pupil of the Optical System depicted in Figure1 6.7 and characterize
the input field at the entrance pupil.
Ultimately, the field can be, in second-order statistics, be thought of as realizations of the correlation
tensor appearing in Equation 4.32, which then characterize completely, in the space spectrum, the
degree of polarization, angle of polarization, distribution and coherence degrees of the incoming light.
Unfortunately, such degree of information is rarely available for modeling of the input field and one
must use radiometric quantities to estimate the magnitude of the fields and assume a certain degree of
polarization and angle of polarization of the fields.
In Chapter 4.3, along with other parameters of interest in this Section, it is discussed how the propagation
and field characterization of a generic partially-polarized and partially-coherent field can be done by
means of propagation of the cross-correlation tensor. We hereby present some simplified results of this
theory to correctly take into account the polarized nature of the field and the imaging of the extended
source.
We start by considering the source as a typical Lambertian (secondary) source. In remote sensing Earth
radiation/reflection has a negligible spatial coherence and due to the scattering of the atmosphere and the
Lambertian nature of the source a negligible spectral coherence. We will further consider the generated
field to be quasi-stationary to use literature results that have been presented in agreement with such
assumptions. The cross-correlation tensor at the source can hence be written as:

W(rob,rob+∆rob,ω,t) = W(rob,ω,t)σ̃(k∆rob) = σ̃(k∆rob)〈Ẽ(rob,ω,t)Ẽ
†
(rob,ω,t)〉 [V 2s/m2] (5.1)

where Ẽ(rob,ω,t) is a deterministic observable as defined in Chapter 4.3 and σ̃(k∆rob) a weak spatial
coherence function, approximated by a two-dimensional Delta Dirac. In the Appendix C, we derive a
closed expression, based on results from [44], of the cross-correlation tensor in the far-field, in terms
of a radiometric radiance, directly related the Poynting Vector. In particular, we determined that the
radiance emitted in the far field from a poorly-correlated Lambertian point-source in a direction ŝi
connecting a point source and the entrance pupil is given by:

L∞λ(̂si,rob,t) = πc0
λ2

0η0
cos θn Tr{W[ξ,η]

(rob,ω,t)}
[
W/(m2µmsr)

]
(5.2)

where W[ξ,η]
(rob,ω,t) is the two-dimensional cross-correlation tensor at the source, in the transverse plane

[ξ, η] of normal ŝi, η0 is the vacuum impedance and θn = θin + θob (see image 6.1 and Chapter 6). The
cross-correlation tensor at the entrance pupil can then be found as:

W∞(re1,re2,ω,t) =
∫
Asc

(
λ2η0

πc0

)
cos2 θg cos θnL∞λ(ŝi,q̃,t)〈ee†〉e−ik cos θgq̃·(re2−re1)d2q̃ [V 2s/m2] (5.3)

where the relevant quantities are defined in the Appendix C and Chapter 6. We note that the field can
be thought of as a superposition of coherent plane-waves, each one with a weighting factor proportional
to the radiance emitted by a point source. Moreover, the fields have gained spatial coherence across
the pupil (that’s obvious since a plane-wave is seen by a spatial extent aperture). The phase factor
e−ik cos θgq̃·(re2−re1) is the phase that requires correction in the optical system, corrected for observation
viewing geometry.
In formula (5.3) e stands for a normalized electric field. The field is normalized such that the first Stokes
parameter associated with the field is unitary:

s0 = Tr{〈ee†〉[ξ,η]} = 1 (5.4)

since the intensity is considered with appropriate scaling factors in the radiance term. We point at the
fact that atmospheric transmission and scattering modifies the geometry of observation, polarization and
coherent structure of the fields (see Appendix C). Any stray-light from the Sun or other direction is also
dis-considered. On the other hand, since the main aim of aerosol scattering retrieval is the determination
of the scatterers’ properties by analysis of the Stokes parameters, we consider the (normalized) Stokes
parameters fully arbitrary due to scattering effects and in the angular representation defined in Equation
1some overlap with the analysis Chapter 6 is unavoidable in this part of the treatment
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(4.39). The normalized Stokes parameters are point and direction dependent and fully determined in
terms of the Pauli matrices defined in equation (4.40).
The radiance L∞λ(ŝi,q̃,t) shall also be corrected for all atmospheric interactions. We will consider that the
variable of interest for the science requirements is the retrieval of this radiance and the Stokes parameters
associated with the input light at the field plane of the Optical System. With an appropriate atmospheric
model, the knowledge of the BRDF (Earth-Bidirectional Reflectance Distribution Function) and the solar
irradiance, one may compute more accurate atmospheric parameters for the given science and mission
case in consideration.
Once the focusing problem is resolved and the electric field transformation properly described, the
equation (5.3) describes the integration in the object plane directly in terms of radiance emitted by the
source, similar to the corresponding scalar radiance definition. We finally show consistency with the
power conservation in classic radiometry. According to classic radiometry, the total power in the beam
is given by an integration over the spectrum and the optical etendue G of the system:

Φ =
∫
∂G

∫ ∞
0

L∞λ(̂si,r)d
2Gdλ [W ] (5.5)

where d2G is a second-order differential defined by:

d2G = ŝi · n̂epdAepdΩgr→e [m2] (5.6)

n̂ep being the normal of the pupil surface of differential area dAep and dΩgr→e an infinitesimal solid
angle subtended by an area of ground to a point on the pupil. According to coherence theory, we may
regard the total power as the integration of the incident (mean-averaged) Poynting vector across the
pupil, hence:

Φ = 1
2η0

∫
Aep

∫ ∞
0

Tr{W∞(rŝi,rŝi,ω)}ŝi · n̂epdωdAep [W ] (5.7)

by considering the change of variable ω → λ, the two equations are the same in the far field2.

5.2. Field Decompositions
In this section, we derive expressions for the refracted electric field of the Optical Systems both in a p-s
reference, in a cartesian reference frame and in the local transverse frame ξη. This allows us to describe
the focal fields right on top of the metasurface structure, but is a formalism which can be applied in much
wider applications. Such transformations are required when performing integrations and analyzing the
polarization properties of the focal fields undergoing the transformation in the Optical System. Focusing
diffracting integrals must, in fact, be carried out all in a consistent cartesian frame and the azimuthal
and polar dependence of the fields are not fully arbitrary due to geometry constraints.
Consider a generic ray, in the cartesian frame of direction ŝ+

i (see Equation (4.21)). An arbitrary base
can be used to the description of its transverse fields. In particular, two bases are of practical ease (see
Chapter 4 for the notation used):

• The base determined from the minimum rotation which leads from ẑ to ŝ+
i . When applied to

the whole cartesian frame such base is the closest orthonormal and tranverse base which can be
determined. We will refer to it as ξ, η frame. It can be determined through a rotation of θi around
the axis ε̂‖,i = (− sinφi, cosφi, 0). Is the cartesian base for θi = 0.

• A base for which one of the versors lays in the incidence plane (p) and the other one is the normal
of the incidence plane (s), once a surface normal has been specified. That’s the p, s frame. It can
be determined by initial rotation of φi around the axis ẑ and subsequent rotation of θi around
the axis ε̂‖,i = (− sinφi, cosφi, 0). Such definition is valid for a generic ray when a normal surface
ẑ is considered or when not-skewed rays with a normal in the incidence plane are considered.
For fully arbitrary rays and surfaces, one must retrieve the incidence plane normal first and then
perform such decomposition, case we won’t require explicitly yet. This frame is useful to describe
polarization effects, which are diagonal in such frame for not-skewed rays and due to their simpler
form and wide use in electromagnetic treatments.

2The Poynting vector generally depends on the magnetic field, which however is fully determined by the electric field in
the far-field, since the coherent mode decomposition of the fields behave as a local plane-wave. That allows us to consider
the intensities in terms of electric energy intensity only. Such conditions shall be reviewed in near-field applications.
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Recalling the matricial property of rotation of a frame to an angle β around an axis w (the cross-product
matricial operator χ{w} is defined in Appendix B):

R(w,β) = cosβI + sin βχ{w} + (1− cosβ)wwT (5.8)

we determine for the two bases:

Σ[ξ,η]
i = [ξ̂i, η̂i] =

(− cos (θi) + 1) sin2 (φi) + cos (θi) − (− cos (θi) + 1) sin (φi) cos (φi)
− (− cos (θi) + 1) sin (φi) cos (φi) (− cos (θi) + 1) cos2 (φi) + cos (θi)

− sin (θi) cos (φi) − sin (φi) sin (θi)

 (5.9)

and, for the p and s polarization directions at a surface z = constant:

Σ[p,s]
i = [ε̂⊥, ε̂‖] =

cos (φi) cos (θi) − sin (φi)
sin (φi) cos (θi) cos (φi)
− sin (θi) 0

 (5.10)

It is useful to visualize graphically the p−s frame for a given input polarization direction at the entrance
pupil. The focusing geometry is depicted in Figure 5.1, along with the versors of the p − s introduced
up to now. The components on the p − s frame are represented for illustration on a Gaussian sphere
in Figure 5.3, for an ξ polarized excitation and ideal optical transmission. The p distribution does also
present a z component whose signs depend on the azimuthal angle. For further use in the report, we
further define :

Σ[φ]
i = [ε̂⊥,0, ε̂‖,0] =

[
cos (φi) − sin (φi)
sin (φi) cos (φi)

]
(5.11)

which represents an arbitrary rotation along the local third bases of a reference frame. At the entrance
of the Optical System, we decompose the field in the ξ, η frame. This is equally applicable also for
not-paraxial beam and the ξ, η frame tends to the x, y frame in the paraxial limit. The polarized field
component of the normalized electric field, associated with the Stokes parameters defined in Equation
4.39, is written in that frame as per Equation (4.38). The given electic field direction applies for a ray of
the sub-bundle, defined in Chapter 6. In principle, the polarization direction may present a distribution
across the entrance pupil for a sub-bundle (for example, be azimuthally or radially polarized in part and
further apodized), which influences the focusing. We will hence refer to e[ξ,η], a pupil averaged electric
field over the sub-bundle. An apodization matrix can always be used to link the two as:

e[ξ,η] =←→α e[ξ,η] (5.12)

The vectorial transformations described, opportunely combined can describe the coherent polarized fo-
cusing of an arbitrary pupil-diffracted system with other non-diffracting transmittances along the way.
We explicit for further use hence the focal fields focused right on top of the metasurface structure under
study (at distance f from principal surface)

Paraxial Sub-Bundle For this sub-bundle, the local ξ − η frame at the entrance pupil is exactly the
x−y frame. Since depolarization is minimal for this sub-bundle, there is no need to further transform to
the p− s frame at the exit pupil. The sub-bundle gets directly mapped in the ξf − ηf frame spanned by
the focused angles. The final expression of the vectorial field focused by the system for this sub-bundle
in the cartesian frame Σ0 = {x, y, z}, at a distance f is given by:

e(top,+)
k,f |Σ0

=
(
ifeikf

2πkz

)
Σ[ξ,η]
f
←→α effe[x,y]

in [m2] (5.13)

where Σ[ξ,η]
f is the matrix defined in Equation (5.9) evaluated in the focused angles φ, θ as represented in

Figure 6.7, and we have considered the Fraunhofer far-field propagator depicted in [28] for a focal length
f . Note that the units of the normalized field are now m2.
The apodization ←→α eff can be corrected to include any further apodization of the optical system (for
example, a

√
cos θI apodization is proposed in [28], which we will use from now on). Apodization however

strongly depends on the realization of the optical system. A spurious term ∝ (1− cos θ) is present which
has opposite polarization to the one of the input. This spurious term is represented in Figure 5.2 and
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its existence is a consequence of projection effects inherent with the refraction, sketched in the same
figure. The deviation is minimal for small NA and known as maltese in practical applications [24], but
is important to consider for applications in which the polarization sensitivity requirements are critical.
A field on z is also naturally present due to refraction.

Arbitrary Sub-Bundle Consider now the general case of not paraxial focusing. When a real optical
system is considered, we first transform the e[ξ,η] in the input p − s field by applying the tranverse of
the rotation matrix depicted in Equation 5.11. A transformation [ξ, η] → [p, s] can in fact be seen as a
rotation of −φ along the ray axis. The response of the optical system for a ray, from the p − s of the
entrance pupil to the one at the exit pupil, can always be written as a Jones matrix of the form:

J(o) =
[
τ

(o)
pp τ

(o)
ps

τ
(o)
sp τ

(o)
ss

]
(5.14)

where τ (o)
ps = τ

(o)
sp = 0 when the rays are not-skewed. The coefficient in such a matrix shall be retrieved

by ray-tracing propagation in the Optical System and are in general complex-valued. The final vectorial
expression of the focused field in the cartesian reference is hence of the form:

e(top,+)
k,f |Σ0

=
(
ifeikf

2πkz

)
Σ[p,s]
f J(o)

(
Σ[φ]

)T ←→α effe[ξ,η]
in (5.15)

The measurements of the fields is now biased by induced polarization in the optics. The magnetic field
can also be fully retrieved from the input electric field at the entrance pupil. Without loss of generality we
refer to the non-dimensional magnetic field (for dimensional relations involving the vacuum impedance,
refer to Appendix C). We must simply rotate of π/2 along the wave-vector axis. Such rotation is
equivalent to the multiplication with ΣR = Σ[φ=π/2] within the p − s frame after the optical system
depolarization, so that:

h(top,+)
k,f |Σ0

=
(
ifeikf

2πkz

)
Σ[p,s]
f ΣRJ(o)

(
Σ[φ]

)T ←→α effe[ξ,η]
in (5.16)

In the Appendix E we work out some validated examples of transformation for a non-ideal lens and a
system which presents a non-diffracting polarizer, such examples may clarify the reader on the use of
those formulas to model the optical transformation of the tranverse fields.
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Figure 5.1: Illustration of reference frame and symbols used through the derivation. The plane of incidence is inclined of φ
with respect to the x̂ axis. The plane TE-TM contains the fields and the versor ε̂‖ is the intersect between the x− y plane
and the TE − TM plane. The versor k̂ forms an angle of θ with the optical axis. The plane TE-TM can also be thought
to be tangent to a local spherical wave centered in the focus, vertex of the cone.

Figure 5.2: a) Spurious ey field present upon focusing of an x polarized field due to refraction geometrical projection. b)
Geometrical projection due to refraction leads to a deviation of the field when x is inclined with respect to the p− s frame.
Such deviation creates the spurious term ey upon recombination of the fields.
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Figure 5.3: Decomposition of the electric field on the reference sphere, in p-TM and s-TE components. The field at the
input is here ξ polarized (γ0 = 0). The s and p versors forms geodesics on the sphere and the magnitude of the components
follows a cosine distribution. The magnetic field would possess a similar distribution, rotated of π/2 and swapped p-s fields.
y polarized light would possess also the same distribution rotated of π/2.
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5.3. Metasurface Optical Response
Even though the response of the metasurface device has been already investigated [1], more detailed
characterization is required to describe the angular transmission in more detail, as well as diffraction
effects and finer polarization effects due to focusing. A quick selection of inclusion sizes with respect to
wavelength itself, it is much more efficiently performed in terms of modeled maps rather than cumbersome
FEM simulations. The development of an analytical model to efficiently estimate this performance,
supported by FEM analysis for validation, is paramount in our opinion for this purpose. High-level
requirements parameters (like spectral resolution, induced polarization, spectral band transmission) do
in overall depend on this finer description. In particular, is the transmittance of the filter (in various
conditions) to be influencing the whole retrieval process: all other variables are of interest as they
influence the power integrated in the pixels and the reconstruction. We hence use a comprehensive view
in which diffraction and polarization effects, as well as non-idealities, are comprehensively considered in
the definition of the transmittance and other performance parameters defined in Sub-Section 5.3.4. For
power budgets, however, transmittance under simpler illumination conditions shall be used (e.g. uniform,
non-apodized field) to provide simple engineering figures for the design.
In this Section, we lay down the main concept and formulas used in this characterization. We first
analyze, more qualitatively, the real finite structure, as composed of different resonator cells each one
representing a finite periodic array. The transmittance of this structure has not been analyzed previously
from an electromagnetic point of view, as in fact FEM simulations rely on periodic boundary conditions
applicable for infinitely periodic arrays. The relaxation of this hypothesis is not yet possible within our
modeling capabilities; nevertheless, we tentatively extrapolate the finite transmittance of the finite filter
and outline a methodology for its diffraction modeling. The performance of the real structure assumes a
rather important simplification in the case in which we may consider the pixel composed of one periodic
array wider than the optical spot of the system, a condition we will refer to as wide resonator.
We hence then describe the effective medium formulation, which allows modeling one resonator cell of the
cavity with inclusion as an effective medium of certain material properties. The multilayer performance
general performance is then described in terms of cavity resonance curves, discussed in Section 5.3.6.
Simple performance parameters (directional spectral transmittance under focused illumination, band
transmittance) are in particular defined. The diffraction solution of the wide pixel coupled with pupil
diffraction is then reported exactly in terms of a Zernike Expansion. Within some assumptions, those
results may also be used for the not-wide pixel performance by using the enclosed energy in those modes.

5.3.1. Preliminary analysis of the EM performance of the finite struc-
ture

A sketch of the real multilayered structure across the border of two resonator cells is depicted in Fig-
ure 5.4. This structure can be considered as a composition of a multilayer (top DBR) of which the
spectral transmittance has known modeling, a cavity of hexagonal lattice with various orientations of
the scatterers, of unknown transmittance, and a bottom DBR. The plane-wave response of the mirrors
layers is known and assumed to be non-diffractive (a transparency in the Fourier domain). In the below
formulas, all quantities shall be considered to be implicit functions of the focusing point (xfi, yfi) and
hence the point on the ground in object space. The cavity with inclusions, invoking linearity of the fields
F±i = (E+

p,i, E
−
p,i, E

+
s,i, E

−
s,i) in each transverse plane, will possess a spectral response of the type:

F±(cav,out)
(k′x,k′y,ω) =

∫ ∞
−∞

∫ ∞
−∞

G(m)
(kx,ky,k′x,k′y,ω)F

±(cav,in)
(kx,ky,ω) dkxdky (5.17)

with G(m) representing a (matrix) transfer function between the spectrums, whose determination is cum-
bersome both theoretically and experimentally. The electromagnetic performance can hardly be tested
experimentally as in doing so any probe positioned for sensing will influence the fields. Theoretically,
the response may be determined from finite FEM simulations by performing FFTs of the spatial field
distributions and calculating the transfer matrix associated with the so determined scattering matrix,
main difficulty being simulation time and proper definition of boundary conditions.
It follows that an exact propagation of the fields from the top layers of the filters to the focal fields can
be described by:

F±(f)
(k′x,k′y) =

∫ ∞
−∞

∫ ∞
−∞

Tbottom(k′x,k′y)G
(m)
(kx,ky,k′x,k′y,ω)T

top
(kx,ky)F

±(top)
(kx,ky)dkxdky (5.18)
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The problem with the above equation are various: G(m)
(kx,ky,k′x,k′y,ω) is unknown and the field F±(top)

(kx,ky) does
depend itself on the reflected solution of the coupling problem (is the complete field). A scattering matrix
cannot be determined from the above expression without prior knowledge of the fields decomposition of
the reflected field or opportune discretization of its spectrum. In particular, again invoking linearity in
the scattering matrix, the relationships will be of the type:

F±(top)
(kx,ky) = P+e(top,+)

k,f |Σ[p,s](kx,ky) + P−
∫ ∞
−∞

∫ ∞
−∞

J−(kx,k′x,ky,k′y)e
(top,+)
k,f |Σ[p,s](k′x,k′y)dk

′
xdk
′
y

F±(f)
(k′x,k′y) = P+

∫ ∞
−∞

∫ ∞
−∞

J+
(kx,k′x,ky,k′y)e

(top,+)
k,f |Σ[p,s](k′x,k′y)dkxdky

e(top,+)
k,f |Σ[p,s](k′′x ,k′′y ) =

(
Σ[p,s]
i(k′′x ,k′′y )

)T
e(top,+)
k,f |Σ0(k′′x ,k′′y ) P+ =


1 0
0 0
0 1
0 0

 P− =


0 0
1 0
0 0
0 1


(5.19)

The system of equations (5.18), (5.19) could be solved to determine J−(kx,k′x,ky,k′y) and J+
(kx,k′x,ky,k′y) as

functions of G(m)
(kx,ky,k′x,k′y,ω) and the transfer matrices of the mirrors, where the expression of e(top,+)

k,f |Σ0(kx,ky)
is given in (5.15). A possible resolution method involves discretization of the integrals inm×n gridpoints
and definition of reflection and transmissions coefficients for each polarization and grid points. The
transfer matrix approach has been generalized to multiple dimensions in Appendix A to allow such
transformation. Alternatively, iterative approaches using only the scattering matrices are also possible.
One would then determine, in complete generality, the response matrix H appearing in Equation (4.45)
by inverse Fourier transforming the discretized J+

(kx,k′x,ky,k′y).
Even though possible, this approach results in inversion of very dense matrices and requires involved
numerical analysis of the sampling techniques. The main difficulty arises from the fact that the scattering
matrix can only be determined after properly sampling the spectrum of the field and resolving the
convolution integrals, due to the fact that diffraction couples with the DBRs stacks. Strictly speaking,
the diffraction regime is neither in the Fraunhofer neither in the classical Fresnel regime. Moreover, it is
not possible to validate within the research time-frame since finite performance has not been analyzed
neither experimentally neither via FEM simulations.
We however observed that coupling of the finite structure is limited to a few inclusions across the border
(see Figure 5.5)3 and that the response of an infinite periodic array exciting one scattering mode in
the propagating spectrum is a plane-wave eigenfunction after a certain propagation length. Is it hence
reasonable to assume that the transmittance across the spatial region of one pixel can be given by the
one of the infinite structure when not in close proximity to the borders. The contribution of a single pixel
resonator cell may hence be seen as due to a pixelation function as represented in Figure 5.5, denoted
by P (m)

(xm,ym). When arbitrarily small, they can represent a discretization grid function. Note that the
pixelation function must be continuous in order for the wavefront to be continuous across the borders.
As knowledge of the response G(m) is not available, the tapering of this function is unknown (but likely
limited to a region of 3-4 inclusions in the transverse direction, unless transverse waveguide modes or
scattering are strongly excited). The pixelation function extension depends on the imager arrangement
chosen (here, variable in terms of inclusions geometry only on the along-track direction). Upon such
assumptions, consider a step-wise representation of the field:

F±(cav,in)
(xm,ym,ω) =

∑
j=1

P
(m)
j(xm,ym)F

±(cav,in)
(xm,ym,ω) (5.20)

which in terms of Space Fourier Transform reads:

F±(cav,in)
(k′x,k′y,ω) =

∑
j=1

∫ ∞
−∞

∫ ∞
−∞

P̃
(m)
j(k′x−kx,k′y−ky)F

±(cav,in)
(kx,ky,ω) dkxdky (5.21)

3that’s a theoretical results of the coupled interaction in scattering theories, decaying with distance as 1/rn for a certain n
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where P̃ (m)
j(kx,ky) is the Fourier Transform of the pixelation function. It follows that a discretization of

G(m) is given then by:
G(m) =

∑
j=1

P̃
(m)
j(k′x−kx,k′y−ky)T

∞
j(k′x,k′y,ω) (5.22)

where T∞j(k′x,k′y,ω) is the 4× 4 transfer matrix of the cavity inclusion of an infinitely periodic array with
the same arrangement as the cell j (along-track direction), which is derived in next Sub-Sections. If in
particular the dimension lr of the resonator cell is significantly bigger than the extension of the optical
spot at a given NA (known to be ∝ 1/(k sin θmax) from the Airy solution), such that:

klr sin θmax >> 1 (5.23)

the focal spot not in the proximity of the borders and the diffraction coupling with the mirrors weak, the
filter can be treated as a transparency in the frequency domain. In fact, the Fourier Transform of the
pixelation function will be in that case well approximated by a Delta Diraq and only one of the terms
in the summatory. We would reach the same conclusion by means of simpler energy considerations. In
such case:

F±(f)
(k′x,k′y)

∼= Tbottom(kx,ky)T
∞
j(kx,ky,ω)T

top
(kx,ky)F

±(top)
(kx,ky) ∀(xfi, yfi) ∈ P (m)

j(xm,ym)
∼= 1 (5.24)

which has now a simple associated Scattering Matrix. We hence switch attention to the determination
of the cavity response T∞j(kx,ky,ω) by means of an effective medium formulation.

Figure 5.4: Sketch of multilayered structure with inclusions across two resonator cells (pixels). Scatterers are periodic
but at different orientations or with different dimensions. The input field is a focused field. The structure is divided into
top, cavity and bottom stacks, each one having their complete 4× 4 transfer matrix describing their couplings in terms of
plane-wave response. It is considered the inner matching plane to be the diffracting layer.
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Figure 5.5: Representation of the cavity layer with inclusions across borders and its transformation for an input plane-wave,
with one propagating mode. Only the top excitation is represented. Only a few of the scatterers are field coupled between
cells. Wavefront must be continuous across the border so that a plane-wave spectrum is excited for a single plane-wave
excitation. Below, a qualitative sketch of a pixellation function is represented.

5.3.2. Effective Medium Formulation
The multilayer is composed of isotropic slabs of different dielectric materials and a cavity with inclusions.
Since wide resonators are under considerations, the response of the cavity with inclusions will create a
set of discrete and distinct plane wave excitations kx, ky depending on the lattice Floquet modes excited
by the scatterers. Since for imaging we must avoid the presence of multiple propagating modes, the wide
effective cavity can be also treated by means of a transparency function in the frequency domain, after
a certain extinction length of the cavity, zext. In other words, it responds to a plane-wave excitation
by means of a plane-wave output. We claim that all such structures can be modeled by means of an
anisotropic slab effective model, with a (relative) effective permittivity of the form:

←→ε r =

εx,r 0 0
0 εy,r 0
0 0 εz,r

 (5.25)

We further claim that such permittivity tensor shall be diagonal, since the geometry of the structure
presents clearly such simmetry and that when used in transfer matrix formulations it shall also describes
the coupling of the metasurface with other layers accurately, as far as the additional disconsidered modes
are negligible. The diagonality condition may, in reality, vanish upon illumination at an angle (since
both illumination and geometry have to be simmetric in order to apply simmetry considerations) but
we will neglect this factor for now. The effective permittivity parameters are obviously correlated to the
fields induced by the geometry of the particle (its aspect ratio, height, diameter). In particular, known
relationships are present in literature for the quasi-static problem (e.g. ω → 0) for such effective mediums.
Such simplified relationships, derived from the Eshelby Tensors approach used also in Mechanics, are
implicit relations of the approximated form [45] (dropping the subscript r for ease):

1− c = εi − εx
εi − εm

(
εm
εx

)AR/(AR+1)

1− c = εi − εy
εi − εm

(
εm
εy

)1/(AR+1)

εz = cεi + (1− c)εm

(quasi− stationary model) (5.26)

where εi is the permittivity of the inclusion (particle), εm is the permittivity of the matrix (bare cavity), c
the volume fraction of inclusions present in the cavity, AR the aspect ratioDy/Dx, withD the diameter of
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the ellipse along the local x, y directions and εx,y the resulting (relative) permittivities in those direction.
The behavior for various refractive indices and aspect ratio is represented in Figure 5.6. According to

Figure 5.6: Plot of the permittivities appearing in the implicit equation (5.26) as a function of the volume percentage c for
a given aspect ratio of AR = 1.5. The matrix has been assumed to be made of SiO2 and the elliptical inclusion of aSi

such a stationary model, an optimal value of c exists, for a given aspect ratio, to maximize the contrast
in permittivities. That has been demonstrated to be the case also the real simulated structures. In the
present geometry, consist of an hexagonal shaped cavity of lattice size a (between two parallel edges) and
length lcav with an elliptical inclusion of height hi, the volumetric percentual of inclusion in a resonator
cell is given by:

c =
(

π

2
√

3

)(
hiDxDy

a2lcav

)
(5.27)

The effective formulas (5.26) results from some severe simplifications on the uniformity of the fields and
does not include the dependence of frequency ω, neither takes into account the possible non-uniform
distribution of the fields in the particle or its precise location. Is hence applicable only for the case in
which max(Dx, Dy) < λ0 and c < 1, which are somewhat interconnected assumptions in our case.
Dispersive relations, taking into account the formal solution in presence of elliptical geometry, are also
reported in terms of Mathieu functions for a single scatterer in [46], which is of too complex use for our
treatment.
Irrespectively of what is the considered geometrical link relating the inclusion sizes, the wavelength and
the effective permittivities, the advantage of using such a model is threefold: first, better understanding
of the macroscopic influence of the fields and geometry can be provided by analyzing the related effective
parameters; second, as we wish to verify via FEM simulations, those parameters will be relatively uniform
in both spectrum and angles whenever resonances of the scattering are not induced; third, when coupled
with a multilayer solver, such model can greatly enhance the simulation time of those structures and
provide new inputs for the design. It, however, comes also with its own limitations: as used throughout
the report, it can only describe one mode propagation for the cavity layer, so that the real cavity must
be a plane-wave eigenfunction.
In principle, the effective parameters could be derived from a Floquet-Bloch mode formulation and
decomposition of the fields. Such approach is for example used in [47], [48], [49]. Such models usually
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rely on homogenization techniques, which, for a given θmax, minimizes the errors in the fields distributions
across the volume or the boundaries by use of a single-mode described with its own effective matrix.
Some given constraints are actually physical for the determination of ←→ε r due to the lattice periodicity
only, irrespectively of the scatterer geometry, but the optimal values of ←→ε r depend on the expansion’s
coefficients of the Bloch waves decomposition.
Another way to retrieve the value of permittivity is by performing FEM simulations with a small number
of datapoints and matching exactly the transmission spectrum and its phase. An analytical model for
the retrieval has been implemented but the analysis of the results still undergoing.

5.3.3. Plane-Wave Transmissions
Since we have assumed the inclusion cavity may be modeled by the use of an anisotropic layer, we
can now investigate the plane-wave transmissions of the multilayer, by modeling the real structure
with a bare anisotropic cavity. The plane-wave transmission is evaluated through the transfer matrix
approach introduced in Chapter 4, which in comparison with FEM models offer a significantly faster
calculation. The transfer matrix of the total multilayered structure is computed by means of Equation
(4.30). Typical problems of instability in transfer matrix calculations can be avoided by using the
transverse field transmission coefficients as in [27] (which ensures that the determinant of the transfer
matrix is unitary) and by pertaining symbolic expressions by means of symbolic toolboxes. The Scattering
Matrix associated with such transformation is computed in the p − s frame by means of the procedure
depicted in Appendix A, which leads to a final Jones matrix of the whole multilayered structure:

J(m)
|Σ =

[
τ

(m)
pp τ

(m)
ps

τ
(m)
sp τ

(m)
ss

]
(5.28)

The coupling terms τ (m)
ps , τ

(m)
sp may be in general present if the particle inclusion is elliptical (has an

aspect ratio different than one), since axial-symmetry of the structure is broken. We have demonstrated
the presence of those terms also with FEM simulations discussed in Appendix E. Moreover the given
coefficients are always function of the angle of illumination θ of the plane-wave excitation and also func-
tions of the azimuthal angle φ if the particles are elliptical.
One must remember that such coefficients (which may be alternatively also determined via FEM simu-
lations) are represented in a p− s frame. The base can be changed in the transverse ξ, η in both domain
and co-domain by:

J(m)
|Σ[ξ,η] = Σ[φ]J(m)

|Σ

(
Σ[φ]

)T
(5.29)

Or the full transformation from the entrance pupil can be considered as4:

ek,f |Σ0 =
(
ifeikf

2πkz

)
Σ[p,s]
f J(m)

|Σ J(o)
(

Σ[φ]
)T ←→α effe[ξ,η]

in =
(
ifeikf

2πkz

)
Jee[ξ,η]

in [m2] (5.30)

which transforms from the input ξ, η frame to the x− y − z frame at the focal plane.

5.3.4. Performance Parameters
Before diving into the numerical analysis (discussed in Part III), it is worth describing main design
criteria of DBR and the phenomena of cavity resonance from our perspective and defining two simple
performance criterias: the (wide pixel) transmission under focused illumination and the (wide pixel)
spectral band transmission.

Focused Transmissions for wide pixels
Once the transmission matrix is fully characterized for all angles and spectrum, enough information is
available to define a transmission on focused illumination. In this section we define the wide pixel trans-
mittance neglecting aberrations of the device and finiteness effects. Those will be tentatively included
in the definition of a finite transmittance in Section 5.3.7.
4reflection coupling between system and metasurface is neglected (so that the Jones matrices directly multiply). Moreover,
such expression is valid only in the wide-pixel limit. If the focused beam spot-size is comparable or bigger than the size of
the resonator pixels, one shall used the formal diffracted field formulation as in Chapter (5.3.1) and a much more complex
integral relationship applies instead
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In the Section 5.1, we have normalized the fields such that s0 = 1 at the entrance pupil and considered the
weight of each ray to be given by a generalized radiance proportional to the trace of the cross-correlation
tensor. The input spectral directional power at the entrance pupil (e.g. the coherent contribution of a
point source over the whole pupil, measures in [W/(µmsr)] as defined in Table 4.1) is the integration
of the radiance over the pupil (which acts as a coherence area). Neglecting possible apodization factors
due to pupil orientation:

Θe
(λ,rob) =

∫
Aep

Lλ(rob)dAep =
(
πc0
λ2η0

)∫
Aep

Tr{W[ξ,η]
(rob,ω,t)}dAep [W/(µmsr)] (5.31)

The focal fields at the detector from a point-source contribution will also be characterized, in the focal
plane at negletion of aberrations, by a cross-correlation tensor:

W[x,y]
(r,ω,t,ŝ) =

(
λ2η0

πc0

)
Lλ(rob)〈ef |Σ0e†f |Σ0

〉 [V 2s/m2] (5.32)

where the radiance Lλ(rob) is the same one appearing in (5.31) (averaged over the sub-bundle if not-
uniform) and ef |Σ0 are the normalized focal fields in space domain. Recalling the Fraunhofer diffraction
also depicted in [28], the fields ef |Σ0 are the inverse Fourier Transform of the plane-wave representation
appearing in Equation (5.30) so that:

ef |Σ0 = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

ek,f |Σ0e
ikxx+ikyydkxdky (5.33)

The spectral directional power at the focal plane of one pixel is then given, in complete analogy with the
entrance pupil, as an integration over the whole detector plane:

Θ∞(f)
(λ,̂s) = lim

klp sin θmax→∞
lim

klr sin θmax→∞
L(λ,rob)

∫
Ap

Tr{〈ef |Σ0e†f |Σ0
〉}d2Ap [W/(µmsr)] (5.34)

where we have also considered the limit operation of wide pixels. In the limit, the integral can be resolved
by means of the Parseval Theorem in an integration in the space spectrum as:

lim
klp sin θmax→∞

∫
Ap

Tr{〈ef |Σ0e†f |Σ0
〉}d2Ap = 4π2

∫
Ω

Tr{〈ek,f |Σ0e†k,f |Σ0
〉}dkxdky [m2] (5.35)

The trace in the right integral is simply the Fourier representation of the Stokes parameter s(f)
0 at the

focal field (by definition), which is then related to the input Stokes parameters defined in Equation (4.39)
by (Fourier Domain):

s
(f)
0 =

(
f2

4π2k2
z

)
M∞

0 s(in) [m4] (5.36)

where M∞
0 is the first row of the plane-wave Mueller Matrix associated with Je appearing in Equation

(5.30). Further, integration in the space spectrum is simply an integration in the cone angle once the
parametrization in Equation 4.21 is used. Since (due to differential analysis also performed in [28],
Chapter 3):

dkxdky = k2
0 cos θ sin θdθdφ (5.37)

Connecting all together, the following dimensionally sound equation is found:

Θ∞(f)
(λ,rob) = Lλ(rob)f

2
∫

Ω
M∞

0 s(in) sin θdθdφ [W/(µmsr)] (5.38)

where we consider s(in) to include any variation in the cone angle of the radiance distribution and further
radiometric apodization has been considered [28]. It makes sense to define the transmission of the wide
pixel as a ratio between focal spectral directional power and input spectral directional power at the pupil,
for a uniform radiance and field distribution at the sub-bundle. Note that the real intensity will instead
always be affected by the transmission of the optics and non-uniformity of the radiance over the pupil.
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With such considerations, hence, we define the idealized wide-pixel transmission of the metasurface under
focal illumination as:

←→τ ∞(λ,rob) =
Θ∞(f)

(λ,rob)

Θe
(λ,rob)

= α(θmax)

∫
Ω M∞

0 sin θdθdφ
π sin2 θmax

(5.39)

Since for an unknown geometrical view factor α(θmax), the area of the pupil is related to the focal length
by:

Aep = πf2 sin2 θmax
α(θmax)

[m2] (5.40)

and further that sin is by definition normalized on s0. Unless differently stated, we will suppose the view
factor to be α(θmax) ∼= cos2 θmax, representative of a planar principal plane.5
Even if the demonstration is rather lengthy, the end result is simple: in the case of a wide-pixel ar-
rangement, the spectral transmission over focused illumination is averaged over the focal cone angle and
is a row vector, given by integration of the first Mueller row over all angles. We have performed such
derivation to show why an averaging over a cone angle, rather than being an assumption, is actually a
physical implication of the Fraunhofer model used and the Parseval Theorem. The spectral directional
transmittance←→τ ∞(λ,rob) hence represents a theoretical maximum transmittance over focused illumination,
not including aberrations or finiteness effects. Alternatively, the integral (5.38) may be regarded as an
integration over the pupil area, which is the coherence area of the field.
The end result is a transmission which is polarization dependent, as expected. The provided transmission
is a directional one, in the sense that it takes into account the contribution of a point-source only. Note
that in the real arrangement, such transmission is dependent on the focal point chosen on the detector
(e.g. the PSF is a strongly point-dependent function), which is important to know when dealing with
image creation. We will further try to depict how in Chapter 5.3.9.
The resolution of the integral in (5.39) is ill defined for θmax → 0. By using the De L’Hospital rule we
conclude that the integral is always defined, in fact it tends to be exactly the plane wave transmittance
for small angles:

←→τ ∞(λ,rob)|θmax=0
= M∞

0 (5.41)

To avoid singularity, we use the change of variables:

ξ′ = sin θ′ = sin θ
sin θmax

(5.42)

which upon substitution and rearrangement leads to:

←→τ ∞(λ,rob) =
α(θmax)

π

∫ 1

0

∫ 2π

0
M̃∞

0(ξ′,φ)ξ
′dξ′dφ (5.43)

Where:
M̃∞

0(ξ′,φ) =
(M∞

0(θ,φ)

cos θ

)
|θ=arcsin(ξ′ sin θmax)

(5.44)

The integration has been resolved by means of the splines interpolator described in Appendix D, which
iterates efficiently over grids in angles and wavelengths and the numerical results are discussed in Chapter
III, where more suited.

Band Transmission
The above wide pixel focused transmittance presents a distribution in the wavelength. For radiometric
purposes, it is useful to determine what’s the transmission across a small spectral band in which the
signal of interest may be regarded as uniform, assumption hereby required only in order to provide a
simple engineering figure for the performance of the device. The real signal will not and is not desired
to be uniform (otherwise such resolutions would not be required in the first place) so that its real band
transmittance may in reality differ. The performance parameter here depicted however is however a good
indication of the power in the band for a power budget estimation.
To define a band transmission, we must integrate ←→τ ∞(λ,rob) across a small spectral region [λmin, λmax],

5the view factor cannot be unitary, as it would not fulfill conservation of energy
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which we take here to be the quiet zone of the DBR bandgap (to a certain thresold defined from case to
case).
It follows that the directional power at the (full) focal plane Θ∞(f)

(rob) , not to be confused with the spectral
one Θ∞(f)

(λ,rob), is given by:

Θ∞(f)
(rob) = Lλ(rob)f

2π sin2 θmax

{∫ λmax

λmin

←→τ ∞(λ,rob)dλ

}
sin [W/(sr)] (5.45)

Or, in similarity with radiometry and ease of definition:

Θ∞(f)
(rob) = Lλ(rob)f

2π sin2 θmax∆λ←→τ ∞(rob)sin [W/(sr)] (5.46)

where we have defined the spectral band transmittance as:

←→τ ∞(rob) =
∫ λmax
λmin

←→τ ∞(λ,rob)dλ
∆λ (5.47)

for an arbitrary ∆λ (which can be taken for instance to be close to the FWHM at normal incidence
and is used for normalization purposes). The latter does not influence the directional power since by
definition it simplifies in (5.46).
The band transmittance is hence regarded here as a radiometric transmittance fully derived from elec-
tromagnetic propagation theory and applicable for an arbitrary polarization state of the incoming light.
The quantity f2π sin2 θmax is in fact, roughly the area of entrance pupil. The transmittance is in general
a function depending on the NA of the system and polarization, a row vector of the form:

←→τ ∞(rob) =
[
M∞0,0,M

∞
0,1,M

∞
0,2,M

∞
0,3
]

(5.48)

Condition Number
In Section 6.7, we have discussed an arrangement allowing to determine three Stokes parameters. For
such arrangement, the inclusions of the arrangement are assumed to be rotated of δ = ±60◦ with respect
to the baseline one, to equally sample the π region of interest. This sampling is clearly the optimal one
if we assume the angle of polarization of the incoming light to be statistically homogeneous, whereas it
may differ as already depicted previously in [1] in case also circular polarization is included. We have
verified the optimal condition of this arrangement for various PDL modules (discussed below) in Figure
5.7a).
The determination of the transmittance property of a rotated inclusion is simple, from the knowledge of
←→τ ∞(rob). It is simple to demonstrate in fact that rotation of the inclusion relates to a rotation around the
z axis of δ degrees, which can be achieved by a rotation matrix in the cartesian frame, to be formally
placed after the optical transformation and before the metasurface transformation. Since the optical
system is regarded as ideal in the metasurface performance parameters above defined, that rotation is
equivalent to considering an angle γ − δ rather than γ in the input field (e.g. rotate the ξ− η frame of δ
with respect to the input wave-vector at the pupil).
Upon such considerations, the rotated band transmittance is given by:

←→τ δ,∞
(rob) =←→τ ∞(rob)


1 0 0 0
0 cos(2δ) − sin(2δ) 0
0 sin(2δ) cos(2δ) 0
0 0 0 1

 (5.49)

The reconstruction matrix (at wide pixel focusing) is defined hence by, considering δ = 60◦:

M =

M0,0 M0,1 M0,2 M0,3

M0,0 −M0,1
2 +

√
3M0,2

2 −
√

3M0,1
2 − M0,2

2 M0,3

M0,0 −M0,1
2 −

√
3M0,2

2

√
3M0,1

2 − M0,2
2 M0,3

 (5.50)

where we dropped the apex∞ (such definition is applicable also for finite transmittances, defined further
in the report). In Section 5.3.9 we show how this matrix can be used to provide reconstruction from the
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corrected number of charged particles measured at the detector. The reconstruction process is affected by
a certain condition number, κ which would hence be a function of the geometrical shape of the inclusions,
the design of the DBR and the NA of the system as well as the point on the detector considered. The
condition number of the matrix (M∞,[3,3])−1 (left square matrix minor), defined as ratio between its
maximum and minimum singular values, has been calculated with symbolic tools to be:

κ =
max

(√
3,
√

6ρ/2
)

min
(√

3,
√

6ρ/2
) =

√
2
ρ

ρ =

√
M0,1M0,1 +M0,2M0,2

M0,0
(5.51)

Since it can be shown that ρ ≤ 1, its theoretical minimum is achieved at κ ∼=
√

2 ∼= 1.414. The quantity
ρ is also known as (partial) PDL module vector, a scalar variable depending on the integrated band
transmission here defined. Figure 5.7b) shows the condition number in relation to the PDL module
vector. For small PDLs the reconstruction is not possible and this result would conceptually hold for all
other arrangements (also with four pixels). The PDLs of various designed inclusions will be revisioned in
Chapter 7, where we explicit that a small PDL is associated with an element which is poorly polarizing or
an element with two polarized spectral peaks within the integration band, such thatM0,1,M0,2 << M0,0

Figure 5.7: Condition number in relation to the partial PDL module vector depicted in formula (5.51), defined for a band
transmission

The condition number is a good indication of the SNR amplification and is an important perfor-
mance parameter. In [4] it is in fact demonstrated that for a noise following normal distribution and
equidistributed measured signals, the SNR in reconstructed Stokes parameters is given by:

SNRSt = SNR(0)

κ
(5.52)

where SNR(0) is the averaged SNR of the measured charges at the detector (for an arbitrary angle of
polarization variance, given by the unpolarized field SNR). It is also interesting to discuss the dependence
on s3 of the previous measurement; for the arrangement under consideration measurement of circular
polarization has been disregarded as elicited in Chapter 6 due to small values of s3 and simplifications in
the integration of the device. The presence of circular polarized light does not influence the measurement
if the device is engineered such that M0,3 ∼= 0 or, trivially, sin,3 ∼= 0. In the first case, however, the total
degree of polarization cannot be reconstructed but only linear degree of polarization, further underes-
timated by a factor cos(2χ). Only the latter is requested practically according to science requirements
and both the condition above explicated are met by the device under study and its input field.
There are possibilities to further minimize the condition number of the reconstruction process by re-
peating measurements or using redundant pixels, at the drawback of time or space resolution in the
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measurement. A detailed study on data redundancy has been proposed in [50], which showed no sig-
nificant improvement in the condition number. Improvement may, however, be possible by repeated
measurements. We further point that in [1] it is reported a minimum value of the condition number of
k =
√

3 as also in other literature resources. Their analysis is based on various assumptions, not verified
in our case:

• a) The reconstruction is based on all four measurements, including circular polarization-sensitive
arrangement. The reconstruction matrix is hence denser and the reconstruction less efficient.

• b) The reconstruction is based on a matrix with M00 = 1/2, so that the polarizer is idealized as
fully polarization sensitive. In other words, in those studies, the PDL is always taken as ρ = 1 and
the transmittance of the device idealized.

With respect to the design proposed in [1], hence, choosing not to include circular polarization in the
reconstructions enables a better SNR. Moreover, the integration is also simplified, since the reaching
strictly k =

√
3 in the design proposed in [1] was impossible within angles tolerancing of all the inclusions,

whereas an angle of δ = 60◦ is a simple measure for the manufacturing process. As we notice in image
5.7a), deviating from this condition leads to more than a linear increase in the condition number in both
error directions (a non-uniform error, however, has not been investigated for succinctness).

Spectral Resolution
When defining spectral resolution, one has to be clear on what is the desired retrieval information. A
sound definition of the spectral resolution must intrinsically depend on the expected statistical properties
of the field wish to be measured in the spectrum, the reconstruction technique. The spectral resolution
can, in fact, be smaller than the FWHM if multiple peaks are used for the sampling and an optimized
reconstruction algorithm is used. We will preliminarily consider the spectral resolution to be bounded
by the minimum separation between sampled peaks which are still resolved, similar to what done in the
definition of spatial resolution in PSF in Fourier Optics.

Spectral Quality
To depict the confidence level at which the radiance is reconstructed, one may consider what is the
amount of spectral power falling in a certain region. Supposing that the retrieval of the fields properties
close to a wavelength λc are of interest, one may define in generality of the transmittance distribution of
the DBR filter, a function depicting the enclosed energy close to λc with respect to the total transmitted
one. Limiting the treatment to fields which have a statistically homogeneous distributions in the angle
of polarization, only the M0,0 would be of interest:

S(∆λ) =

∫ λc+∆λ/2
λc−∆λ/2 M0,0dλ∫ λmax
λmin

M0,0dλ
(5.53)

where [λmin, λmax] are wavelength intervals of a wider bandpass filter in the DBR. When the active
transmissivity spectrum is localized to a finite region in the wavelengths, the confidence function S
evaluated at the FWHM will be close to unity. If the transmission spectrum does, instead, present
features also in other regions of the spectrum, the confidence level associated with the FWHM will be
lower. We have previously mentioned that the SNR is affected by the reconstruction process more severely
when the PDL module is not close to unity (two polarized spectral peaks are present in the integration
band). If the filter is supposed to work as a polarizer but ρ << 1, also the spectral quality would
naturally be affected, since we cannot discern uniquely the distribution in the spectrum which originated
the integrated energy. In other words, the reconstruction and the PDL module, do, in general, affect
both the noise and the statistical mean of the input signal. Since a more detailed statistical treatment
would be too detailed for the purpose of this report, we can preliminary depict the latter effect by
means of the introduced value of S(FWHM) evaluated at FWHM, which acts similarly to a simplified
probability density function. We will refer to the latter with the name of spectral quality of the filter.
Alternatively, one may also operate in terms of FFTs of the transmissivity spectrum in frequencies of
wavelengths, depending on the science requirements of interest. If strong variations of the field’s spectrum
are expected, one may consider switching to other reconstruction methods that do affect less strongly
the statistical variance of the reconstructed field, like the one depicted in [4]. Usually, there is a trade-off
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between how much the variance and the mean of the input field are affected by the reconstruction process,
both in the spectrum, in time and in space; the method in [4] in fact does possess a condition number
of κ ∼= 8. The reconstruction method discussed in Section 5.3.9, later on in the report, does implicitly
assume that the variations of the input field in the spectrum are minimal in between the two polarization
peaks and corrects for the presence of leakings in the other polarizations with such assumption in mind.

5.3.5. DBR General Sizing Criterias
A typical DBR structure is composed of two mirrors stacks, each one composed by two alternating
materials of refractive indices ni and nj , assumed to be lossy-dielectric and non-magnetic (µr = 1) in
accordance with the Model in Chapter 4, with a high refractive index contrast. The two stacks are
separated by a cavity which couples by reflection in certain narrow spectral regimes, usually of the
same material as one of the mirrors but not necessarily. The structure is represented in Figure 5.8. To
maximize this coupling the mirrors, as a separate stack, have to possess a high reflection with a bandgap
region, a quiet zone with a low value of the transmission.
It is well proven than in DBR structures the highest-quality reflective coupling with the cavity is found
for quarter-wavelength mirrors:

zi = λmir/(4ni) (5.54)

and reflection and coupling are enhanced by the use of more mirrors (till manufacturing limits). For a
fixed length of the mirrors, we refer to λmir as design wavelength of the mirrors. This shall ideally be
the same for both mirrors and maintained uniform within tight tolerancing across the layers, to avoid
mirrors detuning in the DBR, which has been observed to induce strong undesired spectral shifts and
limit the DBR bandgap. In practice upon manufacturing the achievable lengths of the mirrors may be
constrained and the material properties are known within a certain accuracy only.
The location of the spectral peak is mainly dependent upon such design on the size and effective prop-
erties of the cavity, in terms of its optical effective length only in a first approximation. Its FWHM is
strongly dependent on the number of mirrors and dispersion properties of the materials: within a higher
number of mirrors the transmission decades more rapidly with a small change of the optical length of
the cavity. FWHM it is further influenced by the polarization state of the incoming light, increasing
off-angle for the p polarization and decreasing for the s polarization.
The bandgap region extension, in general, depends on material properties and on the type of resonance
excited in the cavity (first, second...). A general properties of the spectrum is in fact that to higher
optical lengths of both mirrors and cavity, a bigger change in the spectrum is present for the same small
perturbation (angle, tolerancing, temperature, change of wavelength or material properties, etc...), hence
a bigger bandgap region is associated with the first resonance m = 1 of the cavity, which is desirable,
but may offer a limited geometrical extent for the introduction of bigger inclusions.
The phase of the transmission is observed to be roughly ∼= ±π/2 at peak wavelength, with the sign
depending on whether the resonance integer m is even or odd and equality holding only when the cavity
and mirrors are matched at the same wavelength. A detailed study of aberrations induced from the
metasurface due to those spectral dependent phase changes of the transmission spectrum is more suited
in Section 5.3.7, within the diffraction formulation.
Those considerations are summarized in Table 5.1.

Note on the order and conventions There is a certain confusion on the definition of what the
cavity is for the below structure (how to define its length in particular). The definition must be consistent
with what is considered a stack of mirrors. We consider here the (effective) cavity to be the physical
domain delimited by boundaries of change of permittivity (excluding internal scatterers). For example,
if an empty cavity is made of SiO2 and the mirrors of SiO2 and TiO2, the cavity is the domain between
the TiO2 mirrors (leading the size of the cavity to be an even multiple of quarter wavelengths). Some
other authors exclude, in this example, one of the SiO2 mirrors from the cavity definition by including
it in the DBR stack (leading to an odd multiple of quarter wavelengths). This is merely a convention in
the case of an empty cavity of the same materials of the mirrors, but is an important difference in the
case in which we wish to change the material of the cavity or include a scatterer. Physically, the required
condition for a resonance between mirrors stack is that a phase-shift of multiple of π shall be achieved
by propagation in between any reflection, which results in even multiples of π for the optical length of
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the cavity and hence the first definition. A physics-based general definition is hence the first only if one
wants to use an effective medium formulation. In Figure 5.8 that results in an additional ’half-pair’ in
the bottom stack. The structure is moreover not symmetrical upon rotation on the out-of-plane axis of
π degrees. As a result, the transmission spectrum of the structure from the bottom will be different than
the one from the top and correct order must be used in the definition of the multilayer. The proposed

Description Symbol Change Upon
Bandwidth of the DBR*

*as % of peak transmission
Bλ

Number of mirrors
m resonance of cavity
Materials

Peak Transmission τmax
Reflection Coupling; Losses
Position in the bandwidth ; Apodization at incident angle

Peak Wavelength λmax
Optical length of cavity
(mainly)

FWHM of transmission
spectra FWHM

Number of mirrors ; Losses
Position in the bandwidth ; Dispersion of materials
Reflection coupling ; Polarization (p, s)

Phase of transmission ϕτ
Spectral position with respect to peak transmission
Polar angle and polarization

Table 5.1: Parameters of interest in DBR structures and their variations

Figure 5.8: Representation of a DBR structure with a cavity that presents some generic inclusions. The mirrors are quarter
wavelength (in the given medium) and the cavity follows the conventions in the notes of this Section.

design has the advantage of allowing to change the optical length of the cavity by shaping opportunely
the inclusions. It would be useful, for quick design purposes, to determine a simplified relationship to
link the desired spectral peak location (λpeak), for a given choice of mirrors and length of the cavity, with
the required sizes of the inclusions. In order to do so within our framework, one must first determine the
effective permittivity of the cavity and, within a geometrical link as the one discussed in Section 5.3.2,
from there determine the geometry of the inclusion. The cavity resonances curves, discussed in the next
Section, aid in this process.
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5.3.6. Cavity Resonance Curves
It is further interesting to analyze the behavior of the structure at normal angle for varying cavity
effective parameters. It can be proven in fact that when an elliptical inclusion is inserted, a normal-angle
field directed on one axis of the ellipse behaves as in the isotropic case with the permittivity of that axis
(see analysis in Appendix B in support). The transmission spectrum module for various permittivities
sizes is represented in Figure 5.9a) and its angle in 5.9b). The latter provides important information
regarding the aberrations.

Figure 5.9: a) Plot of the transmissivity spectrum in intensity for various cavity permittivities b) Plot of the amplitude
transmissivity angle in the complex domain in the spectrum for various permittivities, in color wheel scale.

The mirrors have been designed at λd = 1µm in this numerical example and the cavity size is at one
optical wavelength, with 4 pairs in each DBR for clarity in the plot of SiO2, T iO2. Resonance curves for
other design wavelengths are qualitatively similar. The Figure clearly represents more possible resonance
regimes of the cavity, which are approximately at phases difference of ±π/2. For wavelengths close to
the design wavelengths of the mirrors, those are approximately given by the condition:

λpeak ∼= 2mzcav cos θincav ∀m ∈ N (5.55)

where N is the set of positive integers and cos θi is the incidence polar angle in the cavity and ncav = √εcav.
In practice design, the previous relationship can be inverted to determine the effective refractive index
of the cavity for a desired spectral peak. The effective impedance of the cavity does not strongly
influence the location of the spectral peaks, but rather the FWHM and the transmission module. So
does also increasing the number of layers. The addition of an imaginary part in the refractive index,
representative of a loss in the cavity or the mirrors, does also mainly influence the FWHM and the
module of the transmissivity. The above resonance curves can hence be used also in the generality of
impedance or losses presence if only spectral information is required. They are strictly valid only at
normal incidence: illumination over an angle influences the slope of those resonances. It is clear then
that by making the cavity anisotropic, two different spectral peaks can be excited, which explains the
design in [1] from our framework point of view. It moreover provides additional information regarding
the possible presence of two peaks when higher refractive indices in the cavity are used. As a result,
having a high contrast of the refractive indices due to aspect ratio of the particles (by using a grating for
instance) does not always lead to more separation in the spectral peaks: if the cavity size is not chosen
accordingly (ad example, too long), such design choice may also lead to additional spectral peaks due
to higher resonances modes of the cavity in the bandgap of the DBR mirrors. The phase behavior of
the transmission is also interesting, since it is roughly π/2 to −π/2 at the peaks depending on the m
integer chosen. We could envision, an aspect ratio such that x polarized light would be transmitted with
a π/2 phase-shift and y polarized light with a −π/2 shift. Such design would flip the handedness of the
circular-polarized light and is interesting for other studies, but is of no additional use for the present
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case-study. The fact that at the peak transmittance the phase-shift induced by the multilayer is of ±π/2
is a clear indication of a resonant structure. The plot in Figure 5.10 provides further insight on the fact
that, by using a permittivity which possesses a certain spectral dispersion, one may engineer the shape
of the peaks (their FWHM, their amplitude), an aspect which we will investigate thoroughly in Part
III. Angle dependence can also be visualized straightforwardly (in first approximation) by changing the
local slope of the resonances curves according to Equation (5.55). A material having a dispersion law
n(λ0) such that its intercept would remain roughly constant at the variation of this slope, would be solid
in terms manufacturing tolerances, angle dependence and also thermal expansion, resulting in smaller
spectral changes of its transmissivity.

Figure 5.10: Plot of the resonance regimes in a smaller spectral window and illustration of the permittivities intercepts for
a dispersive material and a non-dispersive one. The intercepts define the presence of a spectral peak in the transmission
spectrum. In the above example, no spectral peak would be intercepted (in this spectral window) by the dispersive material.

The angle behavior is, in reality, more complex and starts diverging from the one reported in Equa-
tion (5.55). Nevertheless we found the (εcav, λ) spectrum in Figure 5.9 to be a useful design tool for the
characterization of structure, also when inclusions are present. The clear question is obviously determin-
ing a characterization of the permittivity ε(λ) in relation to the optical properties of the cavity and of
its inclusions, as well as the geometry of the inclusions. If such law can be engineered with the degree of
freedom of shape of the inclusions, a new design solution which is not limited by the angle dependence
and neither by bandwidth separation of the two spectral peaks could be envisioned.

5.3.7. Diffraction for wide resonator arrangement
Diffraction of the DBR arrangement with scatterer inclusions is a complex physical problem to resolve.
The inherent strongly space-dependent properties of the filter (varying from pixel to pixel) and the
necessity of using vectorial treatment complicates the matter.
Diffraction in the metasurface filter device is introduced because of various reasons (in order of increasing
importance and partly interconnected):

• a) Finite extent of the entire filter

• b) Disuniformities at inclusions level between one scatter and another

• c) Imperfections in the manufactured mirrors, inclusions shapes and other geometrical sizes

• d) Possible presence of cavity of different height across the detector

• e) Presence of pixel of strongly different properties at a finite height from the detector (a few
wavelengths): this is a near-field effect, but does not obey to the Fresnel diffraction integral since
it relates to coupled propagation in dielectric structures

• f) Coupling with the pupil diffraction: the filter acts also as a transparency for the diffracted field of
the optical system. Its narrow-angle dependence and introduced phase-shifts modify the effective

52



spot size and the aberrations of the fields. In case of effect e) can be neglected, this can be treated
by means of a Fraunhofer far-field transparency effect.

In the preliminary analysis in Section 5.3.1 we have outlined a possible solution to the effect e), by means
of a pixelation function for an arbitrarily sized pixel, which extrapolates finite transmission behavior
from the infinite one. Up to now we also neglected aberrations since the Mueller transformation has
been performed in the plane-wave representation. If condition (5.23) applies (wide resonator), then the
transmittance of the device is in good approximation simple transparency and the driving diffraction
effect is given by f). With such consideration in mind, the electric field transformation from the entrance
pupil to the focal plane can be written as:

e(f)
k,f |Σ0

=
(
ife−ikf

2πkz

)
Σ[p,s]
f J(m)J(o)

(
Σ[φ]

)T ←→α effe[ξ,η]
in =

(
ifeikf

2πkz

)
Jee[ξ,η]

in (5.56)

and the magnetic one:

h(f)
k,f |Σ0

=
(
ife−ikf

2πkz

)
Σ[p,s]
f ΣRJ(m)J(o)

(
Σ[φ]

)T ←→α effe[ξ,η]
in =

(
ifeikf

2πkz

)
Jhe[ξ,η]

in (5.57)

Note the difference with respect to equations (5.15) where the fields were represented at the top of
the metasurface structure. The transformation Je and Jh are the final Jones transformation matrices
of the whole system, relating the input fields at the entrance pupil from the ξ − η frame to the focal
fields at the detector in the cartesian frame. The focal distance f is always referred to the top of the
metasurface structure (where the plane-wave decomposition is performed). Such way no correction for
the geometrical reference Gaussian sphere with respect to a plane-surface needs to be performed6. As a
result the defocusing distance z hereby used is the distance of the focusing point with respect to the top
layer of the spectral filter. Now that the plane-wave representation of the focal fields is known, one may
use the Fraunhofer diffraction integral to resolve the integrated focal fields as a distribution in space.
Due to the inherent hypothesis hereby introduced, such distribution will be strictly valid only for ρ < lr.
Moreover, as long as the device can be seen as a transparency in the frequency domain (non-diffractive
filter), it does not matter whether it is placed in the near field or the far-field. The Fraunhofer diffraction
integral to resolve is reported in [28] and reads, for g = e,h:

gf |Σ0 =
(
ikfe−ikf

2π

){∫ θmax

0

∫ 2π

0
Jg(θ,φ,λ)e

ikρ sin θ cos(φ−α)eikz cos θ sin θdθdφ
}

e[ξ,η]
in (5.58)

where for ease of notation we have omitted the pedix 0 referring to vacuum for k, θ. In (5.58), z is the
defocusing distance from the top layer of the metasurface layer, α the azimuthal angle at the detector
plane with respect to an origin center at the focal spot (xfi, yfi) of the given sub-bundle, ρ the radial
distance from this point. With respect to a fixed cartesian frame on the detector:

ρ =
√

(xf − xfi)2 + (yf − yfi)2 (5.59)

Due to required accuracy in the angle and spectral representation and further manipulations, an analyti-
cal solution to this integral is preferred, rather than an FFT numerical implementation. The solution can
be written in terms of a (complex-valued) Zernike Expansion. Due to integration of the series expansions
(see Appendix F) it is first required to correct the Jones matrix for a cos θ area differential and for the
possible off-focusing of the focal plane (treated therefore as an aberration):

J′g(θ,φ,kz,λ) = Jg(θ,φ,λ)
eikz cos θ

cos θ (5.60)

Due to bounding intervals of the analytical integral solution, it is necessary to introduce the trigonometric
transformation already discussed in Equation (5.42), where θmax refers to the maximum half-cone angle
of focusing. Due to the change of variable the Jones terms are stretched on the new interval θ′ ∈ [0, π/2]

6we have demonstrated in previous internal reports that such correction is equivalent to a defocusing effect
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for all values of θmax. An expansion of the effective Jones matrix is then performed in terms of complex
Zernike Coefficients as:

J′g(θ,φ,kz,λ) =
∞∑

q=−∞

∞∑
s=|q|,step=2

J[q,s]
g(θmax,kz,λ)e

iqφR
|q|
s(ξ′) (5.61)

which can be retrieved in two steps by:

J[q]
g(θ,kz,λ) = 1

2π

∫ 2π

0
J′g(θ,φ,kz,λ)e

iqφdφ J[q,s]
g(θmax,kz,λ) = 2(s+ 1)

∫ 1

0
J[q]
g(ξ,z,λ)R

|q|
s(ξ′)ξ

′dξ′ (5.62)

and where R|q|s(ξ′) represents the radial polynomial of a Zernike conventional polynomial as described in
the Appendix D.
Equation (5.62) along with many others in this Section, is demonstrated in appendix F. In the above
relationships, hence, we resolve the focal fields by means of a Zernike mode decomposition in terms
of azimuthal modes q and radial modes s, which has the advantange of being orthogonal on the cone
angle which will prove rather useful in the next considerations. The expansion is operated on the
Jones matrix of the plane-wave, which pertains the aberration effects. The transformation, even though
conceptually straightforward, is rather lengthy to numerically implement, especially when evaluated in
populated numerical grids and typical numerical implementation suffer from numerical instability at high
orders. Moreover, the transformation implicitly depends on the NA of the system since the non-linear
transformation in Equation 5.42 is necessary to remap a finite cone-angle to a semisphere. A spline-
based efficient and stable Zernike transform algorithm of arbitrary order at numerical precision has been
implemented and is discussed in Appendix D.
By means of the introduced Zernike Mode decomposition, the focal fields can be written, according to
the demonstration performed in Appendix F as:

gf |Σ0 = kf sin2 θmaxe
−ikf


∞∑

q=−∞

∞∑
s=|q|,step=2

J[q,s]
g(θmax,kz,λ)f[q,s]

 e[ξ,η]
in f[q,s] = is+1

(
Js+1(ρ̃)

ρ̃

)
eiqα

(5.63)
where ρ̃ = kρ sin θmax and Js+1(ρ̃) is a Bessel Function of the first kind of order (s + 1) evaluated in ρ̃.
The bases functions f[q,s] are represented for various modes in contour-plots in Figure 5.12. It is clear
from the plots that an higher radial order s is associated with a wider spot.

(Electric Density) PSF and associated directional transmittance
The PSF associated with this field (see Appendix F for definition of relevant quantities) is given by:

〈ef |Σ0e†f |Σ0
〉 = k2f2 sin4 θmax

∑
s,s′

M[q,q′,s,s′]
(θmax,kz,λ)f[q,s]f

†
[q′,s′]

 sin (5.64)

A directional focused transmission can again be defined for, this time, a finite integration in the detector
in a certain region Ap : {ρ̃ ≤ ρ̃max}. Such performance parameters provides information on the encircled
energy of one point spread function. Performing the same derivation of Section 5.3.4, again assuming a
quasi-planar principal plane, we determined in Appendix F the solution:

←→τ (f)
(rob,λ) = α(θmax)

∑
q,q′,s,s′

2
(s+ s′ + 2)M

[q,s,q′,s′]
(θmax,kz,λ)F[q,s,q′,s′](ρ̃max) (5.65)

where the functions F[q,s,q′,s′](ρ̃max) (analytically resolved in the Appendix) are represented in Figure
5.11. Those are nill for q 6= q′ due to orthogonality of ei(q−q′)α ∈ Ap and their analytical expression
the same for all q. In particular, the contribution for s = s′ = 0 is equivalent to the conventional
Airy Disk encircled energy. The contribution in 5.11a) for s = s′ > 0 represent higher order modes
associated with a wider spots, and all tend asymptotically to 1 for the limit of ρ̃max →∞. Not-centered
contribution s 6= s′ represented in 5.11b) are also, in general, present and not necessarily positive. Due
to orthogonality of the Bessel Functions they tend to 0 for the limit of wide pixel. The positiveness
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of ←→τ (rob,λ) is always verified once the summatory is completed. In particular, a connection with the
previous wide transmittance defined in (5.39) is found, due to those limit operations, as:

←→τ ∞(rob,λ) = α(θmax)

∞∑
q=−∞

∞∑
s=|q|,step=2

(
1

s+ 1

)
M[q,s]

(θmax,kz,λ) (5.66)

which is useful for validating numerical errors in the mode expansions. Strictly speaking, the encircled
energy of the pixel in a square region would fall in between ρmax = 1/2[lp,

√
2lp]. Its exact value can

only be estimated numerically solving the integral (F.10) reported in the Appendix. Moreover, the real
energy integrated in the pixel is in reality dependent on a convolution integral yet to be performed, which
would result in a smaller value of enclosed energy, but is more complex to treat.

Figure 5.11: Encircled energy basis function F(in)
[q,s,q′,s′](ρ̃max) a) for the case in which s = s′, all plots asymptotic to 1 b)

for the case in which s 6= s′, all plots asymptotic to 0. The encircled energy of the Airy Disk pattern corresponds to the
s = s′ = 0 mode and is the steeper one. Values for the off-center correlation can be negative, but the sum contribution of
all modes is always real and positive.

Incident Poynting Vector
The expression of the focused Poynting Vector can be found in complete similarity with the PSF. The
electric field expansion is described by J[q,s]

e(θmax,kz,λ) and the magnetic one by J[q′,s′]
h(θmax,kz,λ). For simplicity,

we refer to the normalized non-dimensional Poynting Vector defined by:

p = 〈ef |Σ0 × h∗f |Σ0
〉 =

ef |Σ0,yh∗f |Σ0,z
− ef |Σ0,zh∗f |Σ0,y

ef |Σ0,zh∗f |Σ0,x
− ef |Σ0,xh∗f |Σ0,z

ef |Σ0,xh∗f |Σ0,y
− ef |Σ0,yh∗f |Σ0,x

 (5.67)

for dimensional scaling factor to link the present quantity to radiance and directional intensity please refer
to Appendix C. By opportunily transforming the magnetic vectors according to the above cross-product
(an example is provided in the Appendix) we can use the same expression (5.64) to determine:

p = k2f2 sin4 θmax

 ∑
q,q′,s,s′

M[q,q′,s,s′]
p(θmax,kz,λ)f[q,s]f

†
[q′,s′]

 sin (5.68)

When considering the incident Poynting Vector pz a fully similar expression to (5.65) can be defined to
the transmittance. In general, the two quantities slightly differ and the Poynting Vector may be partly
complex valued. The (small) imaginary components of the focused Poynting Vector are representative
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of energy which is stored in the multi-layered structure (or, in other words, of slight dephasing between
magnetic and electric fields). More in detail, the dephasing is due to depolarization effects between p and
s polarizations, which affects differently electric and magnetic fields. This stored energy is not dissipated
but fully transmitted once a real time-finite pulse field is considered. For small NAs the distinction
between the two transmittances is negligible.

Figure 5.12: Plot of the (imaginary part) of the Zernike modes (={f[q,s]}) up to qmax = 4, smax = 6 in the detector plane,
in non-dimensional variables x = k(xf − xif ) sin θmax, y = k(yf − yif ) sin θmax. Zoom in for improved visibility.
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The OTF
The OTF of the arrangement is defined by the Fourier Transform of the PSF in Equation (5.64), oppor-
tunely normalized. In Fourier Optics, the OTF provides valuable information on the reconstruction of
the input signal in terms of spatial frequencies and brightness. Having decoupled the spatial distribution
of the PSF by means of the function f[q,s]f

∗
[q′,s′] only, in Appendix F this expression for the OTF is

derived:

OTF (ξk,φk) = α(θmax)

{∑
q,q′,s,s′M

[q,q′,s,s′]
(θmax,kz,λ)f

[q,q′,s,s′]
(φk) I [q,q′,s,s′]

(ξk)

}
sin

←→τ ∞(rob,λ)sin
(5.69)

where:

f
[q,q′,s,s′]
(φk) = 2iq−q′+s−s′ei(q−q′)φk

(s+ s′ + 2) ξk =

√
k2
x + k2

y

k sin θmax
(5.70)

The analytical expression of the functions I [q,q′,s,s′]
(ξk) is depicted in the Appendix F and those are plotted

in Figure 5.13. They are always real and representative of the OTF associated with each mode. Note
that the OTF possess also azimuthal dependance, oscillating in (q − q′)φk (not represented). In 5.13a)
the centered cross-correlation terms I [q,q′,s,s′]

(ξk) for q = q′, s = s′ are plotted. As the spot widens for higher
orders of s, also the spectral reconstruction is affected. In 5.13b) some mixed terms are represented, which
are always nill at the origin. All plots converge to I [q,q′,s,s′]

(ξk) = 0 at ξk = 2. As discussed in the Appendix,
the given formulation is consistent with the Airy Disk solution found for the mode q = q′ = s = s′ = 0.

Note on normalization The OTF is normalized as conventionally such that [ξk = 0, |OTF | = 1].
Such normalization procedure is conventionally used in Fourier Optics. However, we observe that the
value of the un-normalized OTF in the origin is equivalent to the wide pixel transmittance (corrected for
an eventual apodization) and hence not unitary. Normalizing the OTF provides information regarding the
aberrations and spatial frequency that can be reconstructed, but the un-normalized expression depicted in
the Appendix F shall rather be used when the transmission module information is important. Moreover,
the OTF is itself a function of polarization input (the un-normalized one, linear in the Stokes parameters),
wavelength and NA.

Figure 5.13: a) OTF radial bases I[q,q′,s,s′]
(ξk) for the centered indeces q = q′ and s = s′. b) OTF bases I[q,q′,s,s′]

(ξk) for some
not-centered modes
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5.3.8. Modelling of detectors: generalized charge to radiance conver-
sion

The signal is measured by conversion of the photons of the electromagnetic radiation in forms of dig-
italized bits. In CMOS and CCD sensors, the charge is stored in quantum-wells at pixels level and
subsequently converted by the electronic circuits in an analogic voltage and then in a digital signal. For
the purpose of this Section, we characterize the sensor by its quantum efficiency ηe and spectral respon-
sivity Rλ. The quantum efficiency, a spectral quantity, is a measure of the incident electrons created by
the incident photons at a pixel level:

ηe = ne
nγ

(5.71)

It is a measure of the absorption at the detector level. Unless the electromagnetic radiation is such
to excite cascades of electrons, usually one electrons is excited for each absorbed photons. In reality,
non-ideal effects and reflection are present furthe present. The amount of absorbed electrons, per unit
area, wavelength, solid-angle and time, contained in electromagnetic polychromatic radiation can be
calculated from the definition of spectral radiance and energy of the photon eγ7:

d(4)ne
dApdΩpdλdt

= d(4)(ηenγ)
dApdΩpdλdt

= ηeLλ
eγ

[
electrons

m2 × µm× sr × s

]
(5.72)

The energy of the photon (in vacuum) is further given by the well-known Planck’s Formula (vacuum
pedix used):

eγ = hν = hc0
λ0

(5.73)

which is inversely proportional to the wavelength, with h the Planck Constant. Alternatively, one can
use the the spectral responsivity Rλ, measured in [A/W ]. By definition, the current associated with the
storage of energy process is given, for an electric charge qe by:

is = q̇ = qe
d(ne)
dt

= ηeqe
d(nγ)
dt

(5.74)

Differentiating in the etendue and the spectrum:

d(3)is
dApdΩpdλ

= ηeqeLλ
eγ

= RλLλ

[
Ampere

m2 × µm× sr

]
(5.75)

The choice of which parameter to use depends on the available sensor information and its architecture.
Useful for noise and signal estimations is the estimation of ne.

5.3.9. Image Creation by Signal Reconstruction
With the introduced framework, we are ready to discuss the image creation upon polarized focusing of
the device. Imaging is possible in sake of the fact that across a limited region of space on the detector
radiance from a neighbourhood in the object space are imaged, with some imperfections. Consider
the output of a detector in terms of a signal. The purpose of the whole modelling is determining the
relationship between the real signal and the one measured in order to depict the best reconstruction
matrix.

The signal at the detector read-out, is representative of a certain number of absorbed electrons for a
pixel k on the detector. This number can be corrected in post-processing to account for the electronics
read-out process and other effects. We refer to the correct number of electrons, representative of the
absorbed ones, as n(abs)

e,k . For a polarizer arrangement Ki, the signals vector can be arranged in a vector,
nabse,Ki . Considered the above analysis, we wish to reconstruct the average value of L(∆λi,Ki) in a spectral
band i and its averaged non-dimensional Stokes parameters s(∆λi,K), in a relationship of the type:

L(∆λi,Ki) =
(
CMKinabse,Ki

)
[0,0]

s(∆λi,Ki) =
CMKinabse,Ki
L(∆λi,Ki)

(5.76)

7analytical differentiation is used for ease of notation, but in reality all quantities are defined for a very small spectral
window ∆λ
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with the constant:
C =

(
eγ

ηeApΩp∆tj∆λi

) [
W

m2 × µm× sr × electrons

]
(5.77)

where ηe is a representative quantum efficiency of the arrangement in the band. The constant is chosen
in such a way to have a non-dimensional reconstruction matrix. This is merely one of the possible
reconstruction methods; more complex methods may be envisioned by using integral equations, more
signal measurements, time-integration delay, Fourier sampling methods etc...
Question arises hence, for this proposed reconstruction method, to determine the bestMKi that minimizes
the variance error between the real radiance and Stokes vector quantities in the band, time interval of
measurement ∆tj and space region of interest with respect to the averaged reconstructed ones:

min
{∆λi,Asc,∆tj}

{〈s(∆λi,K) − sin(ŝi,q̃x,q̃y,t)〉, 〈L(∆λi,K) − Lλ(ŝi,q̃x,q̃y,t)〉} (5.78)

The resolution of this problem is difficult if one has to include noise and statistical considerations.
To determine a solution close to the global statistical minimum, we analyze the real signal creation
process within the model developed up to now. Up to now, we have described the transformation:

〈ee†〉[q̃x,q̃y ] → 〈ef |Σ0e†f |Σ0
〉[xf ,xfi,yf ,yfi] (5.79)

where q̃x, q̃y are non-dimensional object-space coordinates and x̃fi, ỹfi non dimensional focal spot loca-
tions on the detector (and further x̃f = kxf sin θmax, ỹf = kyf sin θmax), correlated to each other by the
mapping law of the Optical System discussed in Chapter 6, time-mapping and a local magnification fac-
tor. For example, for the nadir pixel, those relations would read (see Chapter 6 in support) considering
x as the along-track direction and the nadir ground-track velocity vgt,0:

q̃(nadir)
x = xfi

f
+ vgt,0

hs
(t− t0)

q̃(nadir)
y = yfi

f

(5.80)

The spectral intensity at the focal plane is given by:

Iλ(xf ,yf ,λ,t) =
∫
Ad

cos2 θg cos θnLλ(q̃x,q̃y,t)〈ef |Σ0e†f |Σ0
〉dq̃xdq̃y

[
W

m2 · µm

]
(5.81)

The above is a generalization of known convolution integral of the PSF. The main difficulty arises from
the fact that the PSF is hereby a point-dependent function of the focal variables (xfi, yfi), so that the
above is not merely a convolution integral. With the above introduced modes solution, however, each
PSF mode is only a function of the variables (xf − xfi, yf − yfi), whereas are the expansion coefficients
M[q,q′,s,s′]

(θmax,kz,λ) do possess an (unknown) dependence with the focal point position. In Appendix F we
demonstrate the useful result that, in generality of the filter response and the radiance distributions:

n
(abs)
e,k =

∫
∆λi

∫
Ad

∑
q,q′,s,s′

(
ηeΩp∆tj

eγ

)
2

s+ s′ + 2M
[q,q′,s,s′]
(θmax,kz,λ)SavG(klp sin θmax,xfi,yfi)dxfidyfidλ (5.82)

where:
Sav = Sav(rob,t0) = 1

∆tj

∫ t0+∆tj

t0

cos2 θg cos θnLλ(q̃x,q̃y,t)sindt (5.83)

G(klp sin θmax,x̃fi,ỹfi) is a special geometrical correlation function of the pixel with each OTF mode, and the
superscript L, s stands for averaging over the coherent sub-bundle as in Equation (5.12). Such equations
are the formal solutions of the imaging problem with an arbitrary illumination distribution and can
also be used to solve the optimization problem above introduced. Unfortunately, the dependence of
M[q,q′,s,s′]

(θmax,kz,λ) in (xfi, yfi) is unknown at the moment. To momentarily solve the optimization problem,
we hence prefer using the enclosed energy basis function F[q,s,q′,s′](ρ̃max) rather than the complicated
functions G(klp sin θmax,xfi,yfi). We will hence consider, in similarity to the format of those equations,
that MKi is the inverse of the reconstruction matrix (as in Equation (5.50)) associated with the finite
(directional) band transmittance for the central focusing point:

←→τ (f)
(rob) = 1

∆λi

∫
∆λi

←→τ (f)
(rob,λ)dλ (5.84)
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Effect of Time Smearing on reconstruction for a given arrangement The time smearing has
no effect when considering a (statistically, temporally and spatially) homogeneous Stokes vector, com-
prehensive of radiance, in the object domain, but has important implications for signals with a spatial
distribution. When using an arrangement to reconstruct the polarized image from the values of nabse,Ki , it
shall be preferred to buffer the charge values read-out by the sensor and define the signal vector depend-
ing on the time of permanence of the space region of interest. Even when doing so, the signal may still
present time-dependence (due to intrinsic time-dependence of the fields and, more importantly, the sta-
bility of the measuring platforms). When considering the reconstruction matrix, this time-dependence
modifies also the spatial response of the sensor and the whole reconstruction process (so its condi-
tion number). The reader may verify this statement by considering spectral properties of the products
M0Sav(rob,t0),M

[δ=π/3]
0 Sav(rob,t0+∆tj),M

[δ=2π/3]
0 Sav(rob,t0+2∆tj). Randomness is hence introduced in the

definition of the reconstruction matrix itself by imperfections, which may be alternatively thought to
directly influence the OTF of the reconstruction. This may lead to stricter requirements for mechanical
stability, attitude of the spacecraft and SNR, specifically when considering the read-out and buffering
time required by the electronics for a given sensor, which is generally not negligible and bigger than the
integration time. This problem does not apply for static imaging (e.g. use of a stable camera on groud)
or fast imaging.

5.3.10. Further recommended analysis
Within this involved Chapter, we analyzed various modeling techniques by first describing the field trans-
formation and then the metasurface modeling more in detail. Various performance parameters have been
defined (plane wave spectral transmittance, point-source transmittance, extended-source transmittance)
and the Zernike Modes expansions solution of the diffraction of the wide pixel been presented, com-
prehensive of OTF and encircled energy treatment. There is still some uncertainty on the modeling of
the structure, mainly related to its finite response as a function of xfi, yfi, discussed in Section 5.3.1.
Grasping a better understanding of this dependence allows to better understand the imaging process, but
is a complex problem both theoretically and experimentally. PSF experimental determination may aid
and validate the process, to be performed experimentally with a well-designed setup once the structures
are manufactured on the desired pixellated arrangement. The determination of such dependence would
also allow to have an estimation of the cross-coupling due to diffraction and spectral response of the
filter itself and to include those in a newly defined (not-directional) finite transmittance, derived from
Equation (5.82) and resolving our optimization problem.
Possibly, the (diffractive) spectral filter may modify the coherent structure of the field themselves de-
pending on its initial aberrations, which has also not been investigated yet and may be an important
factor. The effective medium formulation shall also be revisioned to provide a more accurate geomet-
rical prediction of the inclusions sizes and dependence of the effective parameters with wavelength and
angles. Finally, the effects of imperfections like mirrors wobbling and finesse have been demonstrated to
affect diffraction behavior of those structures and have been previously modeled in Literature. Statisti-
cal studies on the reconstruction process for a known statistical field shall also be performed for more
sensitive estimations of achieved performance, coming hand in hand with the choice of the downselected
reconstruction and post-processing method.
We have however developed tools to describe various important phenomena: the spectral adrift between
polarizations is well described by the anisotropy in the effective medium model, as we will show in
Chapter 7. The resonance curves of the DBR allows an efficient sizing and performance review of the
multilayer design and achievable bandwidths. The defined band transmittance allows to include effects
of polarization leakings in the reconstruction matrix, so in its condition number, revision in Section
5.3.4. The effect of focusing can be formally included in terms of aberrations induced by the filter and
angle-adrift of the peaks, with the finite transmission defined in Equation (5.65). The latter does provide
a first estimation of the diffraction cross-couplings between pixels due to aberrations of a wide resonator
structure. The OTF - PSF structure can also be now be modeled through use of the Zernike expansion
for an arbitrary illumination and wavelength.
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Results
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6
Optical Parameters

In the present Chapter, we consider the problem of defining the optical specifications of the system rele-
vant to the design of the metasurface and the evaluation of its performance. This procedure is necessary
to quantify the validation of the requirements as well as identify any criticality in the requirements.
Since we are interested in a feasibility study of the concept for a variegate ranges of applications, we
keep the science requirements somewhat fluid in this assessment phase. Nevertheless, we down-select
some general mission requirements regarding the orbit and specifications for similar aerosol-detection
observation missions. The optical system is treated as a black-box model (in terms of optical parameters
such as focal length, field of view, angular resolution...terminology being introduced in Section 6.1),
due to impossibility of designing a complex optical system in the given framework. A few modeling
guidelines are drawn, the hypothesis of collimation is discussed and the non-linear viewing geometry
equations derived in Section 6.2. The optical transformation is then discussed in Section 6.3, determin-
ing the paraxial coefficients of its transfer matrix by imposing the telecentricity requirement and using
conservation of etendue considerations. The radial distortion is quantified in order to meet the GSD
requirements through the introduction of the local metric of the transformation, discussed in 6.4. The
various geometrical parameters are analyzed as functions of the height of the orbit, keeping a focus on
LEO orbits. The latter choice is justified in view of this analysis and requirements of remote-sensing
for aerosol applications in 6.5, where the orbital parameters of a preliminary orbit are described and a
Sun-Synchronous orbit is downselected for this preliminary case-study. The velocity of observation and
permanence time of a generic object point in a pixel are also discussed in Section 6.6 in terms of the
introduced metric. Finally in the conclusive Section 6.8 the preliminary sizing of the Optical System
variables is performed in terms of the equations introduced.
This simple quantitative assessment outlines the need for more modeling detail of the DBR device for
the power budget calculation, which will be dealt with in the next Chapter.

6.1. Common Terminology
Before continuing in the treatment, a common set of terminology shall be drawn. Note that this may be
different from what used in other Literature but will be retained consistently in the present document.
We define as ground sampling element area, Agse the smaller physical discernible area in the object plane
associated with the pixel element area Ap in the detector plane array, which possess an edge of dimension
lp. To every pixel element, a set of multiple resonators of the same shape is associated, dimensions and
design (for a given wavelength and polarization state). We define as ground sub-resolution element area
Agsre the smaller physical discernible area in the object plane reconstructed for only one given value
of wavelength and polarization. Various imager arrangements are possible, in which pixels may merge
together in a superpixel to image bigger area than the ground resolution element. The spatial resolution
area, Agre is hereby defined, overall positions of the object plane, as the smaller physical area discernible
with full information over wavelength and polarization state. Depending on the imager arrangement,
hence, the latter can be bigger or equal to the ground resolution element. The ground sampling element
instead, can be bigger or smaller depending on sampling requirements. We define as ground velocity, vgt
the velocity inm/s at which the ground resolution element is scanned. We define as scanning window, Vsc
the volume region (quasi-solid angle) which in every instant connects the scanned area to the entrance
pupil of the optical system. The ground velocity is hence the relative velocity of the scanning area
with respect to the ground resolution element as viewed from the satellite and the former is jointed
with the orbital rotational velocity of the satellite. We define as Asc the scanning area, related to the
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swath of the optical system Sw, which we consider to be an arc on the Earth sphere at distance rob
from its center of mass. Some of those quantities and other geometrical parameters are summarized in
Figure 6.1 We define as aperture stop the physical aperture, perpendicular to the optical axis, which
limits the extension of the bundles of light in the optical system. We consider an optical geometrical
model is applicable everywhere in the optical system with exception of the pupils (or equivalently the
aperture) where diffraction may take place, and consider a light ray to be locally perpendicular to the
wavefront of a transverse electromagnetic wave of a coherent field associated with the real statistically
partially coherent field. We define as chief rays the rays intersecting the optical axis on the aperture
stop. We define as entrance pupil and exit pupil, as conventionally, the two virtual apertures, if any,
delimited by the other intersections of the chief rays with the optical axis, the distinction being clear by
imagining the entrance pupil as image of the aperture stop from the part of optical system preceding
the physical aperture. The aperture stop size boundary further delimits the marginal rays of the optical
device for a given observation scene. We define as bundles of rays the set of rays associated with a ground
sampling element on ground and sub-bundles of rays the (coherent) set of rays associated with a point
on the ground. Every sub-bundle of rays has a unique chief-ray, used as a datum line for the angular
deviation ∆θin of the other rays in the sub-bundle. Some quantities are further defined with respect to
the response of the optical system to a collimated sub-bundle of rays, incoming from the front or the
rear of the system. The rear principal surface is defined as the unique surface over which a collimated
sub-bundle of rays (entering from the rear) would appear to bend with its real exiting focal angles θ. The
rear principal plane is the plane locally tangent to the surface along with the optical axis intersection
point, denoted as rear principal point. The distance measured along the optical axis between the rear
principal point and the paraxial rays of the sub-bundle is the rear effective focal length. The distance
between the local tangent image plane and the rear principal plane is z1. A similar definition applies for
the front principal surface, plane, point and focal length, with characteristic distance z2. The latter is in
practice the distance between the satellite and the object point. The distances between principal planes
and pupils are, in paraxial approximation, related by the pupillary magnification, ratio of magnification
of exit pupil diameter over entrance pupil diameter. As will be clear in the following, we may assume
the input light to be collimated, e.g. the angle of the sub-bundles of rays to be a constant for each
ray. In such case, a few other quantities are of aid. We define as GSE angular resolution, θr the angle
between the chief ray focused at the center of the pixel and the chief-ray focused at its extreme. In other
words, the angle between the central sub-bundle and the marginal sub-bundle of a given bundle. We
define as collimation GSE angle, θin the collimation angle of every sub-bundle with the optical axis at
the entrance pupil, and as focal angle θ the angle every ray of the sub-bundle forms with the respect to
the optical axis after the exit pupil.
The introduced terminology and notation is summarized in the sketches in Figure 6.2, which describes
the paraxial, aberration-free, working principle of a complex axial-symmetric optical system and Figure
6.3, which illustrates the focusing of the same optical system at finite conjugates for on object point
source. We further consider the temporal resolution of the reconstructed signal overall polarization and
wavelengths, defining it as simply temporal resolution. Depending on the application, however, it may
be only requested to have a certain resolution over the measurement of the same polarization (which are
being combined together in the reconstruction process) and consistency of temporal measurement for
different bands would not be a priority. To distinguish the two cases we define also a spectral temporal
resolution, tλ, discernible time variation between the measurement of the Stokes parameter for a given
wavelength. We finally remember the reader that a comprehensive list of Symbols is present in Table
G.2 for reference.
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Figure 6.1: Illustration of the scanning geometry and the definitions introduced. It is supposed that the pointing of the
satellite is at Nadir. The satellite velocity is locally tangent to its orbit which possesses a rotational velocity ωs with respect
to a non-inertial reference frame centered on Earth center of mass jointed with the Earth-Sun reference. The scanning
volume Vsc possesses distortion due to the high FOV and intersect the observation area Asc. The collimation angle and
conjugate distance are represented. An arbitrary point of observation delimits two polar angles and an azimuthal angle.
The altitude of the satellite is hs. The rotational velocity of Earth is ωer. We’ll assume rob to be jointed with Earth (even
though it is not strictly necessary)

Figure 6.2: Collimated paraxial imaging of an optical system. The complex optical system is fully determined by its
entrance pupil and exit pupil and the location of the principal plane (only rear is represented). The effective focal length
is the distance measured along the optical axis between the focal plane and the rear principal plane. The optical system,
excluding aberrations and higher-order effects, operates as paraxially as an ideal lens of the size of the entrance pupil
aperture, Dep, positioned on the rear principal plane. A sub-bundle of rays is the group of all collimated rays coming from
a point on the infinite conjugate object domain. The most extreme chief-ray focusing on the pixel determines the angular
resolution θr of the optical system. Similarly, the most extreme chief-ray focusing on the edge of the detector delimits
the FOV of the optical system (the detector is assumed to be the field-stop of the system). An arbitrary ray entering
at coordinates (ρe, φe) gets mapped in (θ, φ) on the focal plane. Within the paraxial approximation, all rays part of the
same sub-bundle delimited by a chief-ray of inclinations (θin, αe) get focused on the focal point mapped by (ρ, α) on the
detector plane. Marginal rays delimit the maximum focusing angle θmax, also related to the f -number of the system.
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Figure 6.3: Illustration of the (paraxial) operation principal of the same system at finite conjugates and definition of main
parameters. The image plane is not positioned at the focal plane due to the paraxial lens-equation. The finite conjugate
distances of object and image are referenced to the principal planes. The cone angles subtended by the pupils on the object
and image point are represented. The rays of a given sub-bundle are now not necessarily parallel but possess a deviation
of ∆θin with respect to their chief-ray

6.2. Observation Geometry
We consider the finite geometry represented in Figure 6.1 and wish to determine the geometrical rela-
tionships between the angles θin, θob, the distance z2 and the degree of angular deviation ∆θin that the
field present from ideal collimation for all ρe. We hereby consider the imaging of layers on the Earth
surface position at rob from its center of mass. This may be an actual surface or an atmospherical layer.
For simplicity, we’ll assume rob = rer equal to the radius of Earth in the calculations and this observed
point to be jointed with Earth. The z2 distance can be calculated from simple geometry as:

z2(ρe,φe) =
√
h2
s − 2hsrer cos (θob) + 2hsrer − 2r2

er cos (θob) + 2r2
er − 2rerρe sin (θer) cos (φe − φob) + ρ2

e

(6.1)
Similarly by performing a cross-product we can determine the angle of every ray:

θin(ρe,φe) = asin
(√

r2
er sin2 (θob)− 2rerρe sin (θob) cos (φe − φob) + ρ2

e

z2(ρe,φe)

)
[rad] (6.2)

We wish now to quickly determine quantitatively the extent at which the field can be considered colli-
mated.
The chief-ray of every bundle is determined by θin(ρe,φe)|ρe=0 = θin by definition. Since ρe/hs << 1
we can pertain only the linear term in ρe without loss of accuracy, so that we determine the angular
deviation:

∆θin = θin(ρe,φe) − θin =
(
∂∆θin
∂ρe |ρe=0

)
ρe cos (φe − φob) + o(ρ2

e/h
2
s) (6.3)

The angular deviation derivative in (6.3) is plotted for various observation points and altitudes in Figure
6.5a). Being in the order or arcseconds/meter it is negligible with respect to the angular resolution θr
for typical achievable GSD on ground. We quickly analyze also the paraxial focusing equation:

1
z1

+ 1
z2

= 1
feff

(6.4)

Even if the variation of z2 in the viewing geometry of Figure 6.1 is severe (see Figure 6.4a)), we do not
expect a significant focusing error due to the three-dimensionality of the object. The defocusing error
is in fact negligible for all observation regimes of interest, as represented in Figure 6.5b). We conclude
that a collimation hypothesis is perfectly acceptable for regimes of hs > 400km. Note that even if the
collimation hypothesis is surely pertinent, the phase-shift difference at the entrance pupil derived in
Appendix C is not negligible (scaling with 2π/λ) and requires correction in the Optical System.
The collimation hypothesis allows to neglect ρe in the formulas (6.1) and (6.2) and to use the geometry
depicted in Figure 6.2 rather than 6.3. In particular, the FOV is directly correlated only with the angle
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θe subtended by the point of observation on Earth and hence the swath Sw. Defining the swath as the
maximum arc subtended by the scanning area:

Sw = 2θob,maxrer (6.5)

One readily determines:

FOV = 2 arcsin

 rer sin
(
Sw
2rer

)
√
h2
s − 2hsrer cos

(
Sw
2rer

)
+ 2hsrer − 2r2

er cos
(
Sw
2rer

)
+ 2r2

er

 (6.6)

which can numerically be inverted to determine the swath for a given FOV. The solid angle of the
scanning volume Vsc limits the maximum FOV for a certain height. The limiting FOV can be calculated
by determining the stationary points of equation (6.6), which leads to an envelope (FOVmax, hs). The
relationship between swath and field of view (and equivalently, collimation angle θin and observation
polar angle θob) is illustrated in Figure 6.4b) for various altitudes. The graph shows that strongly
non-linear behavior is present for FOV > 90◦ within the altitude range of a LEO satellite.

Figure 6.4: a) Non dimensional object distance (at the center of the entrance pupil) for various angles θob and altitudes
(LEOs). For high FOV the distance presents significant variations due to the low altitude.
b) Collimation angle θin of the central chief-ray for various altitudes. Upon tangency of the vector z2 on the Earth’s
sphere, the collimation angle reaches its maximum represented in the envelope. The graph can also be used to determine
the FOV as a function of the swath, by simply considering equation (6.5) and FOV = 2θin,max

We switch attention now to the mapping of the optical system in relation to this geometrical trans-
formation in order to calculate an accurate expression of the ground sampling distance and its area Agse.
It is important to evaluate the GSD off-axis, since due to geometrical distortion at high FOV the nadir
GSD would be severely underestimated. Therefore a non-linear treament is necessary. We moreover use
a continuum of coordinates in image plane and object space rather than a discrete set of finite areas given
by the mapping of each pixels, for simplicity. Expliciting a mapping relationships allows to determine
the trajectory of the object points in relation to the image plane.
By means of equations (6.1), (6.2) the mapping is of the form:

(ρ, α, θ, φ)→ (θin, αe, ρe, φe)→ (θob, φob) (6.7)

We hence need to characterize the optical transformation first.
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Figure 6.5: a) For each point on object plane at θob, ∆θin represents the difference between the angles of the upcoming
rays with respect to the angle of collimation of the respective chief-ray of the sub-bundle and its derivative is plotted. b)
The geometrical offset of three-dimensional focusing as prescribed by paraxial the lens-equation for various magnification
factors and an altitude of 500km. The magnification factors are ranging from 1µm/100m to 1µm/1km. The offset is
negligible for typical effective focal lengths.

6.3. Characterization of the optical system transformation
Assuming the optical system to be axial-symmetric, we can conclude as clear from figure 6.2 that α =
αe, π − αe = φob, π − φob depending on the inversion nature of the optical system (as far as the attitude
system mantains a nadir pointing). The optical system can then be related, similarly to what done in
[51] where higher orders for a few surfaces are discussed, with transfer matrices of the form:
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+ ... (6.8)

The coefficients depending on the realization of the optical system and may be retrieved with ray tracing
softwares or detailed analytical geometrical models. It is usual to pertain a few of the transfer matrix
coefficients (and often use a paraxial approximation sin θi ∼= θi) when analyzing the performance in the
paraxial regime . We will use only the first of such approximations, neglecting the higher power terms
till more details are available. The reason not to use strictly a paraxial approximation is due to the fact
that the detector size will be estimated from the field of view by means of those introduced coefficients,
which requires to mantain the sin (θin) factor. We recognize the effective focal left inverse (by definition)
in the paraxial regime as t10. Assuming that the geometrical locus of the rear principal surface is a
sphere (which is not far from the truth for many corrected optical systems) than we generalize for the
non-paraxial regime this relationship:

t10 = 1/feff (6.9)

Using the collimation hypothesis introduced in the previous chapter and considering that the system is
an imaging one, we conclude that t00 ∼= 0 to achieve focusing of the object points in the focal plane array,
valid if further the off-focusing due to aberrations of the optical system is not too severe.
As is discussed in great detail in [52], [53], the operation of the DBR and in general spectral filters is
greatly dependent on the angle θ of the chief-ray. The spectral response of the resonance multilayered
structure is greatly angle-dependant and [53] also explicits asimmetries in PSF focusing due to non-perfect
telecentricity. Systems using such devices are then usually designed to be approximately telecentric in
image space, hence with an exit pupil at infinity. The geometrical implications of an image plane
telecentric system requires that t11 ∼= 0. The new transformation of such a system is depicted in Figure
6.7.
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The factor t01 is still to be characterized. We may use conservation of etendue formulations for such
matter. The solid angle depicted in Figure 6.6 are defined as follow: Ωgr→e is the solid angle subtended
by Earth images object surface on an entrance pupil point, whereas Ωf→e|feff is the solid angle subtended
by the detector on the entrance pupil positioned at the rear principal plane location. Similar and opposite
definition applies for the solid angles Ωe→gr and Ωe→f |feff . It is more conventional to refer at the solid
angle subtended by/to the detector on the exit pupil. However, in the present case for a telecentric
system, that’s ill-defined and given by the solid angle of the entrance pupil posited at the rear principal
plane point as we can demonstrate by operating a limit procedure:

Ωex→f = lim
zex→∞

Aex
z2
ex

= lim
zex→∞

πr2
ex

z2
ex

= Ωe→f |feff (6.10)

That’s merely a consequence of the fact that in first approximation, the complex optical system operates
as a lens with effective focal length feff positioned at the rear principal plane location and aperture
equal to the entrance pupil size1.
Applying the same reasoning to, this time, the etendue subtended by the focal plane array to the exit
pupil (the solid angle tends to zero) we determine:

Gf→ex = lim
zex→∞

Aex
Ad
z2
ex

= AdΩe→f |feff = AepΩf→e|feff (6.11)

From conservation laws of etendue in an optical system ([54] for the inequality) we further know that:

Gf→ex ≤ Ggr→e → ρmax = ±feff sin θin,max (6.12)

Where ρmax is the detector size assumed to be the field-stop of the ideal system without losses. The
given results suggests that, using a localization lemma2:

t01 ∼= −feff (6.13)

where we have kept the minus sign in sake of Figure 6.7. We can verify that the determinant of the
transfer matrix is unitary, as conservation of energy dictates. The proposed coefficients are exact at
the extent that the higher order terms do not interfere with the transformation. The optical system
transformation is therefore in conclusion given by:(

ρ
sin θ

)
=
[

0 −feff
1/feff 0

](
ρe

sin θin

)
+ o(ρ2

e,sin 2θin,ρe sin θin) (6.14)

Figure 6.6: The figure represents the solid angle of the viewing geometry. On the right side, the object domain (in the
far-field) defines the extension of the FOV through means of the solid angle Ωgr→e. Instead of referring the solid angles
to the exit pupil in the image domain, being the latter ill-defined, we refer them to an aperture of the size of the entrance
pupil positioned on the rear principal plane. As demonstrated through the limit operations (6.11) and (6.12) the two points
of view are consistent for a telecentric optical system in image space with a collimated input field

1more in general, as far as an aperture is considered in the image domain and of the appropriate sizing with respect to the
NA, it could be referred to any section without loss of generality (invariance of Etendue).

2the conservation laws scrictly applies to the integral representation, so local variations may exists if the transfer matrix
depicted in (6.8) presents non negligible higher order terms
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Figure 6.7: The figures represents the (geometrical) operating principle of a complex optical system which is telecentric
in image space. It also models the optical system that will be considered from now on for the performance estimation of
the metasurface. Since chief-rays are (ideally) parallel for all sub-bundle of rays, the exit pupil is positioned at infinity
by definition. It, however, subtends a finite etendue due to conservation of energy. Hence also its diameter will tend to
infinity. The focusing of this system can in first approximation be related to a single lens positioned on the rear principal
plane and appropriately displaced. If the input field is further collimated, like in the present case, the dimensions of this
effective aperture is equal to the size of the entrance pupil. In a real system higher geometrical displacement are surely
present and the operation principle will slightly differ from the ideal one presented

6.4. The metric and GSD determination
With the previous results we can now explicit the metric of the transformation and the GSD. We therefore
switch attention to the equivalent mapping from the detector array to an azimuthal Earth’s projection:

1
feff

(x, y) = r̃f = 1
feff

(ρ cosα, ρ sinα)→ 1
hs

(qu, qv) = q̃ = re
hs

(θob cosφob, θob sinφob) (6.15)

where we have introduced a local map qu, qv as depicted in 6.8 and conveniently normalized the various
dimensions to account for the paraxial magnification factor. The transformation possess its own metric
given by the Jacobian of the transformation, e.g. the matrix Jf for which:

dq̃ = Jfdr̃f Jf =
[
∂q̃u
∂x̃

∂q̃u
∂ỹ

∂q̃v
∂x̃

∂q̃v
∂ỹ

]
(6.16)

The derivatives shall be explicited by means of derivation of relationships (6.2) and (6.14) (opportunily
normalized).
As a result the magnification factor relating the ground sampling area with the area of the pixel is given
in the local continuum approximation by the determinant of such matrix:

Agse =
∫
Ap→Aq

dudv ∼= m2Ap m = ±m0
√

Det Jf m0 = hs
feff

(6.17)

where the ± sign relates to the inversion nature of the optical system. We then define the distorted
ground sampling distance GSDρ as the dimensional ground sampling distance of a square pixel which
would lead the same area as the parallelogram for a given pixel position. In relation to the nadir ground
sampling distance GSD0, by definition one has:

GSDρ

GSD0
=
√

Det Jf (6.18)

is important however to maintain the complete description of Jf , since for a generic off axis point the
induced distortion depends on the direction α considered and the matrix represents fully the linearized
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distortion in the given point as shown in 6.8. For validation, we can verify that in the nadir case:

lim
θob→0

Det Jf = 1 (6.19)

so that the magnification factor is exactly the one predicted paraxially. The picture 6.9a) illustrates the
detector grid (with only a few of the pixel for clarity) projected on the local mapping qu, qv. Picture
6.9b) illustrated the variation of the distorted ground sampling distance (at the edge) in relation to the
FOV of the system, illustrating how for small altitude such effect is relevant and it jeopardizes the spatial
resolution achievable on the ground. In Section 6.8 we will use this graph to determine the GSD meeting
the spatial resolution requirement of the system. This treatment takes only into account the geometrical
radial distortion. Higher distortion may be present (e.g. lateral distortion due to misplacement of the
focal plane array) in a real system.

Figure 6.8: Illustration of the mapping of coordinates, geometrical interpretation of Jf and point’s velocity in the tangent
space. The local detector versors are in the same plane delimited the the satellite versors îs, k̂s depicted in Figure 6.10
(introduced later in the report). The vector r̃ob (same appearing in Figure 6.1 upon normalization) parametrizes the object
space domain and its tangent space.

Figure 6.9: a) The figure illustrates the detector grid remapped in the qu, qv plane, with a smaller number of pixel for
illustration purposes for a FOV = 80◦ and altitude of hs = 500km. The radial distortion is naturally induced by the
observation geometry.
b) The figure illustrates the variation of effective ground sampling distance (defined as in (6.17)) for various altitudes and
FOV. The mapping distortion is only a weak function of the altitude and is simil-parabolic in the FOV. FOV > 90◦, as
already pointed, present high radial distortion and shall be avoided within all ranges of altitudes.
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6.5. Orbital parameters
In order to have a clearer picture of the required parameters for sizing the optical system, in particular the
integration time, we require knowledge of the orbit of the satellite. Since the science case requirements
are rather fluid and the study is a feasibility assessment, we will select a range of altitudes for allowing
flexibility. As discussed in [20], [8], [7] spectropolarimeter applications for aerosol detection required
high FOV within variegate spectral bands, with viewing angles up to 70◦ for some bands. As depicted in
figure 6.4b) distortions are limited for such FOV only for LEO altitudes. The metasurface concept further
exploits the integration and miniaturization of the device. It is hence suited for micro&nano-satellites
mission concepts with small aperture diameters and even lower altitude, in the range [400, 600]km. The
altitude has important implications in terms of orbiting drag and mission life, so we will downselect a
preliminary altitude of hs ∼= 500km for this study.
We will further consider, for simplicity, a circular orbit with a mean motion of:

ωs =
√

g0

hs + rer
(6.20)

Reference [8], [20] further explicits the importance of the angle of observation in relation to the sun-
illumination on ground and the angle with the normal surface OZA = θob + θin. In [55], [56] the use of
Sun-Synchronous orbits is suggested for similar science requirements. Figure 6.10 depicts the precession
of such orbit and the orbital parameters we will use of its characterization. The perturbations of Earth’s
oblateness are actively used to mantain the orbit precession Ω̇ equal to the revolution mean motion
ωp of Earth, such to maintain the same sunlight visibility throughout the revolutions. Such conditions
imposes3 (see Table G.1 for parameters definition and reference [57] for the formula (6.21) ):

Ω̇ = ωp = −3
2

(
rer

rer + hs

)2
J2 cos Iωs (6.21)

which wields a relations between the inclination of the orbit depicted in figure 6.10 and its altitude. We
further define the rotational velocity of a point rotating in the frame solidal with the satellite and on the
Earth surface as:

vgt0 = ωsrer (6.22)

which will be used in the next Section. Figure 6.12b) depicts the (minimal) variations of inclination and
relative ground velocity vgt0 for various LEO altitudes.
Using the change of reference frame depicted in 6.10b) we can also explicit the time-dependance ground-
track projection on Earth of the local orbiting satellite, which is represented in Figure 6.11. In particular,
we may further relate the mapping (qu, qv) previously discussed into this Earth projection, so visualizing
the (exact) projection FOV on earth, which is also depicted in the same figure.

6.6. Ground velocity and residence time on detector
We finally switch the attention to the determination of the residence time of an object point in a given
region of the detector array. We, in particular, derive an expression for the local relative velocity of all
points in object space, accounting for Earth’s rotation. It is simple to show that (6.16) applies also for
the velocities of the mapping coordinates, by means of simple derivation, hence the velocity observed on
the detector is:

vd = 1
m0

J−1
f vgt vgt = hs

∂q̃
∂Σst

(6.23)

It is important to explicit the reference frame at which the integration shall be referred: the vgt is the
velocity of a point on the ground represented in the local tangent space associated with qu, qv as sketched
in Figure 6.8 and jointed with the rotation of the satellite. From simple kinematics and geometrical
projection one determines that:

ṙob = ∂rob
∂Σst

=
(
ωer|Σs − ωs|Σs

)
× rob −

∂rs
∂Σet |Σs

r̂s vgt = (q̇u, q̇v) = (ṙob · q̂u, ṙob · q̂v) (6.24)

3the perturbation influences also to some extent the other orbital parameters, effect which we disconsider since orbital
considerations are not the focus of this discussion
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Figure 6.10: a) [Arranged from the web] Illustration of an SSO orbit and its precession along with Earth’s revolution, for
different time realizations.
b) [Arranged from the web] Illustration of the orbital parameters used for the description of the circular orbit under
consideration. The reference frame jointed with the satellite is also depicted with the along and cross-track directions. The
angular motion of the satellite and Earth is also depicted (both objects rotate in the represented frame). The other orbital
parameters (true anomaly, eccentricity...) are not of interest for this preliminary analysis

where the radial velocity of the satellite is derivated in a non-rotating frame solidal with Earth and the
local versors of the tangent space q̂u, q̂v are given by derivation of the mapping equation4:

q̂u = ∂rob
∂qu

q̂v = ∂rob
∂qv

(6.25)

Introducing the orbital inclination, I (with respect to the rotational axis of the Earth) and the argument
of latitute u of the satellite we explicits those vectorial quantities (see Figure 6.10b) in support) as:

rob = rer

sin θob cosφob
sin θob sinφob

cos θob

 ωs|Σs = ωs

0
1
0

 ωer|Σs = ωer

cosu sin I
cos I

sin u sin I

 (6.26)

The nadir ground track velocity simplifies to:

vgt,nadir = vgt,0

(
ω̃ cos I − 1
−ω̃ sin I cosu

)
ω̃ = ωer

ωs
vgt,0 = ωsrer (6.27)

To validate once again the result, we verify the existance of a geostationary orbit for I = 0, ω̃ = 1. The
equation derived shows the presence of an adrift velocity (ĵs component) due to the rotational velocity
of Earth and a dependance on time (through u) ∝ ω̃. Simulated results in 6.12a) shows a limited tilt in
the streamlines due to this adrift component and small fluctuations due to geometry and rotation. Since
at small altitudes the rotational velocity of Earth is rather negligible with respect to ωs, Earth’s rotation
is negligible. Moreover, in practice, the adrift component vcorr = rerω̃er sin I cosuĵ is often corrected at
nadir by means of the attitude control system. Such correction is possible, for instance, by slight rotation
on the nadir axis. The radial velocity component does not interfere with the residence time, however,
implies a small relativistic frequency Doppler effect ∝ vrad/c (with c the velocity of light) which is some
applications shall be taken into account but will be hereby neglected.
The trajectory of a point in time can be resolved numerically, with the simplification of assuming a
circular orbit such that:

u = ωs(t− teq)
∂rs
∂Σet |Σs

= 0 (6.28)

4that’s a concept of differential geometry as discussed in [58]. Moreover the versors are the same both in normalized and
un-normalized domain
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Figure 6.11: Illustration of the ground-tracks during an SSO orbit of a satellite at hs = 500km,Ω(t0) = 0. The second-order
effect of orbital precession has been neglected in the limited simulated step of height orbital periods. The FOV projection
is represented. The present solution does not achieve full consecutive coverage at center latitudes. Full coverage, however,
may be possible using a constellation of 3− 4 satellites, if required.

Provided that the geometrical mapping relating (rob(u))→ (qu, qv)→ (x, y) is known, one can determine
the streamlines and residence time of any point on the ground or on the detector by means of this solution.
Figure 6.13 shows, as computed with such procedure, the time of permanence and streamlines for points
entering the detector and 6.12 the same quantities in object domain space. Since the streamlines on the
ground are direct as îs in good approximation, the velocity and streamlines in the detector present the
same inverse distortion and magnification induced by the geometrical grid. In particular, the detector
velocity vd assumes an simil-elliptical distribution and decays with the inverse of the magnification factor
depicted in 6.9b). The way the object points are masked on the pixel with respect to time has important
applications for the reconstruction and the determination of the energy integrated on the pixel for a given
time. It does further affect the spatial resolution which is possible to reconstruct from a measurement with
a finite time of integration tint. In practice, the integration time is dictated by the detector electronics
and the same for all pixels. To assess qualitatively what are the effects on the spatial resolution, consider
the illustration in Figure 6.14. The permanence time of a point within the integration time-frame for a
given pixel is a spatial function varying in the direction of vd. At nadir, the permanence time distribution
is a trapezoid, which represents the sampling window of the signal on ground for a system that does not
present diffraction. For off-nadir points since vd further presents a small deviation the spatial distribution
is two-variables dependent. Represented on ground, this permanence time distribution has, at best the
dimensions of 2×GSD is the integration time is chosen to be exactly the permanence time of a point at
the nadir pixel. We conclude that the Nyquist sampling requirement is a direct implication of this time
variation of the object point on the pixel and the spatial sub-resolution is roughly:

GSRE ∼= (1 + χs)GSDρ χs = vdtint
lp

(6.29)

In reality, the achievable spatial resolution depends on the post-processing used, and time-delay integra-
tion may be used for limiting the effect of time smearing.
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Such a picture can be validated by considering the case of a stationary imaging system. In such a case,
for all integration times, χs = 0, so the spatial resolution is dictated itself by only the pixel size. The local
point velocity hence dictates a maximum bound of the integration time. In practice, a minimum bound
is also set by the integration time required for a certain SNR requirement which is in those applications
the driving constraint. So we set for a given detector choice the integration time to be the permanence
time of a ground point at the nadir pixel:

tint = lp
vd,nadir

(6.30)

In reality, all optical systems present diffraction (and further blurring may even be introduced by the
detector electronic themselves). As shown in Section 4, the local velocity on the detector modifies the
OTF of the system, so acts directly in the Fourier domain of the signal.

Figure 6.12: a) Velocity streamlines on ground at the equator and relative velocity distribution in space. For other orbital
points, the distribution would slightly differ, oscillating in the x directions. It will be from now on assumed that the
attitude control system corrects for the small deviation inherent with the Earth’s rotation.
b) The variation of the inertial relative ground velocity vgt0 and the inclination of an SSO orbiting satellite for various
altitudes.

6.7. Imager Arrangement
The metasurface design presented in [1] integrates retrieval of polarization and spectral information on
the imager. A question arises hence on what is the optimal arrangement for reconstruction for various
applications. In this Section, we preliminary propose an arrangement for the aerosol retrieval mission we
are investigating. The dimensional and design details of the imager and filtering are instead discussed
in the sizing Chapter 7.
As discuss in [1] the retrieval process for n Stokes parameters of a given point in space necessitates
n ≤ nm ≤ 4 spatially separate measurements, equality applying if a priori information about the Stokes
to be retrieved is known. Every pixel design is characterized by its own polarization angle sensitivity,
wavelength spectrum and angle-space of observation geometry in relation to the optical system mapping.
We disregard in this Section concepts with separate focusing for each pixels (like the one involving lens
arrays). Hence, the pixel measuring polarization must be adjacent to each other. It is now important to
distinguish the temporal behavior of the source in relation to the imager. We first distinguish between
two types of applications:

• Ground applications: the imaging is usually static, resulting in the freedom of choosing the integra-
tion time. All four Stokes parameters must, in general, be retrieved. The proposed arrangement
in [1] would allow reconstruction with a spatial resolution equal to the mapping of a superpixel.
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Figure 6.13: a) Time of permanence of a front of points entering the detector at t = 0 and their streamlines, calculated
from transforming the ground-streamlines. Radial distortion and disuniformity is present far from the nadir region. We
refer to a SSO orbiting satellite at hs = 500km, entering at the maximum elevation u = π/2. Since we have assumed the
deviation at the equator to be corrected by the ACDS system, the provided distribution is mostly consistent for all points
in the orbit with just minor deviations.
b) Velocity distribution (non-dimensionalized on its ideal value) of the object points velocity on the detector. Due to
the inverse of the magnification factor present due to the viewing geometry, the velocity decays for off-axis points. The
integration time requirement shall hence be set at the nadir pixel for the most conservative case. The increase in permanence
time for off-axis pixels further suggest a way to counteract the increase in GSDρ by means of time integration delay and
other post-processing techniques

The diffraction behavior of such imager is critical for the performance and may be analyzed in
similarity with our analysis in Chapter 7.

• Airborne - Space applications: the imaging is not static and the imager is assumed to be aligned
with the along-track-across-track directions of relative motion of the satellite/airplane with an
integration time given by (6.30). The source (Earth in the proposed concept) is usually an emitting
source relatively uniform in time during one integration. Hence, if it wouldn’t be for the temporal
smearing effects discussed in 6.6, the necessary measurements could be conducted in different
time-steps without jeopardizing the spatial resolution but only the temporal one. A proposed
arrangement of such is illustrated in the Cover page of this Thesis.

The proposed arrangement requires data allocation for a time greater than the integration time. Aerosol
retrieval missions further require the measurement of various angular bands (more than 5 usually) for
improved accuracy [7]. Because of the spatial coexistence of all measurements, obviously, there is a direct
correlation between the number of angular and spectral bands and resolution time. For such concept,
we angular band extent is limited by the characteristic time ∆tob in which we expect a variation in
the input Stokes parameters in order to allow reconstruction, which is smaller than the FOV as clearly
observed by Figure 6.13 which shows a non-negligible time of permanence over the whole detector. The
Stokes vector at the input of the optical systems results from the statistical characterization of the cross-
correlation tensor of the field present at the entrance pupil. The linear degree of polarization of such
sources is roughly ∼= 250 times ([10]) more significant than the circular degree of polarization for planets
of Earth/Venus like composition. For concepts where is measurement is not required and its contribution
is negligible, the design of [1] can be readily simplified by removing the wave-plate array. It is important
to finally also consider the design of the resonator cavities in terms of the proposed arrangement and
positioning of the spectral bands. In particular, we determined in Chapter 3 how multiple spectral
channels with multiple measurements for a channel are necessary for remote sensing [7], [2], [59], whereas
the spectral bandwidth is limited in the design of [1] by three main factors:

• One of the advantages of [1] design is the occurrence of a single cavity height for multiple sensitive
wavelengths, resulting in a single lithographic step with great ease of manufacturing. For a given
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Figure 6.14: a) The figure illustrates qualitatively the correlation between a moving object region mapped on the detector
and a pixel, observed for a given integration time, with no deviation of the velocity vector. Points at various coordinates
ξ have different permanence times during this measurement.
b) Plot of the spatial distribution of the permanence time for the case discussed in a). During an integration time, the
permanence time is a trapezoidal function of ξ and the distribution acts as a spatial windowing in the object space domain.
Various windows are overlapped through different measurements (and also different pixels). In the limit vd → 0 the
distributions tends to a square of extension lp for all measurement as expected. Moreover, the mean averaged time of each
point is constant to lp/vd once all measurements are considered, as expected.
c) Qualitative illustration of the correlation in the case of not-aligned point-object velocity. The distribution would, in
this case, be a function of the two variables ξ, η. Such operation regime can be characteristic of the off-axis points as the
streamlines in 6.13 depict.

cavity height, the band-gap bandwidth limits the realizable total bandwidth of the channel. Nev-
ertheless, the cavity height of adjacent pixels can be changed within a bigger spatial scale upon
reaching of this limitation, without jeopardizing the above-mentioned manufacturing advantage.
Performing multiple lithographic steps is less and less problematic as the spatial extent of those
steps is increased, see Chapter 7 for more details.

• The polarization distinction is possible because of the spectral shift of the two polarization di-
rections. Even though the reconstruction process still seems possible with the presence of both
spectral peaks [60] the condition number is significantly improved if the second peak is removed.
Since multiple measurements are required for the same channel, that must be achieved with care-
ful design of a filter unit depending on the geometrical arrangement chosen. We postpone the
consideration of the design of such filtering units to Chapter 7, where we will also discuss various
solutions for the reconstruction process with and without filtering and optimize 6 DBRs design for
the purpose.

• The materials composing the mirrors and the resonator are not-lossy only for a certain regime of
wavelengths, which limits the realizable transmission for a given bandwidth. Also in Chapter 7
we show how, by an opportune choice of the inclusion materials and trading-off the FWHM, it is
possible to counteract this effect in the required VIS channels.

6.8. Preliminary sizing of the Optical System
We will hereby settle the preliminary optical specifications in order to meet the requirements depicted
in Chapter 3. First, we must select what are design parameters and what parameters shall instead by
calculated from the design parameters. Since there is a certain uncertainty over the power budget yet,
which will be discussed in Chapter 9.1, we set as free design parameters the size of the pixel and the
NA of the system. The number of pixels is also somewhat constrained since it most be an integer and
specific values are commonly used in off-the-shelf detectors. That sets also the detector size as a free
design parameter. Further constraints come from the nature of the mission, since as discussed in Section
6.5 and Chapter 3 the aerosol detection requires wide FOV, which unfortunately is further bounded for a
given altitude by the radial distortion. The field of view and the altitude are hence also settled. With the
formulas introduced, in addition to the spatial resolution requirement, those parameters are enough for a
preliminary estimation of all other variables. We will hereby consider a detector pixel of 10µm, with an
NA of 10◦, with the understanding that those parameters shall be reviewed in sake of the focusing analysis
developed in Chapter 7. As discussed in 6.5 we further set an altitude of hs = 500km for exploiting at
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most the advantages of a metasurface miniaturized device, which will result in a smaller optical system.
We further consider that for acceptable image quality the distortion of the grid GSDρ/GSD0 shall not
exceed ∼= 2 for the operating altitudes, which sets a FOV of roughly 80◦ by using the map in Figure
6.9b). The corresponding swath can be calculated by means of equation (6.6) which by means of the
map 6.4b) and settles at Sw ∼= 866km.
We’ll further consider that the spatial resolution specified in the requirements, as defined in 6.1, is the
spatial extent that can be reconstructed with full information over polarization and spectral content
(GRE) over all the field of view. The relationships between a GRE and GSRE (sub-resolution element
corresponding to one pixel reading in the imager) depends on the choice of arrangement performed in
6.7, and is hence a tradeoff between spatial and time resolution to consider. We conclude that the
GRE ∼= GSRE for the imager downselected in 6.7, at the expense of a decreased time resolution and
hypothesis of negligible time variance in the signal. Assuming for the most conservative GSRE the one
depicted in equation (6.29) for the distorted edge of the detector and considering that the integration
time is sized according to (6.30) as the nadir permanence time, we size a the pixel as:

lp = 1
m0

(
GSRE

1 + χs

)(
GSD0

GSDρ

)
(6.31)

Equation (6.31) hence takes into account radial distortion and temporal sampling of the signal. Ac-
knowledged that the realizable spatial resolution would also depend on the post-processing and sampling
requirements not yet known, we will use formula (6.31) as a preliminary (conservative) estimation. It
provides an estimation of the focal length for typical pixel sizes and spatial resolution requirement (with a
few iterations of adjustment to also set the correct FOV to the constrained one). We notice in particular
how for small altitudes, at equality of GSRE and lp, the equation settles a smaller effective focal length
which makes it realizable to have smaller instruments. The effective focal length is further constrained
by the first-order relationship with the FOV and the detector size (6.14), which results in:

Ld = nplp ∼= 2feff sin(FOV/2) (6.32)

Where np stands for the number of pixel in the (square) detector. Equation (6.32) is only a preliminary
estimation to be corrected once the optical system is designed since the non-linearity of the transfer
matrix used in the derivation is rather questionable for such big angles. A few iterations are hence
necessary to select, with an integer realizable number of pixels, a configuration that has the correct FOV
and meets the spatial resolution requirement. The effective focal length is further related to the entrance
pupil aperture. Considering that the operating medium is air with a refractive index of nair ∼= 1 the
effective focal length can be determined directly from the NA by means of the auxiliary equation (6.14)
as:

feff = Dep

2 sin(NA) (6.33)

Which provides an estimate of the entrance pupil diameter for a given NA. Moreover, the Dep shall
not be confused with the (real) geometrical size of the entrance pupil, which is related by pupillary
magnification factors depending on the realization of the optical system itself. The introduced value of
NA in relation to the pixel shall also ensure that the diffraction spot is significantly smaller than the pixel
itself (a formal diffraction solution will further provide more clarity on this sizing, in Chapter 7). For an
operating wavelength of 1.1µm, we can verify that the Rayleigh diffraction criteria at 83% threshold are
met [26]:

lp >
2.44λfeff
Dep

= 7.73µm (6.34)

with respect to what done in [1], we suggest sizing the pixel (not the whole polarized arrangement) above
the theoretical limit calculated in (6.34). It will be seen in 7 that an oversizing is further required when
considering the aberrations induced by the spectral filter due to its angle-dependence and such sizing
will be retrieved for all spectral channels. Finally, we determine the number of spectral and angular
bands. We require 5 angular bands to cover with enough time reconstruction accuracy the along-track
spatial extent due to Figure 6.13. Selecting an arrangement with 2048 pixels in both directions with
the retrieval of 3 Stokes parameters, that leads to ∼= 136 spectral distinct measurements that can be
covered, which we will share in 6 spectral channels (3 for the VIS, 3 for the SWIR) in Chapter 5. It is
important to consider that during ∆tob the measurement for the same object point is carried out through
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different observation angles θin, so the input Stokes parameters must not only be time-independent in
the interval ∆tob but also angular independent. Since the scattering does meet the last condition only
within a certain angular range ∆θscatt, we can define an angular reconstruction resolution along with
the spatial one and a condition of applicability of such reconstruction:

∆θrec(∆tob) ≤ ∆θscatt (6.35)

which must be verified once mission requirements are defined and more science case information is
retrieved. Table 6.1 summarizes the input design variables.

Symbol Description Value Unit
hs Altitude of the SSO orbiting satellite 500 km
NA Numerical aperture, for nair ∼= 1 equal to the

maximum focused half cone angle θmax
10(TBC) degrees

np Number of pixels in a lateral dimension of the
detector

2048 -

lp Edge size of the pixel 10(TBC) µm
FOV Field of View (diagonal) 81.9 (corrected for iteration) degrees
GRE Achieved ground resolution element (bounded

to the maximum spatial resolution from require-
ment R.04) at FOV edge

960 (corrected for iteration) m

Table 6.1: Design parameters (chosen as inputs for the sizing)

Table 6.2 summarizes the calculated performance variables discussed and further intermediary pa-
rameters.

Symbol Description Value Unit
Ts Orbital period of the satellite, 2π/ωs 87’38” minutes, seconds
vgt,nadir Ground velocity at nadir (corrected for Earth’s rotation in

the along track direction)
7643 m/s

tint Integration time, sized as the permanence time at nadir 41.8 ms
feff Effective focal length of the system, sized from (6.31),

(6.32)
1.56 cm

Dep Size of the entrance pupil aperture, size from (6.33) 5.4 mm
f# F-Number of the configuration, feff/Dep (only NA depen-

dent)
2.88

m0 Magnification factor at nadir, hs/feff 32× 106 -
GSD0 Ground sampling element at nadir 320 m
GRE0 Achieved ground resoluton element at nadir 640 m
Ld Size of the detector (edge) 2 cm
tλ,res Spectral time-resolution (assumed arrangement in Section

6.7 in addition to an un-polarized pixel), 4tint
167.2 ms

nλ Total number of spectral bands across all channels (as-
sumed arrangement in Section 6.7)

136 -

Table 6.2: Computed parameters (calculated from design parameters)

An estimation of the SNR and the spectral resolution is still missing and will be the focus of the
next Chapters. We further explicit that significantly higher GSD would be achievable. However, they
are practically limited by the power budget and the diffraction limit at the maximum focusing angle
for a given focal length, increase of which leads to bigger instruments. With respect to the parameters
down-selected in [1], we selected a significantly higher NA of focusing due to power budget considerations,
which will be seen to be acceptable in terms of aberrations in the analysis performed in Chapter 7 and
achieves significantly smaller focusing spots. The high integration time will further be divided in frame
dwelling times at the detector to avoid time-smearings and stability of the platforms concerns.
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7
Metasurface Performance Results

In this Chapter, we applied the previously developed theory for estimation of the metasurface response,
in various wavelengths regimes and configurations as requested from science requirements. Two case
studies are at the heart of this analysis: the non-polarized pixel study, where only the spectral response
is tweaked with use of circular inclusions, and the polarized pixel study, composed of an arrangement
of three pixels for the reconstruction of the linear degree of polarization as discussed in Section 6.7.
Moreover, the performance is initially analyzed both on the design wavelength of the mirrors and in
other regions of the bandgap. Various bandgap designs are considered for the two case studies, relating
to the overall required bandwidth of the instrument concept. The various transmissivities introduced
(wide pixel transmissivity, spectral band transmissivity, finite transmissivity) are all depicted, as well
as enclosed energy plots and OTF of the various solutions. The polarization dependence of the non-
polarized pixel case is analyzed and the condition number of the polarized arrangement also calculated.
Finally, plots of the PSFs as calculated with the wide-pixel diffraction theory are plotted from the Zernike
transforms hereby operated.
The analysis, either if rather involved, allows extrapolating high-level performance parameters from the
detailed electromagnetic modeling. The finite band transmission ←→τ ∞ calculated with the diffraction
modeling, together with his normalization radiometric bandwidth ∆λ, provides an estimation of the
transmitted energy as a function of the polarization, NA and pixel size. The finite spectral focal trans-
missivity ←→τ λ describes the spectral response under focal illumination including also diffraction effects,
from which the FWHM as a function of the NA can be extrapolated. In the final part of the Chapter, we
consider various possible filtering techniques to overcome the bandwidth limitation present in the design
reported in [1]. We down-select one of the filtering techniques and re-optimize the design of all the filters
to provide the correct attenuation and FWHM for the desired ranges, performing some trade-offs in the
performance of the various parameters.

7.1. Bandgaps designs
To cover the spectral required bandwidth, we use six DBR designs. Unfortunately, it seems not possible
to use less than six DBR pairs to cover the desired bandwidth1. We expect the six DBR designs to be
integrated together, in the along-track direction for all angular bands discussed in 6.7, as in Figure 7.2.
The proposed integration of patches of DBRs is less cumbersome than changing the property sizes across
each pixel, since by using nbandgap peaks to sample a single bandgap, we required this integration only
every each 3nbandgap pixels, so over several hundreds of microns rather than very small sizes. In fact,
integration of different spectral pixels is widely used in silicon technology in monitors and other similar
off-the-shelf technology. We hence assume it is possible from a manufacturing perspective. We, however,
use TiO2, SiO2 as mirror materials in all DBR patches, in order to limit the manufacturing complexity
of integrating different patches together and all compatibility of materials concerns. The inclusion ma-
terial aSi : H is strongly lossy in the visible spectrum (see Figure 7.1), which resulted in complete loss
of peaks in the cavity. Hence, TiO2 is used as inclusion material in the visible spectrum. This choice
comes with the undesired effect that the achievable permittivity contrast is smaller than desired, but
this effect can be partly counteracted by properly choosing the cavity heigh, a higher resonance mode
and an opportune filtering technique. We shall also clarify that for the visible range, manufacturing may
1solutions may be found with wider bandgaps by using arbitrary mirrors dimensions or using more unconventional solutions.
The transmission behavior of those solutions has however been observed to possess many resonances peaks in the resonances
curves and can’t be currently used

79



be more cumbersome since involved dimensions are smaller and use of TiO2, a material which treatment
may result in additional contaminations during the deposition.
The wavelength of the mirror’s design for six DBRs (e.g. the wavelengths λmir in above relationships)
are all selected to be a quarter wavelength in the medium (more precisely, the closest manufacturable
value within 1nm), so that a conventional DBR design is used with only a minimal detuning. All stack
are interfacing with air with means of the SiO2 mirror and cavity is defined in between the TiO2 layers
(see Section 5.3.5). The number of mirrors is preliminarily selected between 4− 6 (depending on DBR,
increasing for the infrared channels) for both bottom and top stack, to be reviewed once the power budget
is completed. The number of mirrors choice required a trade-off between spectral resolution and overall
transmittance peak, since to a higher number of mirrors a higher loss is associated due to the SiO2
loss present in 7.1. Using the criteria to have all spectrums above T > 60% the number of mirrors has
been selected accordingly. Spectrum dependent losses and dispersions of materials have been included
in those results for all materials from available datasheets, which uses the refractive indices plotted in
Figure 7.1 representative of thin-layers as reported here. Temperature dependence of those refractive
indices is unknown, but we conducted a simplified thermal sensitive analysis in Chapter IV. The included
loss of SiO2 is also consistent with experimentally determined losses in the bare cavity as discussed in
Chapter 8. Even though DBR3 design was initially selected to use aSi : H as inclusion material, the
latter resulted in ∼= 20% peak loss due to its high loss in the high-visible region, so this choice has been
disregarded. The cavity resonances curves of those 6 DBR designs are presented in Figures 7.3. It is
further stressed that those cavity resonances do depend on the cavity size chosen, the resonance curves
in the quiet region shifting and changing slope with the choice of the latter. The cavity size has been
chosen such to use the lower resonance mode possible, which maximizes the usable bandwidth for a given
permittivity contrast, having the smaller possible slope. As clear from the Table and the figures, the
available bandwidth to achieve transmission peaks by a change of permittivity contrast are more limited
than the bandgap of the mirrors. If the cavity size is chosen properly, those are always limited by the
presence of higher-order modes in the cavity. Their location can be changed within the DBR bandgap
by choosing a different cavity size. Other methods include the use of dispersive materials (to modify
the intercept with the resonances curves) and the use of particular solutions with detuned DBRs. The
FWHM and the peak transmission are dependent on the permittivity and spectrum location of interest,
as clear from the resonance curves. The proposed DBRs design is roughly covering the spectral channels
required in Table 3.1. Successive iterations of the DBRs design shall be implemented upon clarification
of those science requirements. In particular, some degree of freedom is available in the choice of the
length of the cavity to move the Usable Bandwidth within the DBR bandgap. If the requested permit-
tivity contrast in the DBR3, for example, is too high for the possible use of inclusions, the cavity can
be made higher to decrease the slope of the resonant curves. It is also suggested to keep the height of
the cavity above a minimum with respect to the height of the inclusions, to avoid coupling of higher
scattering modes in the multilayer (which effects is still unknown). We could use relation (5.55) to size
the inclusion for a given known wavelength, easily done from the inspection of the resonances curves
and the knowledge of a permittivity model. We consider that the whole region of coverage between
the permittivity of inclusion and matrix material can be achieved, even if in reality the volume filling
factor will not be unitary to limit interaction between too big resonators. It has been observed both in
[4], FEM results and experimental results in Chapter 8 that the stationary model underestimates the
effective permittivities and values greater than the inclusions maximum are in reality achievable also for
c < 1, which makes our assumption sound.
Since providing such values and analysis for the thousands of pixels in the arrangement seems excessive
and those are either way preliminary, we do not report explicitly the chosen dimensions. We, however,
mention that with the given spectral resolution we may fit a dozen measurements for each spectral chan-
nel. The choice depends also on the available number of pixels in commercial detectors. The overall
total length of the filters is changing significantly from DBR to DBR. Border effects close to the borders
of the two patches shall be analyzed and minimized in successive iterations design.
In the next Sections, we further performed a study case on two examples pixels and polarized arrange-
ments in DBR4. The performance of other pixels, even though shall be exactly described separately
in more detailed designs, is qualitatively similar. A further small note on spectral filtering is required
for clarity: in [1] it has been mentioned that the usable channel bandwidth is limited by the contrast
in anisotropy permittivity of the pixel. That is the case if a conventional non-resonating particle is
considered and, by inspection of the stationary model (valid in first approximation) we also conclude
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that the usable bandwidth would be smaller than the one reported in Table 7.1. For example, for pixels
in DBR5, the maximum permittivity contrast has been demonstrated in [4] with FEM analysis to be
associated with a separation of ∆λ = 127nm at most, slightly higher for use of a grating. There are
however possibilities to undercome this limitation, which we will down-select and analyze in detail in
Section 7.4. In either case, a filtering solution is always required outside of the bandgaps regions with
a wideband filter, for each one of the DBRs patches, in each angular band, separately. If integration of
those bandpass filters is performed on the multilayer, the reflection coupling of such shall be correctly
taken into account.

Figure 7.1: a) Plot of the real refractive index of all materials and imaginary refractive index of aSi : H in the spectrum
b) Plot of imaginary refractive index of T iO2 and SiO2 in the wavelengths of interest.

Figure 7.2: Proposed multi-DBR integration concept. For reference, each DBR would contain a few dozens of pixels. Some
spacers between angular bands may also be required to avoid light shadowing and vignetting effects.
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Figure 7.3: Resonances curves of all DBRs designs in Table 7.1. The Usable Channel Bandwidth is also represented in
white. The values of permittivities cavities represented are in the range of the matrix-inclusion materials.
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7.2. Case Study: Non-Polarized Pixel
We hereby performed a more detailed study of the response of not-polarized pixels. This analysis is
motivated by required information of polarization dependence, focused transmission spectrums determi-
nation and precise peak localization.
For a non-polarized filter, we would like to avoid any polarization dependence of the filter. We must
hence use an inclusion with a unitary aspect ratio. If polarization measurement is not explicitly required
(as per some channels in Table 3.1) it is preferred not to use the reconstruction method with three
independent pixels in order to avoid conditioning the signal to noise and filtering part of the polarized
light in the process. Moreover, we also may envision a solution in which this additional pixel is used for
calibration and further noise reduction of the polarized arrangement. With the imager arrangement pro-
posed in Section 6.7, non-polarized pixels can simply be added in the along-track directions as separate
spectral channels with no additional burden in the integration on the detector, as far as the cavity and
mirrors are kept at the same height-dimensions.
For this case study, we consider a pixel of DBR4 sizes to provide a peak at λpeak ∼= 1.1µm, as merely an
illustration. The input material properties are the same as represented in Figure 7.1. The required cavity
permittivities for such peak, according to the resonances curves, are εx = εy ∼= 4.58. If the stationary
model is used in a first approximation to size the particles, we may achieve those required permittivities
with a volume filling factor of c ∼= 46% (for example, a circular particle of diameter Dx = Dy = 320nm
and height hi = 200nm, with fits in the resonant cavity of this DBR). The corresponding off-angular
permittivity of this solution would be2 εz ∼= 7.34. In general, in fact, even with a unitary aspect ratio,
the cavity will still be anisotropic in the yz, xz planes due to the geometry of the inclusion.
We hereby analyze all performance parameters defined in Section 5.3.4 for this pixel.

7.2.1. Plane-Wave Transmissions
Due to the unit aspect ratio, the structure is clearly axial-symmetric. No φ dependence is hence expected
in the p − s frame transmission coefficients. Moreover, no couplings will be present between the trans-
mission, for which τ (m)

ps = τ
(m)
sp = 0. In general, an azimuthal dependence will be present in the xy frame

(known analytically) due to the p− s frame transformation. Due to the fact that p and s polarizations
are still subject to different transmissions spectrums upon not-normal incidence, polarization dependence
(undesired here) will be present. The transmissions in the p− s frame of this structure is represented in
Figure 7.4 for a plane-wave excitation, as calculated with the formal multilayer solution for data in Table
7.1. Such a Figure shows the transmission in the polar angle and the spectrum and clarifies the fact that
the two polarization shift apart differently at incidence inclination. The p polarization may precede or
succeed the s polarization, depending on the region of interest in the resonances curves. The FWHM
of the latter is in general shorter unless losses are high. s polarization is more affected by the presence
of a loss, as we also have experimentally shown in Section 8.4. The complex plane plot in Figure 7.4
provides information on the aberrations. It is seen that the two transmissions are slightly out of phase
for a given wavelength and angle and the maximum transmission possesses a phase of ∼= −π/2, typical
of a resonance regime. A similar plot would hold for the spectral envelope (Section a) in the complex
plane, which would be important in case of spectrally coherent light).
The Jones matrix of this arrangement is given by Equation (E.2) in Appendix E. The associated plane-
wave Mueller Matrix first-row is then given by:

MT
0 = 1

2


τppτ

∗
pp cos θ2 + τssτ

∗
ss

(τppτ∗pp cos θ2 − τssτ∗ss) cos(2φ)
(τppτ∗pp cos θ2 − τssτ∗ss) sin(2φ)

0

 (7.1)

When an azimuthal variation in the input Stokes will be present (e.g. due to aberrations, non-telecentricity,
real distribution) some polarization dependence will be observed. The real focal integrated spectral inten-
sity across the whole focal plane is in fact given by Equation (5.38). The quantity (τppτ∗pp cos θ2− τssτ∗ss)
which appears in that integration is plotted in Figure 7.5 and provides a good indication on the polariza-
tion sensitivity of this pixel, which is NA and spectral dependent. It is further stronger when the spectral
2the estimation of this value is rather uncertain and heavily influences the angular spectral drifts of the results. In the
stationary model, in fact, inclusions with the same volume but different height would possess the same εz , which is unlikely
for the real structure. We suggest more refined retrieval in future work.
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variation of the input field is not negligible. No figure can be given for polarization sensitivity of this ar-
rangement until a clear distribution of the field is known by ray-tracing. Since the polarization sensitivity
depends strongly on the spectral shift between the two polarization, we conclude that it is maximum
for the pixels on the left of the resonances curves (where s polarization precedes the p polarization) and
the ones on the right of the resonances curves (where the p polarization precedes the s polarization).
The pixels for which the cavity is in matching resonances with the mirrors, do not present significant
polarization dependence. Even if the whole focused energy is polarization independent, when including
the finiteness of the pixel into consideration the integrated energy may be polarization dependent, to
which we refer to the PSF calculation in the next Sections.

Figure 7.4: Top) Intensity transmission spectrum over an angle, in colour-plot for the p polarization (left) and the s
polarization (right). Center) Intensity transmission spectrums in line-plots for normal angle and at θ = 30◦ for the two
polarizations Bottom) Plot in the complex plane of the amplitude transmission at λ = 1.1µm for an angle envelope. Point
representation of two points at same wavelength and angle of θ = 10◦.
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Figure 7.5: Left) Polarization dependence plane-wave transmissivity factor in the polar angle. Right) Spectrum of the
same quantity for an angle of θ = 10◦

7.2.2. Wide-Pixel Focal Transmission
The wide-pixel transmission of this pixel, defined as in Equation (5.43) upon uniform field illumination,
is hence given by only one term, as we conclude after the known azimuthal integration:

←→τ ∞(λ,ŝ) = [M00(λ), 0, 0] (7.2)

where:

M00(λ) = α(θmax)

∫ 1

0

(
τppτ

∗
pp cos θ2 + τssτ

∗
ss

cos θ

)
|θ=arcsin(ξ sin θmax)

ξdξ (7.3)

TheM00(λ) coefficient of the wide-pixel transmission is represented in Figures 7.6a), and 7.6c) for various
angles. It can be regarded as a scalar spectral transmission for this design pixel. Due to polar integration
of the angle-dependent spectrum,M00(λ) presents a widening of the FWHM with increasing NAs. Due to
solid angle normalization (formally proven in Section 5.3.4) the spectral transmission further decreases
with increasing NAs. The peak transmission over NAs is plotted in Figure 7.6b) and so is the FWHM
over the NAs, referred to the corresponding NAs spectral peak maxima. According to the plots, the
FWHM increase strongly above θmax > 10◦ and also the spectral peak shifts considerably. It follows
that not to penalize spectral resolution an NA < 10◦ shall be used.
The radiometric energy content of such spectrum is subject hence to an increase due to the FWHM
widening and to a decrease due to solid angle normalization and radiometric apodization. The band
transmission for ∆λ = 8nm, as defined in Section 5.3.4, is represented in Figure 7.7. The plot there
presented suggests that the latter effect of normalization is predominant, but only slightly. The overall
finite band transmission decades, according to our results, with ∼= cos θ2

max, similarly to our idealized
apodized bandpass filter. This result is however strongly dependent on the assumed shape of the principal
surface upon which integration is carried out (according to Section 5.3.4) and on the optical apodizations
in the system, which are not yet fully known and have respectively been assumed quasi-planar and ideal
for calculation purposes. In fact, an apodization is expected also for an ideal bandpass filter according
to our model, which is also represented in dotted lines in both 7.7 and in 7.6b). We conclude then that
the transmittance under focused illumination is not particularly affected by the angle behavior and is
rather ideal, provided the correct normalization value for the radiometric bandwidth ∆λ is used. The
angle behavior, however, influences the FWHM and the spectral peak location as depicted in Figure 7.6
much more significantly, as also the general shape of the transmission spectrum.
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Figure 7.6: a) Contour plot of the spectral focused transmissivity in the spectrum for the variousNA of focusing b) Variation
of the peaks transmission, peak shift and FWHM in relation to the half-cone angle. Also ideal filter apodization is presented
for comparison c) Spectral focused transmissivity for angles of θmax = 0◦, 10◦, 20◦, 30◦ and location of maximas.

Figure 7.7: Band transmission integrated over the wavelengths. The ideal apodized filter transmission is also represented
for comparison
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7.2.3. Focal Fields
The focal fields may be found with use of the Zernike Expansion introduced in Section 5.3.7. In case of
non-polarized pixel, uniform field and idealized optics, the azimuthal transform appearing in (5.62) in
particular is already known (see Equation (E.2)) and given by Zernike transform of three scalar functions:

t0 = (τpp cos θ + τss)
2 cos θ t1 = (τpp sin θ)

2 cos θ t2 = (τpp cos θ − τss)
4 cos θ (7.4)

for the proof of which we refer to concepts in the Appendix E. The introduced hypothesis may easily be
relaxed at the knowledge of the optical transformation.
The transforms Z [q=i,s]

{ti} = Z [s]
i of the scalar functions appearing in the above can be calculated through

Equation (5.62) and the Zernike transform routine depicted in Appendix D. The expansion coefficients
module of such expansion are represented in Figure 7.9, where transform has been carried through
nsplines = 40 radial splines, truncated at smax = 30, with an estimated maximum truncation error of
εerror < 4×10−8 across the grid, increasing towards higher NAs. We have also verified that the required
smoothness criterias close to the origin, discussed in Appendix D apply for such transform. The square
modulus of the mode [0, 0] can be in particular seen to be different than the focal transmissivity above
defined, which contains the energy over all modes. The presence of a minimum in the spectrum of such
distribution for higher NAs is due to destructive interference between p and s polarization, possessing
different phase. The remaining energy is contained in all the higher modes, so that it is not lost but only
redistributed to wider regions in the detector plane. The non-dimensional focal fields associated with
such decomposition are given, after some rewriting of the known azimuthal terms which we time-save
the reader, by the formula:

ef |Σ0 = kf sin2 θmaxe
−ikf


∑
s

Z
[s]
0 + 2Z [s]

2 cos (2α) −2Z [s]
2 sin (2α)

−2Z [s]
2 sin (2α) Z [s]

0 − 2Z [s]
2 cos (2α)

−2Z [s]
1 cos (α) 2Z [s]

1 sin (α)

 is+1
(
Js+1(ρ̃)

ρ̃

) e[ξ,η]
in

(7.5)
The focal fields for uniformly x polarized input field are represented in Figure 7.8, for a wavelength of
1.098µm associated with the spectral peak at θmax = 20◦. Due to the shape of Equation (7.5) the focal
fields for other polarization angles illumination are found by simple rotations of those distributions. We
observe that the field is elliptical with a wider axis in the direction of polarization, as widely known on
focusing of polarized light. With respect to the idealized polarized focusing depicted in [61] the present
distributions present sharper features radially, due to presence of higher Zernike modes associated with
aberrations. As better seen in the next section, also sharper features in the spectrum and angle are
present. A small cross-polarization is always present and observed in those results. That’s due to the
Maltese effect already depicted in Section 5.2. Such cross-polarization is an increasing function of the
NA and is related to the spectrum in image 7.5. A similar expression would hold for the magnetic fields
in other transform functions, which can be determined with the same methods but we do not report for
succinctness.

Figure 7.8: Focal fields, from left to right, of x, y, z components respectively, upon uniform illumination of x polarized input
light, for a wavelength of λ = 1.098µm and an NA = 20◦, chosen to be the peak wavelength at the given NA respectively.
The scale bars are associated with the value of the normalized scaled field ef |Σ0/(kf sin2 θmax). Dimensional units may
be found in accordance to scaling factors in Equation 5.3 in relation to the spectral radiance.
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Figure 7.9: Zernike expansions module of the scalar functions appearing in the Jones matrix of the device, for the three
function (vertically) and two modes (horizontally). Higher order modes are qualitatively similar, stable, and increasing
towards higher NAs
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7.2.4. PSFs
With an opportune rewriting, we also determined the expression of the Mueller rows appearing in Equa-
tion (5.64). The non-dimensional transverse spectral PSF (defined in Section 5.3.7) is hence given by:

〈ef |Σ0e†f |Σ0
〉 = k2f2 sin4 θmax


∑
s1,s2


Z [s1]

0 Z [s2]
0 + 4Z [s1]

2 Z [s2]
2

2
(
Z [s1]

0 Z [s2]
2 + Z [s1]

2 Z [s2]
0

)
cos (2α)

−2
(
Z [s1]

0 Z [s2]
2 + Z [s1]

2 Z [s2]
0

)
sin (2α)

0


T

(
Js1+1(ρ̃)Js2+1(ρ̃)

ρ̃2

)


sin

(7.6)
Note that the contribution for s1 = s2 = 0 is an Airy distribution and the PSF is always real valued.
The PSF under consideration is elliptically shaped when the input field is polarized, as ideal polarized
focusing reported in [28]. We’ll however see in the study of polarized pixels that this result is applicable
only for circular inclusions.
The given PSF is also polarization dependent (which is consistent with our treatment in Section 7.2.1,
where coupled diffraction pupil was not yet taken into account), rotating with the angle of polariza-
tion. That would result in a small polarization dependence of the finite pixel measurement, dependent
on
(
Z [s1]

0 Z [s2]
2 + Z [s1]

2 Z [s2]
0

)
.The latter is a negligible quantity for small NAs but it turns out to possess

very sharp spectral features and be, in general, also two orders of magnitude greater than what predicted
in [28] for an ideal filter, due to the different spectral shifts of p, s polarizations.
The main importance aspect related to the PSF under consideration is its width, which can be seen to be
a strongly wavelength dependent function. For illustration of this concept, consider Figure 7.10 where the
PSFs of two different wavelengths (at ∼= 20nm difference) and at the same NA are plotted, together with
the plane-wave transmittance, and Figure 7.11 where the distribution is plotted in the radial direction.
For illustration purposes, the PSF associated with not-polarized input light M0 is logarithmcally scaled.
The polarization contribution appearing in Equation (7.6) are also represented in the same figure. The
wavelengths are chosen to represent the peak wavelength at θmax = 20◦ and the peak wavelength at
normal angle, respectively but the simulation NA is kept the same. The plots in Figure 7.11 are further
normalized on the local transmissivity values at the given NA and wavelength of consideration, since
focused of those plots are on the spatial distribution rather than on the transmissivity value (discussed
in Section 7.2.5). For this reason, the non-dimensional variable kρf sin θmax (appearing in the classical
Airy disk diffraction solution, also represented in dotted lines) is used in the plots of Figure 7.11.
To understand the above results, one shall consider the shape of the plane-wave transmission spectrum
in both polarization and in particular their phase. Refer to λ0 = 1.104µm as the peak wavelength at
normal incidence for sake of this discussion and λmin ∼= 1.078µm as the smaller wavelength over which
the amplitude transmittance starts decaying again. For a given wavelength, only a small portion of cone
angle is focused by the device; departing from the normal for λmin < λ < λ0, this portion of cone angle
is more aberrated than the ones for λ ∼= λ0, if in the active transmission region. The aberrations are in
fact dependent on the scalar quantities depicted in Equations (7.4) so on the difference between spectral
adrift of the two polarizations. If the transmission module is instead low (as for λ < λmin) over the whole
integration range, the cone angle is not highly aberrated and the spot size similar to the ideal one again.
The increase of NA naturally leads to increase of spot size also, as seen from 7.11a). Once again, above
θmax > 10◦ those effects are limiting the diffraction performance of the device. Those artifacts, which
we would in great part observe also in conventional DBRs designs without any inclusion, are intrinsically
due to the narrow angle-dependence of the device and shall be taken into account in the pixel sizing.
To do so, we make use of the finite transmittance, analyzed in Section 7.2.5. We, however, point out
that the choice of a different cavity permittivity heavily influences those results, modifying the spectral
content of the functions (7.4). Hence, different pixels shall be analyzed separately in terms of diffraction
behavior. We will do so in the final optimized design in Section 7.5.
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Figure 7.10: On top row, the coefficientM0 associated with the PSF of unpolarized input light, normalized on its maximum
value at the origin, in logaritmic scale. At the center, the contribution M1 associated with the Stokes parameter s1,
normalized on the same quantity. At the bottom, the contribution M2 associated with s2 also normalized accordingly.
Left column, represents PSFs at a wavelength of λ = 1.078µm, right outside of the spectral transmission region. Central
column, a bigger wavelength of λ = 1.098, (peak wavelength for θmax = 20◦) and on the right column for the plane-wave
normal peak wavelength λ0 = 1.104µm. In all cases, focusing NA is θmax = 20◦. Dimensional units in microns and same
colorscales used for every row, apart form the M1,M2 coefficients at λ = 1.104µm, which have been amplified of 5× for
clarity. Zoom in for improved visibility.
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Figure 7.11: a) On top, intensity distributions of the unpolarized term M0 (left) and M1 (right) for various focusing
half-cone angles for a wavelength of λ = 1.098µm. All the distributions are normalized (differently) on the origin value for
illustration purposes and compared with the Airy distribution. b) Same intensity plots at a fixed focusing half-cone angle
for various wavelengths. Zoom in for improved visibility
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7.2.5. Finite Transmittances
The encircled energy transmittance of the pixel in Equation (5.65) is given by the simpler formula:

←→τ (ŝ,λ) = α(θmax)
∑
s,s′

2
(s+ s′ + 2)

(
Z [s1]

0 Z [s2]
0 + 4Z [s1]

2 Z [s2]
2

)
F[s,s′](ρ̃max) (7.7)

Where the encircled energy functions F[s,s′](ρ̃max) are discussed in Section 5.3.7. The finite transmittance
is represented in contour plots in Figures 7.12 for various enclosing radiuses ρmax. In Figure 7.13 it is
instead compared with the wide-pixel focal transmission discussed in Section 7.2.2. On the right side of
Figure 7.2.2 the ratio between the finite and the wide focal transmittance is calculated in the spectrum.
As we demonstrated in Equation 5.3.7, the finite transmittance tends to the wide-pixel focal transmission
for wide encircled regions. The spectral behavior of the finite transmittance clearly confirms that the
spot size is aberrated towards the left side of the active transmission spectrum, more predominantly for
higher NAs, as we already observed from analysis of the Figure 7.11. As a result, the finite transmittance
possesses a different spectral behavior rather than only being attenuated and the expected peak may
shift of up to 10nm, when referred to the finite energy measured at the pixel. Even though the treatment
is strictly applicable for a circular enclosed region, as we addressed in Section 5.3.9, we may use such
transmission spectrums for a given pixel pitch lp ∼= 2ρmax for estimation purposes. The remaining energy
percentage further represents cross-coupling energy in other pixels3. It follows that, at this spectral band,
a pixel above ∼= 10µm shall be used to limit cross-coupling factors and work within 80% of the wide-focal
transmittance in all the spectrum range for a NA ∼= 10◦, which is ∼= 50% above what predicted with a
Rayleigh diffraction criteria for the given NA (in Section 6.34). Such criteria will be revisioned in Section
7.5 for the other spectral channels and optimized pixels.

Figure 7.12: Finite transmittances spectrums in various focusing angles for three enclosing radiuses, increasing from left
to right.

3however, such values are only an estimation. One shall resolve the diffraction problem in Section 5.3.1 and the image
creation convolution in Section 5.3.9 for a better estimation of those
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Figure 7.13: On the left column, finite transmittances spectrums for various NAs (in rows) and encircled radiuses (in
colours). On the right column, ratios between finite transmissivities and wide focal transmittances in the spectrum within
the same quantities variations.
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7.2.6. OTFs
With an opportune rewriting to resolve azimuthal dependencies by applying formula (5.69), we deter-
mined the following formula for the OTF:

OTF (ξk,φk) =
α(θmax)

M00(λ)


∑
s,s′

2π
s+ s′ + 2


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Z [s]

0 Z
[s]
0 + 4Z [s]

2 Z
[s]
2

)
I [s1,s2]
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Z [s]

0 Z
[s]
2 + Z [s]

2 Z
[s]
0

)(
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(−2,ξk)e
−2iφk + I [s1,s2]

(2,ξk) e
2iφk

)
i
(
Z [s]

0 Z
[s]
2 + Z [s]

2 Z
[s]
0

)(
−I [s1,s2]

(−2,ξk)e
−2iφk + I [s1,s2]

(2,ξk) e
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)
0



T


sin

(7.8)
where the mode functions I [s1,s2]

(q1−q2,ξk) = I [q1,q2,s1,s2]
(ξk) have been discussed in Section (5.69).

The (radial contribution for φk = 0) MTF for a generic input field, as calculated with numerical methods
depicted in Appendix F, is represented in Figure 7.14 for various wavelengths and focusing angles, with
respect to the one predicted by scalar unaberrated theory. Similarly to the variations of the PSF, we
notice degradation of the MTF above θmax > 10◦, more predominant for the peak shifted wavelength of
λ = 1.095µm. The MTF is also affected by a polarization contribution as depicted in Equation (7.8),
limited to < 1% for θmax < 10◦ which also possesses azimuthal variations.

Figure 7.14: Top) MTF contributions for unpolarized input light at various wavelengths, for a θmax = 15◦ (left) and the
peak wavelength and various NAs (right). Bottom) Real part of OTF contributions due to linearly x polarized light, for
φk = 0 and various wavelengths for a given NA (left) and various NA for the peak wavelength (right).
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7.3. Case Study: Polarized Pixel
For the case study of the polarized pixels, we perform a fully similar analysis by only taking into
consideration the anisotropy of the permittivity tensor, representative of an elliptical inclusion. In
addition to the previous parameters, we must discuss the condition number of the arrangement and
various solutions to filter the undesired polarization peak, as well as the influence of the cross-coupling
factors induced by the anisotropy.
For the filtering, in generality, we will analyze the use of a non-dispersive inclusion with a bandpass
filter of finite efficiency. For sake of conciseness, we analyze again one pixel of DBR4, with the same
sectional area and height of the inclusion but an aspect ratio of AR = 2.5. The stationary effective
model approximation predicts the following permittivity tensor for such particle:

←→ε r =

3.92 0 0
0 5.69 0
0 0 7.34

 (7.9)

which has been used in the multilayer solver to determine those results. Losses and natural dispersion of
material have been included in the mirrors multilayers but not in the values of←→ε r, for numerical imple-
mentation ease. Those permittivities, as also inspection of the cavity resonances of DBR4 implies, induce
cavity resonances for λx ∼= 1.082µm and λy = 1.134µm, with a total separation of ∆λpeaks ∼= 52nm.
The efficiency of the bandpass filter is kept as a variable to analyze its effect. Practical implementation
of those filtering techniques are discussed in Section 7.4 in more details.

7.3.1. Plane-Wave Transmissions
We analyze the plane-wave response of the proposed pixel, prior placement of a bandpass filter.

Azimuthal dependence The structure is obviously not axial-symmetric anymore and will possess a
Jones matrix J(m)

|Σ of the type depicted in Equation (5.28), as a function of both angles θ, φ. The azimuthal
dependence is introduced because of the anisotropy and is important to analyze since it induces different
spot properties and an overall different integrated transmissivity, with small cross-polarization factors.
Differently from the simple polarizer validate in the Appendix E, the presence of mirrors couplings
results in general in an infinite order of (even) azimuthal frequencies (the structure is however still well
represented for polar angles θ < 5◦ and perfectly for θ = 0 by a four order expansion as the one depicted
in (E.9), with choice of the opportune coefficients to be extracted from the solution of the coupling
problem). It could be demonstrated (from the shape of the propagation matrix in Equation (4.9)) that
the Jones matrix has a periodicity of π and is mirrored between the quadrants, so that only description
between [0, π/2] is required. Moreover, the Jones matrix appears to be symmetric, likely to be also a
property of (4.9). The double-angle dependence is plotted in Figure 7.15 for λ = λx. The qualitative
behavior of those plots is similar for other wavelengths, granted that the correct spectral transmissivities
modules are used in θ. We may also note some similarities with the validated FEM results in Appendix
E. Those transmissions may also be measured experimentally to further validate those results, via simple
collimated plane-wave spectral illumination.

Transmissions in x− y frame More important and understandable is surely the transmission in the
x− y frame, determinable by use of Equation (5.30). Its transverse minor, is of the form:

J[x,y]
e|Σ0

=
[
τxx τxy
τyx τyy

]
(7.10)

The presence of cross-coupling factors between the polarization is important for the reconstruction pro-
cess. It can be seen that those are approximately maximums for φ = π/4, 3π/4... hence mainly due
to the second-order azimuthal orders4. Moreover, they are nill at normal incidence. Their presence
is due to physical geometrical constraints in the electric fields deviations for p and s polarizations, as
already extensively revisioned in Chapter 4. The real structure may possess different cross-coupling
factors depending on the applicability of the effective medium formulation and the variations of such
effective parameters in the angles (assumed here uniform). We recall also that those results are well
4they would be present also for a circular inclusion pixel, but polarization retrieval is not of interest there
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Figure 7.15: Azimuthal dependance of transmission coefficients of case study a) at λ = λx in the polar and azimuthal
angle, for p and s polarizations (respectively, top-left and bottom right) and for the cross-couplings factors ps = sp.

above the numerical noise, estimated at εerr = 10−13 in Appendix A from energetic considerations. The
matrix J[x,y]

e|Σ0
is plotted in Figure 7.16a) for an azimuthal angle of φ = π/4 in the angular spectrum

and the corresponding plane-wave intensity transmittances contributions in Figure 7.16b) for an angle
of θ = 30◦, chosen as such for illustration purposes. The cross-polarizations affect the extinction ratio
of the polarizer as the NA of the system is increased. To understand to what extent, it is opportune to
calculate the wide-pixel focal transmission.

7.3.2. Wide-Pixel Focal Transmission
The wide pixel transmittance is given by integration of the plane-wave Mueller row. Due to simmetry
considerations, we have verified that only M00,M01 6= 0:

←→τ ∞(λ,ŝ) = 1
2


Tx,λ + Ty,λ
Tx,λ − Ty,λ

0
0

 (7.11)

with:

Tx,λ =
α(θmax)

π

∫ 2π

0

∫ 1

0

(
τxxτ

∗
xx + τyxτ

∗
yx

cos θ

)
|θ=arcsin(ξ sin θmax)

ξdφdξ

Ty,λ =
α(θmax)

π

∫ 2π

0

∫ 1

0

(
τyyτ

∗
yy + τxyτ

∗
xy

cos θ

)
|θ=arcsin(ξ sin θmax)

ξdφdξ

(7.12)

The interested reader may verify with concepts from Section 4.4 that the intensity transmission coeffi-
cients Tx, Ty are retrieved for fully polarized x and y input light, respectively.
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Figure 7.16: a) Amplitude plane-waves transmission module in various wavelength and polar angles for φ = π/4 b) Intensity
transmittances of various contributions at θ = 30◦, φ = π/4, with zoom-in on the cross-coupling components
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The two are represented in Figure 7.17 for various angle realizations. The integrals have been calcu-
lated with the splines integration routine over numerical grids depicted in Appendix D, with nsplines =
100 azimuthally and nsplines = 200 radially, with an estimated truncation error of εerror = 10−9. The
results are conceptually similar to the ones reported in Figure 7.6. However, it is observed that the
y polarized peak is less affected by the angular adrift and generally wider, due to the fact that is ap-
proaching the end of the resonance curves in DBR4. Another difference with respect to the non-polarized
pixel is the presence of small cross-couplings factors, still affecting the overall transmissivity also after
cone-angle integration. According to Figure 7.6, those are recognizable only for θmax > 15◦ and are
limited to Tcross,λ < 0.005. They add on the naturally present peak distribution at that spectral loca-
tion. Before calculating the corresponding band transmittance, consider an idealized bandpass filter of
efficiency 1− ηb, positioned at λ = (λx + λy)/2 such that:

T ′i =


0 0 < λ ≤ λmin,DBR4
Ti λmin,DBR4 < λ ≤ λ
ηbTi λ < λ ≤ λmax,DBR4

0 λmax,DBR4 < λ <∞

(7.13)

We integrate the spectral focal transmission to determine the band transmittance in the usable channel
bandwidth of DBR4:

←→τ ∞(ŝ) = 1
∆λ

(∫ λ

λmin,DBR4

←→τ ∞(λ,ŝ)dλ+
∫ λmax,DBR4

λ

ηb
←→τ ∞(λ,ŝ)dλ

)
= 1

2


Tx,l + Ty,l + ηb(Tx,r + Ty,r)
Tx,l − Ty,l + ηb(Tx,r − Ty,r)

0
0


(7.14)

The quantities Ti,j are represented in Figure 7.18left as functions of the NA, to be used for radiometric
purposes. The normalization value ∆λ has been selected to be 10nm without any loss of generality.
It can observed that the overall integrated cross-coupling factors settles at Tcross ∼= 0.02 and that the
radiometric content for not-filtered y polarized light is significantly greater. The cross-couplings factors
naturally increase in NAs, even though are roughly uniform below θmax < 20◦.
The PDL module vector of this band transmission, defined in Equation 5.51 is given by:

ρ = |Tx,l − Ty,l + ηb(Tx,r − Ty,r)|
Tx,l + Ty,l + ηb(Tx,r + Ty,r)

(7.15)

The condition number associated with this PDL and the PDL itself are represented in Figure 7.18, along
with other quantities, as a function of the bandpass filter efficiency for various NAs. The extinction
ratio, defined hereby:

X = Ty,l + ηbTy,r
Tx,l + ηbTx,r

(7.16)

has also been represented. To understand those results, one shall reconsider the band transmittances
and the dependence of the condition number to the PDL depicted in Section 5.3.4. ρ measures, over the
complete available band, how much the input transmittances are polarization-dependent with respect to
the transmitted light. A value of ρ ∼= 1 is optimal for the reconstruction process and is in fact achieved
for a perfect bandpass filter, for which the arrangement possesses a condition number of κ ∼= 1.5, rather
stable in the NA. If the bandpass filter presents a finite efficiency, however, more of the light of the y
polarized input will be intercepted, reducing the PDL. When the same amount of light is intercepted for
both polarizations the arrangement is polarization-independent and reconstruction is impossible. Since
the Ty radiometric content is higher than Tx, this condition is achieved for an intermediary bandpass
filtering. A reconstruction for this arrangement is possible also without the use of a bandpass filter,
but the condition number of such reconstruction is heavily biased, possessing a κ ∈ [6.7 − 8] for the
various NAs realization. Moreover, when reconstructing with both peaks, one can’t discern if the
integrated energy is resulting from one peak or another and hence can’t properly resolve the variations
of the Stokes parameters and the radiance in the spectrum anymore. As we discussed in Section 5.3.4
when the transmissivity spectrum presents features not localized to the FWHM of the desired peak
only, reconstruction affects also the spectral resolution, which may differ from the FWHM significantly
depending on how it is defined. Due to the presence of cross-couplings factors increasing with the NA
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(and the decrease of aligned transmissivities combined with the spectral adrift) the condition number
further degrades with increasing NAs. The extinction ratio X , that settles at a minimum of Xmin ∼= 2%
in the best case, is also generally negatively affected by the increase of NAs. We point out that those
results may quantitatively vary when using different off-angle permittivities εz of the cavity in the model,
but will be similar qualitatively. We also point out that all of this analysis shall also be conducted upon
varying sizes of the resonators cells lp with the finite transmittance, calculated later on in the Chapter.
If the extinction ratio is deemed to be too high for this reconstruction and polarization dependence of
the measurement, one shall consider using more DBR mirrors to achieve higher attenuations regimes.

Figure 7.17: Intensity focal transmittances of for fully x polarized input light and fully y polarized input light. Spectral
plots for various NAs of the results and zoom-in in the cross-coupling factors region.

7.3.3. Focal Fields
The focal fields associated with the solution of this case study are represented in Figure 7.19. In those
plots and all following, the Zernike expansion has been truncated to qmax = 8, smax = 30 to avoid memory
overflow on our 64bit machine. Estimated accuracy of truncation errors from energetic considerations
are of the order εerror ∼= 10−7 below θmax = 25◦. For brevity, only a time realization of the real field is
represented (ψ = 0 in Equation 4.38), in all polarization states for θmax ∼= 22.5◦ and its peak wavelength
λpeak ∼= 1.07µm in the spectrum of Figure 7.17. As clear from Figure 7.19, a focusing spot exists
also for y polarized light (inverted in phase) and is one order of magnitude less pronounced than the
focusing of the desired polarization, for this focusing angle. Smaller cross-polarization (non symmetric)
terms are present. Ringing in the x polarizing focusing can be observed due to additional order modes.
The ellipticity of the spot is a function of the position due to higher-order azimuthal modes in the
focusing. The curves of the real field for a phase-field ψ = π/2 are qualitatively similar but possess
slightly different distributions in space. Those undesired cross-polarizations can be limited below 1% by
reducing the focusing half-cone angle to θmax = 10◦. The spectral variations of those focused fields are
qualitatively similar to the one of the polarized pixels otherwise.
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Figure 7.18: Left) Band transmittances variations for the two integrations ranges and the two polarizations. Center column)
From top to bottom, variations of condition number, PDL module and extintion ratio as a function of the NA, for various
transmittances of the bandpass filter. Right column) From top to bottom, variations of condition number, PDL module
and extintion ratio as a function of the transmittance of the bandpass filter, for various NAs.
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Figure 7.19: Focal fields, from top to bottom, of x, y, z components respectively, upon uniform illumination of x polarized
input light (left column) and y polarized light (right column), for a wavelength of λ = 1.071µm and an NA = 22.76◦, chosen
to be the peak wavelength at the given NA respectively. The scale bars are associated with the value of the normalized
scaled field ef |Σ0/(kf sin2 θmax). Dimensional units may be found in accordance with scaling factors in Equation 5.3 in
relation to the spectral radiance. Only the real field components at phase field ψ = 0 are represented for brevity. Zoom in
for improved visibility.

7.3.4. PSFs
In Figure 7.20 the PSFs associated with the previous focal fields are also represented, for the various
polarization contributions, partly in logarithmic and partly in scalar scales for the same NA and wave-
length. The polarizer is affected by the presence of s2 and s3 components in the input field. The latter
is due to some retardance induced by the multilayer for an arbitrary azimuthal angle due to the complex
phase difference between p − s polarizations. Once integrated in the plane, the energy contributions of
the s2, s3 terms are nill for a uniform input field. Due to the fact, the field Eyy in Figure 7.19 is slightly
stronger in magnitude than the cross-polarization terms, a spot is retrieved also for y focusing of light,
but with stronger azimuthal features and two orders of magnitude below the desired polarization spot.
The spot of the x focused input light presents clears ellipticity and not uniform ringing effects. Once
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again, to limit those artifacts one shall reduce the focusing half-cone angle to θmax = 10◦. The presence
of the other polarization contributions affects the extinction ratio of the polarizer. The variation of spot
size with wavelength is also observed and conceptually similar to the one depicted in Section 7.2.4.

Figure 7.20: On the top row from left to right, focal spots associated with fully polarized x and y light respectively
(s0 + s1, s0− s1), in logarithmic scale, normalized on central value of the x polarized spot. On the bottom row from left to
right, contributions due to s2 and s3 to those distributions, in linear scale, normalized on the same normalization constant.
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7.3.5. OTFs
The MTFs in the radial direction for φ = 0 of this case study are further represented in Figure 7.21. The
MTF for x polarized input light is qualitatively similar in behavior to the one presented in Section 7.14,
both in variation of focusing angle and of wavelengths. However, aberrations due to angle dependence
are less strong due to the higher value of permittivity εz, minimal up to θmax = 15◦. The MTF of the
y polarization input, instead, is rather stable with the variation of the focusing angle. The azimuthal
variations of the OTFs can be retrieved from the ones of the PSFs in a similar fashion, for example, the
contributions of s2, s3 are nill in this radial direction.

Figure 7.21: OTF module in the radial direction in the kx versor direction. Left) For fully x polarized light Right) For
fully y polarized light.

7.3.6. Finite Transmittances
The finite transmittance are further represented in Figure 7.22 (x and y transmittances are superimposed
on each other) and also possess a qualitatively similar behavior to the one depicted in Figure 7.13. A
similar diffraction based sizing criteria to the one above discussed is hence verified also for the polarized
pixels. The M0,2,M0,3 finite transmittance coefficients are nill for this pixel, whereas Tx = M0,0 +M0,1,
Ty = M0,0 −M0,1. The transmission for unpolarized input light is hence retrieved by taking the average
of the Tx and Ty transmittances. The peak unpolarized transmittance reaches a peak Tunpol ∼= 0.3 for
a pixel pitch of lp = 10µm. Since we assume homogeneous statistical angle of polarization on the input
light, the band transmittance associated with Tunpol shall be used in the power-budget once a filtering
techniques is selected.

Figure 7.22: Finite transmittances spectrums for a focusing half-cone angle of θmax = 10◦ (left) and θmax = 20◦ (right).
The spectrums for fully x, y polarized light are superimposed in the plots.
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7.4. Filtering Techniques
In Section 7.2.2 we have introduced an idealized band-pass filter to depict the dependence of the condition
number to its filtering efficiency, but no details were provided on how the band-pass filter may be achieved
at a pixel level. In this Section, some design modifications are explored in order to achieve the required
filtering. Any additional spectral filter positioned on the structure shall be considered in the modeling
as a multilayered structure to correctly account for its coupling with the structure, which we will show
to be non-negligible. Various are the possible filtering techniques, in the next paragraphs. Filtering
the undesired polarization peak it is strongly preferred since condition number can be limited to the
theoretical minimum of κ =

√
2. If integration of any of the solutions below depicted is practically too

cumbersome or functionally impossible, however, reconstruction may still be performed. We have seen
in Figure 7.18 that the energy content of the two polarization transmittances are not necessarily equal,
which results in a finite condition number without filtering (κ ∼= 7). Other reconstruction methods with
denser matrices are also possible (see [4], which is an experimental demonstration with κ ∼= 8) and require
assumptions on the distribution input spectrum and their smoothness, but on the other hand, result in a
more compact filter since more wavelengths are simultaneously reconstructed. In applications where the
SNR is not the driving criteria, the latter reconstruction methods may also be considered more in-depth.

Double DBR The conceptually easier solution to achieve attenuation of the undesired polarized light
is adding on top-bottom of the considered structure another DBR structure with a non-polarization
dependent response, exactly tuned at the desired polarization wavelength. With the introduced tools,
we have analyzed the transmission behavior of this setup, noticing that it is preferable to use also a
cavity with inclusion for the additional DBR in order to avoid un-matched angle-dependence of the
transmittance. Even if using a bare-cavity would be preferable in terms of manufacturing ease, doing
so would allow covering only one peak without changing the height of the DBR stack in the next pixels
and would not match the values of the off-angle permittivity εz, strongly influencing the angle behavior
of the device. As a result, the light would be attenuated much more strongly above θmax = 5◦ without
the use of a matched inclusion. Fully matching both εx and εz seems however not possible with the
same geometry of the inclusion (circular-elliptic). Another difficulty arises from the fact that cavities
are coupling with each other if the intermediate DBR mirrors are not enough (nmirrors > 4), which
results in not full attenuation of the undesired polarization peak. Complete attenuation is, in fact,
never achieved and quantified to a few percents with the use of a reasonable amount of mirrors. The
necessity of using multiple mirrors decreases the overall power transmitted energy (by narrowing the
FWHM). Such a filtering solution further requires manufacturing tolerances are well controlled. An
example (relative to the optimization of DBR with such filtering techniques) is represented in Figure
7.23. It can be proven that optimal filtering is achieved where the εx are matched and ∆εy the maximum.
The latter quantity is not arbitrary (depends on εx so on the desired peak location) and is a function
of the volume filling factor (in the stationary preliminary model), representative of the fact that only
a certain permittivity contrast can be achieved for a given geometry. As a result, the filtering is less
efficient for low and high filling factors of the cavity, as can clearly be seen in Figure 7.23. Hence, the
DBRs designs is discussed in Section 7.1 requires re-optimization with selection of a different cavity size.
We perform this operation in Section 7.5 for all DBRs. The angle behavior of this structure is also rather
stable (see Image 7.25a)) and, as can be seen in Figure 7.23 the range of the available bandwidth can
be covered with good extinction ratios. Focusing and focal transmission performance are not analyzed
for brevity, but the same considerations and methods would apply. The practical implementation of this
permittivity values requires the use of gratings or other geometries, for determination of which a better
effective model shall be used. In Figure 7.25 the angle-spectrum intensity transmittance is shown for the
same structure without the inclusions (and cavity matched properly), which shows the sharp decrease
off-angle due to difference in εz permittivities, better to be avoided. We have observed that is preferable
to use a bigger number of mirrors in between the cavities and that, for particular configurations, the
desired polarization transmittance may present two peaks even upon matching the optical phase-shifts.
That’s a likely an (avoidable) effect of the detuning between cavities and mirrors, generally present for
an arbitrary inclusion.
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Dispersive inclusion In this paragraph, we show how a positive dispersion in εy can lead to the
extinction of the y polarized peak, with the use of a single effective cavity. This consideration is a simple
outcome of the inspection of the resonances curves of the DBRs illustrated throughout the report. To
practically achieve the required positive dispersion, various solutions may be considered:

• Use of materials with natural positive dispersion law, e.g. dn/dλ > 0. From inspection of the
material database, materials with the required positive dispersion are only highly lossy metals
(chromium, gold, magnesium...). The losses associated with such materials are strongly affecting
the polarization peak. The introduction of an anisotropic lossy metal may be considered for further
studies to achieve a predominant loss only on the undesired polarization direction. In this regard,
a study with an artificial k in the effective refractive index ny has shown to naturally extinguish
only one of the peaks. However, the anisotropic inclusion geometry does not necessarily correlate
with the anisotropy in the effective parameters until further studies will confirm such.

• Use of scattering elements in Mie resonances: it is well known that particles in the order of magni-
tude of the wavelength do possess scattering resonance regimes. The effective medium formulation
can still be used to separately describe each one of the propagating modes in the structure by
considering an artificial permittivity and permeability of the effective cavity, as highly wavelength
dependent functions. Prior to the Mie resonance peaks, the effective permittivity possesses strong
positive dispersion which may be used for the concept. Mie resonances regime possesses a known
analytical solution for a sphere in a uniform medium and elliptical particles of similar dimensions
are under study.

• Use of lattice resonances: other phenomena which leads to strong wavelength-dependent effective
parameters are lattice resonances, induced by the fact that the scatterers are arranged in a periodic
fashion in a lattice of a certain geometry and dimensions a ∼= λ. If the lattice resonances can be
excited by the scatterer predominantly in one direction, the required behavior may be achieved also
with this solution, since lattice resonances do scatter mainly in the transverse planes. To properly
use such resonances, however, a study of the finite structure with multiple resonators orientations
is paramount for a sound estimation of those effects.

A more detailed estimation of all those possibilities requires analytical tools not available at the moment
and beyond the scope of this report. However, in Figure 7.26, we report the transmissivity spectrum
associated with the same structure understudy in the polarized case study, but with a dispersion of
εy =

(
dny
dλ (λ− λ0) + ny0

)2
, where λ0 = 0.9µm and ny0 = 1.87. Figure 7.26 shows how the introduction

of a dispersion shifts the undesired peak further apart and that an optimal value of such dispersion
exists, for a given size of the cavity. In Figure 7.26a) a cavity size of lcav = 325nm is used (as in
Table 7.1), representative of the first resonance regime of the cavity. In Figure 7.26b) the same plot is
shown for a cavity of lcav = 1.3µm, representative of a resonance regime m = 4. By making the cavity
longer, the required dispersion may be lowered (in Figure 7.26b) a dispersion of dny/dλ ∼= 2.5µm−1

would suffice). However, multiple resonances peaks may appear in the spectral response of the desired
polarization Tx (not represented). Also, supporting a resonance mode for higher cavity lengths may be
harder. Attenuation, when the dispersion is chosen accordingly, may be as high as the extinction ratio
of the mirrors (here, ∼= 5 · 10−4). This study does not take into account the possible change of cavity
permeability. However, the generalized refractive index neff = √εcavµcav may be used for the purpose to
provide a similar analysis, once the latter is better characterized through more advanced models. If the
spectral response of the effective parameters may be engineered at desire through scatterers resonances,
one may further control more promptly the angle behavior of the filter and all other aspects of its
transmissivity.

Anisotropic particles in the yz plane If the effective permittivity tensor of the cavity would be of
the type:

←→ε r =

εxx 0 0
0 εyy εyz
0 ε∗yz εzz

 (7.17)

and εyz ∼= εyy, we predict that the y polarized peak would shift towards the lower wavelengths and at the
boundaries of the bandgap of the mirrors, as represented in Figure 7.24. Practically, such behavior will
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likely be achieved for an inclusion rotated of ∼= π/4 around the x axis or sliced at the same inclination
in the plane yz, but the manufacturing implications of such solution are rather dubious. If another
less-exotic way of providing a response εyz 6= 0 may be found, this solution may further be considered.
It may be also possible to induce attenuation of the s polarization but working, in one of the directions,
close to the Brewster angle of the effective cavity.

Tilted Mirrors Various industries have developed DBRs of varying spectral response my using in-
clined mirrors in the transverse plane. According to our results, such a solution would not provide
enough response contrast to significantly change the transmissivity spectrums as desired. Moreover, its
integration is very cumbersome considered the multiple DBRs design.

Use of Anisotropic Crystals Special anisotropic properties are typical of birefringent crystals. Cou-
pling a birefringent crystal slab with the filled cavity may provide the required spectral or dispersive
response for the attenuation.

7.5. Optimization of the DBRs design
As we previously discussed, various filtering techniques can be used to filter the undesired polarization
peak. The double DBR option is down-selected at this stage for the performance characterization, as the
more likely to be realizable in practice. The simulation of the DBR transmittance with the introduction
of the filtering unit is required to perform a sound SNR budget, which has no value without the latter,
being strongly influenced by the filtering efficiency as discussed in Section 7.18. To achieve filtering, we
have re-optimized all DBRs by including the filtering unit and changing mainly the cavity size in such
a way to work in the region with higher permittivity contrast ∆εy. Even if the questionable stationary
model is used here to depict the relationship between ∆εy and εx, this trade-off is representative also
of effects inherent with the performance of the real structure, which will present similar dependencies
and constraints in relation to the filling factor and the achievable permittivity contrast. The use of such
filtering in the modeling also allows us to consider realistic effects of filtering in other concepts which
may be used for the purpose: no ideal band-pass filter exists able to fully extinguish the peak, without
coupling with the DBR structure with so small contrast in the spectrum.

Figure 7.23: Resonance surves for the x (left) and y (right) polarization peaks at normal incidence, for a multi-DBR design
(DBR2 of Section 7.5) comprehensive of two cavities with inclusions sized at AR = 5 and AR = 1/5. The permittivity axis
is representative of the match permittivity on the x axis. The simulated material properties, as discussed in Section 7.5, are
here dependent on the filling factor for a given εx which sets the other permittivity values and their contrast. Attenuation
of the y peak is achieved, with presence of two spectral peaks, and more efficient for intermediate filling factors.
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Figure 7.24: Spectrum transmissivity at the variation of εyz , the all others parameters fixed to the one of the polarized
pixel case study.

Figure 7.25: a) Angle-spectrum intensity transmittance for two cavities in a multi-DBR with the same off-angle permittivity
εz , representative of two cavities with opportunely sized inclusions b) Angle-spectrum intensity transmittance for two un-
matched cavities in the multi-DBR, representative of a bare top cavity. The two spectral peaks are associated with the
different angle response of the cavity. Results are reported for succinctness only for the p polarization.
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Figure 7.26: a) dispersion-wavelength transmissivity curves for a cavity of lcav = 325nm and same setup of Table 7.3 for
DBR4 b) dispersion-wavelength transmissivity curves for a cavity of lcav = 1.3µm and same setup of Table 7.3 for DBR4.
In both cases, λ0 = 0.9µm and ny0 = 1.87

To sample the DBRs bandgap we use 16 pixels, which enables a resolved sampling for the FWHM
under consideration (with exception of a few SWIR pixels). The desired peak location fixes for a cavity
length the εx value. To achieve the higher permittivity contrast allowed by a certain εx, an aspect ratio
of AR = 5 is used for the bottom cavity and AR = 1/5 for the top cavity, in the polarized channels
for all DBRs. The un-polarized channels both possess a cavity with AR = 1 and have, otherwise, the
same dimensions. We have limited the maximum aspect ratio to AR = 5 to consider manufacturing
constraints on the achievable aspect ratio and avoid too strong contrast between the ∆εz of the two
cavities. The new dimensions of the optimized mirrors and cavity are given in Table 7.2. As clear also
from Figure 7.27, sampling of the active DBR regions is achieved with resolved peaks. The required
permittivity values are instead represented in Figure 7.28 to achieve such peaks. It can be noted that
some off-angle permittivity un-matching ∆εz is present and stronger for the SWIR DBRs, which uses
aSi as inclusion material; it seems to have however a minimal effect for a focusing angle of θmax = 10◦,
hereby used. Consider first only the polarized channels. The FWHM of the various peaks vary in the
spectral channels as per Figure 7.29 (plotted against the transmittance peak location). To account for
the fact that radiances values are significantly lower in the SWIR, the FWHM in those channels has
been slightly degraded to meet power budgets. The FHWM of the VIS channels ranges from 4.5−9[nm]
and the ones of the SWIR channels from 5− 17nm. All those results have been derived by considering
the focal finite transmittance, including diffraction and spectral adrift of the peaks as predicted by the
introduced model. The band transmittances of the DBRs are depicted in Figure 7.29. Even though for
brevity, we do not rediscuss the OTF and PSFs of all the designs, we have observed those to be similarly
bounded by θmax = 10◦ as in the single-DBR design, with slightly a lower diffractive performance due
to unmatching of the off-angle behavior of the two cavities. To prove the previous statement, consider
the ratio Qdiff between the finite pixel band transmittance and the wide one, plotted in Figure 7.29
against the achieved spectral peak location of the finite transmission spectrum for a resonator cell of
10µm in DBR1 to DBR4 and 20µm in DBR5-6. As previously discussed, the resonator cell requires to be
increased in the last two SWIR channels to avoid diffraction coupling between pixels. Since Qdiff > 74%
in all DBRs, diffraction effects are mainly limited within the resonator cell size. It can be observed that
the diffraction effect is more pronounced for the initial spectral range of all DBRs in the SWIR. This
behavior is easily explained when considering that the εz off-angle permittivity is lower in that region,
resulting in more pronounced angle effects and hence aberrations. If such diffraction performance is
limiting the pixel reconstruction due to cross-coupling, we suggest further increasing the pixel size and
changing the system architecture accordingly.
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The finite transmission focal spectrums of the desired polarization of Tx are represented in Figure 7.27.
It can be seen that coverage of the VIS channels is possible with the use of 16 pixels and all possess a
quasi-ideal shape (small uniformities are however present at the starting wavelengths of each DBR range).
The transmissions of the SWIR channels are, instead, affected in the lower range due to various reasons:
the design of the multiple DBR with the filtering unit requires various considerations and tradeoffs, of
which we report the final result. There are optimal values of the number of the mirrors at the margins
of the cavity with respect to the ones in between, for which only a finite set of configuration yields
spectral peaks of the required shapes. The marginal mirrors number possesses a minimum dictated by
the requirements on FWHM and in order to properly attenuate the undesired peak, whereas the number
of central mirrors in between the cavities does also require to be above a certain limit to avoid cavity
coupling and presence of undesired interference effects. On the other hand, to a higher number of mirrors,
the effects of a permittivity contrast off-angle ∆εz and the losses are always more pronounced (included
in the model). To counteract the first effect, influencing also the diffraction quality factor as can be seen
in Figure 7.29, the aspect ratio may be lowered if the spectral leakings of the undesired polarization are
still within the required bounds by doing so. We have also considered that reasonably the sizes of the
mirrors and cavity can be well controlled within a nm range, so a small decoupling is always present
which affects more and more strongly spectral behavior as the number of mirrors is increased. Even
though a complete optimization sweep as not been implemented, we could not determine a configuration
with a better spectral performance in the SWIR range which also possesses the required FWHMs, given
all the above factors. The small spectral transmittance does however still meet the power budget in
Section 9.1. The filtered spectrums Ty, representative of fully y polarized light of the six designs are also
represented in Figure 7.27. It can also be noticed that optimal filtering is not possible. We required in
fact tradeoff between the number of mirrors used (reducing Ty ) and the FWHM, influencing the overall
SNR power budget (discussed in Chapter 9.1). The provided configuration allows having enough quality
in the spectral peaks and a reasonable filtering efficiency in the other polarization. The latter is worse in
the VIS channels (background < 2%), due to the fact that the permittivity contrast between bare medium
and inclusion materials is lower, resulting in more leakings, whereas it is minimal to the SWIR channels
(background < 1%). The leakings are furthermore pronounced at the margins of the DBRs regions since
for small or high filling factors the permittivity contrast is lower. Those considerations directly affect
the condition number which is seen to possess a minimum in the center of the DBR bandgap in Figure
7.29 and be quasi-optimal for the SWIR channels. Due to the fact that optimal filtering of the undesired
polarization is not achieved, the spectral quality of the filter at FWHM, defined in Section 5.3.4, is also
affected. The M0,0 peak of our design, being analytically the average between the presented Tx and Ty
transmittances, possesses two small spectral peaks associated with the permittivities εy,bottom and εy,top,
which do influence the confidence in the statistical mean of the reconstructed radiance. The presence of
leakings of the undesired polarization further affects the PDL module of the reconstruction and hence
the condition number of the optimal reconstruction matrix, as depicted in Figure 7.29. The achievable
spectral resolution depends in detail on the reconstruction method, but we claim that a spectral resolution
of Rλ = 4nm shall be achievable in the VIS channels since the peaks are resolved, and between 6−10nm
in the SWIR channels. The design may be optimized further in other iterations and, with the use of
a more refined permittivity model, the sizes of the required inclusions determined. We finally suggest
looking into the possibility of placing some AR coatings to further enhance or attenuate some of the
resonance features in the multilayer (e.g. decrease the coupling between cavities), or investigating more
in detail other possible concepts of filtering of easier manufacturing.
Regarding the unpolarized channels, the treatment is simplified as only the coefficient M0,0 is present
in the spectral finite focal transmission. It can be shown that approximately but not exactly, the
transmission of the unpolarized channels is double the one of the polarized channels at un-polarized
input, as represented in Figure 7.30, which shows the maximum spectral peaks of both polarized and
not polarized channels against the location of the wavelength peak for all pixels. The difference between
the two polarization is due to intercoupling azimuthal terms τxy, τyx and various other effects.
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DBR Usable Bandwidth [µm] lcav[nm] lSiO2 [nm] lTiO2 [nm] Configurations of mirrors
(on top, between, bottom)

1 0.435 - 0.55 250 85 50 3-5-3
2 0.64 - 0.73 165 122 75 4-7-4
3 0.77 - 0.865 200 146 91 5-8-5
4 0.95 - 1.12 245 171 108 5-9-5
5 1.34 - 1.55 340 240 153 6-10-6
6 1.92 - 2.2 530 332 213 5-9-5

Table 7.2: Proposed DBR arrangements, whose results are being presented. The multilayer are interfacing with air all
by means of SiO2 (at lower refractive index, to minimize reflections at the first and bottom layers). Two cavities of the
same height are placed in the multilayered structure which are filled wich inclusions. Cavities are always interfacing with
the T iO2 slabs. Top, between and bottoms numbers are referring to a full stack of double-materials. For example, DBR1
consists in total of 25 slabs, cavities included. The cavity size is kept for simplicity the same for both cavities. Mirrors are
sized as the closest thickness within a nm to the quarter wavelength condition at a mean refractive index in the usable
bandwidth region of interest. All cavities apart from the one in DBR1 (due to height constraints) work at the m ∼= 1
resonance mode, downsized to account for the higher permittivity of the cavity due to inclusion filling.

Figure 7.28: Plots of the permittivities of the two cavities in various directions (on top, in the VIS DBRs, at the bottom, in
the SWIR DBRs), to achieve the previous transmission spectrums, plotted against the achieved peak of the transmission
in the spectrum. The permittivities are representative of the size of the required inclusions, in the first iteration sizable
from the stationary model. The permittivity εx is designed to be the same for both cavities. An aspect ratio of AR = 5 is
used for the bottom cavity and AR = 1/5 in the top cavity. Permittivities ranges on the represented axes are within the
range of SiO2 − T iO2 for the VIS DBRs and SiO2 − aSi for the SWIR DBRs.
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Figure 7.30: Peak (focal, finite) transmittance of the polarized channels (red) and unpolarized ones (blue), for each designed
pixel. The actual distributions of the unpolarized channels are not shown for illustration clarity, but similar to the ones
previously reported by means of a scaling factor. The polarized transmittance is intended for an un-polarized input.

7.6. Verification of the results
The performance results presented are based on theoretical considerations of multilayered and effective
medium models, whereas the diffraction modeling simplifies the treatment proposed in 5.3.1. The plane-
wave transmittances codes have been verified extensively through the use of FEM simulations with known
anisotropic permittivity tensors for an arbitrary illumination. Various Python classes (for an optical slab,
for a multilayer, for a double-DBR, etc..) have been developed for the purpose during the whole time-
frame of this project and its implementation and numerical performance been tested thoroughly in various
configurations. The presence of azimuthal transmittances has been verified through FEM simulations
of a polarizer, discussed at the end of Appendix E. The Jones transmission and reflection matrices
meet power conservation considerations, as depicted in Appendix A, to numerical precision. Diffraction
formulations are, however, hard to verify at the present moment, due to lack of analytical solutions
or known accessible experimental results in multilayered focal illumination. However, the treatment is
based on diffraction integrals reported in [28] and the expansions meet the proof-check of Equation 5.66,
which shall suffice to demonstrate that the expansion is numerically stable and accurate. Expressions
of the OTF and enclosed energy are analytical integrals, which are consistent with the Airy distribution
formulation for the modes q = q′ = s = s′ = 0 and physically sound for all other modes. Experimental
verification of the plane-wave transmittances under arbitrary illumination is also reported in Chapter 8,
for a bare cavity.

7.7. Overview of the Results
In this Chapter, we have presented a variety of results for the metasurface characterization in the spec-
trum and upon focal illumination. It is useful to review the main conclusions of those results:

• 6 DBRs designs, presented in Table 7.1 with their FWHM and transmittance values, can cover
the required spectral ranges for aerosol detection. In the visible spectrum, to avoid losses, TiO2
shall be used as inclusion material for the resonator particles. Due to losses of the SiO2 in the
visible range, transmissivity values are lower and the FWHM shall be traded-off accordingly. The
bandwidth which can be covered is smaller than the bandgap of the mirrors, depending on the
filtering and reconstruction concept selected. The 6DBRs may be integrated together for each
angular band, on a lateral extension of the order of magnitude of millimeters in the along-track
direction of the detector.

• Differences of p, s transmittances induce undesired polarization dependence of the non-polarized
pixels, only for an aberrated not-uniform input field. This dependence can be limited by controlling
the NA of focusing (Figure 7.5)

• The plane-wave transmittance of the polarized pixels shows an infinite number of azimuthal fre-
quencies and cross-coupling terms τxy, τyx for a generic illumination angle (Figures 7.15 and 7.16)
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• The wide transmittance present a sharp decrease of peak transmittance above θmax = 10◦, widening
of the FWHM (see Figure 7.17 and 7.6 ) and spectral shift. The band transmittance associated
with such wide transmittance is, however, rather stable in the cone angle (Figure 7.7)

• The focal fields present cross-correlation terms as in [28] (see Images 7.8 and 7.19 ), of stronger
magnitude due to differences of p, s transmittances. They can also be limited by using θmax <
10◦. For polarized pixels, azimuthal features are further present and leakings of the undesired
polarization field, out of phase.

• The PSFs spots present widening upon stronger NA of illumination and, in particular, strong
spectral features, easily depictable by the definition of the finite transmittance (see Figures 7.10
and 7.13)

• The (diffracted) finite transmittances are expected to shift towards smaller wavelengths and change
distribution, for small sizes of the pixel pitch, more strongly for bigger focusing angles.

• An oversizing of the pixel pitch of 50% is suggested with respect to what predicted by the Rayleigh
diffraction criteria, for a focusing angle of θmax = 10◦. Practically a non dimensional variable
ρ̃max = kρmax sin θmax ∼= 6 shall suffice for all spectral bands to maintain the enclosed energy
above 80% throughout the whole spectrum. That results in a doubled resonator cell in the SWIR
channels.

• The MTF possess a sharp decrease in frequency above θmax = 10◦, is perturbated azimuthally by
the polarization terms (of a few percent degrees).

• Aberrations of polarized pixels are expected to be slightly less severe due to higher values of εz,
attenuating the angle dependence. These results shall still be verified functionally through FEM
simulations in future work since the geometrical correlation between εz and geometry particles are
not easy to depict.

• Various filtering concepts have been analyzed to filter the undesired polarization peaks in order to
improve the available bandwidth without jeopardizing the condition number of the reconstruction.
The more promising ones consist in the use of multiple DBRs cavities, to be matched properly, and
use of dispersive scatterers (for example, by inducing Mie or Lattice resonances in the structure).
Attenuation with the latter method is theoretically possible but shall still be proved functionally
through more detailed (FEM) simulations, whereas the first method is more grounded.

• The multi-DBR filtering technique has been down-selected for preliminary estimations and the
DBRs design re-optimized to account for cavity coupling and attenuation effects. The performance
of 96 pixels has been analyzed in the generality of all their performance parameters, showing that
attenuations < 2% are achievable, with FWHM ranging from 4.5−9[nm] in the VIS and 5−17[nm]
in the SWIR. Diffraction performance is acceptable but to be reviewed for the first pixels of the
SWIR DBRs. The condition number is acceptable for VIS and almost ideal for the SWIR channels.
Transmission peaks possess good quality. Focal finite transmission of the polarized channels upon
non-polarized field ranges from [0.2 − 0.4]. Values of the required permittivities are reported and
can be used for preliminary sizing of the inclusions, to be iterated over FEM simulations or other
techniques.
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8
Fabrication & Experimental Results

Disclosure The structures have been designed by the research group in TNO, in collaboration with
TU/e, Friedrich Schiller University of Jena, which also performed the analysis hereby reported, soon to
publish in a paper [4]. The manufacturing has been performed by the Fraunhofer Institute for Applied
Optics and Precision Engineering & Nonlinear Physics Centre, the Australian National University. Some
of those results are included in this report, with kind permission of the involved parties. No rights are
reserved for the results in Figures 8.1, 8.6 and 8.8 presented in this Chapter.
Experimental results are available for preliminary structures including DBR with bare cavity and with
inclusions. We discuss the experimental setup and manufacturing process, as well as the measurement
setup. We perform an analysis of the polar off-angle measurements of a bare cavity and demonstrate the
soundness of the multilayer model for its performance characterization. We analyze the optical results
of the patches with inclusions discussed in [4] and discuss the results in terms of the developed theory.
Unfortunately, measurement under focused illumination and over azimuthal variations have not been
performed, so neither thermal, vacuum or radiation tests. The focus of this first manufacturing phase
was showing a demonstration of spectral reconstruction at normal incidence, which has been verified.
Subsequent tests shall be planned and the optical and measurement setup properly designed to complete
experimental characterization of the structure.

8.1. Manufacturing Techniques: a quick review
Manufacturing techniques of nanostructures of Si fall in the category of lithography manufacturing, with
similarity to the integrated circuitry manufacturing. In previous reports, we discussed various imprinting
techniques, which can also be revisioned in [62]. In this Section, we quickly brief the reader on vapor
deposition processes, used for the manufacturing of the structures under revision. Vapor deposition
techniques are used to deposit coatings. Depending on how the thin-film is created, two main categories
are distinguishable:

• CVD, or Chemical Vapour Deposition where chemical reactions between precursors are used to
create the thin-film. When used in conjunction with plasma, (PECVD) such techniques allow
deposition at lower temperatures. The plasma is created between two electrodes by a reactive gas.
Hydrogenation and plasma density are important parameters to monitor in the process in order to
ensure correct material properties and uniformity [63].

• PVD or Physical Vapor Deposition, where the thin-film is created by some physical process like
sputtering (creation of plasma by a collision of two gases) or electron beam evaporation is used for
deposition. Also this in this process plasma can be used (PEPVD) to operate at lower temper-
atures. In particular, the process can be optimized to manufacture optically resonant monolithic
Bragg cavities [64] and mirrors. Optical properties of the mirrors can be tested in-situ during the
manufacturing process to monitor tolerancing.
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8.2. Manufactured Structures & Geometrical Measurements
Various patches of multilayered structures with mirrors of SiO2 and TiO2 have been fabricated by [4]
and preliminarily tested for demonstration purposes. Those include:

• Patches of a multilayer with a bare cavity, for measurement of the DBR performance. Those have
been tested at normal incidence and off-angle for φ = 0. The analysis of the experimental results
of those measurements is discussed in Section 8.4

• Patches of the multilayer with inclusions, for measurement of the two spectral peaks. Those include
patches with elliptical inclusions and gratings inclusions. This choice was based on the evaluation
of design with a reconstruction of both spectral peaks, but this aspect is unimportant for our
analysis.

• A pixelated patch mounted on a commercial CMOS sensor

The structures with inclusions are comprehensive of a total of 29 alternating layers. The top mirrors
stack, bottom mirrors stacks and cavity are represented in Figure 8.1 , which shows the manufactured
structures and the nanostructures. To deposit the mirrors, a plasma-enhanced physical vapor deposition

Figure 8.1: left) Manufactured multilayer with false-color for identification of the materials. right) Manufactured inclusions
and diameters dimensions. All copyrights to [4]

method (PEPVD) has been used. During the deposition, it is important to avoid polycrystalline growth
of the materials to control surface roughness, absorbance and scattering effects [4], which limits the
thickness dimensions of the layers. Note that the manufactured top mirror and bottom mirrors are not
matched at the same wavelength (e.g. deviate from quarter wavelength condition), which is undesired
and has some effects in the spectral transmission calculated. Moreover, the top mirror has been manu-
factured with a different thickness, for reasons discussed in [4]. On average, the bottom stack thicknesses
are centered around 320nm±20, 120nm±20 for respectively the SiO2 and the TiO2, whereas the upper
stack thicknesses are centered around 230nm±10, 170nm±10, except for the upper one of ∼= 100nm±20.
That results in two different bandgaps of the separate stack and, overall, a smaller bandgap of the whole
multilayer (see next Section).
The cavity of lcav ∼= 900nm±50 is embedded with elliptical inclusions of various aspect ratio (with diam-
eters varying from 140nm to 360nm) all with a height of H = 300nm made of amorphous hydrogenated
silicon. Details manufacturing are addressed in [4], for which the following steps can be summarized:
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• a) Deposition by plasma-enhanced chemical vapor deposition (PECVD) of a − Si : H using a gas
source

• b) Deposition of a Chromium hard mask (30nm)

• c) Spin-coating of an additional resist

• d) Development of the resist with the patterning of the Chromium (by ion beam etching)

• e) Etching of the Chromium masking on the Si layer by inductively coupled plasma reactive ion
etching.

• f) Removal of Chromium by acetone and etchant agents

After production, unfortunately, contamination by Chromium has been observed which is due to the mix-
ing of Chromium with other materials and improper cleaning in step f). Chromium is a lossy material,
which resulted in strongly observed losses in the transmission spectra. In general, contamination may be
avoided in similar well-developed manufacturing processes, so that the measured transmission intensity
won’t be representative of a real optimized manufacturing process. The contamination can be visualized
also by inspection of the SEM images (small lines are present above the inclusions). The individual
resonators present some dimensional variations across the transverse plane but are qualitatively of the
desired shape. The maximum tolerancing bounds on their diameters are around ±8nm. Tolerancing
between the transverse placement of the inclusions cannot be unfortunately estimated from those SEM
images.
It is also clearly observed that, within the presence of the nanostructures, the top mirrors present rough-
ness. A planarization has been performed after their deposition which limited the roughness variation
to Aw ∼= 15nm. It has been proved in [4] by FEM simulations that with the present configuration and
below Aw ∼= 40nm the decrease in plane-wave transmission peak is ∆T < 5%. However, that result is
valid for normal illumination and did not include diffraction and phase effects. To minimize the surface
variation in the well-developed manufacturing process, it is suggested to perform detailed studies on
etching geometries and dynamics prior the manufacturing. An inclination in height of ϕ ∼= 3◦ is also
observed in Figure 8.1, which mainly affects the volumetric filling ratio of the cavity. The diameters
Dx, Dy shall in practice be slightly overdesigned (of ∆D = sinϕH) or referenced to the medium section,
in order not to observe a spectral shift due to this effect.

8.3. Measurement Setup
The spectral measurement setup used in [4] is represented in Figure 8.2. It consists of:

• a broadband halogen source (SLS301, Thorlabs, Inc.)

• a collimation optical unit, to simulate plane-wave illumination

• a linear polarizer mounted on a rotational unit to control the angle of polarization

• a positioning system used to orient the structure.

• an aperture and a lens system to focus the light into the tip of a fiber optic

• a coupled spectrum analyzer with a resolution of 0.02nm (AQ6370B, Yokogawa)

The aperture is movable and sizeable, in order to analyze various patches of the sample. This choice has
resulted useful in the measurement since patches uniformity has been observed to be varying considerably
in the transverse direction. Some regions of the patches have shown to present a higher transmission
spectrum when the aperture was set to 20µm.
In order to avoid re-orientation of the overall setup, the multilayer is re-oriented by the positioning
system, to discern between p− s polarization states (see Section 8.4).
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Figure 8.2: Spectral measurement setup used for plane-wave illumination of the manufactured structures

The measurement of the structure has been carried out by means of a focused ion beam and a scanning
electron microscope. Their resolution is limited by optical power (not to deteriorate the structures) and
measuring time.

8.4. Angle Measurements of the bare cavity
Measurements of the bare cavity without inclusions have been performed also in polar angle variation.
Unfortunately, azimuthal angle measurements and measurements of the patches with inclusions have
not been performed, since they would have resulted in too many changes in the optical setup and
measurement software tools.
In order to avoid modification of the experimental setup, the patches have been rotated on one of
the transverse axes during the measurement, whereas the remaining setup (focusing optics, aperture,
spectrometer) orientation was left unchanged. By rotating the polarizer, p and s polarization can be
discerned. When the polarizer is oriented as the rotation axis used to move the structure, the incoming
plane-wave is s polarized. When the polarizer is perpendicular to the rotation axis, the incoming plane-
wave is p polarized. Since the detector and fiber-optics are not moved, it is assumed that the complete
plane-wave transmittance is measured at the detector without any geometrical apodization due to its
polarization. Hence the intensity transmittances measured in this setup, at means of tolerancing in the
polarizer angle are given by:

Tpp = |τpp|2 Tss = |τss|2 (8.1)

The measurements have been carried multiple times to lower the noise and on different points of the
patches structures. Moreover, the input spectral intensity is referenced to the same measurement setup
by only removing the multilayer from the configuration. It is supposed that reflection coupling between
multilayer and all other components can be neglected. Figure 8.4 shows those measurements for three
angles and the two polarization states. As observed in the measurements, p and s polarization shift as
expected and further depart from each other, s polarization always preceding the p polarization in the
spectrum. Such behavior is in accordance with a formal multilayer solution. In the plots, also a fitting
solution is represented. Since the geometry of the multilayer is roughly known, we have used a simple
optimization tool to fit the measurements with the closest multilayer solution. The mirror lengths of
such fitted solutions are in agreement, by variation of ±2nm with the manufactured dimensions, which is
well within the tolerancing of the measurement. However, that’s likely not the global optimum solution
since it poorly represented the initial part of the spectrum, which strongly depends on the tolerancing
of each individual mirror, not precisely known. The cavity dimension, in particular, settles at 872nm,
even though a first resonance solution is also possible at 388nm. It has been observed that, for the setup
under consideration with not-matched DBR, also the tolerancing on the mirrors heavily influences the
position of the spectral peaks and not only the cavity. In the represented fits, the same geometry and
configuration are used for all angles and polarizations. The fitted solution well represents the spectral
behavior, proving that the multilayer model can be used to estimate the performance of the real structure
also off-angle. However, a decrease of the intensity peaks is observed with respect to the (lossless) fitted
solution.
A striking observation, at first surprising, is that the s polarization decays off-angles much more than
the p polarization. To explain such effect, we have included losses in the above optimal fitted multi-layer
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solution, separately for the SiO2 and TiO2 materials. We have observed that also theoretically, the s
polarization decays in presence of loss much more strongly than the p polarization. Simulated value for
ideal case, artificial losses of:

kSiO2 = 1.2 · 10−4 kTiO2 = 1 · 10−7 (8.2)

and measurement values are represented in the correlation plot in Figure 8.3a) and 8.3b) for respectively
spectral shift and transmission peak. The former correlation with the multi-layer fit is rather good,
differences being also due to uncertainty on the mirrors dimensions and exact refractive indices. Some
higher uncertainties come with the measurement of the peak value, since during the rotation of the
structure it may be that misalignment is present. That may result in some differences in the spectral
behaviors since the cavity in the patches has been determined to be not uniform. That’s likely also
the reason for the fastly varying behavior of the measured peak values in Figure 8.3b). Moreover, the
peak may be undersampled. We have reasonably assumed a tolerance level of ∆T ∼= 0.025 for both
polarization. The correlation of the measurements with the artificial losses is not optimal, implying
that the losses may further be angle-dependent or some polarization-dependent apodization in the s
polarization was present in the setup. Both graphs, however, imply a faster decay of the s polarization
when compared to the variation of the p polarization: the off-angle behavior of the spectrum (especially
when un-matched multilayer like the one here under discussion is considered) is a complex analytical
function. In general, a variation of the spectrum in the s polarization is always more pronounced
(spectral drift, changes of FWHM), which may explain intuitively this effect. A careful observation
of the measurements also shows that FWHM widens in the s polarization in the presence of losses
more than expected, which shall be further investigated. The values in (8.2) are not necessarily the
optimal ones, in fact, the fitting problem presents multiple local optimums of cumbersome determination.
The given values are higher than the one expected for the materials (thin-layer). They may, however,
be representative of some small contamination in the manufacturing process (but not the chromium
contamination issue discussed earlier, which instead affects only the patches with inclusions). Losses
have hence an important non-negligible effect in the overall transmission spectrum when considering
off-angle behavior.

Figure 8.3: a) Spectral-shift off-angle from the measurement and the multilayer-fit (almost independent of loss) b) The peak
transmission in intensity is plotted for the various angles and the two polarization states. The estimate such, cubic spline
interpolation has been used in the measurements. Tj,id represents the ideal intensity transmittances as estimated from the
optimal multilayer fit. Tj,loss represents the transmittances derived from the same model by introducing a small artificial
loss in both materials. Finally, Tj,meas represents the measured intensity transmittances, with an assumed uncertainty
level of ±0.025.
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Figure 8.4: Orizontally, from left to right, the p and s polarization intensity plane-wave transmittances. Vertically, the
polar angles (only three represented for succinctness). Zoom in for improved visibility.
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For completeness and further use, we also report the spectrums of the reflectivity of the two DBRs
(top and bottom) and of the total multilayer best fit solution, over a bigger wavelength region in Figure
8.5. As clear from the plots, the two DBRs are not matched, which results in a slightly smaller DBR
bandgap than initially expected.

Figure 8.5: In red, the intensity transmission spectrum of the multilayer fitting the experimental results. In blue, the
reflectivity of the bottom stack of mirrors (∼= 98.9%). In black, the reflectivity of the upper stack of mirrors, of better
performance (∼= 99.5%). The spectrums are inclusive of losses.

8.5. Spectral measurement of nanoresonators patches
As mentioned above, various inclusions design has been manufactured. The manufactured design was
meant to demonstrate reconstruction based on two spectral peaks with an arrangement of six pixels, one of
them presenting a grating. The dimensions of those inclusions are summarized in Table 8.1, together with
their measured spectral peaks. The spectrum measurements of the six pixels are represented in Figure

- Dx[nm] Dy[nm] λx[µm] λy[µm]
Pixel 1 335± 8 145± 6 1.463 1.431
Pixel 2 202± 5 282± 5 1.445 1.462
Pixel 3 162± 4 247± 4 1.430 1.446
Pixel 4 145± 6 335± 8 1.431 1.463
Pixel 5 282± 5 202± 5 1.462 1.445
Pixel 6 134± 5 1.432

Table 8.1: Measurement of the elliptical inclusion. Pixel from 1 to 5 are elliptical. Pixel 6 is a grating. The measured
location of the spectral peak are also reported.

8.6 in logaritmic scale, as presented in [4]. Spectral peaks associated with the two polarization directions
are clearly recognizable in the Figure, on a noisy background. Due to the presence of the Chromium
contamination, transmissivity values are T ∼= 0.2, but above the noise floor. Moreover, FWHM is also
increased with respect to the expected one (see below). To minimize noise, multiple measurements have
been performed and the best patches selected. It shall be stressed that in successive manufacturing
phases Chromium contamination can be controlled and transmissivity values significantly higher so that
the results are qualitatively representative of the spectrum behavior only. To analyze those results from
the background introduced in the Thesis, we retrieved the permittivity values of the effective cavity by
means of the anisotropic solver developed and further compare those with the ones predicted from the
stationary model for the considered structures. In the process, we assume the effective permeability
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Figure 8.6: a) Illustration of peaks position for the various pixels b) Measured spectral transmission of the six pixels
arrangement. All copyrights to [4]

to be unitary since inclusions are supposed to be not in the resonance regime. The mirrors design of
the nanostructures samples is the same as the bare cavity, so that we may use the previously fitted
multilayer solution for the top and bottom mirrors. The cavity resonances curves of this unmatched
DBR, analytically derived, are represented in Figure 8.7. It follows that the spectral peaks in Table
8.6 are achieved with the permittivies in Table 8.2, where those permittivies are compared with the one
predicted from the stationary model and, further, with a best fit which frees the effective volume c and
the aspect ratio AR as follows:

cfit = creal
Q

ARfit = ARζreal (8.3)

and converges at εerr = 10−10. It is seen that the stationary model, when used with the real geometrical
dimensions, always under-estimates the permittivities but overestimates the contrast between permit-
tivities. Roughly, the cavity seems to behave as it would be predicted by using double the real filling
factor1. It can be shown by FEM (and theoretical considerations) that the value of achieved permittiv-
ity depends on the electric field magnitude in the inclusion region with respect to the one of the bare
cavity. A higher value of permittivity correlates to a higher field in the inclusion. The value of Q may be
further related to the presence of standing waves in the cavity. We may envision a corrected stationary
model which takes into account the distribution of the field in the multilayered structure in an iterative
solution method, to account for those effects. It further seems that the permittivity contrast achieved
by the real structure is also smaller than what we would predict initially. Such deviations were already
expected as discussed in Section 5.3.2, since the stationary model is intrinsically simplified not taking
into consideration frequency dependence and coupling between the resonators. Unfortunately, there are
not enough data-points to provide further correlations, but the values of best fit Q and ζ seem rather
1we could argue on whether the filling factor shall be calculated with the entire bare cavity volume or the one corrected
for the presence of the inclusion. The value of Q increases of ∼= 3% roughly with such correction. The value of Q may
also be related to the extinction length. The effective cavity height leading to cfit is roughly 440nm slightly bigger than
the inclusion height
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Figure 8.7: Cavity resonance curves of the DBR structure under study, representing effective permittivity of the cavity
versus resonance wavelength. On the right, the resonances of the pixels are represented. To match the value of transmissivity
module, an artificial loss of k = 1.2 ·10−3 has been included in the effective refractive index (neff = √εcav). The resonance
curves depend on the height of the (effective) cavity taken here as lcav = 0.87µm.

correlated. It may be interesting in future work to analyze also dependence on the variable
√
DxDy/P

and P/λpeak, P being the lattice period.

εmatchingx,r εmatchingy,r εstationaryx,r εstationaryy,r Q ζ

Pixel 1 2.6066 2.408 2.344± 0.02 2.234± 0.013 0.4775 0.8117
Pixel 2 2.5011 2.6004 2.283± 0.014 2.333± 0.015 0.4901 0.8876
Pixel 3 2.402 2.5012 2.224± 0.01 2.267± 0.02 0.4334 0.9092
Pixel 4 2.408 2.6066 2.234± 0.013 2.344± 0.02 0.4775 0.8117
Pixel 5 2.6004 2.5011 2.333± 0.015 2.283± 0.014 0.4901 0.8876
Pixel 6 Unknown 2.414 - -

Table 8.2: Permittivies retrieved from the resonances curves (matching the measured spectrum, only real permittivity is
shown) and permittivies which would be derived from the stationary model in Section 5.3.2. Those are subject to the
geometrical tolerancing. Calculation has been performed with lcav = 0.870µm and a lattice size P = 500nm as in [4].
Material properties are taken as follow: naSi:H = 3.7, nSiO2 = 1.45, nTiO2 = 2.285 as suggested in [4]

To describe the Chromium loss, we further consider a complex effective refractive index. The retrieved
value that matches transmission peaks of T ∼= 0.28 are ={ncav,x} ∼= ={ncav,y} ∼= 1.2 · 10−3. By using a
simple volume averaging of effective properties and assuming that such loss if fully due to Chromium,
such loss would be consistent with a volumetric filling factor of cCr ∼= 0.5% (half-percent), which is rather
small but has a not-negligible effect. Our results seem consistent with transmission decay depicted in
[4] which performed a similar analysis by means of FEM simulations. In the same reference, an increase
of FWHM has also been associated with the presence of Chromium. We verify that inclusion of a loss
results in the increase of the FWHM, because loss acts non linearly on the transmissivity spectrum.

8.6. Polar measurements over angles of polarizations
During the experiment, the orientation of the polarizer has been varied to sample the 2π spectrum.
From the introduced model and theory, we expect a known results from this operation. One shall in fact
consider the plane-wave spectral directional transmittance defined in Section 5.3.3, which leads to the
subsequent expression of the transmitted Stokes parameter:

sout(λ) = M0(λ)

 1
p cos(2γ0)
p sin(2γ0)

 MT
0(λ) =

M00
M01
M02

 (8.4)
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In the above expression we always refer to a small transmittance integrated over the spectral resolution
of the spectrometer (not a purely spectral quantity). Using the expression (E.9) in Appendix E for the
Jones matrix of the structure, the following relationships applies at normal angle:

J =
[
I0,0 0
0 I1,0

] M00
M01
M02

 = 1
2

I0,0I∗0,0 + I1,0I
∗
1,0

I0,0I
∗
0,0 − I1,0I∗1,0

0

 = 1
2

Tx + Ty
Tx − Ty

0

 (8.5)

where we have considered that for continuity of fields the values of Ii,0 = 0,∀i > 1 and that the inclusions
are oriented as the cartesian frame. The above expression is valid for nill cross-coupling polarization
since the Jones matrix is assumed diagonal. Moreover, the spectrums Tx and Ty are not overlapping
significantly. The transmitted intensity, considering the degree of polarization of the incoming light
p = 1, is proportional to:

sout(λ) = 1
2 [(Tx + Ty) + (Tx − Ty) cos(2γ0)] ∼=

{
Tx cos2 γ0 ∀λ ∼= λx

Ty sin2 γ0 ∀λ ∼= λy
(8.6)

The provided expression can be plotted in a polar angle. In Figure 8.8, this plot is represented, so the
experimental results as retrieved in the experiment (only peak wavelength represented). The correlation
with the above expression is excellent, which proves that the Jones matrix above can well represent the
structure at normal angle and that cross-coupling polarization terms are not present (also valid only for
normal angle). Having performed the test also upon not-normal illumination (and significant angles),
a more intricate pattern would have been found, varying in module also depending on the azimuthal
orientation φ which does not play any role at normal incidence. This test and correlation provide an
important result, proving that the Jones matrix of the device can be described and retrieved from
measurements. It is suggested to consider in the future test also not-normal illumination to retrieve all
other parameters of the Jones matrix, which expected expression are depicted in the Appendix E or are
in general given by the Zernike transform introduced. The latter measurement may be more cumbersome
due to noise requirements when small polar angles are used. A way to retrieve the other parameters
is by performing at generic illumination multiple measurements and expanding in a Fourier series the
measurements found. The results of those experiments, upon further manipulation, shall be compared
with the theoretical expression of Zernike Transforms derived in Chapter 7. The measurement also proves
that the structure possesses only two resonant frequencies in the spectrum2 for all polarization angles
and that those are exactly oriented as the nanostructures (assumed in the derivation), which may be
argued at first.

Figure 8.8: Polar plot of various measured transmittances at varying angles of polarization of the polarizer for two wave-
lengths. The plot is superimposed on the polar plot expected from Equation (8.6). Adapted for notation from reported
plot in [4]

2assumed that it excites only one cavity resonances in Figure 8.7 for each permittivity
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IV
Integration Analysis & Discussion
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9
Integration Analysis

In the present Chapter, we apply the detailed performance analysis above introduced for the integration
of the filter, as part of the Optical System. The choice of a detector able to cover the spectral ranges of
interest and its performance are analyzed, which enables to explicit the final power budget of the pixels
designed in Chapters 7. We show how SNR requirements can be met at the same level of specification
of 3MI and provide simple engineering performance maps of the filters. Preliminary tolerancing and
thermal analysis complement such an integration study. We explicit a final list of integration and
definition requirements to be considered when using the spectral filter and elicit some of the obvious
benefits of using the concepts in terms of mass and system complexity.

9.1. Power Budget
With the definition of finite transmittance above introduced, we possess enough information on the
metasurface transmission response to perform a power budget. For the purpose, a radiance reference
spectrum shall be used and the performance of the detector be also characterized.

9.1.1. Reference Spectrum
For the radiance estimation, the internally available dataset of Sentinel 7 MAP (see [7]) has been used,
which is reported in image 9.1a). The dataset contains calibrated Top of Atmosphere radiances values
in various illumination conditions, as maximum and minimum radiances. For power budget estimations,
the reference spectrum shall be used, with the understanding that real SNR may be strongly affected by
illumination conditions and time of observation. The cloud dataset contains also the maximum reference
spectrum which shall be tolerated in dynamic range by the detector. We have verified consistency between
the reference spectrum used and the freely available GOME Level1B Radiance Products, reported from
ESA in .nc metadata. In Figure 9.1b) the degree of polarization present in the datasheet has also
been represented. The observed decrease for IR wavelengths is consistent with the one reported in
[65] and other resources, which also clarifies regarding angles of polarization variations. It naturally
follows that the statistical mean of s1, s2 is also significantly lower than the one of s0, which impacts
the confidence level of the reconstruction of the former two parameters more than the one of s0. To
maintain the design flexible for our science case, we assume that the angles of polarization realizations
have all the same statistical likelihood, but these considerations may be reviewed in future work to
optimize the orientation of the structure accordingly. We further suggest in future work to analyze the
spatial distribution of radiances for the altitudes discussed in Chapter 6 and subsequent image creation,
using the considerations of Section 5.3.9; addition of a BDRF model, atmospheric reflections would be
further required for a more detailed study on the input Stokes parameters. It is further assumed that the
undesired sunlight and other stray-light sources are further minimized by the use of baffles in the optical
system. Finally, it has extensively been reported, and depicted also in our formulation by Equation 5.82,
that the radiance fall-off at such high FOV is not negligible (achieving also a factor of 1/10). In 3MI, the
design of specially engineered aspheric lenses has been implemented to prevent this fall-off and increase
the area of the entrance pupil for the off-angle sub-bundle [2]. We will assume a similar architecture shall
be designed also for the present optical system, such to preliminarily neglect the radiometric fall-off in
our power budget calculation.
Unfortunately, the provided dataset does not include radiances above λ = 1.1µm. To suffice for the
SWIR bands, we extracted from [5] the radiances values there reported, measured from Landsat-8 OLI
for vegetation and desert background. We compare those with the reference spectrum of S7 in Figure
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9.1c), which shows better agreement with the vegetation spectrum. In the reference spectrum, the
absorption peaks are not present. The covered DBR windows are also reported in Figure 9.1c). The
critical DBRs for power budget is likely to be DBR5 and DBR6, considered also the decay of radiance
with respect to the decay of photon energy for SWIR wavelengths. Unfortunately, expected degrees of
polarization spectrums for the SWIR modules have not been retrieved.

Figure 9.1: a) Spectral radiances values extracted from MAP Sentinel 7 dataset. The reference dataset is used for power
budget estimation. b) Degree of polarization spectrum as reported in the same dataset. c) Extracted radiances values from
[5] compared with reference MAP S7 Spectrum and covered DBR ranges proposed in Table 7.1.

9.1.2. Detector Choice
The main challenge in selecting a feasible detector for the arrangement proposed in Section 6.7 is, of
course, covering all the spectral bands in Table 3.1 with an acceptable quantum efficiency and overall
performance of the detector. To maximize the benefits of miniaturization of the filtering concept, we
would prefer covering the VIS and SWIR ranges within the same optical system architecture and within
one detector. In comparison to SPEX and 3MI similar concepts, such a design solution would provide
the bigger advantage in terms of mass and cost reduction of the complete system, at the sake of some
compromising in terms of performance (chromatic aberrations, transmittance) still hard to depict for the
whole system. However, a solution in which the VIS and SWIR channels are still separated can also be
envisioned and still provide some advantages in terms of achieved targets (see Section 9.5 for an overview
of target parameters).
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Covering bands from [0.4µm, 2.1µm] within one sensor architecture is an active field of research, with
a TRL3 of current development solutions [66], similar to the one of the devices under considerations.
Similar VISIR detectors are envisioned in many applications involving remote sensing of aerosol and
bio-signatures, as in the ATLAST concept [66], Various solutions under investigation:

• a) Electron Multiplying CCDs (EMCCDs): optimized solutions covering also the SWIR exist but
are limited by degradation of the phosphorus used in the doping of the n-channels. Radiation
exposure shall hence be investigated thoroughly for this solution.

• b) HgCdTe avalanche photodiodes arrays (APD), used also in ESO/VLTI interferometer [67], may
provide coverage with QE > 70% from [0.4µm, 2.5µm] [66][68]. The main limitations result from
the noise induced by the photodiodes in the electronic circuits and their leaking currents, which
shall be opportunely optimized. Their figure of merit QE is ηe = 0.7 up to 1µm and η = 0.8
above [66]. Temperature shall be limited to T ∼= 70K to avoid leakage currents [66]. They can be
integrated on top of CMOS electronic circuits [69].

• c) Conventional HgCdTe with an optimized readout integrated circuit

• d) Various hybrid optimized solutions and cryogenic detectors.

We also report research projects actively integrating VISIR channels for on-ground use, like the following.
With the understanding that the characterization shall be improved in the future development of such
research, we select case b) for the study.

Integration with the multilayer It is also worth mentioning the concerns related to the integration
of the multilayered structure on top of the sensor. It has been demonstrated that successful integration
of similar RGB filters can also be accomplished with off-the-shelf sensors (see, for the purpose of this
discussion, [70]). Typical architecture involves the use of microlenses to focus the light on the active
pixel region, like in Figure 9.2. With the use of such architecture, the multilayered structure shall be
placed on top of the microlenses, with opportune sealing and purification of the intermediate medium
gaps. The vacuum behavior of such arrangement shall be thoroughly tested and modeled in further work
to avoid outgassing and other effects in the space environment, but shall not be within the feasibility of
current technology.

Figure 9.2: Images of the microlenses of a commercial Nikon camera adapted from the web.

Selection of pixel pitch For obvious detection purposes, the size of the resonator cells shall be
equal or an integer multiple of the size of the pixel. It is further restricted by diffraction considerations
(minimal bound) and spatial resolution required (upper bound) for a given focusing angle. In Section
7.2.5, we performed a sizing of the resonator array size based on diffracted energy at a wavelength of
λ ∼= 1.1µm, for a focusing angle θmax = 10◦, which appeared as the best trade-off between aberrations,
off-angle adrift - transmittance decrease and total power. This sizing resulted in a resonator array size
of lr ∼= 10µm. The analysis has been already previously repeated for all spectral bands in Section 7.5. It
shows that we can confidently consider that similar plots to the ones of Figure 7.13 would be retrieved for
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all wavelengths at the parity of the non-dimensional number ρ̃max = kρmax sin θmax (even though higher
diffraction degradation is associated with smaller values of the permittivity εz). At parity of focusing
angle, a similar pixel sizing for the upper spectral band of DBR6 would hence lead to lr ∼= 20µmminimum
resonator cell size, which has already been considered in the plots of Section 7.5. In order to use the same
pixel pitch across the whole detector, we suggest using a pixel pitch of lp = 10µm, but four pixels per
one resonator array in DBR5 and DBR6 (to lead a grid 20µm× 20µm for those bands). The measured
charges of all four pixels shall be used during the reconstruction process and further algorithms may
be used for the optimization of the spatial resolution-smearings of those spectral channels. Additional
required allocation memory shall also be accounted for in the buffering unit of the detector. As a result
of more extense diffraction regime, the spatial resolution of the two upper spectral channels is degraded
of a factor ξ <∼= 2 with respect to what depicted in Table 6.2, but that would be the case for any
diffraction-limited system sizing. For those bands, we further assume the SNR is the one predicted by a
finite transmittance of enclosing radius ρmax = 20µm, considered that the measurement is multiple and
noise hence reduced subsequently with opportune post-processing.

Characterization of Detector Performance For the noise budget, we consider the noises of a tested
HgCdTe avalanche photodiode detector (APD) from [71], which has also been successfully integrated into
a Cube-Sat with use of a special detector-cooler assembly discussed in [72]. Specifications of a known
developed design are discussed in [73], [74] (Selex ME788 APD), which we will hereby review. APD
detectors are used both in astronomy observations and LIDAR applications. We suppose hence that the
electronic design for the integration time and fluxes required in remote sensing is possible by opportune
optimization. As we already briefly explained, the principle of operation of the detector is based on
an APD circuit amplifier. The optical signals first encounter an anti-reflection coating opportunely
engineered for the desired wavelengths, and a p-n photodiode formed in the HgCdTe through a via [71].
The via is necessary in order to create an avalanche gain directly at the point of absorption, to avoid
limiting noises in the read-out-interface circuit [72], [73]. It further connects directly the n-junction
to the read-out integrated circuit [75]. The electronic design used in those circuits further introduced
a noise amplification due to the presence of the amplifier, which is strongly dependent on the bias
voltage selected (typically, a simil-diode curve). The voltage has a direct correlation with the gain,
further affected by temperature. Controlling the gain and temperature are hence important parameters
for the operation of the detector, in particular affecting the read-out noise and the cosmetic quality
(percentage of bad pixels) of the detector. To further limit read-out noise, [74] suggest the use of special
sampling techniques, involving non-destructive readouts and Fowler preprocessing, a special multiple
non-destructive read-out technique. According to [76] [Chapter 7.4.2], the use of such preprocessing
techniques allows limiting to negligible levels 1/f noises and kTC noises due to reset of the capacitors
in the electronic circuits. However, we claim it would imply faster electronics to perform the multiple
non-destructive measurements within the integration time. From the analysis reported in [74], for an
optimal design of this detector optimized at λ ∼= 2µm with a cosmetic factor of cf = 1%, one may
either select a bias voltage ∆Vg = 12V at a cryogenic operating temperature of T0 = 30K, or a voltage
∆Vg = 9V for T0 = 80K. Much higher operating temperatures are reported in [75] but with more limited
bandwidth. The higher temperature is obviously less cumbersome from an integration perspective, with
the use of the detector-cooler assembly in [72], but it results in smaller quantum efficiency and worse
noise performance. A lower temperature further affects negatively the velocity of the electronics and
the read-out access time to each one of the pixels readings. The quantum efficiency dependence with
wavelength is not exactly known or reported in those references, but given separately only for the VIS
and SWIR bands as a function of temperature and claimed to be rather uniform in the spectrum in [75].
From those resources, ηe ∼= 0.7 ∀λ ∈ [0.4 − 1µm] and ηe ∼= 0.8 ∀λ ∈ [1µm − 2.5µm]. Such dependence
seems consistent with the one reported in [66] for the lower temperature value, with coverage between
λ ∈ [0.4 − 1µm] to be still verified more accurately. The resulting read-out noise does further present
an optimum with respect to the number of nondestructive read-outs (at a number of frames mf

∼= 100).
Given the above, the estimated corrected read-out noise, for , from [74]:

〈nro〉 < 40e−[rms] (9.1)

which presents a quasi-normal distribution, but may be actually further limited to much smaller values
∼= 1.2e−[rms] by additional optimization of the pre-processing algorithms. Regarding dark currents, it
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seems from [74] that the introduction of a cut-off wavelength in the quantum-efficiency ηe at λ = 2.5µm
shall suffice to limit the dark currents densities to values of:

〈id〉 ∼= 80[e−/(pixel · s)] (9.2)

rather stable in temperature up to T0 = 80K [73]. Such current corresponds to a noise floor, for a dwell
time td of approximately:

〈nd〉 ∼=
√
〈id〉td (9.3)

In [71] and [74], from experimental results, it is further suggested to include an APD excess noise factor,
ξg into account, due to the fact that the APD operation introduces some randomness in itself. The
measurements were both based on laser and on broadband illumination. From the plots there reported
we conclude that an APD factor of ξg ∼= 1.25 shall be used, as a first conservative estimation. We further
point that the necessity of using high gain in APDs is a result of the LIDAR - very fast integration time,
low flux applications. When integrated for our concept in aerosol detection, the necessary gain may likely
be smaller, noise performance be mainly shot-limited and the performance be optimized further. Other
noises from the electronics readout may be supposed not to be limiting the system (in normal operating
conditions) and can be safely neglected at this stage of the analysis.
It is finally interesting to discuss electronic cross-couplings between the pixels, particularly relevant for
the present case study and induced by the presence of capacitors in the electronic circuits. In [74]
measured cross-correlation between the pixel readings has been measured to be 〈ninj〉 < 0.5% with a
frame rate time of tf = 0.5ms (similar to the one we will select). Cross-correlation for smaller frame-rates
time are not reported (and likely to be higher). Those cross-correlation between readings will add on
the ones present due to diffraction coupling of the resonators and continuity of the wavefront discussed
in Section 5.3.1, which are at this point the driving factor for cross-coupling.

9.1.3. Noise Budget
With such knowledge, we may perform a preliminary noise budget of the proposed detector. We sum-
marize, with the help of additional information extracted from the report [67], the following detector
performance parameters: we may use the SNR formula reported in [67], adapted for our notation and
with addition of the dark current noise:

SNRf ∼=
nabsf√

ξgnabsf + 〈nro〉2+〈nd〉2
G2

(9.4)

Where G = G(∆Vg) is the gain associated with the bias voltage and nabsf the number of absorbed charges
in a dwell time td, from Equation (5.72):

nabsf = ηeLλApΩp∆λtd←→τ sin
eγ

(9.5)

where ←→τ is the generalized finite band transmittance defined in Section 7.2.5 and the other parameters
summarized in Table G.2. Since the gain acts on amplifying the signal prior read-out, G is at the
denominator in (9.4) (see also SNR formulas in [71]). For an operating voltage of ∆Vg = 9V as suggested
at T0 = 70K, the gain can reach values of G ∼= 8.
The SNR given in (9.4) is representative of a frame, in the dwell time td. In particular, the charge itself,
nabsf , is the charge accumulated within a dwell time. We have observed in Chapter 6 that the combination
of pixel sizing and required spatial resolutions leads to a high integration time, which would saturate
the pixel. Hence we must set that td ∼= tint/mframes, where we neglect the electronics non-destructive
read-out time1. To avoid saturation and further decrease SNR, we average the input signal in various
frames over the whole integration time. That also makes possible to use the sampling Fowler scheme
above introduced, using mf = 100. It is well known that, in first-approximation, a SNR frame averaging
scales with the square root of the number of frames for a well-developed algorithm and SNRf >> 1, so
that:

SNRp ∼=
√
mfSNRf (9.6)

1read-out time comprehensive of reset of the full-frame in [74] is tro ∼= 500µs, but non-destructive read-out time is hard to
estimate without a multiplexer design
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Note that since the SNR is mainly shot-limited, calculating the SNR directly with the actual integration
time would result in roughly the same result. The implications of frames averaging used in combination
with Fowler pre-processing schemes are still partly elusive to us and shall be investigated in future work
for more accurate estimations.
The above SNR is further applicable only for non-polarized pixels (where the reconstruction of polar-
ization is not desired). For a polarized arrangement, (9.6) is representative of the SNR at each pixel
of the arrangement. The SNRs in the reconstructed Stokes parameters is affected by the condition
number reviewed in Section 7.3.2. For an arbitrary polarization angle likelihood, the statistical average
transmission is the one of an unpolarized field2. Hence:

SNRpol = SNR
(0)
p

κ
(9.7)

Where SNR(0)
p is this time the SNR to noise associated with the measure of an unpolarized field, e.g.

only the term τ = M0,0 (equal for all pixels in the arrangement). Since the maximum Mmax
0,0 = 1/2

for an ideal bandpass filter and κmin =
√

2 at best, the SNR of the reconstructed Stokes parameters
is at least halved with respect to the ones of the unpolarized channels. As we already mentioned, the
confidence level on s1, s2 retrieval may be however negatively biased by the statistical mean of the input
field. The value of κ is strongly influenced by the filtering technique used, as we highlighted in Chapter
7.5, which motivated our detailed analysis in terms of attenuation of the undesired polarization.

9.1.4. SNR curves
The SNR to noise ratios of various pixels realizations in the optimized double-DBRs of Table 7.2 have
been computed from use of equations (9.6) and (9.7), upon calculation of the corresponding finite band
transmittances for each case (reported in Section 7.5). Such results are reported for the various radiances
dataset in Figure 9.3a) for the unpolarized channels and 9.3b) for the reconstructed Stokes of the polarized
channels, whereas Figure 9.3c) shows the number of charges at the pixel in a given time frame, to
demonstrate that saturation is not achieved in the higher cloud dataset. All the values shall not be
intended as spectral quantities, as they are plotted against the achieved spectral peak of the finite
transmittance of the given pixel, but they are the result of a spectrum integration. The reference SNR,
even though varying for obvious reasons along the various spectral channels, sets above SNR >∼= 400 for
the unpolarized channels and above SNR >∼= 190 for the Stokes parameters retrieval. More uncertainty,
due to lack of dataset information, is present in the SWIR channels, which however shows acceptable
performance in regions where the radiance is the one predicted by Planck’s Law. For calculation purposes,
the radiances values reported in Image 9.1 have been smoothened. However, the absorption spectrum
and variations figures are still depicted by the interval bars in Figure 9.3. We can notice also that the
qualitative behavior of the SNR of the Stokes parameters is not the same as the polarized channels, in
the VIS spectrum. This is a result of the fact that the condition number κ, as represented in Figure
7.29 possesses a minimum within the center of each VIS bandgap, due to leakings of the undesired
polarization. An important trade-off that has been performed to make such result possible involves the
choice of the correct number of mirrors of each DBR, which influences the spectral resolution. It is
possible in fact, for future design iterations, to use curves like the one represented in Figure 9.4, where
the FWHM at focal illumination and the SNR are represented parametrically for the various half-cone
angle of focusing θmax and number of mirrors of the DBR structure. Those curves take into account the
main aspects of the analysis performed in Chapter 7: namely, the increase of FWHM with focusing angle
and the diffraction. As it can be seen in Figure 9.4, depending on the SNR threshold requested by a
given case requirement, it is advantageous to use a smaller number of mirrors above a certain requested
FWHM. Also, not all FWHM and SNR requirements are achievable while limiting at the same time
diffraction and cone angle normalization effects, for which we shall strive to work in the region of higher
slopes in such plots. From those plots, it can be noticed that a design possessing a smaller FWHM is
more subject to angle variations and hence also diffraction. It would be interesting in a future study to
provide design criteria for the choice of a certain ρ̃max depending on the required FWHM of the focal
transmittance.
2for a generically arbitrary distribution of the input Stokes parameters, the statistical average would further depend on
the quantity (M0,1 −M0,2)p. One would require to know the expected spectrums of the degree of polarization to provide
a more sound estimation
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Figure 9.3: In a), b) SNR of the DBR designs in Table 7.2 and the noise budget introduced, against achieved spectral peak
of the pixel finite focal transmittance, for various radiances realizations a) for the unpolarized pixels (circular inclusions
in both cavities) b) expected for the polarized pixels on the reconstructed Stokes, with AR = 5, 1/5 in the two cavities.
Interval bars are high frequency features of the radiance spectrums. In c) integrated charges on a pixel in a time frame of
tf ∼= 0.48ms. Interval bars are, this time, expected noises on the charges values.
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Figure 9.4: Performance maps of DBR4 for various mirrors configurations, as parametric plots in the focusing angle.
Reference radiance values are used. Higher signal to noise ratios is associated with configurations with fewer mirrors for
the same FWHM. The plots can be used for trade-offs depending on high-level FWHM-SNR requirements. They include
diffraction (wobbling) and focusing effects.

9.2. Data Rates
In this Section, we calculate the data-rates required from the electronics front-end to deal with the
acquired images. Using an imager arrangement of 2048 × 2048 pixels, we wish to store the image for
every integration time. Even though we have previously mentioned that framing is required not to
saturate the pixel and to use the Fowler pre-processing technique, we assume that electronics on each
pixel are engineered with a Sample&Hold architecture to store the charges’ values (in analogic) for every
time-frame. With such an assumption, neglecting conversion and finite times in the electronics (unknown
at the moment), the frequency rate of the storing process is given by:

fint ∼=
1
tint

= 24Hz (9.8)

whereas the frame-rate at the pixel level is given by:

ffr ∼=
1
tdw

= 2.4kHz (9.9)

By assuming the dept bit of nbits = 12 and using ntaps = 3 channels in the multiplexer registers (for the
polarization states of each wavelength and each angular band), we calculated that the processing rate of
the S&H must fulfill:

fS&H = nbitsntapsffr = 10.8kB/s (9.10)

Instead, the frame-rate of the imager requires the quick storage of npixels at best, at a lower frequency
rate of fint. The associated storage rate is:

fst = fintnbitsnpixels = 0.15GB/s (9.11)

The expected downlink rate can be calculated by further assuming a certain compression rate and having
enough information on the ground station coverage. Even though the latter is unknown yet, the storage
rate does seem to be within the capabilities of front-end electronics used in microsatellites. A more
detailed study on post-processing techniques and storage requirements in the buffering units of the
electronics would certainly be required in future work to further characterize the data gathering for the
imager arrangement proposed in Section 6.7.
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9.3. Preliminary Thermal Analysis
As we previously discussed, the use of a hybrid APD HgCdTe detector requires cooling at T0,max = 80K
to limit dark and leaking currents in the electronics, since we assume possible with a design similar to
the one discussed in [72]. The expected thermal variations in various operating regimes are of ∆T ∼= 20◦
as discussed in Section 3.4.4. A preliminary thermal analysis using a linear model for the expansion
of the multilayered structure is simple to implement with the analytical tools discussed in Chapter 4.
As we will show, such thermal analysis shows a negligible effect of linear thermal expansion in terms of
changes in the spectral transmittance and mechanical interference. Uniform temperature variations, do
affect the length of the mirrors’ layers in terms of their thickness by means of the thermal expansion
coefficient α(T ). They further affect the variations of optical properties by means of the thermo-optic
coefficient ∂n/∂T , depicting the change of refractive index with temperature. The latter is due to the
thermal expansion itself but also to molecular bond changes. Determining those materials properties for
TiO2 and SiO2 at cryogenic temperatures is not trivial, depending on those also on the manufacturing
techniques used to deposit such thin layers. In various references as [77] it is in fact reported that
hydrogen incorporation and thickness deposition strongly affect the material properties values. We
suggest to investigate in future work through experiments the thermal behavior in vacuum environment.
Preliminary materials properties are however reported in [77] and at those websites: link1 and link2 for
a temperature of T0 ∼= 20◦ as per Table 9.1, which we may use in engineering judgment to determine the
order of magnitude of the variations of transmissivity.

Material Refractive Index

Thermal Expansion
α[1/K]

(ambient temperature)

Thermo-Optic Coefficient
dn/dT [1/K]

(ambient temperature)
SiO2 n = 1.45 (5.5± 0.1)× 10−7 −0.5× 10−5

TiO2 n = 2.31 (8± 2)× 10−6 4.5× 10−4

Table 9.1: Material properties retrieved from cited resources, at ambient temperature, for the mirrors and cavity materials

In a very preliminary model, the temperature changes are modeled as follow. The thermal strain
εi(∆T ) (not to be confused with permittivity) as:

εi(∆T ) = αi∆T → li = liαi∆T (9.12)

where the changes of refractive index are given in this linear regime by:

∆ni =
(
∂ni
∂T

)
|n=n0i

∆T (9.13)

The total percentage optical phase change derivative is given by:

∂δi
k0li∂T

=
(
∂ni
∂T

)
|n=n0i

+ αini (9.14)

which is negative for the SiO2 and positive for the TiO2. For such materials properties, when included
in the multilayer model, it has been observed the transmission peak change to be relatively negligible
and the spectral peak to be minimal and in the linear regime. For simplicity, only normal angle illu-
mination has been modeled. This spectral peak shift is due to the change of the optical length of the
mirrors and the cavity (the latter in particular). The wavelength peak shift derivative ∂λpeak

∂T depends
upon the number of mirrors chosen. The results for this sensitivity analysis in DBR4 are reported in
Table 9.2, all in linear regime in the interval ∆T < 20◦. As those results show, the spectral adrift
is rather consistent throughout the various configurations and positive (towards higher wavelength for
higher temperatures, due to the negative sign in the value of ∂δi

k0li∂T
). The change of peak transmittance

is minimal but increasing towards configurations with more mirrors. Due to the slight detuning of the
mirrors, the FWHM (in percentage variation) is slightly smaller than expected. The latter two effects
are in either case below one part per thousands for a one degree change.
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Configuration ∂λpeak/∂T
[nm/K−1]

∂Tpeak/∂T
[K−1]

∂B
B∂T B = FWHM
[K−1]

4-6-4 0.092 −4 · 10−5 −0.96 · 10−3

4-7-4 0.093 −4.4 · 10−5 −1.1 · 10−3

5-8-5 0.095 −1 · 10−4 −1.4 · 10−3

5-9-5 0.094 −2.5 · 10−4 −1.2 · 10−3

Table 9.2: Sensitivity analysis results for various multi-DBRs configuration. The initial lengths of the mirrors are taken as
per DBR4 in Table 7.2. A value of εx = 5 is taken, representative of a pixel in the central region of the bandgap. We have
verified the values to be rather similar also for other design choices.

Figure 9.5: Sketch of expected curvature due to the mounting of the structures. The sign of the curvature may, in reality,
depend on the relative magnitude of the Young and Poisson properties of the two materials and the mounting concept.

Even if the preliminary 1D analysis shows the negligible effect of the mirrors extension, we cannot
conclude that temperature variations do not affect the performance of the multilayered structure. Tem-
perature gradients may in fact unevenly influence the deformations of the filter and induce curvatures
in the mirrors, especially once considering a specific mounting of the bottom slabs of the multilayered
structure on the detector (as gluing or screwing). As a matter of fact, it is expected the structure to
be mainly in a planar-stress regime in the transverse plane (due to limited extension of the thickness
with respect to the transverse dimensions and mounting constraints), effects which will naturally induce
thermal curvatures k(∆T ). Such curvatures, as sketched in Figure 9.5, are likely to be the driving effect
of any temperature-dependent change in performance that will be measured in the real structure. Their
implications are also important in terms of diffraction performance but cannot yet be simulated accu-
rately with the present tools, which would require a coupled thermal-electromagnetic FEM analysis, the
down-selection of a mounting concept and a detail thermal-modeling around the detector. Testing of
accepted thermal loads upon fracture of the embedded inclusions in the cavity shall also be required in
future work; since those strongly depend also on contaminants and manufactured quality of the struc-
tures, we strongly suggest thermal testing for the depiction of those. We finally report that in high-power
laser applications, also modeling of the heat flow generated by electromagnetic radiation shall be taken
into account. For the low power application under consideration, the effect of such heating is surely
negligible.

9.4. Preliminary Tolerancing Analysis
When analyzing tolerancing, various aspects are of concern:

• The tolerancing in the dimensions of the mirrors would slightly be detuned. As a result, the bang-
gap region is mainly affected, as well as the FWHM of the peak. We further show that for a generic
permittivity of the cavity (e.g. generic sampling point in the wavelength of the bandgap region)
also the spectral peak tends to shift. When coupled with the other tolerancing effect and within the
filtering concept downselected in Chapter 7, this mismatch is also expected to cause transmission
peak fall-over, since the two cavities would be mismatched.
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• The tolerancing in the cavity dimensions further leads to a change in spectral peak position mainly,
and once again a transmission peak fall-over when combined with the opportune filtering concept.

• Tolerancing on the particle sizes is expected to change its filling factor, also affecting peak position.
In the case of the filtering concept downselected in Chapter 7, additionally to spectral shift, an
effect on the transmission peak is also expected if the permittivities εx of the two cavities are not
well matched. Rather than providing figures for the tolerancing of the particle itself, we prefer
providing an analysis with respect to the random variable ∆εx between the two cavities, due to the
fact the stationary model introduced in Chapter 4 is a coarse approximation of the real structures.
The tolerancing on the value ∆εy mainly impacts the attenuation ratio, but not drastically. We
point out that in the real structure the value of ∆εx is expected to depend on bothDx, Dy (diameter
of the elliptical inclusions), its height and shape properties. To use such a filtering concept, it is
hence important to be able to predict beforehand the precise correlation between spectral peak
location and sizes of the inclusion.

• Variance between the array structures: if the inclusions are not placed periodically as expected,
even an infinitely wide resonator would not be a plane-wave eigenfunction and slightly diffract.
In the real structure, such variance may lead to multiple propagating modes of slightly different
spectral properties. For such effect, we may expect a broadening of FWHM and higher aberrations.
Unfortunately, it is not yet possible to model this latter effect within our formulation. Also FEM
simulations would fail in such description, assuming that the errors are systematic between each
cell when defining boundary conditions.

• As we observed in Chapter 8, from the manufactured structures wobbling of the mirrors has
been observed due to the presence of the scatterers, also after the planarization of the structures.
Such wobbling can be observed to be rather consistent in frequency and of an amplitude Aw. A
study in [4] upon FEM simulations has demonstrated negligible effect on the transmission of such
defects both on FWHM and transmission peak up to Aw ∼= 20nm, with sharp decreases above
this value. The provided value is within the achieved manufactured figure in [4]. The imperfection
is however expected to lead to additional diffraction, a study that has not been performed and
requires expensive FEM simulations to be tested thoroughly.

With the understanding that many more factors may be considered, we performed some simplified
Monte-Carlo simulations to take into account a non-systematic error in the manufactured mirrors (only
thickness, not transversal) and in ∆εx. In the first case, a random, equally distributed number ζ is
included in our model for the model of DBR4 mirrors, in the form:

li = li0

(
1± 〈ζ〉2

)
(9.15)

for each slab separately. Once again, various mirrors configurations are analyzed in DBR4. We have
retrieved values for the spectral shift, the FWHM and the normal transmission peak at the desired
polarization for npoints = 5k realizations, as represented in Figure 9.6 (for a configuration of the multi
DBR of layers 5-8-5) and 9.7 (for a 4-7-4 configuration). The first important observation to consider is
that, for the same percentage variation of 〈ζ〉, the effects on performance parameters are more pronounced
in the configuration with more mirrors. For the latter, the transmission peak (sampled at 6000 data points
in the wavelength) can decrease of a factor 60% for a random variation of 1%. The expected spectral shift
settles at around ∆λ ∼= 3nm and the FWHM may increase of a factor of 20%. In the configuration with
fewer mirrors, the effects on transmission peak are much less pronounced, variations of FWHM roughly
halved, whereas variations of the spectral shift are similar. The occurrence of systematic errors has not
been analyzed and will be less severe than the one hereby reported. We also clarify that monolithic
manufacturing of Bragg reflectors allows controlling the optical reflectivity of the mirrors in-situ while
manufacturing. Even though challenging, the provided tolerancing limits may be hence achievable.
A similar analysis has been performed also in the variable ∆εx and is reported in Figure 9.8 for both
DBRs configuration in a percentage variation scale with respect to the design value. The variation is this
time reported analytically (since in a single variable). For both mirrors, we observe a quasi-quadratic
variation of the peak transmittance and the FWHM, whereas the spectral shift is in the linear region
(especially for the configuration 4-7-4). The performance of the configuration with more mirrors is
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this time significantly affected by the variation of this design variable, possibly its spectrum presenting
two peaks above ∆εx ∼= 1.55%. We suggest imposing tolerancing of ∆εx ∼= 1%, which in terms of real
geometrical sizes of the inclusions translate in tolerancing of few nanometers (according to the stationary
model, ±4nm in the diameters for a fixed height), to better be estimated from FEM simulations. With
the proposed filtering technique and tight FWHM requirements, it is hence important to achieve good
matching between the design of the inclusions, which requires proper tools to correctly model before-hand
their spectral peak location and an extensive testing campaign.

Figure 9.6: Sensitivity study for the mirrors configuration 5-8-5 in DBR4, depicting the variation of the various quantities
of interest of the spectrum at normal incidence for various random realizations of 〈ζ〉. The design value of inclusion
permittivity is taken as εx = 5.
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Figure 9.7: Sensitivity study for the mirrors configuration 4-7-4 in DBR4, depicting the variation of the quantities of interest
of the spectrum at normal incidence for various random realizations of 〈ζ〉. The design value of inclusion permittivity is
taken as εx = 5.
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Figure 9.8: Variations of transmission spectrums and performance parameters at a normal angle, for percentage variations
of the on-axis permittivity ∆εx with respect to the design values of DBR4. In red the two extreme transmission spectrums
are represented (for variations of ±2.5%).
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9.5. Overview of feasibility study benefits
Within this feasibility study, we have conducted an analysis of the spectral filter by designing various
multi-DBR configurations able to cover the VIS-SWIR range with the required spectral resolution and
diffraction quality. For a review of the specifications and performance of this design, please review Section
7.5. The power budget, discussed in Section 9.1 is also provisionally met when taking into consideration
the mission parameters depicted in Chapter 6. The preliminary tolerancing analysis shows criticality
in the values of ∆εx for configurations with narrow FWHM and with a double-cavity filtering concept.
The tolerancing values shall, however, be within manufacturing capabilities. In the concept in which
VIS-SWIR are integrated together, the development of HgCdTe avalanche detectors of low TRL shall
further be advanced. From current developments, they would require cooling at T ∼= 80K. To cover
the required wide range in the VIS and SWIR, at least six different DBRs would be required, to be
integrated as explicated in Chapter 7 at detector level.
In comparison with the 3MI concept, the optical system specifications are similar: the system still re-
quires to be telecentric and optics depolarization be well controlled. We point out that the latter can
also be actively corrected in the reconstruction process by considering it in the definition of the finite
aberrated transmittance. However, a filter wheel would not be anymore required, time resolution be
improved and more spectral channels could be integrated at pixel level by sampling in more points the
regions of interest, which would lead to an improved spectral resolution upon reconstruction. In the con-
cept in which VIS-SWIR are separated, co-registration is also not required anymore. For example, active
calibration may be performed with the use of the un-polarized pixels integrated into the along-track
direction and of higher SNR performance, when the optical depolarization is well known. The overall
mass and dimensions of the system of our concept are yet unknown for obvious reasons and dictated by
the other subsystems. If an integrated VIS-SWIR solution is sought, at the price of some trade-off in
chromatic performance and required cooling, the masses and dimensions of the optical units may almost
be halved and the design fit in a small satellite to operate in LEO orbits. In an integrated VIS-SWIR
solution is too challenging (for example, from the thermal point of view), the integration would still
advantage from the removal of the filter wheel (typical mass of the assembly varying between 8 − 20kg
Moog), which requires extensive thermo-mechanical design for use in space [78] and is a moving part,
prone to aligning and failure.
In comparison with SPEX, which achieves coverage between [0.385, 0.77]µm in a 6-unit Cubesat with
a spectral modulation of the polarization, the introduction of the metasurface filter design would allow
eliminating the presence of the polarization pre-optics unit (quarter-wave retarded, multiple order re-
tarder and beam-splitter), which we observe to occupy approximately 2U in the DMU Figure 3.2. The
use of such components limits the spectral resolution to the achievable modulation period and is subject
to deviations in presence of temperature variations [22]. Moreover, the majority of the spectrometer
components may also be removed (account for roughly other 2U), provided that the spectral filtering is
achieved at metasurface level. The designs are however not strictly comparable in terms of optical system
architecture, operating in a very different modulation technique. For example, we expect depolarization
of the optics not to be a driving factor in SPEXone, since the intensity of the Stokes parameters is
modulated in the early stages of the optical path. As a result, anti-reflection coatings and aberrations
requirements may be likely relaxed in the optical system in SPEXone. The adaptation of such design
or a focal plane polarization modulation would likely result in a more compact design of higher spectral
resolution, with some more challenging performance trade-offs in the optical system and possible addition
of a few lenses. Coverage of the required band may be achieved by the use of two DBRs and would hence
be less cumbersome also from a thermal point of view with respect to the wide range [0.4, 2.5]µm, which
we observe also in the very different thermal designs of SPEXone and 3MI.
The benefits of the spectral filter are hence clear in both comparisons. However, much more integration
analysis would be required, with the demonstration of a mock-up concept to prove such arguments.

9.6. List of Integration Requirements
One of the driving research objectives of this study is the depiction of integration and definition require-
ments for the spectral filter, to be extracted from the analysis hereby reported. We have collected a
variety of those requirements in Table 9.3, referencing to the analysis results in support.
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10
Conclusion

In the present research study, we have thoroughly analyzed the design, performance and modeling tech-
niques of a spectropolarimetric filter based on metasurfaces, for Space applications.
As discussed in Chapter 3, its integration can lead to significant miniaturization and integration benefits
with respect to other conventional optical solutions. Throughout the report, a feasibility study in the
context of aerosol determination has been conducted.
The twofold aspects of this research are related to the modeling and to the integration analysis.

Modeling In the analytical methods presented in Part II we have introduced a numerically efficient
method to aid the preliminary design of the structure. With respect to expensive FEM simulations,
an analytical method aids the efficient evaluation of several designs in a significantly shorter amount of
time. We have verified our analytically model in terms of plane-wave response as discussed in Section
7.6. The method consists of an effective material model, coupled with a multilayer formulation and
a novel diffraction formulation, to derive a finite spectral transmittance of the filter and an optimal
reconstruction matrix. The latter two are the main important performance parameters, including the
effects of aberrations of the filter, diffraction and enclosed spectral energy. We have applied such a
framework and diffractive solution to aid the selection of various filter configurations through means
of resonances curves of the multilayer structure, designing a set of filters able to cover the required
spectral channels, in Chapter 7. Their electromagnetic performance has been thoroughly analyzed in
terms of plane-wave and focal diffraction response for a set of 96 distinct pixels, showing that the spectral
filter can provisionally meet the imposed requirements. Important design criteria are retrieved from this
performance analysis, directly influencing the integration requirements. The important findings of our
EM analysis, relating spot sizes and spectral behavior to focusing NA, are summarized in Section 7.7.
With respect to previously existing designs in [1], we have provided a set of possibilities to increase
the achievable bandwidth by filtering the undesired polarization, in Section 7.4 and re-optimized the
structures and the reconstruction process accordingly. The improved characterization of the structures
allows us to further increase, with more confidence, the focusing angles with respect to what proposed
in [1], on the other hand imposing a different diffraction sizing of the pixel sizes, as discussed in Section
7.
We applied the modeling techniques to also analyze the performance of manufactured structures in
Chapter 8. In that respect, the measured spectral shift of the polarization and loss attenuations of the s
polarization do well correlated with theoretically expected dependence for a bare cavity. For structures
with inclusions, we retrieve the effective parameters from the test results and provide a possible analytical
fit that shows a correlation between the measurements. We further elaborate on how the transmittance
response of the structure can be fully retrieved and verified from experimental results in Section 8.6.

Integration A preliminary mission analysis has been performed for a LEO satellite and the main
parameters of the optical system been derived in accordance, in order to perform an accurate power
budget. We further provided guidance on possible detectors to achieve the required coverage in Section
9.1.2 and analyzed their performance. When integrated with the spectral filters, at means of some
performed trade-offs in the FWHM, the power budget is met for both polarized and unpolarized channels.
A preliminary 1D thermal analysis shows a negligible effect of the thickness extension of the mirrors.
Required tolerancing estimations, as we show in Section 9.4, are driving the performance for a given
DBR design and shall be well controlled instead, for which we suggest an experimental characterization
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of the structures. We reported a comparison of performance achieved by a system using those spectral
filters with respect to 3MI and SPEXone concepts, conjecturing on possible volume and masses benefits
in Section 9.5. The possible benefits of the introduction of the metasurface filter concept are striking in
both cases, but require a more detailed design of a mock-up demonstrator to be assessed quantitatively.
The research objective of the integration is providing integration requirements for an optical designer
and the manufacturing, which are reported in Section 9.6.

10.1. Further Recommended Work
Performing a detailed feasibility study of such novel structures is a complex task, involving on one side
design and optimization of an optical system and knowledge of system parameters, on the other very
detailed formulations for the performance characterization of the structures. Due to a limited amount
of time, various aspects of interest are still to be investigated. We summarize those as follows:

• The included transmittance takes into account aberrations induced by the filter, but does prelim-
inarily assume an ideal optics. To perform a more detailed characterization, the performance of
the filter shall be analyzed in conjunction with the one of the optical system, which requires the
down-selection and optimization of a telecentric and wide-FOV optical system. Once the latter
is available, the modeling still holds, by taking into account the opportune transmission response
J(o) of the optical system and the opportune apodization factors. The design of the optical system
shall take into account depolarization induced by the optics and, if VIS and SWIR ranges are to
be covered simultaneously as proposed, important tradeoffs in terms of chromatic performance.

• The diffractive performance of the structure has been partially characterized, but only the effects
of wide resonator aberrations, as depicted in Section 5.3.1, have been analyzed in detail. An
important uncertainty relates to the dependence of the PSF with the focal points coordinates. To
overcome such uncertainty, we suggest preliminarily oversizing of the resonator cell as depicted in
Chapter 7. We discussed possible implementation and advanced models to resolve such dependence
in Section 5.3.1 but could not implement or verify those in the present framework. As a result, also
the imaging in Section 5.3.9 lacks the required characterization to provide more sensitive figures
for the imaging quality of the filters in the spectrum. Figures of the cross-talks between pixels can
also only be accurately inferred from such analysis. Important modeling is hence still required to
properly characterize the response of the finite structure.

• Modeling of the detector and multilayer interaction shall be further investigated.

• Thermal effects due to the curvature of the structure shall be included in the thermal modeling

• The effective medium model introduced in Section 5.3.2 shall be adapted to better retrieve the
effective parameters from the geometrical dimensions of the structure, by means of more elaborated
theories and experimental characterization. Such knowledge would allow to further investigate the
other filtering concepts proposed in Section 7.4, as for example the resonance dispersion mechanism,
which is an elegant filtering solution to control the EM properties of the filter in the spectrum,
angle and polarization.

• An extensive experimental campaign shall be conducted to verify the PSF results, as well as cross-
couplings, thermal effects, vacuum and radiation behavior of the structures. Material properties
at cryogenic temperatures shall further be evaluated experimentally.

• For other applications, another imager arrangement shall also be considered and the response of
the structure to spectral coherent illumination be analyzed more in detail.

• A statistical analysis of the best reconstruction methods and algorithms to resolve the optimiza-
tion problem introduced in 5.3.9 shall be conducted, once the diffractive performance is better
characterized.
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A
Properties of Scattering and

Transfer Matrices
We hereby review some general properties of transfer matrices and derive a close form relationship for
an arbitrary dimension linking the scattering and the transfer matrix.
Suppose a transfer matrix Ti→k links to system state vectors Mi and Mk via the relationship1:

Mk = Ti→kMi (A.1)

We wish to determine the expression of the transformation when referred to the new state vectors, Min,
Mout complying with:

Mk = Pin,kMin + Pout,kMout

Mi = Pin,iMin + Pout,iMout

(A.2)

for certain known permutation matrices Pi,j . Rewriting in block matrices notation:(
Mk

Mi

)
=
[
Pin,k Pout,k
Pin,i Pout,i

](
Min

Mout

) [
I| − Ti→k

](Mk

Mi

)
= 0 (A.3)

Is hence immediate to show by substitution and inversion that the scattering matrix fulfilling the rela-
tionship:

Mout = Sk→iMin (A.4)

is given by:
Sk→i = (Ti→kPout,i − Pout,k)−1 (Pin,k − Ti→kPin,i) (A.5)

which is applicable for all dimensionalities of the matrices involved (as far as the transfer matrix is such
that the first inversion is possible). Notice that if one starts from Tk→i instead, an inversion is first
required.
An expression can also be determined to compute the transfer matrix from the scattering matrix from
the previous. For example, considered the four-dimensional Transfer Matrix which appeared in Chapter
4. We chose the state vectors to be:

Mk =


E+
p,k

E−p,k
E+
s,k

E−s,k

 Mi =


E+
p,i

E−p,i
E+
s,i

E−s,i

 Min =


E+
p,k

E+
s,k

E−p,i
E−s,i

 Mout =


E+
p,i

E+
s,i

E−p,k
E−s,k

 (A.6)

The permutations matrices are therefore, by construction:

Pin,k = Pout,i =


1 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

 Pout,k = Pin,i =


0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 1

 (A.7)

1i→ k is used instead of k → i, since final transmission coefficients will be of simpler form which such choice
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We hence determine the following pairs:

Ti→k =


tpp rpp− tsp rsp−
rpp tpp− rsp tsp−
tps rps− tss rss−
rps tps− rss tss−

 Sk→i =


τpp τsp ρpp− ρsp−
τps τss ρps− ρss−
ρpp ρsp τpp− τsp−
ρps ρss τps− τss−

 (A.8)

with:

τpp = tss

tpptss − tpstsp

τsp = − tsp

tpptss − tpstsp

τps = − tps

tpptss − tpstsp

τss = tpp

tpptss − tpstsp

ρpp = rpptss − rsptps

tpptss − tpstsp

ρsp = −r
pptsp + rsptpp

tpptss − tpstsp

ρps = rpstss − rsstps

tpptss − tpstsp

ρss = −r
pstsp + rsstpp

tpptss − tpstsp

(A.9)

The relationships would turn out being more complex if explicited with respect to the inverse matrix
Tk→i (care must be then used for the order in case of non-symmetrical systems). We can verify the
consistency of those expressions with the ones reported in Literature in [33]. The approach used has the
advantage that, on top of being concise, by changing permutation matrices we can readily use results
from other references, which are often not consistent between themselves in terms of signs, nature, or
ordering of state-vectors. It could moreover be used for an arbitrary sampling dimension of the state-
vector, which would be required for an implementation of the diffraction problem in Section 5.3.1. We
further define the Jones matrices of the system as:

J+
k→i =

[
τpp τsp

τps τss

]
J−k→i =

[
ρpp ρsp

ρps ρss

]
(A.10)

We recognize, hence, J+
k→i as a transmission matrix and J−k→i as a reflection matrix, in the local p − s

reference. Conservation of energy obviously imposes some constraints on those coefficients and hence on
the transfer matrix. As it is usually stated, when p and s polarization are not coupled as in our case,
the conservation of energy reads (in presence of not-absorbing materials):

Ti +Ri = 1 (A.11)

Where Ti = τiτ
∗
i and Ri = ρiρ

∗
i are respectively the intensity transmissions and reflections of p and s

polarization measured along the polarization directions2. In the general case, when a scattering matrix
is present, it is simple to determine a similar relationship. The fields of the multilayered structure are in
fact given in our construction by:

Mout =


E+
p,i

E+
s,i

E−p,k
E−s,k

 =


τpp τsp

τps τss

ρpp ρsp

ρps ρss

(E+
p,k

E+
s,k

)
= SlmMin (A.12)

Where E+
p/s,k are excitation fields, E+

p/s,i transmitted fields and E−p/s,k are reflected fields, and the matrix
Slm is the left minor of the scattering matrix. Conservation of energy imposes that:

Mout ·M∗
out = M∗

in · S
†
lmSlmMin = Min ·M∗

in (A.13)

which requires that S†lmSlm = I since it must applies for all entries. Similar formulation would account by
using the cartesian frames. We have verified for validation this result to numerical precision for various
DBRs multilayers, at εerror = 10−13.

2expression involving cosine projections are also known in literature but they are instead referred to transverse fields
transmissions, which are different for p polarization
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B
Evolution of fields in anisotropic

dielectric material
In this Section, we derive and validate the formula (4.9) and (4.10) from basic principles. The formula
describes the evolution of the tranverse fields in an anisotropic dielectric medium and is reported in [33],
[79]. However those papers make use of different reference systems and Gaussian Units and are lengthy to
implement, whereas a more concise matricial treatment can be derived in consistency with the notation
and references used throughout the report.
To derive formula (4.9) and (4.10) we use the Time Fourier Decomposition of the Maxwell Equations
reported in Equation (4.2) and we recast the last two Maxwell equations vectorially using projection
techniques. Defining the linear cross-product operator in matricial form:

X{v} =

 0 −vz vy
vz 0 −vx
−vy vx 0

 X{v}u = v× u (B.1)

and the cartesian versors ε̂x, ε̂y, ε̂z, we can express the rotor operator as a matricial operation. We
introduce the Fourier representation of the field explicited in (4.8) and we determine the rotor operator
in matricial form:

X{∇} = d

dz
X{ε̂z} + iX{kx ε̂x+ky ε̂y} = d

dz
X{ε̂z} + iX{k} (B.2)

Hence the equations (4.9) are of the form (using block matricial notation) :[
X{ε̂z} 0

0 X{ε̂z}

]
d

dz

(
Eω,k

Hω,k

)
=
[
−iX{k} iω←→µ I
−iω←→ε −iX{k}

](
Eω,k

Hω,k

)
→ Mεz

dF (R3)
ω,k

dz

 = Mk,ωF (R3)
ω,k

(B.3)
where we have introduced the material properties in terms of an arbitrary permittivity tensor ←→ε and a
permeability tensor ←→µ . Materials with girotropic properties or more complex constitutive relationships
are disconsidered for the present analysis (but could be included in the same fashion).
When using other expression from literature one shall remember that the final results will be consistent
with the convention used in the signs of iω, ik used in the Fourier expansion, which is often not even
reported. The system cannot be inverted since the matrix on the left is singular. However, the z
component of the field can be computed indepedently to derive a non-singular formulation of this linear
problem. For that purpose, we split the linear system in two matricial equations and project those
equations on the transverse plane and the z axis separately. Defining the projection matrices:

Pxy =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0

 Pz =
[
0 0 1 0 0 0
0 0 0 0 0 1

]
(B.4)

Equation (B.3) is hence split in the two projection as:
d

dz
PxyMεzF

(R3)
ω,k = PxyMk,ωF (R3)

ω,k

PzMk,ωF (R3)
ω,k = 0

(B.5)
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where we have made used of the singularity of X{ε̂z} since PzMεz = 0. Considering now that the state
vectors can be decomposed with the same projection matrices as:

F (R3)
ω,k = PTxy


Ex
Ey
Hx

Hy

+ PTz
(
Ez
Hz

)
= PTxyF

[xy]
ω,k + PTz F [z]

ω,k (B.6)

We solve the z field from the second of equation of the system (B.5) as :

F [z]
ω,k = Mz→xyF [xy]

ω,k Mz→xy = −
(
PzMk,ωPTz

)−1 (PzMk,ωPTxy
)

(B.7)

Since also the total field can then be represented by only means of the tranverse fields F [xy]
ω,k by:

F (R3)
ω,k =

(
PTxy + PTzMz→xy

)
F [xy]
ω,k = MR3→xyF

[xy]
ω,k (B.8)

we finally determine a non singular differential equation by reconsidering the first equation in set (B.5):
d

dz
F [xy]
ω,k = PiF [xy]

ω,k Pi =
(
PxyMεzMR3→xy

)−1 PxyMk,ωMR3→xy (B.9)

The provided formulas is suitable for all forms of permittivity and permeability tensors in a given reference
and kx, ky 6= 0. It moreover explicits the z field components also. We will use in the report the formula
(B.9) with a diagonal permittivity tensor and permeability tensors of the form:

←→ε = ε0

εr,x 0 0
0 εr,y 0
0 0 εr,z

 ←→µ = µ0

µr,x 0 0
0 µr,y 0
0 0 µr,z

 (B.10)

for which we explicitly determined:

Pi =


0 0 iη0kxky

εr,zzk0

iη0(εr,zzk2
0µr,yy−k

2
x)

εr,zzk0

0 0 iη0(−εr,zzk2
0µr,xx+k2

y)
εr,zzk0

− iη0kxky
εr,zzk0

− ikxky
η0k0µr,zz

i(−εr,yyk2
0µr,zz+k2

x)
η0k0µr,zz

0 0
i(εr,xxk2

0µr,zz−k
2
y)

η0k0µr,zz

ikxky
η0k0µr,zz

0 0

 (B.11)

and

Mz→xy =
[
− εr,xzεr,zz

− εr,yzεr,zz

η0ky
εr,zzk0

− η0kx
εr,zzk0

− ky
η0k0µr,zz

kx
η0k0µr,zz

−µr,xzµr,zz
−µr,yzµr,zz

]
(B.12)

where the vacuum impedance definition and the wave-number have been considered:

η0 =
√
µ0

ε0
k0 = ω

√
ε0µ0 (B.13)

The formulas are equivalent to the one reported in (4.9), once η0 is recasted in the state vector and k0
simplified by introducing the wave-vector cosine directors sx, sy. We have verified with the expressions
reported in [79], [80], [33] that the formulations are equivalent. We first have to transform the matrix Pi
in the incidence plane reference used in [33] and use the parameterization kx = ξ cosφ, ky = ξ sinφ for
the purpose. The change of reference system in the incidence plane reads:

P(φ)
i = R(φ)PiRT(φ) R(φ) =


cosφ − sinφ 0 0
sinφ cosφ 0 0

0 0 cosφ − sinφ
0 0 sinφ cosφ

 (B.14)

considering that [33], [79] used a Gaussian Units system (as clear by simple dimensional analysis) one
can tidely apply the procedure there described by using the local rotated permittivity and permeability
tensors on the incidence plane frame:

←→ε (φ) =
(
Rm(φ)

)T ←→ε Rm(φ)
←→µ (φ) =

(
Rm(φ)

)T ←→µ Rm(φ) Rm(φ) =
[
cosφ − sinφ
sinφ cosφ

]
(B.15)

and determine the same result for P(φ)
i .
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C
Spectral Power and Radiometric
Link with Electromagnetic Fields

In this Appendix, we demonstrate the Equations (5.2), (5.3). The treatment is mainly based on the
paper [44] and the review [38], which presents a sound dimensional treatment of the Poynting Vector
associated with a Fraunhofer far-field propagation of the cross-correlation tensor. We refer the reader to
image 6.1 for the symbols used.
In the correlation tensor treatment, two vectors are used both for the object domain and the pupil domain.
We start by considering the cross-correlation (electric) tensor of our source, W(rob1,rob2,ω). Dependance
of time due to its quasi-stationarity is omitted for ease of notation. Moreover, we assume a dependance
of the type:

W(r1ob,r2ob,ω) = σ̃(∆rob)W(rob,rob,ω) [V 2s/m2] (C.1)

where σ̃(∆rob) is a (weak) correlation functions and ∆rob = (r2ob − r1ob) and rob = (r2ob + r1ob)/2 as
represented in Figure 4.2. As described in [23] (see Coherence Chapter, Quasi-Homogeneous Source)
that’s a good model for source which are poorly spectrally correlated as Earth. For example, for a
thermal Lambertian source a small degree of coherence with a coherence extent of λ is always present
[23] as:

σ̃(∆rob) = 2π
(

sin(k|∆rob|)
k|∆rob|

)
(C.2)

For the limit of small wavelengths this can be approximated by a two-dimensional Delta Dirac as:

σ̃(∆rob) = 4π2δ2
(k∆rob) (C.3)

where the scaling factor 4π2 has been formally determined by operating the limiting procedure k → ∞
in the above Lambertian distribution.
Applying the propagation formula (4.36) for the geometry and notation of Figure 6.1 we determine:

W∞(z21,z22,ω) = 1
λ2

0

∫
Asc1

∫
Asc2

W(rob1,rob2,ω)

(
eik∆z2

z21z22

)
cos(θob1 + θin1) cos(θob2 + θin2)d2rob1d2rob2 (C.4)

Where integration is carried over the scanning area two times. We consider the local plane tangent to the
scanning area, whose normal direction with the vector z2 forms an angle of θob,j + θin,j (angle between
rob and z2 in Figure 6.1). That’s equivalent to the projection angles used in radiometry. The integration
can be simplified considering the source is spatially uncorrelated, which resolves the first integration
with the change of variables (r1ob, r2ob) → (rob,∆rob) → (rob, (ρob cos(φob), ρob sin(φob)). In fact, for an
arbitrary function f : ∫

Asc
4π2f(∆rob)δ

2
(k∆rob)d

2∆rob =
4π2f(0)

k2 = λ2
0f(0) (C.5)

A highly oscillatory factor in k|∆rob| would be present by pertaining the real Lambertian distribution.
With the above result we determine:

W∞(z21,z22,ω) =
∫
Asc

W(rob,rob,ω)

(
eik∆z2

z2
2

)
cos2(θob + θin)d2rob (C.6)
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where we neglected ∆θin,j since ∆θin,j << θin,j . The expression of ∆z2 is known and given by Equation
6.1. Due to multiplication for k >> 0, we cannot simplify ∆z2 in k∆z2, but we simplified such small
term in the denominator. A Taylor series of this difference reads:

∆z2 = −rob · (s⊥,2 − s⊥,1) (C.7)

with:
s⊥,i = ρei

z2

(
cosφei
sinφei

)
re,i = ρei

(
cosφei
sinφei

)
(C.8)

The format resembles the cosine directions appearing in [44], due to the fact that we are in the far-
field. We further note that according to the more useful notation introduced in Chapter 6 the following
relationships apply:

d2rob
z2

2
= 1
z2

2
dqudqv = h2

s

z2
2
d2q̃ = dΩgr→e

cos θn
r =

(
qu
qv

)
(C.9)

Defining
θn = θob + θin cos θg = hs

z2
(C.10)

we further notice that:
∆z2 = − cos θgq̃ · (re2 − re1) (C.11)

We hence rewrite (C.6) as:

W∞(re1,re2,ω) =
∫
Asc

W(rob,rob,ω)e
−ik cos θgq̃·(re2−re1) cos2 θn cos2 θgd

2q̃ (C.12)

The formula has a particular meaning when considering the radiative intensity in terms of the mean
averaged Poynting Vector 〈S∞(ŝi,t)〉, also defined in [44] as, (adjusting for notation):

〈S∞(ŝi,t)〉 = ŝi
∫ ∞

0

∫ ∫
Asc

1
2η0

cos2 θn cos2 θg Tr{W[ξ,η]
(rob,rob,ω)}dωd

2q̃ (C.13)

where we have further considered the frame transformation ξη locally perpendicular to ŝi with the
introduced transformation of Chapter 5.1 and the vacuum impedance η0. From the Poynting Vector
expression, with the understanding that it shall be measured in W/m2 and it represents the carrier
of intensity, we can define, by similarity with the expressions in radiometry, the corresponding scalar
radiance per unit frequency as:

L∞ω(ŝi,rob) = cos θn
2η0

Tr{W(rob,rob,ω)}[ξ,η] (C.14)

where we have used the fact that by definition:

cos2 θg cos θnd2q̃ = dΩgr→e (C.15)

The interpretation is now clear: (C.6) describes superposition of monochromatic fields from point-sources,
with an arbitrary polarization and a field intensity ∝ to the local radiance, which in turns depends on the
field generated at the source. The treatment is in very good agreement with the radiometric cosines law,
since the geometrical factor h2

s/z
2
2
∼= cos2 θin as we observe by inspection of Figure 6.4. The cosine angle

decrease with the entrance pupil surface projection is, from an electromagnetic treatment perspective,
related to the local Fresnel reflection laws at the lenses surface.
Within the derivation, we have assumed ideal free-space propagation of the field, which in reality under-
goes scattering and finite transmission in the atmospheric layer. Nevertheless, as also explained in [38],
is always possible to define an effective field such to comply with the observed radiance. Moreover, any
real optical system realization will not be able to image scattered fields from unknown conjugates, so the
rays carrying optical power to the detector are the one following exactly the prescribed geometry. Hence
we can considered the radiance in (C.14) as the effective radiance at the entrance pupil, comprehensive
of transmission and polarization effects along the ray propagation once W(rob,rob,ω) has been opportunely
corrected to include those. It is also well known that a Lambertian source, by definition, possesses an
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isotropic radiance in the different directions, but the implication of such remark on the angular distri-
bution of Tr{W(rob,rob,ω)}[ξ,η] are still elusive to us.
We further point out that radiance is usually defined per unit wavelength rather than per unit frequency.
The relation between the two is, due to simple differential analysis:

L∞λ(ŝi,r) =
(
ω

λ0

)
L∞ω(ŝi,r) =

(
2πc0
λ2

0

)
L∞ω(ŝi,r) (C.16)

Combining all together we finally get:

W∞(re1,re2,ω) =
∫
Asc

(
λ2

0η0

πc0

)
cos2 θg cos θnL∞λ(ŝi,r)〈ee†〉e−ik cos θgq̃·(re2−re1)d2q̃ (C.17)

where the normalized fields are defined by:

〈ee†〉 =
W(rob,rob,ω)

Tr{W(rob,rob,ω)}
(C.18)

We have appearance of the quantity
(
λ2

0η0
πc0

)
with other variables appearing in radiation formulations in

antenna theories (directivity, gain, etc...). The impedance has also known relationships with the Planck
constant and hence electromagnetic photon energy.
We remember the reader the qu, qv are not coordinates of points on ground but rather of the moving
scanning area with respect to ground, so that the imaging mapping is in reality implicitly dependant on
time (but still quasistationary with respect to the frequency of light).
The cross-correlation tensor 〈ee†〉 in the transverse plane [ξ, η] is directly related to the Stokes vector,
by relationships depicted in 4.4.
In conclusion, we have determined a radiometric link between classic radiometric quantities and electro-
magnetic ones in the far-field of our observation geometry and clarified on the measured observable and
its relationships with the Stokes parameters we wish to measure.
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D
Splines Integration Routine

Throughout the report, we have often incurred in functions transforms to be evaluated on extensive grids.
In particular implementation of the Zernike Transform appearing in 5.62 is numerically troublesome to
implement with standard quadrature and evaluation techniques.
In this Appendix we report the numerical tool implementation for a stable and numerically efficient
transform based on splines integration, applicable also for arbitrary scaling of the function. The general
shape of the integral of interest is of the form:

T[f,g] =
∫ xmax

0
f(αx,v)g(x,w)dx (D.1)

where α can be an arbitrary scaling factor α ∈ [0, 1] (also a grid), f is the function which we have to
transform in g. For example, in a Zernike Transform g is the radial Zernike polynomial multiplied for x
and xmax is 1. The function further depend on mute variable grids v and w. It is assumed that g(x,w)
is known analytically and also the indefinite integral:

G(x,n,w) =
∫
xng(x,w)dx (D.2)

can be analytically resolved. That is the case for all the transforms appearing in the report.
Resolving the integral (D.1) iteratively by means of a simple quadrature requires extensive memory
allocation (also in the case of an FFT) and soon becomes time-demanding when thousands of data
points are present in the grids. Since the variables v are mute, the integration can be fully retrieved
from the knowledge of the splines coefficient of the function f(x,v) only, when α ∈ [0, 1]. Integration is
then carried fully analytically in the polynomials of the splines by means of a symbolic toolbox and the
splines coefficients are only reinserted in the last step fo the operation. We can in fact write:

f(αx,v) ∼=
ns∑
i=1

fTc,i(v)


(αx− xi)n

(αx− xi)(n−1)

....
(αx− xi)

1

 =
∑
i

fTc,i(v)pi(x,xi,α) (D.3)

where pi(x,xi,α) is only defined in the interval through [xi/α, x[i+1]/α] and zero elsewhere and the sum-
mation is carried over ns splines of order n. The splines must be defined with the appropriate boundary
conditions (e.g. derivatives at the extreme bounds, known since f(αx,v) is given). The transform is hence
given by:

T[f,g] =
(

ns∑
i=1

fTc,i(v)Gi(α,xi,w)

)
(1 + ε) (D.4)

where ε is a truncation error and we have introduced the analytically known integral:

Gi(α,xi,w) =
∫ xmax

0
pi(x,xi,α)g(x,w)dx (D.5)
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which, due to the splines definition domain, evaluates to (with α ∈ [0, 1]):

Gi(α,xi,w) =



∫ x[i+1]/α

xi/α

pi(x,xi,α)g(x,w)dx x[i]/xmax < x[i+1]/xmax ≤ α∫ xmax

xi/α

pi(x,xi,α)g(x,w)dx x[i]/xmax < α < x[i+1]/xmax

0 α ≤ x[i]/xmax < x[i+1]/xmax

(D.6)

Hence only some of the splines are active for a given α.
The truncation error can be reduced by maximizing the number of splines. In the calculation implemen-
tation, Gi(α,xi,w) is calculated by means of a symbolic toolbox (sympy Python toolbox) and an order of
the splines of n = 3 is used. In such case, with use of ns = 100 splines, ε is in the order of 10−9 for most
well behaved functions in Zernike or Fourier Transforms. Since Gi(α,xi,w) does not depend on v, this
fast algorithm implementation is not significantly affected by the dimensions of the grids of the input
function f , leading to broadcasting of millions of datapoints in seconds on our machine. The function
is always a logical function of α depending on the grids spacing discretization. The final transform is
hence a linear combination of the splines coefficient of f and it can also be observed that also integrals
involving a normalization which is numerically ill-defined, like the one in (5.39), can be computed with
arbitrary precision with such method by means of a change of variable through some α.
This approach could also be easily extended to cross-correlation integrals by considering f(αx+β,v) for
arbitrary α, β.

D.1. Applications to Zernike Transforms
In the case of Radial Zernike Transforms, the radial basis g(x,w) are given by:

g(x,w=q) = R
|q|
s(x)x = pT(smax,x)c[s,q] p(smax,x) =


x
x2

...
xsmax

xsmax+1

 (D.7)

where Rqs(x) is the radial Zernike polynomial on the semisphere. Those radial basis can be described as
a subset of a smaller set of polynomial of powers xn, which allows for further significant improvement
in the calculation of the Zernike Transform. Using the previous notation hence, for a Zernike Transform
we determine:

G[q,s]
i(α,xi) =

(∫ xmax

xmin

pi(x,xi,α)pT(smax,x)dx

)
c[s,q] (D.8)

The matrix integration in parenthesis can be carried in one go when an appropriate symbolic integration
routine is used, so that all coefficients are retrieved from successive linear combination. Since the Radial
Polynomial R|q|s(x) can be written as:

R
|q|
s(x) =

s∑
j=|q|,step=2

(−1)k (s− k)!
k!(η − k)!(∆η − k!)ρ

j k =
(
s− j

2

)
η =

(
s+ |q|

2

)
∆η =

(
s− |q|

2

)
(D.9)

It follows that the rational coefficients c[q,s] are:

c[q,s],j =


(−1)k (s− k)!

k!(η − k)!(∆η − k)! ∀j ∈ S

0 elsewhere

(D.10)

where S is the subset of integer numbers j contained between |q| and s, boundaries included, and of
which difference s− j is an even number.
In general, the coefficients are unstable for smax > 30 due to memory overflow (on our 64-bit machine)
with standard numerical modules techniques. To avoid numerical instability for smax > 30, the arbitrary
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precision library mpmath is used, at the drawback of some slow-down for very high orders (smax > 200).
Alternatively, the Zernike basis functions could also be defined numerically by means of a stable recursion
algorithm, but the broadcasting scheme here proposed could not be used in that case. When the splines
spacing and α spacing is chosen opportunely (to be in fractions of integer numbers), the coefficients
G[q,s]
i(α,xi) are also fractions of integer numbers and they can be evaluated at arbitrary precision. Once

their evaluation is carried over, the numerical instability is resolved (also close to x = 1 where the Zernike
Basis if particularly troublesome) and standard numerical techniques can be used for the evaluation of
(D.4). In Conclusion, the algorithm is stable for all s and significantly ease the required numerical
iterations and accuracy in comparison with a straightforward integration on grids. We have in fact
observed that if such arbitrary precision is not used, oscillations in numerical values may strongly affect
the transform calculation also for smax < 30 for some functions, whereas we are able to achieve transform
errors ε < 10−6 for an smax = 80 for most well behaved functions, limited only by computational time.
We further recall that the full Zernike basis R|q|s(x) is a complete set for sufficiently smooth continuous
functions in the origin (scaling with xq in Taylor Expansion). That’s assumed to be the case in the
transforms on this report due to continuity of the fields at the exit pupil and of the transmission spectrum,
which ensures the smoothness. When applied to Diffraction Integral, further, due to multiplication with
a Bessel function of order s which is nill in x = 0 for s > 0, any discrepancy in the transform in the
origin does not significantly affect the result. A more accurate study on accuracies would be interesting
but is out of the scope for the present Research.

155



E
Examples of Jones Vectorial

Transformations
In Section 5.2 we have introduced a rather lengthy matricial method for determining the Jones transfor-
mation of a device. We hereby present some examples for guiding the reader in their use.
For a polarizing lens, the Jones transformation in a p − s frame of the Optics reads (on the tangential
plane):

J(o) =
[
τp 0
0 τs

]
(E.1)

The final transformation of the field appearing in (5.15), (assuming no apodization for simplicity) reads:

Je = 1
2

τs + τp cos (θ) + (−τs + τp cos (θ)) cos (2φ) (−τs + τp cos (θ)) sin (2φ)
(−τs + τp cos (θ)) sin (2φ) τs + τp cos (θ) + (τs − τp cos (θ)) cos (2φ)
−2τp sin (θ) cos (φ) −2τp sin (φ) sin (θ)

 (E.2)

Jh = 1
2

 (τs cos (θ)− τp) sin (2φ) −τs cos (θ)− τp + (−τs cos (θ) + τp) cos (2φ)
τs cos (θ) + τp + (−τs cos (θ) + τp) cos (2φ) (−τs cos (θ) + τp) sin (2φ)

−2τs sin (φ) sin (θ) 2τs sin (θ) cos (φ)


(E.3)

Which relates fields from a tangential plane of the lens in the ξ, η frame to a cartesian frame of the focal
beam. We can verify agreement with the Jones matrices proposed in [28], which describes x polarized
light only (left column) with an ideal optics. In the case of ideal optics, the cross-polarization terms scale
with (1 − cosφ) sin(2φ), which is known as maltese and observed in practical experiments of polarized
light as discussed in [28], [24]. As a consequence of intrinsic geometry, the fields have an azimuthal
dependance which reflects their polarization direction and will induce an elliptical focal spot. In reality,
the coefficients τs, τp of the optics themselves may be dependant on the two angles. We further observe
that the electric field is better transmitted for τs polarization rather than τp, and vice-versa applies
for the magnetic field. When the transmissions of the idealized lens (or any other device so modeled
with this matrix) are complex, aberrations may be introduced since p, s transmission does not generally
possess the same phase for an arbitrary angle.
We can further observe that the transmitted component of the Poynting Vector along the propagation
direction is ∝ 1/2(τ2

p + τ2
s ) cos θ, as expected, but the electric energy transmitted in the transverse

plane (Mueller coefficient M00) is instead ∝ 1/2(τ2
p cos2 θ + τ2

s ) and is hence negatively biased for the p
polarization. Additional projections are in reality present due to radiometric apodization of the rays [28].
One may calculate the Mueller Matrix associated with this plane-wave transformation and determine that
the Mueller coefficients are not nill, but vanish after azimuthal integration if the input field is azimuthally
uniform. If diffraction is to be accounted for, however, one shall perform the Mueller Transformation
after integrating the coherent fields in the cone angle, to correctly account for aberrations and focusing.
The Jones matrix proposed does applies in the absence of a polarizer or any non-axial symmetric device.
Suppose a conventional polarizer is engineered such to have a fast and slow axis x, y (cartesian), with no
cross-induced polarization. Hence its transformation from and to a cartesian frame would be of the form

J(p)
|Σ0

=
[
τx 0
0 τy

]
(E.4)
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When operating on a collimated beam the principle of operation of this transformation is straightforward,
directly influencing the field ein|Σ0

previous refraction. When operating on a focused beam though, the
tranformation is significantly more complex, specifically in the case in which also polarization dependent
transmissions like the one previously discussed are present. For grasping an understanding, we tentatively
seek an extrapolation of the transformation for other angles. Simply generalizing the transformation in
the p− s frame as:

J(p) = ΣT J(p)
|Σ0

Σ (E.5)

with Σ the rotation matrix of the focused versors in the [p, s] frame, introduces an undesired scattering
effect, leading to the creation of a field in the direction of k̂ which is not physical. By geometrical
consideration we can conclude that the transformation has to be limited on the transverse p− s plane if
no deviation of the wave-vector is present, hence a physical transformation is given by:

J(p) = ΣTr J|Σ0Σr (E.6)

Which explicitly reads:

J(p) =
[
Jn1 cos (2φ) + Js1 Jk1 sin (2φ)

Jk2 sin (2φ) Jn2 cos (2φ) + Js2

]
(E.7)

with:
Jn1 = −Jk2 = −Jk1 = −Jn2 = τx − τy

2 Js1 = Js2 = τx + τy
2 (E.8)

The coefficients will instead differ in case of coupling with mirrors or presence of other optical devices and
further depend also on θ in a realistic system. In particular,cross-couplings ps and sp appear naturally
due to the fact that a polarizer breaks the rotational simmetry of the fields.
We have verified that the proposed transformation well represent a polarizer transformation in the p− s
frame, by validating a simple Gold grating polarizer simulation from FEM models and fitting with an
accuracy of 2% the values of τx, τy, see Figure E.1. The simulations results have also shown presence of
the couplings factors here reported. When represented in the ξ, η frame (closes tranverse fame found by
rotation of the x−y frame) the transmission factors are roughly constant. Their variations with θ is in fact
better described with the first two terms of Equation (E.5). In the simulated setup, τx = 0.018, τy = 0.88.
The polarized components of an ideal polarizer (τx = 1, τy = 0) scale with (1− cos(2φ))/2 = sin2(φ) in
this frame.
We may also determine, as previously, the expression of the complete transformation with inclusion of
a lens, and placement of the polarizer in the focused beam. The introduction of the polarizer in that
location results in presence of additional azimuthal frequencies. For the electric field:

Je =

I0,0 + 2I4,0 cos (2φ) + 2I9,0 cos (4φ) 2I5,0 sin (2φ) + 2I9,0 sin (4φ)
2I6,0 sin (2φ) + 2I9,0 sin (4φ) I1,0 + 2I7,0 cos (2φ)− 2I9,0 cos (4φ)
2I2,0 cos (φ) + 2I8,0 cos (3φ) 2I3,0 sin (φ) + 2I8,0 sin (3φ)

 (E.9)

and for the magnetic field:

Jh =

 −2W6,0 sin (2φ)− 2W9,0 sin (4φ) −W1,0 − 2W7,0 cos (2φ) + 2W9,0 cos (4φ)
W0,0 + 2W4,0 cos (2φ) + 2W9,0 cos (4φ) 2W5,0 sin (2φ) + 2W9,0 sin (4φ)

2W2,0 sin (φ) + 2W8,0 sin (3φ) 2W3,0 cos (φ)− 2W8,0 cos (3φ)

 (E.10)

where Ij ,Wj are coefficients linearly depending on the matrix J(p) and on sin θ, cos θ. One may again
determine the Mueller Matrix of this transformation, and this time reach the conclusion that the Mueller
Coefficients are not nill also upon integration in the azimuthal angle, as expected. The centered cross-
correlation components IjI∗j only would appear in such integration for the electric energy density and
the coefficients IjW ∗j for the Poynting Vectors components. The latter may be in general complex upon
focusing (representing some reactive power). The focal fields upon diffraction integrations further pertain
the same azimuthal dependance (see diffraction integral in the variable α of the detector plane), so they
are not simply elliptical anymore.
The given transformations are merely simplified examples: in fact, the transformation of the metasurface
device presents an infinite order of azimuthal components, we have determined from the coupled transfer
matrix method presented in Chapter 4. Nevertheless, it seems that the more relevant numerically are the
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ones ’naturally’ present from the references frame as here derived. In the metasurface case, moreover,
the cross-terms τps,sp are strongly affected by the mirrors couplings, which motivated the use of a more
complex treatment, and all the relevant quantities are spectral. In that case we have in fact further
considered the exact analytical expression off-angle of the anisotropic layer rather than extrapolating the
behavior-off angle.

Figure E.1: Simulation results of a Gold grating acting as a polarizer, postprocessed from COMSOL. In a) the fields in the
p− s frame are represented. The distribution of this field in the azimuthal angle φ well represented the behavior predicted
by Equation (E.7). Coupling factors can clearly be seen for φ 6= 0, which are not negligible. b) Same transformation seen
in the ξ − η frame, the closest tranverse frame found by rotation fo the x− y frame along the s-axis. The the coefficients
are roughly constant (see color scale), best fits yields τx = 0.018, τy = 0.88 at normal angle. Some intrinsic dependance
is present in the polar angle and cross-polarization are induced. This is the maltese effect, resulting from the fact that
the projection of x − y are not orthonormal in the transverse plane for θ 6= 0. This effect is well described by the matrix
formalism.
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F
Integral Identities of Zernike Mode

Decomposition
In Section 5.3.7 a Zernike Mode has been introduced and several consequent formulas. We perform
derivation of the result in that Section in this Appendix.

Demonstration of (5.63) Starting from Equation (5.58) with the change of variables (5.42), consid-
ering that:

sin θdθ = sin θ
cos θd(sin θ) = sin2 θmax

cos θ ξ′dξ′ (F.1)

the integration is recasted as:

gf |Σ0 = C
{∫ 1

0

∫ 2π

0

1
cos θJg(θ,φ,λ)e

ikρξ′ sin θmax cos(φ−α)eikz cos θξ′dξ′dφ

}
e[ξ,η]
in (F.2)

where θ now is a function of ξ and:

C =
(
ikf sin2 θmaxe

−ikf

2π

)
(F.3)

Introducing the effective Jones matrix in Equation (5.60) and the Zernike representation in Equation
(5.61) the integral is of the form:

gf |Σ0 = C


∞∑

q=−∞

∞∑
s=|q|,step=2

J[q,s]
g(θmax,kz,λ)

∫ 1

0

∫ 2π

0
eiqφR

|q|
s(ξ′)e

ikρξ′ sin θmax cos(φ−α)ξ′dξ′dφ

 e[ξ,η]
in (F.4)

The integral in (F.4) is known and reported, along with many other useful identities, in [81], (reference
to Eq. (5) of that paper). Adjusting for our notation:∫ 1

0

∫ 2π

0
eiqφR

|q|
s(ξ′)e

ikρξ′ sin θmax cos(φ−α)ξ′dξ′dφ = 2πis
(
Js+1(ρ̃)

ρ̃

)
eiqα (F.5)

with:
ρ̃ = kρ sin θmax (F.6)

Final substitution and rearrangement provides the desired expression (5.63)

Demonstration of (5.62) The coefficients reported in (5.62) are expansion coefficients of the effective
Jones matrix such that it can be written in form of a Zernike Series (5.61). The azimuthal expansion is
merely a Fourier series expansion, reported in many literature resources. The radial expansion follows
from orthogonality of the radial Zernike polynomials R|q|s on the unit circle for a given q. Those are
defined in Appendix D. The orthogonality relations of the Zernike complete basis is reported in [81] as:∫ 1

0

∫ 2π

0
R
|q|
s(ξ′)R

|q′|
s′(ξ′)e

i(q−q′)φξ′dξ′dφ = π

s+ 1δqq
′δss′ (F.7)
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Where δjj′ = [1∀j = j′, 0 otherwise] is the Kronecker Delta. By multiplying (5.61) for an arbitrary
Zernike basis and using this identities, relationships (5.62) are found once the 2π scaling factor is used
in the Fourier Transform. We have verified with various functions and the splines integration routines
that the defined Zernike transform is the series expansion of the initial function.

Demonstration of (5.64) It follows from the expression of the focal fields in Equation (5.63) that
(5.64) is verified upon conjugation of the scalar quantities and definition of the Mueller Row vector as:

M[q,q′,s,s′]
(θmax,kz,λ) =

[
A
((

J[2,2]
e[q,s]

)
⊗
(
J[2,2]
e[q′,s′]

)∗) (
A−1)][1,3]

(F.8)

where A has been already defined in (4.44). Equation (F.8) is a generalization of the expression (4.43)
common in Mueller Formalism. The transformation can arbitrarily be applied to two different matrices
since it merely represents an algebric manipulation of matrices such that the trigonometric property:

J[2,2]
[q,s]e

[ξ,η] ·
(
J[2,2]

[q′,s′]e
[ξ,η]
)∗

= M[q,q′,s,s′]
(θmax,kz,λ)s|p=1 (F.9)

is generally fulfilled, where the vectorial quantities are defined in Equations (4.38) and (4.39) of this
report. In (F.8), the notation [i, j] represent matrix minors and ⊗ the Kronecker Product. The first row
is extracted by the operation. The Jones matrix are reduced to 2×2 in the x−y frame. It is assumed that
the z component of the electric field intensity (eze∗z) does not contribute to the detected energy intensity
(being associate with fully transverse wave-vectors components, they may end up in stray-light or being
reflected at the edges). In Mueller Formalism the Stokes vector are defined conventionally only for two-
dimensional fields (more than four Stokes parameters would be required for general three-dimensional
fields).

Demonstration of (5.65) Following from expressoin (5.64), integration in a region Ap of(
s+s′+2

2π

)
f[q,s]f

†
[q′,s′] (scaling factors used for normalization convenience) leads to:

F[q,s,q′,s′](ρ̃max) =
(
s+ s′ + 2

2π

)∫
Ap
is−s

′
(
Js+1(ρ̃)Js′+1(ρ̃)

ρ̃

)
ei(q−q

′)αdρ̃dα (F.10)

For an encircled region Ap : {ρ̃ ≤ ρ̃max} the previous assumes a known analytical solution given by:

F (in)
[q,s,q′,s′](ρ̃max) = (s+s′+2)



ρ̃max (JsJs′+1 − Js′Js+1) + (s′ − s) Js+1Js′+1

(s− s′)(s+ s′ + 2) ∀s 6= s′, q = q′

ρ̃2s+2
max 2F3(s+1,s+3/2,s+2,s+2,2s+3,−ρ̃2

max)

22s+3(s+ 1)Γ2
(s+2)

∀s = s′, q = q′

0 otherwise
(F.11)

where 2F3 is the hyper-geometrical function, all Bessel functions of the first kind are evaluated in ρ̃max
and the set of q, s integers includes only the even combinations s− |q|, s′ − |q′| > 0. The given solution
has been found by manipulation of Wolfram-Alpha resolved integrals. The evaluation of the Bessel and
hyper-geometrical functions is performed by means of the mpmath Python library. The expression for
←→τ (ŝ,λ) is found by using (5.3.4) and definition of the direction transmittance as in Section (5.3.4).

Demonstration of (5.68) For deriving an explicit expression for M[q,q′,s,s′]
p(θmax,kz,λ), one must consider

swapping the indeces of the magnetic field and electric fields according to opportune permutation matri-
ces, in order to determine an expression of the type e′f |Σ0,xe′′∗f |Σ0,x+e′f |Σ0,ye′′

∗
f |Σ0,y for the permutated

fields, which is the one used in Mueller Formalism. For example, for pz (third row of M[q,q′,s,s′]
p(θmax,kz,λ))

equation (F.8) could be used with the matrices:

J[2,2]
e′[q,s] = J[2,2]

e[q,s] J[2,2]
e′′[q,s] = RJ[2,2]

h[q,s] R =
[
0 −1
1 0

]
(F.12)

that’s similar to the conventional approach used with the Pauli Matrices in Mueller Formalism.
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Demonstration of (5.69) To calculate the OTF, we need to perform the autocorrelation between
Zernike Polynomials in the Fourier domain. That’s equivalent to the FFT of the product of the Fourier
transform of the Zernike Polynomials. Hence we have to calculate the quantity:

FT {〈ef |Σ0e†f |Σ0
〉} =

∫ ∞
−∞

∫ ∞
−∞
〈ef |Σ0e†f |Σ0

〉e−i(kxxf+kyyf )dxfdyf (F.13)

Re-expressing for convenience in non dimensional variables we determine:

FT {〈ef |Σ0e†f |Σ0
〉} = f2 sin2 θmax

 ∑
q,q′,s,s′

M[q,q′,s,s′]
(θmax,kz,λ)I

[q,q′,s,s′]
(ξk,φk)

 sin (F.14)

with:
I [q,q′,s,s′]

(ξk,φk) =
∫ ∞
−∞

∫ ∞
−∞

ei(q−q
′)αis−s

′
(
Js+1(ρ̃)Js′+1(ρ̃)

ρ̃2

)
e−i(k̃xx̃+k̃y ỹ)dx̃dỹ (F.15)

and the variables defined as:

k̃x = kx
k sin θmax

= ξk cosφk k̃y = ky
k sin θmax

= ξk sinφk ρ̃ =
√
x̃2 + ỹ2 (F.16)

Changing integration variables in polar coordinates:

I [q,q′,s,s′]
(ξk,φk) = is−s

′
{∫ ∞

0

∫ 2π

0

(
Js+1(ρ̃)Js′+1(ρ̃)

ρ̃

)
ei(ρ̃ξk cos(φk−α)+(q′−q)α)dρ̃dα

}∗
(F.17)

Integrating in α and resolving the conjugation, we determine (using known integrals in [28] and using
the scaling factor (s+ s′ + 2) for further convenience):

I [q,q′,s,s′]
(ξk,φk) =

(
2πiq−q′+s−s′ei(q−q′)φk

s+ s′ + 2

)
I [q,q′,s,s′]

(ξk) I [q,q′,s,s′]
(ξk) = (s+s′+2)

∫ ∞
0

(
Js+1(ρ̃)Js′+1(ρ̃)

ρ̃

)
Jq−q′(ρ̃ξk)dρ̃

(F.18)
In [81] an analytical expression for the OTF is also found by integrating the above. This is however overly
complicated for the present report. An iterative adaptive quadrature numerical integration to arbitrary
precision has been performed for the purpose, which is reasonably efficient in the variables appearing
in (F.18). In plots on Figure 5.13 precision has been set to ε = 10−6 which is a good compromise for
evaluation time.
The OTF is then determining by normalizing the above expression with respect to its value in the
origin of the spectrum. We recognize in the origin of the spectrum (kx = ky = 0) the quantity
FT {〈ef |Σ0e†f |Σ0

〉}|ξk=0 to be, by definition, proportional to the wide pixel transmittance defined in 5.3.4.
In fact:

FT {〈ef |Σ0e†f |Σ0
〉}|ξk=0 =

∫ 1

0

∫ 2π

0
M̃T

0(ξ′,φ)ξ
′dξ′dφ =←→τ ∞(λ,ŝ)

(
π

cos2 θmax

)
sin (F.19)

To verify the above formulas, the known solution for the correlation of two pupils is known, which
correspond to the mode q = q′ = s = s′ = 0 only. That’s given by [81]:

OTF
(id) =

2(arccos(ξk)− ξk
√

1− ξ2
k)

π
(F.20)

we verified to numerical precision that the first mode computed with (F.18) corresponds to this analytical
solution. It is finally important to force in the above functions the conditions of existance of the indeces
bases. The above integral is only defined for |q − q′| ≤ |s − s′| and when both q − q′, s − s′ are even or
both odd.

Demonstration of (5.82) The following derivation shall be reviewed in future work.
To demonstrate (5.82), we recall the convolution property of two functions:∫ ∞

−∞

∫ ∞
−∞

g(x,y)h(x′−x,y′−x)dxdy = 1
4π2

∫ ∞
−∞

∫ ∞
−∞

g̃(kx,ky)h̃(kx,ky)e
i(kxx+kyy)dkxdky (F.21)
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with the Fourier Transform, for f = g, h, given by:

f̃(kx,ky) = FT {f} =
∫ ∞
−∞

∫ ∞
−∞

f(x,y)e
−i(kxx+kyy)dxdy (F.22)

Combining such property with Equation (F.14) and (5.83), and defining the following transform in the
focal point (xfi, yfi):

S̃0,av = FT {M[q,q′,s,s′]
(θmax,λ,xfi,yfi)Sav} (F.23)

The spectral intensity can be retrieved from the OTF spectrum:

Iλ(xf ,yf ,λ,t) =
∫ ∫
√
k2
x+k2

y<2k sin θmax

(
sin2 θmax

)
4π2

∑
q,q′,s,s′

S̃0,avI [q,q′,s,s′]
(ξk,φk) ei(kxx+kyy)dkxdky (F.24)

Integration to provide the energy in the pixel can be carried out directly, considering that it results in a
2D shifted sinc: ∫

Ap

ei(kxxf+kyyf )dxfdyf = eilp(kx+ky)

kxky
(F.25)

Reordering, expliciting the expression for I [q,q′,s,s′]
(ξk) and re-expressing S0,av in terms of its spectrum, we

can also isolate the integration in the OTF spectrum appearing in the charge expression as:

G =
∫ 2π

0

∫ 2

0
iq−q

′+s−s′I [q,q′,s,s′]
(ξk) ei(q−q

′)φkeik sin θmaxξk((lp−xfi) cosφk+(lp−yfi) sin θk) dξkdφk
4π2ξk cosφk sinφk

(F.26)
Where we have explicited the OTF variables in radial coordinates. G are hence basis function of the
Zernike mode expansion depicting the convolution integral appearing in the imaging equations.
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G
Symbols

Symbol Description Value
ε0 Vacuum permittivity 8.854× 10−12F/m
µ0 Vacuum (magnetic) permeability 1.256× 10−6H/m
η0 Vacuum (electro-magnetic) wave impedance 376.73Ω
c0 Velocity of light in vacuum 299792458m/s
π Pi constant 3.14159...
h Planck Constant 6.626× 10−34m2kg/s
qe Charge of electron 1.60218× 10−19C
rer Radius of Earth 6371km

J2
Coefficient of Earth’s second zonal term
oblateness perturbation 1.08263× 10−3[−]

ωer Angular velocity of Earth 7.292× 10−5rad/s
g0 Earth’s averaged gravitational field 9.81m/s2
ωp Earth’s revolution angular velocity 1.911× 10−7rad/s

Table G.1: Constants used throughout the report

Symbol Description Value
a, P Lattice size (as measured between parallel edges) m
A A matrix appearing in Mueller formulations -
Aep Area of Entrance Pupil (or domain of integration) m2

Ap An incident area of propagation m2

As Area of the source m2

Asc Scanning area (or domain) on ground (object space) m2

AR Aspect Ratio Dx/Dy of elliptical inclusion diameters -

c
In effective medium formulation, volume filling factor
(as ratio of inclusion volume per bare cavity volume, without
correction of the occupied volume of inclusion)

-

ci Velocity of light in medium i m/s
di A distance of propagation m
Dep Diameter of circular entrance pupil m
E Electric Field V/m
Eω Electric Field Phasor V · s/m
Eω,k Electric Field Phasor in Space Domain V · s ·m

E±
ω,k,i,m

Polarization directions of electric field for medium i
and polarization m, for positive or negative traveling wave -

Ẽ Electromagnetic deterministic and monochromatic
observable with same second-order statistical power V

√
s/m

e Normalized electric field -

e(top,+)
k,f |Σ0

Normalized electric field in the Space Fourier domain,
in cartesian frame, at the top of the spectral filter
Only forwards traveling component. 3-dimensional

m2

e(top,+)
k,f |Σ[p,s](k′′x ,k′′y ) Same as above, but in the ps transverse frame. 2-dimensional m2

eγ Energy of a photon J
feff or simply
f

Focal length of Optical System m

f# F-Number of Optical System, as feff/Dep -
f

[q,q′,s,s′]
(φ) Focal fields Zernike basis mode in the detector plane -

FOV
Field of view (maximum) of the scanner area
mapping the detector on ground rad
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Table G.2 continued from previous page
Symbol Description Value

F̃i
Electromagnetic Field Transverse Vector
(Ex, Ey , η0Hx, η0Hy)
in a medium i

V · s ·m

F̃±i
Electromagnetic 4D Field Vector in ps frame
(E+
p , E

−
p , E

+
s , E

−
s ) V · s ·m

F̃z,i Electromagnetic z fields vector (Ez , η0Hz) V · s ·m

F±(cav,out)
(k′x,k′y,ω)

4-dimensional field in the ps transmitted and reflected frames,
outside of the outer matching plane of the cavity

Various
depending on
normalization

F±(cav,in)
(kx,ky,ω)

4-dimensional field in the ps transmitted and reflected frames,
outside of the inner matching plane of the cavity

Various
depending on
normalization

F±(f)
(k′x,k′y)

4-dimensional field in the ps transmitted and
reflected frames, at the focal plane

Various
depending on normalization

F±(top)
(kx,ky)

4-dimensional field in the ps transmitted and
reflected frames, at the top of the filter

Various
depending on
normalization

F[q,s,q′,s′](ρ̃max)

Basis Functions of Zernike Modes solution
depicting enclosed energy
in a circular region of radius ρ̃max

-

Gij Etendue subtended between area i and j m2

GSD0
Ground Sampling Distance on ground at nadir,
mapping to a sub-pixel (a pixel in the polarized arrangement) m

GSDρ
Effective ground sampling distance mapping the same
area of a distorted pixel projection on ground m

GSRE
Ground-Sub-Resolution element on ground
(of sub-pixel, pixel of the polarized arrangement) m

G(m)
(kx,ky,k′x,k′y,ω)

Transfer matrix of cavity taking into account
finite diffraction of the structure -

G(klp sin θmax,xfi,yfi)
Basis function in the Zernike mode, depicting
enclosed energy in convolution at pixel level -

hs Satellite altitude (referenced at mean radius of Earth rer) m
hi Height of inclusion m
H Magnetic Field A/m
Hω Magnetic Field Phasor A · s/m
Hω,k Magnetic Field Phasor in Space Domain A · s ·m

H±
ω,k,i,m

Polarization directions of magnetic field for medium i
and polarization m, for positive or negative traveling wave -

h(top,+)
k,f |Σ0

Normalized magnetic field in the Space Fourier domain,
in cartesian frame, at the top of the spectral filter
Only forwards traveling component

m2

hs Altitude of spacecraft km

h̃s Altitude normalized on Earth’s radius hs/rer -
I Orbital Inclination rad

îs, ĵs, k̂s Local reference solidal with satellite -
Iλ(...) Spectral Intensity W/(m2 · µm)
I[q,q′,s,s′]

(ξ) OTF bases of the Zernike Expansion in the radial direction -
i An index or the complex number

√
−1, on context -

j Medium or coordinate index, on context -

Js+1(ρ̃max)
Bessel Function of the first kind, of order s+ 1
evaluated at ρ̃max

-

J±
k→i

Transmission or Reflection Jones matrices, as minors
of the Scattering Matrix Sk→i

J(o) (Transmission) Jones matrix of the Optical System -
J(m)
|Σ (Transmission) Jones matrix of Metasurface (in ps frame) -
J+
(kx,k′x,ky,k′y) Transmission Jones matrix of finite diffraction coupled structure -

J−(kx,k′x,ky,k′y) Reflection Jones matrix of finite diffraction coupled structure -

Je
Final (Transmission) Jones matrix of transformation
from entrance pupil to focal plane
for electric field

-

Jh
Same as above, but relating electric field to
the (non-dimensional) magnetic field at the focal plane -

Jf
Jacobian of transformation from non-dimensional
coordinates of detector to Earth’s surface -

k Wave-Number (Module) 1/m

164



Table G.2 continued from previous page
Symbol Description Value
k0 = ω/c0 Wave-Number in Vacuum for a given frequency ω 1/m
k = (kx, ky , kz)T Wave-Number (Vector) 1/m
Ki Polarized Arrangement (3 pixels) -

lr
Size of resonators cell, as periodic array.
Equal or multiple of pixel size µm

lp Lateral extent of a pixel (edge dimension) µm
Ld Lateral extent of detector (edge) cm
Lω(...) Spectral Radiance (per unit frequency) W · s/(m2 · srad)
Lλ(...) Spectral Radiance (per unit wavelength) W/(m2 · µm · srad)
m Polarization Index -

m0
Paraxial magnification factor hs/feff
from detector to ground -

M̃z→xy
Projection Matrix of 4-dimension field to z
fields in arbitrary layer -

Mi Various auxiliary matrices introduced in the report -

Mk,i
A generic state vector of arbitrary dimensions,
in Scattering Formulations Various

M∞0 First Mueller Row associated with Je -

M[q,s,q′,s′]
(θmax,kz,λ)

Mueller Row of the Zernike expansion
Jones matrix of the focal fields -

MKi Optimal reconstruction matrix for arrangement Ki -
n̂As Normal of Source Area -
ni Refractive index in medium i -
ne Absorbed charges at detector (electrons) electrons
nλ Number of spectral bands in arrangement -
n̂ij Normal versor of surface separating mediums i and j -
P, a Lattice size (as measured between parallel edges) m

P̃i Non-dimensional propagation matrix in arbitrary layer i -
Pin,out A permutation matrix in Scattering Formulations -

Q Correction factor in stationary model fit of
experimental data, relating filling factors -

qu, qv
(Dimensional) curvilinear coordinates
mapping Earth object space m

q̂u, q̂v
Local versors describing the tangent
space of the mapping surface -

q̃ = (q̃u, q̃v)
or (q̃x, q̃y)

(Non-dimensional) coordinates qu, qv
scaled on satellite altitude hs

-

Ri Projection matrix of polarization versors for medium i -

R(w,β)
A matrix representing a rotation of an
angle β along the axis w -

R0 Projection Matrix Ri evaluated in vacuum -

rob
Distance (vector) from Earth’s center
of gravity to observation point m

rss,pp,ps,sp A coefficient appearing in the minors of the Transfer Matrix -
re,i A vector of point i (from intercept with optical axis) on the pupil m
R In general, an intensity reflectance -

Sw
Swath measured as maximum arc subtended
by scanned area on Earth’s center of mass km

Sk→i
Scattering matrix between state vectors
from medium k to medium i

-

Slm
Left-Scattering matrix minor including the
transmission and reflection Jones matrices -

S Poynting Vector W/m2

Sω Poynting Vector in Frequency Domain W · s/m2

s = k/k0 Normalized Wave-Number versor -
s(in) Stokes parameters at input of entrance pupil (non-dimensional) -
SNRSt Signal to Noise ratio of reconstructed Stokes (estimation) -
SNR(0) Signal to Noise ratio of pixel upon non-polarized input field -

S(∆λ)
Spectral Quality of filter, defined as ratio of
enclosed spectral energy in ∆λ -

sx, sy Cosine directors of the wave-vector in a transverse plane -

s⊥,i

Cosine directors in the transverse plane projection
of arbitrary ray connecting an observation point
to a point at the pupil

-
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Table G.2 continued from previous page
Symbol Description Value

ŝi
Direction of propagation of incoming ray to
pupil from the object source area
Alternatively, direction of the incident far-field Poynting Vector

-

∆t Permanence time of a point on a pixel (or on a detector region) s

∆tob
Assumed time-frame in which the observation
object has temporally constant emission properties s

t Time s

t0, t1, t2
Some complex-valued scalar functions
appearing in Zernike transforms of unpolarized pixels -

tλ,res

Spectral time resolution, interval of time over which
the temporal nature of the measured field is distinguishable
for one wavelength over the full polarization information

s

tpp,ss,ps,sp(−)
Various entries of the transfer matrix minors
(consistent with state vectors expressions) -

T[xy,ps]
i 4D Transfer Matrix in xy or in ps frames. -

T∞
j(k′x,k′y,ω) 4D Transfer matrix of array of resonator, infinitely wide -
Tbeat Beating period s
T In general, an intensity transmissivity -

u
Angle between satellite local direction and ascending node
(sum of argument of periapsis and true anomaly) rad

v = (vx, vy , vz) A generic vector Various

vs
Velocity (vector) of the satellite orbiting Earth
with respect to an inertial frame m/s

vd
Local observed velocity of a point solid
with ground on the detector m/s

vgt
Ground-velocity, defined as relative velocity of an
observed point with respect to satellite km/s

Vsc
Volume domain of scanned region
from observation geometry to pupil m3

W Cross-Spectral Density Tensor V 2s/m2

W∞ Cross-Spectral Density Tensor in the far-field V 2s/m2

x, y Some transverse coordinate on a transverse plane m
xf , yf
or, on context
x, y, ρ

Focal coordinates with respect to Nadir center of detector
(cartesian or polar) m

x̃, ỹ, ρ̃

Normalized detector coordinates on
effective focal length (in Chapter 6).
Normalized detector coordinates on
(k sin θmax)−1 (in other Chapters)

-

xfi, yfi Focal coordinates of a generic focal point m
X Cross-Product Operator Matrix -

z1
Focal distance of the focused image as
predicted by the lens equation m

z̃1 Non dimensional focal distance over the effective focal length -
z2 Distance of (point of) spacecraft from observation point of ground m

z21, z22
Non paraxial distances from observation point to pupil
in geometrical generality, for two points m

∆z2
Non paraxial module of the difference between
observation vectors connecting ground points to pupil m

Z A (radial) Zernike Transform -

α, αe
Azimuthal angles of a coherent sub-bundle of rays respectively
over focused point on the detector and on entrance pupil rad

α(θmax)
A macroscopic apodization factor due to
focusing geometry of the pupil -

←→α eff
Apodization matrix taking into account
sub-bundle distribution of input field -

γ Linear polarization angle in Poincaré Sphere rad
Γ Cross-Correlation tensor V 2/m2

δn A delta Diraq function of order n -
δ Orientation angle of the axis of the elliptical inclusion rad

ε̂‖

Versor parallel to the transverse plane
(perpendicular to incidence plane)
Same for both waves directions

-
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Table G.2 continued from previous page
Symbol Description Value

ε̂±⊥,i

Versor parallel to the incidence plane
(and perpendicular to wave-vector)
for forwards or backward traveling wave.

-

←→ε ω Permittivity Tensor in Time Frequency Domain F/m

←→ε eff,ω
Effective Permittivity Tensor in Time Frequency Domain
(inclusive of Ohmic Losses) F/m

←→ε r Effective Relative Permittivity Tensor in Time Frequency Domain -
εi(∆T ) Thermal strain -
εi (Relative) permittivity of inclusion -
εm (Relative) permittivity of bare cavity -

ζ
Correcting factor in effective model fit of experimental values,
as exponential of aspect ratio -

〈ζ〉 A random number used in Monte Carlo tolerancing analysis -

ρ
Radius at detector plane, from a defined
focal point at (xfi, yfi)

m

ρ (on context) PDL module vector of an optical device,
representing polarization power

ρ̃
Non dimensional variable kρ sin θmax,
with ρ = ρf radius at detector focal plane -

ρpp,ss,ps,sp Amplitude (complex) reflection in Scattering Matrix -
ρob Radial parametrization of obervation point coordinates m

ρei
Radial coordinate at pupil of optical system,
in point i, where specified. m

Σ[ξ,η]
i Matrix of change of reference frame [ξ, η]→ [x, y] -

Σ[p,s]
i Matrix of change of reference frame [p, s]→ [x, y] -

Σ[φ] Matrix of arbitrary rotation along the
third axis of a reference system -

σ̃(∆rob)
A weak spectral correlation function of the
Cross-Correlation Tensor W -

σi
Pauli-Matrices used to link Stokes parameters
to Cross-Correlation Tensor -

τ Difference in measuring time of Cross-Correlation Tensor s
τpp,ss,ps,sp Amplitude (complex) transmittances in Scattering Matrix -
←→τ ∞(λ,rob) Spectral Wide Focal Transmittance (directional, in intensity). -
←→τ ∞(rob)

Band Wide Focal Transmittance (directional, in intensity). -
←→τ δ,∞

(rob)
Transmittance (row) of a polarized pixel rotated of δ
with respect to cartesian frame. -

←→τ (f)
(rob,λ)

Finite Spectral Focal Transmittance (directional, in intensity,
including effects of diffraction)
in a certain circular enclosed region

-

η (Electromagnetic) Impedance Ω
η (on context) Local variable of streamlines on detector m

ηb
Finite efficiency of an idealized bandpass filter,
used for theoretical analysis of condition number -

ηe Quantum efficiency of detector -
ηr Relative (Electromagnetic) Impedance -
χ Circular polarization angle in Poincare Sphere rad
χs Auxiliary variable for time-smearing effect description -

ω
Frequency of monochromatic
electromagnetic contribution s−1

ω̃ Ratio between angular velocities ωer/ωs -
ωbeat Frequency of beating period s−1

ωs Angular velocity of satellite rad/s

Ω Longitude of ascending node measured from
inertial reference direction rad

dΩgr→e
Solid angle subtended by an Earth infinitesimal
area on (a point) of the pupil srad

Ωp or simply
Ω

Solid angle subtended by pupil on point of pixel
Taken as π sin θ2

max
srad

Θλ(...) Spectral Directional Power W/(µm · srad)
Θe(λ,rob) Spectral Directional Power at Entrance Pupil of Optical System W/(µm · srad)

Θ∞(f)
(λ,̂s) Spectral Directional Power at Focal Plane W/(µm · srad)

θ0 Polar Angle of wave-vector (in vacuum) rad

θ
Polar angle of focusing of a sub-bundle of rays
on optical axis, unless differently specified rad
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Table G.2 continued from previous page
Symbol Description Value
θob Polar angle of observation point with Earth’s center of gravity rad

θin
Angle between chief-rays of a coherent
sub-bundle of rays and the optical axis rad

∆θin
Angular deviation between marginal and chief-ray of a
coherent sub-bundle due to non perfect collimation rad

∆θscatt
Assumed angular range over which the incoming
intensity field is angular-independent rad

∆θrec
Angular resolution extent for consecutive measurements of
the same point on ground over ∆tob

rad

θr
Half angular (diagonal) resolution of the optical system,
mapping chief-ray from center to edge of pixel rad

θn
Radiometric angle between normal of object space
tangent area and cosine directors of distance to pupil rad

θg Geometrical angle defined by cos θg = hs/z2 rad

∆θin
Difference between two input rays angles
connecting observation point to pupil points rad

θmax Maximum focusing half-cone angle rad
ξ A transverse plane coordinate for a given plane-wave m

ξk

Radial non-dimensional coordinate in OTF solution,
given by

√
k2
x + k2

y/(k sin θmax)
with kx, ky spatial frequencies (in m−1) at focal plane

-

ξ, on context Local variable of streamlines on detector m

ξ′
Auxiliary variable sin θ/ sin θmax
used in focal integrals -

∆ξ Spatial windowing extent due to velocity smearing on detector m
κ Condition number of polarized arrangement reconstruction -
λi Wavelength in medium i m
λ0 Wavelength in vacuum m
∆λco Coherence Spectral Width m
ψ Arbitrary phase of the field phasor rad
φ0 Azimuthal angle of wave-vector (in vacuum) rad
φ Generally, plane-wave azimuthal angle rad
φk
(or simply φ again) Azimuthal angle in spectrum OTF solution rad

φob,i
Azimuthal angle parametrization of
observation point i on ground rad

φei
Azimuthal angle at pupil (from optical axis intercept)
of point i rad

φe, φer
Azimuthal angles respectively on entrance pupil and
on ground for a ray and for an observed point rad

Φλ(...) Spectral Power W/µm
←→µ ω Effective Permeability Tensor in Time Frequency Domain H/m

←→µ r
Effective Relative Permeability Tensor in
Time Frequency Domain −

Table G.2: Symbols used throughout the report, ordered alphabetically. Greek Symbols are reported at the end of the list.
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