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Summagx

Many current three-axis controlled spacecraft have appendages of con-
siderable size and possessing significant structural flexibility. This report
examines the resulting interaction between the attitude dynamics and the elastic
degrees of freedom. The representation of these additional degrees of freedom
in.terms of natural modes is discussed and two distinct classes of modes are de-
fined. For both classes, 'constrained' and 'unconstrained';, the object of the
analysis is to find the natural frequencies of oscillation and the medal gains.
The latter indicate the relative influence of each mode on the angular accelera-
tion of the spacecraft. The relationships between these classes of modes, and
certain important properties of the modal gains are discussed in general terms.
These general considerations are illustrated for a specific satellite configura-
tion which is suggested by the Communications Technology Satellite where the flexi-
bility is provided by a large solar array. The gecmetrical simplicity of this
configuration allows continuum mechanics to be chosen as an appropriate formula-
tion. Numerical results are provided for frequencies and gains (and for both
classes of modes) and their dependence on all satellite parameters is exhibited
graphically. Both dimensional and dimensionless plots are provided where appro-
priate. The main coentributions of. this report include a general discussion of
how: spacecraft structural flexiblity can be represented from an attitude control
viewpeint, of how solar arrays in particular can be successfully treated by tra-
ditioenal techniques, and, even more particularly, of the detailed numerical re-
sults when such an analysis is applied to a contemporary spacecraft.
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PRINCIPAL NOTATION

(Notation employed only briefly is defined where used)

.Upper Case Roman

A amplitude of array tip rotation with respect to root (n i constrained

o mode)

flexural stiffness ("EI") of support boom

see Eq. (4.90)

F for pitch motion, see Eq. (3.68); for roll-yaw motion, see Eq. (4.79)
X inertia of spacecraft (flexible + rigid)

NIk
J 1/ Fiita8" 13

2 3

J 11131n : + I33cos it 2113s1n7cosy

K constrained modal gains. For pitch, see Eq. (3.76); for roll-yaw,
see Eq. (L4.84)

M matrix representing linear algebraic equations for mode shape coefficients
(roll-yaw)

P tension in blanket = compressive load in support boom

Qn generalized coordinate associated with the nth constrained modal degree
of freedom

Uh constrained mode shape of support boom

Vn constrained mode shape of blanket

Lower Case Roman

b distance from satellite centre to root of support boom

d distance from root of support boom to inner edge of blanket

s for pitch motion, see Eq. (3.39); for roll-yaw motion, see Eq. (L4.48)

h angular momentum

y k in Sect. 5.2, the root stiffness of the support boom
k unconstrained modal gains. For pitch, see Eq. (3.93); for roll-yaw,
% n

see Eq. (4.109)

£ length of support boom



mass of array tip-piece

generalized coordinate associated with the nth unconstrained modal
degree of freedom

Laplace transform variable

time

deflection of support boom

unconstrained mode shape of support boom
deflection of blanket

unconstrained mode shape of blanket
width of blanket

'chordwise' coordinate for blanket

'spanwise' coordinate for blanket

Upper Case Greek

A

n

see Eq. (4.90)
pitch motion if satellite were rigid; see Eq. (3.73)

scalar product of two constrained modes; for pitch, see Eq. (3.28);
for roll-yaw, see Eq. (4.39)

roll motion if satellite were rigid; see Eq. (4.122)
yaw motion if satellite were rigid; see Eq. (4.122)

naturgl frequency of nth constrained vibration

Lower Case Greek

in pitch/twist analysis, the angle of rotation of the array tip with
respect to the array root

amplitude of array rotation with respect to root (nth unconstrained
mode) ’

in bend/roll-yaw analysis, see Eq. (4.33) for constrained modes and
Eg. (4.53) for unconstrained modes

in pitch/twist analysis Bn(y) =8 + an(y)
angle between array blanket (nominal) and roll-pitch plane; see Fig.B-1

¢cosy -~ Ysiny



q

=< S

W
n

Wy

[(Illsin7 + Il3cos7)¢ + (133cos7 +* Il3sin7)¢ ] /:7
modal damping ratio

y/4

pitch angle

Now/P' e (constrained); 45§7§1'wn (unconstrained)

scalar product of two unconstrained modes; for pitch, see Eq. (3.53);
for roll-yaw see Eq. (4.61)

mass per unit length of support boom

mass per unit area of blanket

roll angle

yaw angle

natural frequency of nth unconstrained vibration

nutation frequency = hAj'(a more precise nomenclature is 'precession'
frequency)

Subscripts

I

16

about roll axis

about pitch axis

about yaw axis

mode number

elements of M matrix

referring to main spacecraft body (rigid)
referring to solar arrays (flexible)
control

external

flexible

rigid

Superscripts and Miscellaneous

L)%
()

dimensionless variable associated with (-)

a(-)/ay
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(+)

(+)
sh

ch

a(-)/at

Laplace transform of ()
sinh

cosh

sine

cosine
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1, INTRODUCTION

The stiffness of any real material is finite. This fact has always had
important ramifications in many areas of engineering design; for example, struc-
tural flexibility is a pervasive element in the ancient technology of bridge-
building. The design of architectural structures, and aircraft design, aré other
notable instances. The underlying cause is readily identified: structures are
not mass-effective (and therefore not cost-efféctive) unless they are flexible.

This argument is now offered in more gquantitative terms. Represent
the mass/volume (i.e., the volume density) of the material selected by p; then
those costs which are proportional to weight may be written as

$ ~ pAL /" (1.1)

where A is a characteristic cross-section of a typical structural member, and £
a characteristic length. In addition to cost, a competing requirement of the de-
sign is some degree of structural rigidity. A measure of this rigidity is the
(first) frequency of vibration, W, Dimension analysis indicates that this crite-

rion behaves according to
1/2
~( EA
w ( H) (1.2)

where E is a material stiffness modulus (force/area). Very often the object of
the design is to provide the length ﬂ, or equivalently an area fw where the width
w 1s more or less constrained. In such cases then, L is fixed by specification
or perhaps other considerations. The free parameters remaining in Egs. (1.1) and
(L.2) are P, E, and A, with the dependence on the first two indicating, not unex-
pectedly, the necessity for light strong materials. After such a material has
been chosen on this basis (and undoubtedly influenced by other considerations as
well) the only remaining parameter is A. Equations (l.1) and (1.2) demonstrate
that the aims of low $ and high W are conflicting. Where the balance is actually
struck depends on whether stiffness or cost is more compelling in a particular
case,

1.1 Objectives of the Report

This report is concerned with certain aspects of spacecraft structural
flexibility, and space vehicles are a dramatic instance in which the balance
referred to above must be settled very much in the direction of cost. While in
the case of a bridge the weight-related costs are not prohibitive and the stiffness
can easily be made as high as required to prevent phenomena like dynamic buckling
under high wind conditions, for a spacecraft, on the other hand, the enormous cost
per pound placed in orbit, together with the relatively wispy forces the vehicle
will encounter in orbit, leads to designs which place understandably greater empha-
sis on weight than on stiffness.

The authors have had the opportunity to be associated with a specific
"three-axis controlled' spacecraft (see Section 2) for which structural flexi-
bility was significant enough to merit investigation (see Refs. 1 and 2)., In a
more general context, seme further results were given in Ref. 3. The present
report is inténded to be a unified presentation of the material in those references,
and the opportunity is also taken to present additional details which were not
appropriate under the space limitations essential to journal publication. In many



cases more details are given here on the derivations which were merely sketched
before (Refs. 1,2,3). Alternative approaches to the problems encountered are
stressed., More graphical results are also given. Finally, an opportunity will
be taken to reflect on the subject through more expansive discussion which it is
hoped will prove of interest to other attitude dynamicists.

1.2 Phases of Analysis i

The primary motivation for the subsequent discussion is taken to be
the attitude contrel of a spacecraft which cannot readily be assumed 'rigid'. #
It may be helpful to delineate the requisite tasks which face the analyst who
is responsible for 'flexibility effects'. There are essentially three phases.

1.2.1 Natural Motions

For simplicity, the property referred to somewhat vaguely as 'flexibility'
will be restricted, for the purposes of this discussion, to linear and nondissi-
pative elasticity. Such deflections as may occur about equilibrium are assumed
to be small enough to validate a linear (i.e., a variational) approach to the
variables representing these deflections. This latter assumption is not res-
trictive because large unsteady deflections are likely to be incompatible with
current attitude error specifications.

The first step is to find the natural motion of the flexible spacecraft.
'Natural motion' implies that both perturbing torques, and the torques exerted
by the control system in response to such perturbations, are identically zero.
It is well known that the natural motions of a nondissipative elastic system
consist of harmonic oscillations. . o’

Classical physics teaches that under the present assumptions a valid
model for the natural motion is a superposition of an infinite number of sinu-
soidal oscillations. Each of these 'modes' of oscillation is specified by its
modal 'shape' (i.e., the space dependence of the deflection) and the modal'fre-
quency' of escillation. Mathematically this behaviour is characterized by an
eigenvalue problem in which the eigenvalues and their associated eigensolutions
correspond to the modal frequencies and shapes, respectively.

Of interest is the classical inference that the number of modes is
infinite., While this may be a valid result mathematically (under our assumptions),
certain further physical considerations must be meptioned which lead to the
dismissal of all but the first N (a finite number) of these modes. First of all,
the elastic structure will have a finite speed of wave propagation through it
and therefore prediction concerning vibrations at comparable frequencies will not
be meaningful unless this fact is taken into account. Second, the high frequency
motions tend not to be excited by the disturbances the spacecraft actually
encounters; they neither have the high frequency nor the spatial variability
to have a significant influence on the higher modes. This is reflected in the
diminishing values of the higher modal gains (discussed in Section Le2v@Ys
Finally, even if the very high modes were present, and even if they were excited,
they would be of dubious significance since the attitude sensor would filter out
these oscillations and they would be "invisible" to the attitude controller; -
the situation with regard to rate sensors is less clear.

Thus the practical necessity of limiting the number of modes included
in the investigation of natural motions is, fortunately, quite consistent with



physical and technical considerations., This step is an enormous simplification
since the flexible displacements are now represented by a finite number of degrees
of freedom., It is emphasized that this procedure is not a crude "engineering
expedient"; it has a rigorous basis both mathematically and physically and can

be made, in principle, arbitrarily accurate. Techniques for performing this task
are discussed briefly in Section 1.4,

l.2.2 Modal Gains

Having found the 'natural motions' of the spacecraft in the absence of
external influences (including control torques), attention is now turned te the
'actual motion' when these heretofore neglected torques are in fact present., If
the satellite were rigid, the angular acceleration in response to a given impressed
torque is readily calculable. Because the satellite is flexible, however, the actual
angular acceleration is different from the rigid result. Speaking somewhat loosely,
the modal gains indicate what fraction of this difference is due to each mode.

From the standpoint of attitude control system simulation then, each
mode may be thought of as contributing a "correction" term or transfer function
to a 'block diagram'., Each such term is characterized by two parameters; the
natural frequency, and the moaal gain., Recalling the discussion in Section 1l.2.1,
the natural frequency corresponds to the eigenvalue of a certain eigenpreblem,
Qualitatively, modal gains are calculated as the integrated effect of a disturbance
on that mode shape (eigensolution). These effects (and hence the gains) tend to
become increasingly minute for the higher modes.

1l.,2.3 Flexibility Implications

The preceding two phases (determination of modal frequencies and gains)
are distinct from the third phase - assessing the implications of flexibility for
the attitude control system. To assume a negligible influence, it is usually

sufficient to have the gains << 1, and the lowest natural frequency >> wa where

wBW is the bandwidth of the controller. If these conditions are satisfied

therefore, inclusion of flexibility effects in a simulation will only reveal an
almost imperceptible ripple about the rigid results. If either criterion is not
satisfied, a proper simulation of flexibility is indicated.

1.3 Constrained and Unconstrained Modes

Two classes of 'natural motions' are discussed in this report. They
are referred to as 'constrained' and 'unconstrained' and the distinction arises
in the following way: satellite designs tend to consist of a 'main' or 'core'
body from which various appendages are often extended after orbit insertion. In
the context of on-orbit attitude control, the main body structure may be regarded
as rigid (although in other contexts, during launch for example, it may not be
so regarded). The structural flexibility, then, is resident in the appendages.
There may be other sources of non-rigidity, such as dampers in the main body,
contact friction between moving parts, fuel sloshing, etc., but these may be
considered separately and are beyond the scope of the present discussioen.

Normally it is the main body whose attitude is to be controlled, and
small deflections of the appendages are noteworthy only insofar as they influence
the attitude of the main body. Both attitude sensors and control torque actuators
are normally located on the main body also. Two choices of natural motions (modes)
are then possible.



1.3.1 Constrained Modes

One choice is to consider each appendage separately, regarding the point
of attachment to the main body as motionless in both translation and rotation.
Motion equations for each appendage are used to deduce the mode shapes and fre-
quencies characteristic of such motion. This approach is dynamically equivalent
to finding the mode shapes and frequencies characteristic of the overall space- >
craft, subject to the constraint that the main body is motionless.

To study the attitude motions of the spacecraft under the influence of 5
external torques it is necessary to have spacecraft motion equations available.
These may be found, for example, by equating the rate of change of the total
system angular momentum to the impressed external torque - or by some alternate
dynamical formulation. Furthermore, the appendage motion equations must incorporate
the fact that the main body is now free to move; in fact the main body motion may
be regarded as an 'input' driving the appendages. The appendage motion may be
thought of as the sum of two terms - a 'rigid' response, in which the appendage
follows exactly the body attitude, and a 'flexible' response which is the addi-
tional deflection required to total the actualimotion. This™ latter(flexible)
response may be further expanded as a superposition of the natural (constrained)
modes. :

1.3.2 Unconstrained Modes

An alternative approach is to consider the spacecraft motion equations
at the outset. Thus ‘'spacecraft modes' are found, as distinct from 'appendage
modes'., Since there is no longer any constraint on the central body, these may
be termed 'unconstrained' modes. All external influences are set to zero during
this calculation. The response of the spacecraft to external torques may then
be written as the sum of the 'rigid' response together with the 'flexible' res-
ponse., The latter, in turn, is expanded as a superposition of the natural (un—
constrained) modes.

1.4 Techniques for Modal Analysis

: Many techniques are available to the analyst which facilitate the
extraction of modal information and they all have in common the factors discussed
thus far.

l.4.1 Continuum Mechanics

The traditional approach is to formulate motion equations from the
principles of continuum mechanics; they lead to differential equations in space
variables and time¥*., Separation of variables is employed to decompose each
natural motion into a space-dependent factor (the eigensolution) and a time-
dependence (sinusoidal) factor. This decomposition is not unique to the continuum
mechanics approach. For simple geometries this method would seem to be the most
attractive. In many cases the eigenproblem can be solved in closed form with -
the attendant insights and economy. Often however, although formulated analyti-
cally, the equations will require a computer solution. Even so, the physical
assumptions made are usually very explicit and it is relatively easy to assess 5
their impact on the accuracy of the final solution. Furthermore, the number of
configurational parameters tends to be quitellimiteéd and the presentation and

* For the space variables, an integral equation is sometimes used.



interpretation of data is thereby tractable, especially if dimensienless group-
ings are employed.

As an example, suppose an appendage consists of a leng thin boom whose
(mass/length) density and flexural stiffness varies linearly from root to tip;
the eigenproblem corresponding to this case is straightforward to formulate,
However, it cannot be solved in closed form. Nevertheless a numerical solutien
found with the aid of a computer is preferablé: to the abandonment of the con-
tinuum approach entirely.

l.4.2 Lumped Parameter Approach

Many appendages are geometrically complex. Thus, although continuum
mechanics is still applicable in principle, it becomes unmanageable in practice.
When such situations were encountered one or two decades ago, one of two expedients
were adopted: lumped parameter or Rayleigh-Ritz. 1In the former it is assumed that
deflections need be known at only a finite number of locations and the distributed
parameters of mass and stiffness are taken to be equivalent to lumped masses at
these locations with lumped stiffnesses describing the resistance to relative
motion. Thus the nature of the approximations made in modelling the structure
was physical rather than mathematical. The well-known method of Rayleigh-Ritz
consists of prespecifying assumed mode shapes and may be used instead of, or
together with, the lumped parameter method depending on where the analytical
difficulties arise. In all these methods a finite number of degrees of freedom
is used to approximate the infinitude.

1.4.3 Finite Element Approach

. The lumped parameter philosophy alluded to above has evolved very far
in sophistication, reliability, and range of application. This is reflected
in the method of finite elements. Rules have been developed for this discretiz-
ing procedure and there is now an extensive catalogue of elements each of which
may have several degrees of freedom. This procedure is ideally suited to the
capabilities of the digital computer and hundreds (sometimes even thousands) of
degrees of freedom are used. Clearly the degree of accuracy in the first few
modes is extremely high,

1.5 Summary of Report

The next four Sections (2,3,4,5) deal with the analysis of a specific
spacecraft. Section 2 describes the spacecraft and the assumptions made in the
analytical model. The geometry is sufficiently simple that a ¢continuum mechanics
approach is fruitful. Section 3 discusses the interaction between array twisting
and pitch motion of the spacecraft; Section 4 is concerned with the interaction
between array bending and the roll-yaw motions of the spacecraft. Section 5
extends the analysis in several respects, and the concluding remarks are made
in Section 6.

2. A SPECIFIC APPLICATION

2.1 Introductien

The general principles and considerations discussed in the introduction
are applied to a specific satellite in the remainder of this report. An excellent



example is the Communications Technology Satellite (cTS) being jointly sponsored
by Canada and the U.S.A. Reference 4 gives an overall description of the CTS.
An artist's impression of the satellite appears in Fig. 1, and a conceptual
diagram of the subsystems in Fig. 2 (after Ref. 4). The CTS is a high-power
communications satellite and is scheduled for launch in 1975. . The power needs
will be supplied by an array of solar cells which generates about 1.2 kilo-
watts. It also makes CTS interesting from a dynamics standpoint.

2.2 Flexible Appendages

The solar panels are deployed symmetrically about the central body,
forming the major part of the solar array subsystem. The major structural
components are shown in Fig. 3, and are as follows:

(a) The support boom which extends out from the satellite and carries
a tip piece at the end. It provides bending stiffness and is held
in compression by the tip piece, due to the tension acting on the
solar panels. The boom itself is of bi -STEM design, that is, it
has a hollow thin-walled cross-section consisting of overlapping
pieces.

(b) The tip piece, which is attached to the solar panels and serves to
hold them in a state of uniform tension. It also carries cables on
which the longitudinal edges of the panels are supported. It is
connected to the support boom through a bearing which allows the
panels to rotate freely without transmitting any appreciable torgue
to the boom.

(¢) The solar cell array, mounted in layers on a flexible substrate. It
is kept in tension by the tip piece and is unfolded accordian-fashion
from the root, riding on cables attached to the tip piece.

The solar panels are offset from the support booms, to prevent contact
with them., This also has the advantage that thermal input to the boom is re-
duced, alleviating thermal distortions and possibly even more serious dynamic
phenomena (thermal flutter - Ref. 5). However, it introduces a static deflec-
tion shape which»must be taken into account while calculating deflections,

1D DRCH LOTY o

2.3 Basic Motions

The following qualitative considerations apply to the types of
motion the satellite may undergo, and will serve to simplify and clarify the
subsequent analysis.

- (a) Rigid-Body Motions

Considering the spacecraft as a rigid body, it is clear that it has
both translational and rotational degrees of freedom. We shall primarily be
concerned with the latter. For small-angle motion the pitch dynamics can
usually be uncoupled from the roll-yaw dynamics. For the CIS, however, the
principal axes are not fixed in the body because part of the spacecraft (the
panels) rotates so as to follow the sun. If the axis of rotation is parallel
to the pitch axis, the pitch and roll-yaw motions can still be uncoupled. The
roll and yaw motions are strongly coupled in any case, due to the presence of a

6



PIG. 1: Artist's Impression of the Communications Technology
Satellite (Courtesy Spar Aerospace Products Ltd.)
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momentum wheel, which is nominally aligned with the pitch axis in the control
system, It should be pointed out that misalignments of the wheel or the atti-
tude control system actuators would produce coupling between pitch and roll-
yaw, but these effects are small and will be neglected.

(b) Flexible Motions

The motion of the flexible appendages may be considered to be a
superposition of two components. The first one is twisting, in which the panel
cross-sections rotate about the boom centerline, the angular displacements being
a function of distance along the boom. The second is bending, in which the
boom bends in a plane normal to the panels, and the array cross-sections undergo
displacements parallel to the boom motion, i.e., without any rotation or warping.
A further subdivision of these motions occurs from considerations of symmetry
about the roll-yaw plane. Motions on which displacements on both sides of the
roll-yaw plane are identical are termed symmetric, while those in which the dis-
placements are equal in magnitude but opposite in direction are termed skew-
symmetric. Any general motion can be described by a combination of its sym-
metric and skew-symmetric components. It should be noted that only symmetric
twisting and skew-symmetric bending interact with the rigid-body attitude
motions.

A type of motion not considered here is in-plane bending, in which!the
boom bends along with the panels, but the entire motion is contained in the plane
of the solar panels. Considering the panel in tension as a beam, it can be seen
that the stiffness in this motion is much larger than out-of-plane bending
(since width >> thickness). However, the panels must have a small compressive
modulus, otherwise wrinkles may form, making the problem intractable. This con-
dition is satisfied in practice, hence negligible in-plane motion will be assumed
in this report. This assumption may have to be re-examined if large lateral
forces are present.

(¢) Uncoupling

The basic motions considered can be summarized as follows. The remarks
inside parentheses indicate the type of interaction with the satellite main body.

) Symmetric twisting (pitch)

) Skew-symmetric twisting (transtation only)

) Symmetric out-of-plane bending (translation only)

) Skew-symmetric out-of-plane bending (roll and yaw).

These are illustrated in Fig. 4. In a linear analysis such as the present one,
the net motion can be expressed as a superposition of these four types of motions.
Since for the rigid case, pitch and roll-yaw are effectively uncoupled, evidently
if twisting and bending are also uncoupled the four types may be analyzed sep-
arately. If the boom center-lines passes through the spacecraft center of mass,
this is the case,

However, as pointed out by Cherchas (Ref. 6), in reality the boom is
offset slightly from the mass center and consequently type 1 and 3 motions are
slightly coupled. His calculations show that the natural frequencies for this
lightly coupled motion are basically the union of the natural frequencies of
1 and 3 considered separately, except in regions where the two are nearly equal.
Similar effects may be expected if other small asymmetries exist. Due v -
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to this possibility, one has to calculate the frequencies for all possible types
of motions, because in applications the lowest frequency is usually of interest.

In the present report, for illustration purposes, only those motions
which interact with the satellite attitude motion will be considered. The
analysis for types 2 and 3 is basically similar in approach. Type 1 (pitch/ -
twist) motions are considered in Section 3, and Type 4 (roll—yaw/bending) in
Section 4,

The above considerations arecquite independent of the method used for
analysis (finite-element or continuum)., If constrained modes are used, the
flexible structure may be analyzed independently of the body motion, but the
above symmetry/uncoupling considerations apply when the resulting frequencies
and mode shapes are introduced into the satellite equations of motion. For
unconstrained modes, the overall motion is subject to the same considerations
and may be uncoupled into independent analyses for each type of mode and its
inclusion in the satellite equations of motion.

2,4 TIdealized Model

To summarize, the following assumptions will be made in the sub-
sequent analysis.

(1) No in-plane bending is assumed, as discussed above. Due to the momentum
wheel, out-of-plane bending accelerations cause in-plane forces too,
Hence if the wheel momentum is very large the in-plane bending will be
significant.

(2) The support boom is assumed to have uniform mass density P, and flexural
stiffness B along its length, carrying a uniform compression P. Thus
slender beam theory is considered to be applicable in bending. The
boom is assumed not to take any part in twisting, which is justified by
the bearing at the tip mentioned earlier,

(3) The boom is assumed to be rigidly cantilevered at its root. This assump-
tion will be relaxes in Section 5, but for the present all root com-
ponents are assumed rigid.

(4) Both the boom and panels are assumed to be attached to the satellite
at the same distance, b, from the mass center. Thus a simplified geometry
is assumed.

(5) The panels are supposed to have a uniform area mass density 0 and a uni-
form spanwise tension P, The latter implies a relatively rigid tip piece.
Any bending stiffness of the panels is neglected, thus the panels behave
like perfectly flexible sheets. However, a compressive modulus sufficient
to prevent wrinkling due to in-plane shear is assumed. .

(6) As discussed above, pitch/twist motion is assumed uncoupled from roll-
yaw/bending. This implies that the boom undeflected centerline passes
through the spacecraft center-of-mass.

(7) The fact that due to panel rotation, the moments of inertia vary with time

is considered on a quasi-static basis, since the variation has a period of
2L hours.
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(8) 1Interactions due to thermal distortions concomitant to solar heating are
not considered. This effect is minimized due to shielding of the boom
from the sun by the panels. Dynamic thermal effects still exist due to
eclipse, etc., but these have a very long period and are neglected.

3. ARRAY TWISTING AND PITCH ATTITUDE

The pitch axis of the spacecraft is, by definition, nominally normal
to the orbital plane. The axis about which the solar array rotates once per day
is also nominally normal to the orbit, and is assumed below to be coincident
with the pitch axis, as described in Section 2. Flexible motions of the array
about this axis will be termed 'twisting' motions, and these are clearly coupled
with pitching motions of the spacecraft as a whole; each excites the other
(Ref. 1). For the moment then, bending of the array, and rolling and yawing of
the spacecraft are not involved and may be taken to be zero as they are not
coupled with twist/pitch; they are considered in Section 4.

This section begins with the differential equations which govern space-
craft pitching and array twisting (motion equations). The geometrical simplicity
of the arrays allows a formulation in terms of a continuum mechanical approach.
However other alternatives may be used if desired, as discussed in Section 1; this
would change certain notational aspects of the relations presented, but the
essential features of the development would remain unchanged. The two types of
natural motions referred to in general terms in Section 1 ('constrained' and 'un-
constrained') are investigated next (Sect. 3.2) and the solutions for natural
frequencies and mode shapes are derived. Both families of modes are used as the
basis for an expansion of general array twisting motion in Section 3.3, this
demonstrates how to incorporate such modal representations into an attitude
control system simulation.

3.1 Motion Equations

The coordinate system employed and the principal notation are illustrated
in Fig.5. The z-displacement of a point in the array blanket due to pitch is
-x8(t), where ® is the pitch angle and x has the sense shown in Fig.5 Additional
displacements of a twist variety are given the symbol v(x,y,t) and so the total
blanket displacement under consideration in this section is

displacement = v(x,y,t) - x0(t) (341

3.1l.1 Spacecraft Motion Equation

The symbol used for the pitch inertia moment of the centre body is Ieb;
thus the total angular momentum of the spacécraft motion is

13
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= 6
=il

- 2fﬂf W/Z[x'r (x,y,t)-x8 Jo x dxdy

o) -w/2

w/2
_.2k[‘ [¥ (x,£,) -x6 ] (m/w) xdx (3.2)

-w/2

Here £ and w are the array length and width; O is the mass/area of the blanket; m
is the mass of the tip piece (and thus its mass/length is m/w); and the shorthand
(°) is used for time derivatives.

The angular momentum given by Eg. (3.2) will be taken to be relative to
an inertial frame., This therefore neglects the once per orbit rotation of the
reference axes. Even if a period of vibration was as long as 1 minute, however,
this represents 1440 oscillations per orbit (for a synchrenous orbit). Evidently
the rotation rates associated with orbit tirue anomaly are negligible in the cal-
culation of natural frequencies for such cases. Gyroscopic torques due to the
once-per-orbit rotation of the spacecraft, - which for small attitude angles are
present only about the roll and yaw axes,may be included as an external torque in
the external torque term T (see below). Similarly, gravity gradient torques,
which are the same order of magnitude, are present only about the pitch and roll
axes (small angles) and may also be included in Ee'

The factor of 2 multiplying the two integrals in Eq. (3.2) appears
because of the two array 'wings' (Fig. 1). The terms in the integrand which
involve x® may be integrated at once to give

°

= 1.8
h 12
R R e
- 2Uf f v(x,y,t) x dxdy
o V-w/2
w/e |
CoGm) [T i) x ax (3.3)
-w/2
where the spacecraft pitch moment of inertia is 12:
B2y 1 2
= — ——
Loyt 2( ik L+ s B ) (3.4)

Since the angular momentum can only change under the influence of external terques,
the equation of motion is found from

Bim e 035, (3.5)
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where the subscripts 'c' and 'e' denote control torques and external torques,
respectively. More explicitly, combining Egs. (3.3) and (3.5) yields the space-
craft pitch motion equation:

o L orw/2
oo
1.9 QUb[ v (x,y,t) x dxdy -
o Vv -w/2

+

w/2 %
2(m/w)\[‘ . v (x,£,t) x dx

+ T2c + T263 (3.6)

When written in this form, the implication is that pitch motions of the space-
craft are excited not only by perturbing and control toerques, but by twisting
of the array as well.

3.1.2 Blanket Motion Equation

The bending resistance of the blanket to displacements such as
v(x,y,t) is assumed negligible, as stated in Section 2. Therefore the
twisting 'stiffness' is due entirely to the state of spanwise tension, P. The
tension per unit width is (P/w); therefore, using Eq. (3.1) the following
differential equation governs the situation:

(B/w) v" (x,y,t) =o[v (x,y,t) - x6 ] (3.7)
Primes have been used to signify derivatives with respect to y.

Next, two boundary conditions in the y direction are necessary to
specify a solution. The first is found from the fact that the blanket is
fixed to the satellite at the array root: ’

v(x,0,t) =0, (3.8)

and the second is found similarly by 'tying' the blanket to the tip piece at the

out-board edge. To this end, let (t) be the angle of rotation of the tip-piece
with respect to the spacecraft (about the pitch axis). Then the second boundary

condition becomes

V(Xaz,t) o "Xa(t) (309)
A new unknown, a(t), is thereby introduced, and this requires yet another equa-
tion. This extra equation is just the motion equation for the tip piece, which

is now derived.

3.1.3 Tip-Piece Motion Equation

The total angle of rotation of the tip piece about the pitch axis is
® + a. The torque on it is due to the component of blanket tension perpendicular
to the plane of the array. Again noting that the tension per unit width is P/w,
. the motion equation for the tip piece must therefore be
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2 " 0e W/-2
m~ (8 +a) = (P/w) y v'(x,0,t)x dx (3.10)
-w/2

L
12

which completes the specification of a(t).

3.1.4. Summary of Motion Equations

The equations of motion derived above will be referred to a great deal
in the remainder of this section and in parts of Section 5. Therefore a summary
of them is convenient. !

Ay L pw/2 |
Spacecraft: 8= 20\[‘ \[‘ Y(x,y,t)x dxdy
o —W/2
w/2
# g(m/w)f W(x,0,t)x dx (211
-w/2
s T2c 4 T2e
Blanket: Pv" = ow (V-x8)
v(x,0,t) =0 (3.12)
v(x,b,t) = -xa(t)
1 3 . (1} e W/2
Tip-piece: L nd® + ) - Pf R Sk & C(3.18)
12 oy

Particular solutions of these equations may be referred to as 'natural’
motions and they are the subject of the next section.

3.2 Natural Motions

The equations of motion, as given by Egs. (3.11-13) are partial diff-
erential equations and, in general, such systems can be difficult to solve. How-
ever, if the external disturbances, as represented by T2e’ were absent and if
the control torques, as represented by T2c’ were also absent, then the resulting

motion is reasonably called the 'natural' motion. Reflecting on the physical
situation - a rigid body with elastic appendages - the natural motions are known
from experience to be rigid rotation and harmonic oscillations. These oscilla-
tions are now examined in some depth.

Sl Constrained Motions

Natural vibration modes for the array alone are derived first. It is
assumed that the centre body has zero pitch and this condition suggests the
terminology 'constrained' motion. Furthermore, since by hypothesis

8(t) =0 (3.14)

Y




this equation replaces the spacecraft equation of motion, Eq. (3.l1l), and only
Egs. (3.12) and (3.13) are used. Rewriting these, we now have

Pv'" = Ow v (3+15)
v(x,0,t) = 0 v(x,£,t) = -xa(t) (3.16) »
¥ w/2 ;
% md 3 = P f v' (x,0,t) x dx (347
i -w/2 j

The time dependence is first removed, in the customary way, by the
separation of variables¥:

(2]
G

Y(X,¥it) = =% 2: .Aﬁ(y) cosfd &
n=1
}- (3.18)

a(t) = Z AL(£) cost t

n=1

The indicated substitution produces'
2
&t (o} 9 n =
PA"(y) +ow Q°Ag(y) =0 (3.29)

as the (ordinary) differential equation for An(Y), (n = 1,2,...) together with
the boundary conditions

]
O

A (0) (3.20)

n nngAg(z) (3.21)

P Ay'(4)

The second boundary condition in Eq. (3.16) is automatically satisfied by

Eq. (3.18). The dependence on x assumed in Eq. (3.18), which has now been
validated, is a particularly simple one; it is seen that the chordwise cross-
section (to borrow a term from aircraft wing design) of the array, in twist, is
a straight line., Other shapes are not present in the steady state.

It is not difficult to satisfy Egqs. (3.19-21):

¥ To assist in the distinction between the constrained modes treated here
and the unconstrained modes of the sequel, upper case notation for the former
will be used, as distinct from lower case for the latter.
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A (y) ~ sin(Q, "y/4) (3.22)

where the dimensionless natural frequency,ﬂn*, has been defined as

1/2
2
8" = < —ﬂP‘l—> o (3.23)

To satisfy the condition expressed by Eq. (3.21) the § * G = 1,8, ) st be
the countably infinite set of roots of the transcendental equation

* % * *
mQ sinQ = cosQ (3.24)

where o

m o= =y, (3.25)

that is, the ratio of the tip-piece mass to the blanket mass. Equation (3.24)is
the characteristic equation for the vibrational frequencies. The sketch shown
in Fig. 6 shows that, for all but the first mode or S0,

* ~
gl .
n

(n=1) 7 (3.26)

*
The first five values of Qn* are shown plotted vs. I2b , the dimensionless body

. 2 e *
inertia (see Eq.(3.45)) in Fig.6. Of course the Q" do not depend on I, and

so the 'curves' are actually straight horizontal lines. This seemingly pointless
plot is made to facilitate comparison with the unconstrained natural frequencies
which are plotted in Fig. 7.

An orthogonality condition can be proven for these modes, namely

—
=)

E =0 (3.27)

where, for brevity,

I1

y/
gy f A_(9)A_(y)ayes mi°A (LA (8) (3.28)

This can be demonstrated from Eq. (3.22) but it is ordinarily easier to proceed
directly from the differential equation, in this case Eq. (3.19). The steps below
do not require detailed comment.

L o
Pl: A (y)A"(y)ay + ow o l: A (y)A (y)dy = 0
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L

P Aﬁ(y)A-ﬁ'(y)‘ A Pf Ag'(v)Ay' (v)ay

o

y/
+ ownn2 f ; Aa(y)au(y)dy = 0

Y
2 2
m @ “Aa(L)Au(L) + owd fo Aa(y)A(y)dy
y/
= Pf Aa'(y) Ag'(y) dy
()

That is

2

Y
6 = - Ay b
w—2 Qn AU 4 fo Ag (y)A.ﬂ1 (y)dy (3.29)

Rewriting Eq. (3.29) with the subscripts n and m interchanged, and noting that

= Py

mn nm

Q
m nm

Y/
2® =P f A.‘I;l'(y)A,m'(y)dy (3.30)

smlm

Subtracting Eq. (3.30) from Eq. (3.29) and realizing from Eq. (3.24) that the fre-
quencies are always distinct (Qn # Qm if n # m) proves the condition of Eq. (3.27).

Finally, the factor of proportionality implied in Eq. (3.22) is specified
by a normalization condition:

B L ot (3.31)

nn

When the necessary integration of Eq. (3.28) is done, the mode shape is uniquely
specified (0 = y/4)

1/2
Ay(y) = L 2 ] sinﬂn*‘ﬂ (3.32)

1 + m¥s ingﬂn*

This completes the derivation of the constrained modes. The manner in
which they may be utilized in a study of general spacecraft motion is discussed
in Section 3.2.1.

3.2.2 Unconstrained Motions

Natural vibrations of the spacecraft as a whole are clearly of interest.
These are termed 'unconstrained' motions and Eqs. (3.11-13) are used with

i
(@]

.. " 9 e (3.33)

21




The time dependence is removed via the substitutions (Ref.1)

v(x,y,t) = -x 2 an(y)coswnt
n=1
a(t) = ) a (4) com s (3.3)
n=1
0
0{t) = }: 6 cosw t
n=1
First, Eq. (3.12) leads to
Pa"(y) +ouw e (y) = -ou v (3.35)
n n n 0 SR <

as the (ordinary) differential equation for an(y), (n=1,2,...) together with
the boundary conditions

a (0) =0 (3.36)

; B 2
Pa'(d) = m "o (f) +m 8 (3.37)

The second boundary condition in Eq. (3.12) is automatically satisfied by
Eq. (3.34). To complete the unique specification of the modes, the spacecraft
motion equation, Eq. (3.11) is invoked:
2
W 0 - = |
e s E R (3.38)

where, for brevity,
L2 4 1 2
25- o fo a(v)ay + £ m? ay(h) (3.39)

Immediately from Eq. (3.38) the possible roots w = 0,0 are recognized,
corresponding to a constant angular displacement, and angular rate. The mode
shape is clearly specified by putting W = O in Egs. (3.35-37):

ou(y) =0 nisl2 (3.40)
and, from the first of Eq. (3.34),
v(x,y,t) = 0 (3.41)

showing that, not unexpectedly, there is in fact no twisting at all. These are,
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therefore, rigid modes and they are certainly important since they are the primary
raison d'etre the attitude control system. However, from the 'flexibility' stand-
point they are not really flexible modes, and the designation "n = 1" will now

be given to the first 'flexible' mode., This is purely a convenience and an
alternative convention proves more suitable in connection with roll-yaw flexi-
bility (Sect. k).

Having thus dealt with the factor w° = 0, Eq. (3.38) becomes

0 =
I2 ni fn

(3.k42)

and this equation, together with Egs. (3.35-37) specify the natural 'unconstrained'
modes. It is not difficult to satisfy Egs. (3.35-37):

X, % * *,
et ) b 45 > si |
o (n) n‘[coswn*n 6 T @ Tgdne M ~ 3] (3.43)
where 1M = y/ﬂ and the dimensionless natural frequency, wn*’ has been defined as
2~ 1/
* owb
w o=
n ( P > “n (3.14)
and the dimensionless body pitch inertia is
I
b ;
7 % L8 (3.145)

i )

To satisfy Eq. (3.42), the wn* (n=1,2,...) must be the countably infinite set
of roots of the transcendental equation
*

(6m™* 1. %2 1) ‘gime? (6 B

o *+ m¥) w* cosw* (3.L46)

b

It is physically plausible that the frequencies of the unconstrained modes should
approach those of the constrained modes as I2b—9°° « ©'Dhat 'is

Lim : ) .
* {Pnconstralned mode%} = {%onstralned mode%} (3.&7)

fa 7O

In particular, if the limit I, * >0 is taken in Eq. (3.46) the characteristic

equation reduces to 8

o w* sinw® = cosw® (3.48)

which is precisely Eq. (3.24) - the characteristic equation for the constrained
modes.

reover, the Eq. (3.46) is symmetrical with respect to the parameters
i’ and 6I 3 although the case where the tip mass becomes infinite is not of
practical importance (at least for the CTS design) some thought will verify that
such a symmetry should exist.




The first few values of wn* are shown plotted vs., I

b i3t il Ay R i v

is particularly interesting to compare this figure with Fig. 6. Not only do the
an form the asymptotes for wn* as IQb# —© , a5 indicated by Eq. (3.47), they
also bound the wn»* for all I, *. That is

Ql-,* K wl# < 322-* < wg-?‘ < ---- (3.49)

Just as the lower limits for wn* (as I

b¥;>m) are Qn*, so the upper limits
(I2b% - Q) are the roots of

2

¥ ¥

tamw? = -miwd (3.50)

which are denoted An* (n=1,2,...). Thus Inequality (3.49) is sharpened to be-
come

Ql»,* < wl-?f < ?\l?f < 9235 < wg?? < )\2?‘- - e (3.51)
An orthogonality condition can be proven for the unconstrained modes,
namely,
E =188 (3.52)
where, for brevity,
1 i ’ Ay e
tn = 297 ey + g mf o a0 (3.53)

This can be demonstrated from Eq. (3.43) but it is more easily proved directly
from the differential equation, in this case Eq. (3.35). The steps are as
follows:

£
P [ o ey sow of [Cama (e

)
= oW wn2 enfo am(y)dy
v )/
P o (y)a '(y) [ -Pf o '(v)o, ' (y)dy
O o

2 * 2 .
+ oW \[; an(y)am(y)dy o Ll en;[; o (y)dy
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)
m wn2 o (B (£) + ow wn2 L[‘ a (v)o (v) dy

)’ J/
% mnzentm a (£) + UWLL‘ am(y)dY] b P»ﬁ\ o (e ' (v)dy

Whereupon, using the definitions of Egs. (3.53) and (3.39)

2 i g ¥
0 8, 5 < E P ¥ & () Wy (3.5)
At this juncture, Eq. (3.42) as useful:
2 1 2 4
0f G- Ty 080 = 32 [ o ey ay (3.55)

Rewriting Eq. (3.55) with the subscripts interchanged, and noting that
gmn - *nm?
2 L & 4
w & = 1 1
(& Ieenem) ZPw LL\ @ (y)am (y)dy (3.56)

m

Subtracting Eq. (3.56) from Eq. (3.55) and realizing that the frequencies are
always distinct (wn # w if m # m) proves the condition of Eq. (3.52).

This condition can be made to look more like a conventional ortho-
gonality condition as follows: Define the 'total' angle Bn as follows

¥ <Ata (1) (3.57)

Substituting B -8 for o in Eq. (3.39) leads to

Loss 3 X 1 2
T Ov u[ Bn(y)dy + g mw Bn(ﬂ) & 212A9n-fn {3.58)
o v
where I2A is the pitch moment of inertia of one of the two panels, viz.,
Iy = éf(dwé¢+wm}PW?‘f (3.59)
Thus the total pitch inertia of the spacecraft must be
T BBl Ty (3.60)

Placing Egs. (3.42) and (3.60) in Eq. (3.58) gives

1

y
Z CTW3J; Bn(Y)dy + % mW2 Bn('z) o -IQb 0 (3'61)

n
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Next, substituting B -8 for @ in Eq. (3.52) leads to

¥ " Lhes
qw3 B (y)B (y)dy + z mwB (£) B (£) + I, 066 =0 (3.62)
&l 4 n m 6 n m 2b n'm

where the prepared relation (3.61) has been inserted. In this form (Eq. (3.62))
the condition looks more like an orthogonality condition, wherein a generalized
inner product is found to be zero,

Finally, the value of en is specified by a normalization condition:

— 0’w3,e (3‘63)

nn
More explicitly, Eq. (3.43) is substituted in Eq. (3.53) to give

1/2
f {U(ﬂ)}dn+"ﬁ{oé(l)

where an(n)/en is implied by Eq. (3.43).

(3.63a)

This completes the derivation of the unconstrained modes. The manner
in which they may be utilized in a study of general spacecraft motion is dis-
cussed next, Further remarks on the comparison of the constrained and uncon-
strained modes will be postponed until after this next stage has been investi-
gated,

3.3 General Motion

Pollowing the general outline of Section 1.2, the next step is to ex-
pand the general flexible motion of array twisting in terms of the natural mode
shapes. Since two classes of natural motion have been derived, each will be
considered in turn. '

3.3.1 Expansion in Terms of Constrained Modes

The equations which must be satisfied are Egs. (3.11-13). The modal
representation is accomplished by expansions in terms of generalized coordinates

h % o

vxy,8) = x ) AN (6)
A n=1 }_ (3.64)
a(t) = ) (e, (v)

n=1

When these are inserted in Eq. (3012) there results:
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AL ok ) °0
7@+ 85q) Ay) +0=0 (3.65)

n=l

Similarly, when inserted in Egq. (3.13), one obtains

©0
J ve 2 ‘e
’ Q 0=
) (@, + 9,28 (4) + 8 =0 (3.66)
n=1
Finally, when inserted in the spacecraft motion equation, Eq. (3.11), one finds
0
g X
126'—}: FnQn i T2c % T2e (3.67)
n=1
where (compare with Eq. §3.39))
R AT 1 2 ,
F =z Ou LL An(y)dy + g An(ﬂ) (3.68)

The integration, using Eq. (3.32), gives for Fn:

1/2
e | e | e (3.69)
n

n 5 LI
1 + m* sin Qn*

The equations for the modal coordinates may be uncoupled as follows.
In view of the orthogonality and normality conditions, Egq. (3.27) and (3.31),
form the following combination:

Y
L 03 | [Eq.(3.65)]A (y)dy + = mi“[Eq.(3.66)] A (£) = O (3.70)
6 2 m 6 m
that is, &
— e o) A " :
Z 5 (Q +9 %) =F0 (3.71)
n=1
Then the conditions (Enm =0, n # m) and (Egm m w3ﬂ) may be invoked to complete

the uncoupling

§m+92Qm= (Fm >'é O YR, (3.72)

" Gw3ﬂ
This set of equations, along with Eq. (3.67), completely specify the system.
In order to arrive at transfer functions for the conventional block

diagram, Laplace-transformed variables will be denoted by an overbar. Thus,
defining .
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D & b
o7 B~ Wb N (3.73)

(the Laplace transform of the rigid response), the system equations are combined
to give

0 2
: s A J
5 =9+<z = 2>e (3.74)
s + f
n=1 n

where the dimensionless constants Kn (n=1,2,...) are referred to as 'moedal
gains' and are calculated from
¥ 2
n

K = —— S0
" 0'w3.2 I2 ( )

From Eq. (3.69) then, the result given in Ref. 3 is obtained:

£ = : (3.76)

n % 0 e P! 2Q )
3L* 8 (1 + m* sin n)

Here 12* is the expected notation for

I

2 1
% = =T % + (1 + m¥) (3.77)
o vt 2b 6

Note that these gains are always positive.

In some respects it is more illuminating to define dimensional gains
K ' by
n

R e (3.78)

The expansion then takes the form

© 2
BT e e ¥ 2
I2 s 0 :T2C+T2€+< Z —-2—-2-> s © (3-79)
s + 8
n=1 n
where Kn' now depends only on array parameters,

The gains K are independent of the tension P; they depend only en
I, * and m, i
2b
The expansion corresponding to Eq. (3.74) is shown in Fig. 8 and the
first few gains, as given by Eq. (3.76) are plotted in Fig. 9. Small damping
terms can be ' included in the customary somewhat arbitrary fashion.(see also Fig.30).

In the limit as I, % =%, K —Q (from Egs. (3.76) and (3.77)), while
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* Fos Q
for I2b il O Kn approaches the value

K = z 5
£ (1 + o) 0*2(1 + m¥sin“Q %)
n n
which, for the higher modes becomes
2 ¢

K =

n (1 + ) (n-1) PP

3.3.2 Expansion in Terms of Unconstrained Modes

The equations which must be satisfied are Egs. (3.11-13). Thi's: ds
accomplished by expansions in terms of the generalized coordinates Q-

&,
v(x,¥,t) = -x L a (y) o (t)
i } (3.80)
WL
a(t) =) o (f) qft)
=1

When these are inserted in Eq. (3.12) there results:

[oe] 0

T 2 o 2 2

) (@, +w S a)o (y) +8 Z w0 a =0 (3.81)
n=1 n=1

Similarly, when inserted in Eq. (3.13), one obtains

]
(@]

L<q+wq>a(£>+e+L %, (3.82)
n=1 n=1

Finally, when inserted in the spacecraft motion equation, Eq. (3.1l), one finds

0
126 ==§: fnqn b T2c 3 T2e (3.83)
n=1

where, recall, fn is given by Eq. (3.39).

To assist in uncoupling the equations for modal coordinates, qn,define

o0
(0

0(t) =) 0, q.(t) + O(t) (3.8%)

n=1

5 %



where, for the moment, this may be regarded as a definition of ©, However, when
Eq. (3.84) is used in conjunction with Eq. (3.83), noting also that SR Y
it is seen that

et ol 5P T 92 (3.85)

that is, it is just the 'rigid body' response and is identical with the © of
Sect. 3.3.1 as given by Eq.(3.73). Next, use Eq. (3.84) in Egs. (3.81) and
(3.82) to obtain

»E: &a; + wn2 qn}{ an(y) +\Gn}-+ 6-0 (3.86)
n=1
Z (Ein +g_wn2 qn)JL an(i’,) + Bn}+ ‘é =0 (3.87)

In view of the orthogonality and normality conditionsy, Egs. (3.52) and (3.63),
form the following combination:

1 o3 ‘ y
z O k[ [ﬁq,(3.86)] am(y)dy + g m [ﬁq.(3,87)] am(ﬂ) =9 (3.88)
o
that is, 24
( (1) 2 3 L)
)t 00 (4, ¢ v fq) 5,8 (3.89)
n=1
Then the conditions (gnm =ly 8.8 ¢ 1 # m) and (gnn = Uw3ﬂ) may be invoked to
complete the uncoupling (recall, again, that fm = Ig%&
e G N G (5.50
i RN owdb - g0 By '

This set of equations, along with Egs. (3.85) and (3.84) completeély specify
the systen, :

In order to arrive at transfer functions for the conventional block dia-
gram, Laplace-transfermed variables will be denoted by an overbar, Thus, from

Eq. (3.85),

o = g o
8. (2 8y (3.91)

and the other equations are combined to give
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00 2

5 £ skn =

9=6+<Z -—2————2>9 (3.92)
n=1 o +wn

where the dimensionless constants k. (n = 1,2,---) are referred to as 'modal gains'
n
and are calculated from

2
I8
kn = ———-—Tesn (3093)
ow J&-Izen %

An explicit form for k may be achieved by the substitution of Eq. (3.63a) into

Eq. (3.93) bu the resulting expression is rather lengthy (although still in
closed form)and therefore will not be reproduced. In terms of dimensionless
quantities, Eq. (3.93) is written

o

I2 n
k = — (3.94)
R ei

D

N %

in agreement with Ref., 1.

At first sight, it is not evident that these gains are always positive.
However they are shown to be so with the aid of the following inequality:

) 2 2
i N Ui
% 0'w3f0 {Otn(y)+9n}dy+-6mw{an(ﬂ)+9n} >0 (3.95)
Expanding,
i W et 8 (3.96)
But £ = o‘w3£, £ =18 , and 21, -I,, = I, so inequality becomes
o - 129121 > Igbei >0 (3.97)

which proves the positiveness of the denominator in Eq. (3.93).

The expansion corresponding to Eq. (3.92) is shown in Fig. 10 and the
first few gains, as given by Eq. (3.94) are plotted in Fig. 11, Small damping
terms can be included in the customary somewhat arbitrary fashion. (see also
Fig. 30).

In the 1limit as I, ~»#, en —+ 0 in such a way that fn =1 en is finite.

2b 2
At the other extreme, as Iy 0 5
6 3 * * DA%
-eT - E M (l + ZCOSNn o+ % cos wl’l ) (3.98)
n
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whencey asil. > @
2b _ *
2(1 .+ m*
i ( i o (3.99)
Jo m'(hcosw * 4+ cos wnv)
since the frequencies must satisfy Eq. (3.50), cosw ¥ T 0 for the higher modes.
Therefore, for these higher modes "
k 2@ ) (3.100)

4. ARRAY BENDING AND ROLL-YAW ATTITUDE

Following the description of the pitch motion, this section discusses
the analysis of array bending and its interaction with the spacecraft attitude
control, Under the assumptions of section 2, it was shown that bending inter-
acts only with the roll and yaw attitude, so that the pitch motion is uncoupled
and may be effectively taken to be zero. The roll and yaw motiens are, however,
strongly coupled due to the momentum wheel along the pitch axis. It will be
seen that this gyroscopic cecoupling adds: both complexity and interest to the
analysis of the natural as well as forced motion. The continuum mechanics
approach remains tractable in this situation because the geometrical simplicity
of the arrays is not affected. Here again as in Section 3, other formulations
may be used for the flexibility analysis without changing the underlying 1deas
of the development.

The organization of this section is intentionally similar to Section 3
so that both the similarities and the differences may be more readily appreciated.
The differential equations for the motion are derived first (Section 4.1). The
natural motion in the absence of external torques is discussed in Section 4.2,
Both the constrained and unconstrained varieties of natural modes are anal yzed.
Finally, the general array motion and its effect on the satellite attitude
motion are considered in section 4,3, Alternative developments are presented in
which the general motion is expanded in terms of the two types of modes, showing
the method by which these modes may be incorporated into an attitude control
system simulation.

4.1 Motion Equations

J The coordinate system used is shown in Fig. 12., together with some
basi¢ notation. The spacecraft attitude angles are roll (¢) and yaw (¥) respec-
tively. These must be considered simultaneously due to the coupling.induced by
the momentum wheel. The angular momentum vector of the wheel has magnitude h
and is nominally pointing along the negative y-direction. The boom centerline
deflection u now enters explicitly in the flexible appendage dynamics, unlike
the pitch case where the tension provided the only means of stiffness. In the
absence of twisting, the deflections of the panel are independent of the chord-
wise coordinate, and all p01hts at the same spanwise location y have the same
deflection, v. Thus

V(X,y:t) - V(yat) (L"']-)
Note that both u and v are taken relative to the undeflected boom centerline.

Thus if the entire spacecraft underwent rotation as a rigid body, u and v
would be zero,
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FIG. 12: Coordinate System for Roll-Yaw/Bending Motions



4.,1.1 Spacecraft Motion Equations

The roll and yaw motion of the spacecraft involves angular momentum
about all three coordinate axes, unlike the pitch case where only one axis need
be considered. The wheel angular momentum about the pitch axis comes into the
picture because, for example, even a small roll offset of the body causes a
gyroscopic reaction torque, due to the wheel, about the yaw axis and vice versa.
Another major difference from section 3 is that the moments of inertia are
no longer constant. This is because one part of the spacecraft (the array)
rotates relative to another, and unless the rotating part is axisymmetric, this
causes the moments of inertia about the roll and yaw axes - fixed in the non-
rotating main body - to change with time. The principal moments of inertia
and the principal axes themselves are also functions of time. Expressions for
the moments of inertia are derived in Appendix B. Here we note only that a
roll-yaw product of inertia exists due to the panel rotation.

Further simplification of the motion equations is made below by neg-
lecting terms arising due to the orbital motion of the spacecraft center of mass,
so that the coordinate system of Fig. 12 is taken to be fixed relative to
inertial space. This is justified because the natural frequencies of interest
are known to be much higher than the orbital rate. In the actual simulation
of the spacecraft motion, the terms omitted may be included as "external" i.e.,
forcing torques. This also applies to gravity-gradient torques and other
gravitational and environmental perturbations. Change in angular momentum due
solely to time variation of the moments of inertia is also ignored. It is of
the same order of magnitude as the gravity-gradient torques, if the array ro-
tation is continuous. For the case of array stepping considered in section 5,
rates of change of the inertia moments can be much greater than the continuous
case, for brief periods. The effect of this may again be included as an external
torque if significant for a particular satellite. AllL the terms omitted here
can be included in the analysis if need be, but in the discussion of this report,
these merely serve to complicate the details and perhaps to obscure significant
aspects of the motion.

Let gs be the spacecraft angular velocity vector; then for small roll

‘and yaw angles (taking pitch to be zero for convenience), the angular momentum
ER of the spacecraft considered as a rigid body is

L o P 0
VALl () U

where we have used the fact that for small angles,
7

ﬂs w (CB’ 0, 1/;) (4.3)

In addition to H,, there is an angular momentum due to the flexible deflections
of the panels and boom, denoted ﬁ?. For small deflections it can be simply

added to ER’ Now E? only consists of components along an axis lying in the plane

of the solar panels (no in-plane bending). If 7 be the angle between the panel
plane and the roll-pitch plane, we have
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me )

z L]
HE = 2;/ (b+y) (Pu + ow v)dy + 2m (b+b) u(4) (bok)

where

The factor of 2 results from the fact that two flexible appendages are invdlved; one
on each side of the main body. Here b is the distance from thée spacecraft center
of mass to the boom root. Note also that the net flexible angular moment would be
zero in the case of symmetric bending.

The spacecraft motion equation is now

E 447G

e A (4.5)

where 2 ’
i e i cosY
S o4 F Fpteont

AF
H= ER + E? z K.I33¢ + Il3¢ 2 HFSin7 i

Here T denotes the external torques acting on the spacecraft. In expanding (4.5),
the usual small-angle approximations are used, neglecting products of small
quantities. The roll and yaw component of the motion equations are thep

' (X

Ill @ + Ilé¢ + W + f cosY

. *
I3é¢ + Ilﬁp - W - fsiny =T o+ T (+0 b))

T .+ T (+w h@)*
cl el o (’4.6)

where T and T are control torques and Te

and T are external disturbance
G c3 e
torques, and

1 3

. 4 > e »e
£ = Hy = QJ[O (bty) (pu + ow V)dy + 2m(b+£4) u(4) : (4.7)

The pitch component of (4.5) simply gives h = constant because zero pitch torques,
are assumed in keeping with the assumption of pitch - roll/yaw uncoupling. As
mentioned above, small terms omitted in (4.6) may be modelled as part of the
external torques. ;

Equation (4.6) can be put into a particularly elegant form, which is
useful in the ensuing discussion, as follows. We multiply the first of (L.6)
by siny and the second by cos?, and add to obtain
siny) ¥ -n(Pcosy-Ysiny)

(Ills1n7 + I _cosy ) @ + (I33cos7 + I

16 13

=T, sioy + T3 cosY (4.8)

Now, multiply the first of (L.6) by-(I33cos7 + I..,sinY) and subtract from it

(Ills1n7 ¥

13

cosY) times the second equation, to get after some algebraic manipu-

1.3

lations,

¥ These coupling terms, due to the orbital rate w , are also present (though not
considered in the simple derivation here). They are important from an attitude
control standpoint but do not affect the present modal analysis (see Ref. 2).
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lasin?)‘”

(IllI33-Il32)650037-¥s1n7)+ h{(Illsiny + I

13c0s7)¢ - (I33cos7 + ;

2 e d ; 4 ,
+ , 4 “
#* f(133cos 7+ I einpy + 2I1331n7co§§) (133cos7 - Il3s1n7)Tl (Ills1n7 + 113cos7‘)T3
Now we define the following quantities:
O = Pcosy - ¥siny
€ = [(1.,siny + I _cosy)® + (I .cosy + I _siny)¥)/ Jri ) Gl f
11 13 33 13 11733043
i (I33cos7 - Il3s1n7)Tl-(11131n7 + I13cos7) T3
T 2
ek gt O
1 T151n7-+ T3cos7
63 X T, e .
i
2
P - i . ;
I - 2 s ) . ( °9)
I33cos 940 Ills1n»7 + 211381n7bos7
W o= h/’JI b
N 1Y 38013
The motion equations then become simply
kil & o
+ 4 s
i TR it ok (4.10)
€ -0 =B
N 3

The physical significance of the definitions (4.9) should be noted at this stage.
The angle O is the attitude angle of the spacecraft about the axis generated by
the intersection of the roll-yaw plane and the plane of the arrays. The angle €,
for a symmetrical satellite, (Il 5 13, 113 = 0) is the attitude angle about an

axis normal to the O -axis; in the general case it still has the dimensions of an
angle. The rigid nutation frequency w_ is the frequency of the rigid-body natural
coming motion. More will be said aboug this in section 4.2. Finally, 61 and 63

are the angular accelerations about the D and € axes respectively, due to external
(control as well as disturbance) torques. Again, for a symmetrical satellite
these axes have physically identifiable, being mutually orthoganl orientations, -
in, and nermal to, the plane of the arrays respectively. Note that flexibility
directly affects only the O equation because only out-of-plane bending is con-
sidered significant.

L.1.2 Flexible Appendage Motion Equations

Consider first the solar array blanket. The acceleration of a point
on the blanket can be written as

s R G (4.11)
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where v is the deflection normal to the plane of the blanket, Since stiffness is
provided only by the uniform spanwise tension, the blanket behaves essentially as
a string, and the motion equatien can then be written as:

pv" = oul¥ + (bty) D ] (4.12)

In the above, attention is drawn to the fact that v = v(y,t) as given in equation

(4.1).

The boom equation of motion is considered next. The acceleration of a .
point on the boom is given by (L4.1l) with v replaced by u, the boom deflection.
The bending moment at a section of the boom is

M = Bu" + Pu (4.13)

where slender-beam theory is used, and B is the uniform flexural stiffness of the
boom. Now the "inertial force" corresponding to (4.l11) is normal to the boom
axis, so that it is equal to the second derivative of the moment given by

(4.13). This gives

Bu' + Pu' = -p [T + (b+y) O] (4.14)

The appropriate boundary conditions for equations (4.12) and (L4.14) are
now considered, six are needed to completely specify the problem. Since the boom
is rigidly cantilevered at the root, and the blanket is also assumed to be
attached to the satellite at the same point, we have

w(0,8) =@ wu(0,t) =0 v(o,t) =0 (4.15)

Further, at the tip of the boom, there is no net bending moment, and the blanket
and boom deflections must be equal for continuity, hence

u'(£,8) =0 u( £,t) = v(4,t) (4.16)

One more boundary condition is needed, which follows from the notion equation
for the tip piece, to which the blanket and the boom are attached. We also note
that the spacecraft equations must be simultaneously satisfied; this places a
condition on the term O appearing in equations 4.12 and L4.1L.

4,1.3 Tip Piece Motion Equation

The tip piece in array bending does not undergo any 'rotatien, but only
a translation normal to the array plane, of its center of mass. The forces acting
on the tip piece arise from the boom shear and the normal components of the blanket
tension and the boom compression. The equation governing this translatory motion
is then

un|+ ! P! = 'u' + +£ .6. h. >
(B Pqu)lyJ m[ ly:z (b+ £) O ] (L.17)

where all the derivatives are evaluated at y = 2, that is, the physical location -
of the tip piece. Equation (4.17) essentially provides a boundary condition for
the flexible appendage equations.
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4.1.4 Summary of Motion Equations

The motion equations derived above will be referred to a great deal in
the sequel, therefore they are summarized below.

Spacecraft: b+ W € + % =ay (4.18)
€ - wN o) = 33 (h,l9)
=2 f (b+y) (PU +Qw V)dy + 2m(b+L) U(4) (4.20)

Here the transformations given by Eq. (4. 9) are used so as to simplify the
notation.

Blanket: Pv" = 0wV + (b+y)‘é] (4.21)
Boom: Bu""= Pu" = -p [U + (b+y).é} (4.22)
Tip Piece: (Bu"! + Pu'-Pv')| =n[¥ |+ (b+h) B) (L.23)
y: ﬂ y:ﬂ
Boundary
Conditions: u(0) = v(0) = u'(0) =
u(f) - v(£) =0, u'(£) =0 (b.2k)

Although for simulation purposes the spacecraft equations are better
dealt with in the original form (4.6), for completeness the inverse transformation
to (L4.9), relating roll and yaw angles to O and €, is also given below.

s I33cos7 + Il3s1n 7 gL j siny .
: J J (4 ,25)
disn 11131n7 o Il3cos7 bk 3 cosy .
J g
with \/ o
2
§ = VT -1,
o e
i i = 133cos 7 i 11151n ¥ it 2Il3s1n7cos7

Having derived the motion equations, we shall first look for and de-
termine the natural modes of vibration, and then show how to use them in space-
craft attitude control simulation.

4,2 Natural Motions

The equations (4.18-L4.24) define the spacecraft motion in roll-yaw/
bending . These are more complicatéd than in the pitch/twist case, but can
fortunately still be solved in closed form, although the solution still depends
on the numerical solution of a transcendental equation, and the algebra is more
complicated. We first investigate the natural motions, defined as those existing

in the absence of any external torques, that is, B,= BB = 0 in equations (4.18-
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4,19). The "constrained" and "unconstrained" cases are treated separately.

It is instructive first to consider the natural rigid-body motien,

i.e., that which exists with no flexibility and no external torques. Then
u= v = 0 and we have
0+ Lt £ s 0 .
ba . (L4.26)
€ il D e
W 0

The solution to these equations is of the form

)

Asin(th + 5)

€

Acos(th + 5)

where the constants A and P depend on the initial conditions. Thus both O and
€ are periodic functions of time, but out of phase by W/2 radians. This is the
rigid coning motion which exists due to the momentum wheel. It is in contrast
to the rigid rotation which was the rigid natural motion in the pitch case,
corresponding to the double zero root. In this motion the panels and the main
body are by definition assumed to move together as a single rigid body.. When
flexibility is introduced, this simple motion no longer describes the real
situation, as will be seen in section 4.2.2 on unconstrained modes.

L,2.1 Constrained Motions

We consider here the natural motions of the flexible appendages them-
selves, when there are no external torques and the main body is constrained not
to move, that is,

B(t) = &(E) = © (4.27)

Equation (4.27) now replaces the spacecraft equations of motion, and we are left
with the following:

Pv' = Ow vV
BU."" + Pu" = —Dﬁ ()4.28)
The applicable boundary conditions are
u(0) = u*'(0) = v(e) =0
u®) - v(£) =u'(4) =0 (4.29)

Bu''(£) + Pu'(4) - Pv'(4) = mu(4)

These define the solution for the panel and boom deflections completely. We note
that we have a system of linear constant-coefficient partial differential equations
which may be solved by separation of variables. Furthermore, the boundary con-
ditions are homogeneous, i.e., unforced, so that the solution exists only for
certain special cases, which are called the natural modes. It is known from the =
physical situation that the solution consists of harmonic oescillations with a

discrete set of frequencies called the natural frequencies. This can also be

shown more formally; however, we shall use the physical argument to seek solu-

tions of the following form:
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L)
‘2; ?n(y) cosﬂnt

u(Yat) i

ity (4.30)
v(y,t) = L Vv (y) cosft t

Xi=1e

Substituting (4.30) into equations (4.28) and (4.29) leads to the time-dependent
factor being divided out. We have as a result the following equations for U (y)
and Vn(y), involving the natural frequencies Qn defined implicitly by equation

(4.30). These equations describe motion in the n®® natural mode:

PV." + Ow 92v = 0
n n

n
(k.31)
BU" +PU" -pR°U =0
n n n n
with
Un(O) e M (0) = vn(o) =0
and o
(BU"' +PU' - BV '+ m@ Un)ly= 55 0
Uabhd 2 V) =0 (4.32)

u"(¢) =0

Equation (4.31) are now linear constant-coefficient ordinary differential equa-
tions. Using the standard techniques for such equations, it is straightforward
to show that the solution can be expressed as:

(=
]

alcosh ahy + a251nh any + blcoany = bzslnﬁny

n
Vn = aasinﬁny + a)cosk y
where
1/2

o = ((V P° + e 0 ® - p)/2B)

: 1/2
B, =i NPT 4+ LB ﬂn2 + P)/2B) /
s = NBwE 8 (4.33)

and a., b, etc are coefficients to be determined. The boundary conditions at

g el

y=0 are simple enough to be directly satisfied, leading to the elimination of
three unknown constants. We then have the following form, which obviously
satisfies the conditions at the root:
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(04
i ! . - __n £
U = al(cpshany coany) + a2(s1nh1ny B, s1any)
Vn = a351nnny (4.34)

The remaining coefficients are found by application of the three boundary con-
ditions at y = £, equations 4.32. The resulting simultaneous linear algebraic
equations are most conveniently expressed in matrix form: 3

Mc=0 (4.35)

where

T
c = (al,az,a3)

The elements of M are easily shown to be as given below. The rows of M are
arranged in the order implied by (4.32), and the colums in accordance with the
definition of c. Other arrangements of the matrix are possible, but of course
this will not affect the solution. In writing the elements of M, the subscripts
n will be omitted for the sake of compactness. Also, the symbols s =.gin,

.¢c = cos, sh = ginh, ch = cosh are used.

Hia B(aPstol - B3sBl) + P(ashod + Bspl ) + mR°(chab-cBh)
o B(o:3chod’, + B3c31’,) + P(achol + acpl ) + mﬂz(show-a/ﬁ sBl)

m13 = -P k ckd

m,, = chol-cBl

m,, = shab-0/B sBh (4.36)
m23 = -skf

m3l = a2cho£ 4 Becﬁﬂ
ngg = azshxﬂ + oBsBl

: =0
433

In order for a solution of the assumed form to exist, the matrix M
must be singular:

det M =0 (4.37)

This is a transcendental equation for @ in terms of the sheet and boom para-
meters, An infinite number of solutions exist, corresponding to a countably
infinite set of natural frequencies Qn’ for n = 1,2, etc. The infinitude exists
because of the periodicity of the sinusoidal terms. When M is singular, equa-

tion 4.35 may be solved for the coefficients a.l,a2 and a_ which are then suffi-

cient to give the shape functions U (y) and V_(y) via (4.34). Due to the
homogeneity of (4.35), the solutionis only determined to within an arbitrary
constant multiplier. The "eigenfunctions" or natural mode shapes are thus
nonunique unless normalized by imposing a subsidiary constraint. This will be
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done below., A unique solution of course exists when external terques of given
magnitude are present; this will be shown in sectien i, P

An orthogonality condition for the natural modes is now derived. This
involves, as expected, the blanket and boom mode shapes and the tip mass de-
flection and is expressed as

B, =0, m#mn (4.38)
where

L £
E =20 f U dy + 20w J; vV dy + 2m Um(ﬁ)Un(E) (4.39)

" o

The proof can be demonstrated from the expressions for U and V in Egs. 4.3k,
but it is easier to prove it from the differential equations and boundary condi-
tions directly. From (4.31) we obtain

L Y
mnin mn i "
B J; (UmUn -U U, )dy + P j; (UmUrl - U U )dy

L
pf (92UU -QgUU)dy
o n mn - m nmn
Y

g (an i sz)f U_U dy (L.koa)
2 |

Handling the equation for V similarly, we get
4 2 2
oo H_ 1" = o Q '-Q
PJ; (van vV, "ay w( e L ) A v,V ay (4.bob)
From the first of equations 4.32,
2 i i NN gl ' ) 1
{B(UmUn UU")-P(U U "-U U )+ PV Y VY ) } | b
=
2 2
= m( -0 :
m(® “-2 %) vy | (k.Lhoc)

The left hand side of (L4.L0a) is reduced as follows, using integration by parts,
and the other boundary conditions:

HH_ mn b, ll_ n
B jo M, R )dy + P J i (UmUn uu, )dy

L y/
s HI_ 1"y <8 1 "l_ l_ "
Bl(U U "-UU )| i L (Uiu "' -U_!-U " )ayl

1 1 ‘z E ! O
+2l(uu ' -vu ) -j;’ (Um'/Un/ﬁ;'Um')dy]
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={B(UU"'-UU"‘) +P(UU '-UU ')},
mn nm mn nm
=L

17, ; 2 .
_B[Uvann nyUmn) _f (UmHUM Umn)dy]
o} o
fo ABIU L™ U ™) (U U =1L U ) = (Qzﬂg) ﬂUUd (4.404)
goue mn nm mn _ nmn y=£"pn-momny .

Similarly, equation (4.40b) reduces as follows:

0
4 B(v 'V AV 'V ')a = (92 02 zVVd
o-o m oy S ey n-m)‘omny

y
e =P (VV '-V.V ')’ = crw(ng-ng)f V.V dy (4.40e)
mn nom n m mn
y=0 0

~P[V.V '-V V ')
mn nm

Adding equations (L4.4Oc,d,e) and using (L4.39) gives

2 2 —
o=% (@-a)%8

From which the orthogonality condition (4.38) follows.

The natural modes are now normalized using the following normalization
condition:

E = o] (4.b1)
nn
Note that the normalizing factor chosen here has the same dimensions but is
different from that in pitch, Eq. (3.31). This is purely a matter of convenience
and can be chosen at will. Now the mode shapes are rendered unique, because
Eq. (4.41) is in effect a subsidiary condition to be satisfied by the coefficients
3,1,3.2,53.3 occurring in the shape functions.

Numerical Results

Having completed the specification of the constrained frequencies and
mode shapes, we consider some numerical calculations of the former. In order to
reduce the number of variables involved, dimension analysis is useful. From
the equations of motion and the boundary conditions, we expect a functional
dependence of the following form:

nn = .Qn (p,oy,/&,P,B,m) (4.42)

The dimensionless groups formed by combinations of dimensional variables in
(4.42) are then related as

* X % * *
Qn=Qn(p,m,B) (4.43)
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where
0 % Q Jawﬂe/P

n n
px = Q/Uw
B* = PLZ/B

Asterisks are used to denote dimensionless quantities. The dependence (L4.,43) can
also be deduced directly from the motion equations and boundary conditions by
writing them in nondimensional terms. Using the groups defined above, the de-
pendence of the frequencies on relevant parameters will be presented. The nomi-
nal values used are m¥ = pP¥ = Q,2 and B¥ = 1,0, unless specified otherwise.

Figure 13 shows the first few frequencies £ * as a function of P*,
where only P* is varied, in the range (0 < Dfi 308y, » Similarly, the dependence
on m* is shown in Fig.l4, for (O < m< 1.4). In both these cases the frequencies
decrease, as expected, when a "mass" parameter is increased, for constant "stiff-
ness" parameters. :

The dependence of frequencies on B¥ is somewhat more complex, due to
the fact that, for a given compressive load P, the support boom buckles at
certain values of the flexural stiffness. Alternatively, a boom of given
stiffness buckles at certain values of the compressive load, the Euler critical
load. The analysis of the boom and sheet separately is given in Appendix C,
wherein it is shown that this condition exists when

WB¥ = nT, n = 1,2,... (4.Lk)

At these values, the lowest natural frequency is zero. Figure 15 shows the
variation of Qn* with NB¥, for (0 < NB* < 7.0), a range which includes the first
two buckling points. Note that the first and second natural frequencies res-
pectively go to zero at these points.

In interpreting this plot, it is instructive to compare it with the
natural frequencies of the sheet and the boom separately, i.e., in the absence
of one of the flexible elements. These expressions are derived in Apgjndix Cs
and are plotted in Fig. 16. The sheet frequencies are independent of B*,
while the boem frequencies show the buckling behaviour. Note that the boom
frequencies are nondimensionalized by the same factor as the sheet frequencies,
which is different from the more customary factor Vﬁzh/B which depends only on
the boom properties. The remarkable similarity of Figs. 15 and 16 is intuitively
plausible when one considers that the sheet and boom are two vibrating systems,
each with its unique characteristics which are only attached at one point.

Hence, qualitatively speaking, the combined system will have characteristics

of both the components. Physically, regions where the natural frequency curves
are "flat" correspond to a string-like behaviour, with the (dimensional)
frequency varying directly as the square root of the tension. This is the
dominant behaviour, which changes only in regions where the boom and sheet fre-
quencies are close together. For the numbers chosen, the sheet is much more
massive than the boem (P* = 0.2), and it may be expected that the situation
would be different for P* >> 1,

The completes the development of the constrained motions. More
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extensive numerical results could be included, for example mode shapes, and the
frequencies in dimensional terms. However for design purposes the unconstraineéd
frequencies and modes are more '"natural" and so these results will be presented
only for them, in the next section. The incorporation of the constrained modes
into an attitude control simulation will be shown after that, in section 4.3.1.

4,2.2 Unconstrained Motions

In the real situation, the spacecraft and the panels more together,
so that the constraint imposed in Section 4.2.1 is artificial. The spacecraft
taken as a whole clearly has "natural" motions of its own in the absence of
external torques, since it is essentially a flexible body with a rigid component,
the main body.

The equations of motion applicable here are the entire set (4.18-4.24),
to be sa@lved simultaneously. With zero external torques we have '
B+ Wi €+ % 0
(4.45)

é - Wy o) 0

together with equations 4.21-4.24 for the flexible appendages and the tip piece.
The second of (L4.45) can be integrated and substituted into the first to give

g'#*wNz 5 + % =0

(L.L6)

€ = Wy o)

Here an integration constant has been taken to be zero, since it does not affect
the natural frequencies or mode shapes. Now we can consider only the first
equation in (4.46) separately, because € does not enter explicitly into the
"flexible" equations. However, € is needed in order to calculate the roll and
yaw angles, at which time it is obtained directly by integrating the second of

(4.46).

Since the main body and the panels move together with the same frequency
(by definition), we are justified in seeking a solution of a form similar to (4.30):
(o]

u(y,t) =}: hn(y) cosw t
n=l

ity Z v_(y) com_t (4.46)
n=1

6(%) = 2 5, coswnt

n=1

Substituting these into Eq. (L4.L46) gives, for motion in the n®" natural mode:
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2 2
£ =08 (TaogTfu ) (b.b7)
where

: |
e - - L (b+y) (pu + owv )dy - 2m(b+g) u () (4.18)

Similarly, substituting (4.46) into the flexible appendage equations and boundary
conditions, (4.21-4.24) leads to cahcelling out of the time-dependent factors,
yielding the following set of equations for the shape functions un(y) and vn(y),

and the natural frequencies w .

Ry % om wnz[vn+ (b+y)6n } =0 (4.49)
BUnnn + P unn _wnz [un+ (b+y)6n} = @) (L;.50)
with
un(O) = un'(O) - vn(O) =0 (4.51)
and o
Bu "' + Pu '-Pv '+ m [(b+)6 +u ] | 30
y=£b
u () -v. (L) =0
E o (4.52)
un"(ﬂ) =0

One method of simultaneously solving (4.47-4.52) is to regard b eas a

known forcing term in (4,49-L4.51) and solve for the mode shapes, and then use the
boundary conditions (4.52) and the spacecraft motion equation (L4.47) tegether
to solve for the natural frequencies o and 65' Thus the spacecraft motion

equation may be thought of as an extra "boundary condition" giving & , when
solving the partial differential equations of the appendage motion. We have
already taken this approach earlier, when the tip piece motion equation was used
similarly.

Using standard techniques for constant coefficient linear ordinary
differential equations, it is straightforward to show that the solution to
(4.49-4.50) is of the form given below. Note that the terms involving § are
treated as forcing terms leading to a particular integral. -

Il

un(y) a,cosh @ y © =, + a,sinh oy + blcoany + b2s1any-(b+y)6n

v (¥)

a3sinnny + Bucosnny-(b+y) 5,

where

ol g



Q
]

1/2
(WP + 4pBa> - P)/2B) i
1/2
(P + 4oBu’ + P)/2B) ! (4.53)

™
]

K W Now/P !

and al,b etc. are constants to be determined. Applying the condition v(0) = O
to the f%nction Ya gives

8, = b 6n =0

SO
vh(y) = a3sinnny+ 6n(bcosnny-b-y) (4.54)

Similarly the conditions u(0) = 0, u'(0) = 0 give

+ - =
al bl b5n 0
ana2 + Bnb2 - 6n =0

Hence

an 61'1
by = -(a;-b8,), b, = - B <a2 5 E‘)
n n

Substituting these into the expression and rearranging gives

o} o
L s i ..n . il ST
uh(y) = (al an)(coshxny cosﬁny) + <%2 OE.)(Slnhxny en 51nﬁny)

-1 .
+ 6n(bcosh1nyuan s1nhany-b-y)

Since as yet a.,a, are entirely arbitrary constants, the above equation can equally
well be written in the form

(0
a g Wi .
un(y) % al(coshany-cosﬂny) + a2(s1nhany - E; 31any)
-1 . i
+ Bn(bcoshxnydun s1nh1ny-b-y) (4.55)

It is readily verified that this expression satisfies the boundary conditions at
the root, The remaining three boundary conditions (4.25) and the spacecraft
equation (4.47) together yield four linear algebraic equations to determine

the four remaining coefficients 6n,al,a2 and a3. This simultaneous equations

are most conveniently written in matrix form
Mg =0
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where
E=(6sa

a a)T
gl

the elements of M are found by carrying out the operations (1ntegrat10n, differen-
tiation etc.) involved in the remaining boundary conditions and grouping terms
miltiplying 6 , &,, &,, and ag separately, in that order. The expressions (L4.54)

and (4.55) for u and v are to be substituted in the equations below, obtained
from (’-L.h'?) and (4.52) but repeated for convenience:

I<]. ——-> B, + 2£ (b+y)(pu + oWV )dy + 2m(b+f) u (ﬂ) = 0
"'('@)+Pll (£)-Pv,'(£) + m [(b*ﬂ‘)ﬁ*fu(ﬂ)] ot
un(ﬂ) - vn(ﬂ) =0

=0

unn(z)

The elements of M, arranged by rows in the order implied by the above equatiens,
and by columns in the order dictated by the definition of c, are found to be as
given below., Again for compactness, the subscript 'n' will be omitted and the
abbreviations used in Eq. 4.36 are adopted.

my= I(l-mN Jw )—2m(b+£) + 2mb(b+f)chaf + 2m(b+f) L2 Ow
2
¥ 2cw[ 2 sk + 25 (ckh + kb skb-1)-(b%h + bAZ + % z3)J
K -
s g [bg s(l;aﬂ e rzz . aﬂchoag-shaz 0%+ o % 23)J
o
By em(b+4) (chol-cBL) + 2pb ( shof' .. spb
a
+2p[o¢€sha2;cha£+l_ cae+szsgz-1J
a B
m o = 2m(b+£)(sh046- = sBf) + 2pb [cw -2 4 Ot(l—cBZ)J
B a [32
; 2{%—-—’5—- - & (sBL-Lepl )J
1-ckf skl - khekl
= 2crwb< > + 20w (
T L s
P B(Otzbsml + azchow) + P(obshaf + chaf + kbskl)
ALY (bchof + o% shof )
m,, = B(cshof - B3sp) + Plasha £ + BsBL) + m(chod - cl)
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Biat= B(Osch0£ + aBzcﬁﬂ) + P(achof-ocpl) + mn2(3h0£ - q-sB!,)

23 B
m,), = -Px ckl
mg = behof + é shaf -bekd
m32 = chof - cBf
2 i
mag = shol) 3 sB 4 (4.56)
m3h = -skd
my = a®b chof + o shod
m,, = oPchat+ B° B
m g = a2 shaf + of sBl
muu = O

In order for a solution of the assumed form to exist, the matrix M
must be singular:

det M =0 (L.57)

This gives a transcendental equation for w in terms of the sheet, boom and space-
craft parameters, An infinite number of solutions exist, corresponding to a
countably infinite set of natural frequencies W, B = 1,2, etc. The infiinitude
arises from the periodicity of the sinusoidal térms. When M is singular, Eq.
(4.56) may be solved for © n? 810 8 83 and then the solution for the mode shapes

u (y) and v_(y)is given by Eqs. (4,55 and 4.54) respectively. Due to the homo-
genelty of (k. 56), the solution is arbitrary to the extent of a constant multic
plier. Thus the "eigenfunctions" or natural mode shapes are nonunique unless
normalized by a subsidiary constraint; this will be done below. A unique solu-
tion of course exists in the presence of external torques of given magnltude,
this is done in Section 4.3.2.

It is physically expected that the unconstrained frequencies should

tend to the constrained ones as the body inertia moments Ilb and I3b—>w. This
will now be demonstrated. Let Cij denote the cofactor of mij in the determi-

nantal equation (4.57), which may then be written as

m €y * moCip + mgChg + 0= 0

Inspection of the matrix elements in (4.56) shows that this may be written as
a2 4 ‘ 4
I(l4nN ﬁ»n )cll + (Terms independent of I, & I3b) =0
Now if the body inertias are increased while keeping other parameters constant,

I >, Rewriting the above equation and taking limits:
Terms independent of Ilb’ 3b _ 5

,I —)oo i
Ibl I(lwnN ﬁ»n )

lim

C
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We are left only with Cll= O as the characteristic equation, Now, comparing the

expressions for the constrained (Eq. 4.36) and the unconstrained (Eq. 4.56) matrix
elements, we find that C 1 is identical with the constrained determinants, since
the corresponding elemen%s are equal.

a’ d,J = 1,243 (u'59)

(mi,j)constrained= (mi+l,J+l)unconstraine

Hence the equivalence of frequencies as I — o follows., The mode shapes

lb’I3b
(and gains to be defined later) will also be identical inasmuch as 5, -0 as
the body inertia becomes infinite,

An orthogonality condition is now proved for the unconstrained mode
shapes. The form of the condition is complicated, as in the pitch case, by
having extra terms due to the spacecraft motion. In the present case it is
further complicated by the presence of the wheel momentum. The conditien may
be expressed as ;

. 2 2 2 2
gmn S ﬁnpn [14»N ﬁum - Wy ﬁ»n ]}, m f n (L4.60)
where, as before,
Y £
ﬁmn & 2pr, uu dy + QUWLE v v dy + 2m um(E) un(E) (4.61)

Equation (4.60) should be compared with the c orresponding condition (4.38) for
the constrained modes, where the right hand side was zero.

The proof of (L4.60) is similar to that of (4.38). Prom equation (4.50)
we obtain i

Y/ L Gl iy L
Bh[ (umun""-unum"")dy + P kﬂ (umgn"aunum")dy = p(wn W )LL uu dy
(0]
2 £ 2 £
+ olo, o, [ oryugy -0t o, [y ] (.628)
o )
Similarly, equation (4.49) gives
2 5 5 L
_P'f- (vmvn"-vnvm")dy =, dw(wn - G )j v, v, dy
o o)
2 £ 2 £
+ ow [wn ﬁnk[; (b+y)vmdy i) gl 6m;[o (b+y)vndy ] (hf62b)

From the first of equations (4.52) we get

29




-{—B(u w "M u ") SBuuiteu w ) +B(vev v v ')}1
m n n m mn nn mn nn il

(k.62¢)

2
=m (0 A Y uu + m(b+l)[w e TR 11
Rl m n noHimEs M Im ey
y=4
The left-hand sides of the above equations can be reduced exactly as in the con-
strained case, since the same boundary conditions still apply. Adding the re-

sulting equations, and recalling the definition of f , Eq. (4.48), yields

- 2 2 |
R O WO o G SRS [wn anfm ~ W 6m?n ] (L.624d)

Now using Eq. (4.47) for f and f and rearranging,
AT B Al e Rt
(wn ot 18 ) S Smﬁn[wn (l-wN /wm )-wm (l-wN /wn ) (4 .62e)

The term inside the square brackets on the right hand side of (4.62e) is reduced
as follows:

w . w 8 ¥
2 2 2 n m
[.]—(wn-wm)—wl\l <—2— Vg
w w
m n
w 2+ w g
g 2 2 & n m
_(wn —wm)[l- (.ON <—-§——§>
w w
m n
Hence (4.62e) finally becomes
w 5 w 2
SR s 2. 2 N N
(wn —wm) g..mn— i 6m5n(u)n —wm) [l - w—-z-— w—z-J (Ll-.63)
m n

When n # m, the "orthogonality condition" (4.60) follows. Note that the term
orthogonality is somewhat of an misnomer since usually orthogonality is associated
with an inner product being zero. The transformation of (4.63) to an inner
product type of expression is possible, like in the pitch case, as follows.

Let By N AReY] Dy (4.64)
¢ =+ (o4 B,
and A ' s P ~ A
lgmn = 2p\[0 u u dy + QNWL[; % A 2m um(Z)un(ﬂ)

Now, for example,
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m n
(0]

ﬂﬁ " £ y/ 5
2pb£ uowidy = 2pbf umundy o 2p6m§nL£ (b+y)“dy

Y Y/
+ 2p 6n L[\ (b+y)um§y +2p 0 ‘[‘ (b+y)undy
) ‘ ] J o

Similarly,
o L £
EUWL[; v v dy = 20w [\[; v v dy + 6n;£ (b+y)vm§yv+
L | >
Bmk[; (bty)v dy + Bnpgf;(b+y)dyJ (L.65b)

2m Gﬁ(ﬂ)ﬁ;(ﬂ) = 2m [unﬁﬁ)un(l) + 6n(b+£)um(ﬂ)+ 6m(b+ﬂ)un(£)+ 5m6n(b+2)2]
(L.65¢c)

Adding the previous three equations, using the definitions of f and f , and
defining " A

2
I, = 2f (b + ow)(ory)2 ay + om (beg)? (4.66)

o

we get the relation

A
R T W B Ou¥n +‘IA6mPn |
w 2 w ' I
i ’ o My N A
i o b A
R ik G
2 2 2 2

Rearranging this, finally we obtain
A

2 q
-1 bmpn(l-w 2/w - wN?/wn?) i I WION, (I—IA) 6,9, (L4.67)

Emn N m

Hence the orthogonality condition (4.63) can be written finally as a generalized
inner product:

T+ (T-1,) 8,5, =0, m#n (4.68)

Thus, in one sense, the mode ghapes xhich are orthogonal correspond to the total
boom and sheet "deflections" U_and v . Note the similarity of (4.68) to the

corresponding equation for pitgh/twis%, (3.62).

A normalization condition for the modes can now be given, One
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possibility is to take the expression (4.68) for m = n and set it equal to some posi-
tive inertia-like quantity. However, it is desirable to keep the nermalization the
same for constrained and unconstrained modes, to facilitate their use in analysis.
Hence we choose

L Y
2 2 2
Noiam 2 pL[ u dy + 2 UWL[; v ly, ¥ 2m w LB = 0w£3 (4.69)

o

By making all modes satisfy this condition, they are rendered unique. This fact
is useful when the general motion in response to external torques is considered. 4

The analysis of the unconstrained natural motions is now complete. The
actual motion will consist of a natural mode only for special initial conditions,
for instance, if the deflection at t = O is a natural mode shape, with no imitial
velocity. In general, an infinite series representation similar to the assumed
form (4.46) exists for a natural, i.e., unforced, motion. A unique solution can
only be determined for given initial conditions. Similarly, a unique solution
exists for given initial conditions and external torques. This will be developed
in section 4.3.2. Before concluding the present section we present some numerical
results. y

Numerical Examples

. Some illustrative numerical examples are now given. Dimension analysis
is again found useful in order to reduce the number of variables to be considered.
From the equations of motion and boundary conditions, we may expect a functional
dependence of the form X

w = w (ps ow,b, by P, m, T , wN) (4.70)

Here we have used the fact that o and w occur only as the product ow. The inertia
parameter I depends, for given boom and sheet properties on the body inertias

I,, end I, and the angle y (see Eq. 4.9 and Appendix B). The rigid nutation
frequency3wN is also specified by these three parameters, plus the angular momen-

tum he Since I

1b’ I p? 7 are inherently independent of the boom and sheet para-
meters, it is better to write (4.70) as
o Sy wn (p, ow,b ,baPsB>maI]Sb;'I3'"b’73ﬁ.\‘l\]) ()'*'7]-)

By forming appropriate dimensionless groups, a simplified functional dependence
is obtained:

wn* T wn* (p*s m*, b¥*, B¥, Ilb*’ I3b*’ wN*’ 7 ) ()4072)
where :
w¥* = w chﬂg/P
n n 4
p* =] p/g-w
B% = P ,@2/B
b* ="b/k
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Iy* = I,/ owt
v 3

I3b* = I3b/ owh

W = wN.JBWE2/P

These definitions are the same as for the constrained case, where applicable., The
following nominal values are chosen for the independent variables in (4.72) and
should be understood unless otherwise specified.

p*¥ = 0.2 m = Q.2 B* = 1.0

I

1l

1p* = 1.0 Ip¥=1.0 Y Fogk = 0.0 (1573)

The variation of w ¥ when p* varies in the range (0 < p* < 3.5) is
shown in Fig. 17, for the first few modes, similarly, Fig. 18 shows wn* when
m* varies in the range (0 < m* < 1l.4). In both cases the frequencies decrease
slowly as these "mass'" properties are increased. A similar effect exists when

the body moment of inertia is increased. Figure 19 shows the vgriation of wn*
for (0 < Ly < 7.0), with I3b* held constant at 1.0, and y = O, Here the

frequencies level off to a value corresponding to the constrained modes quite
rapidly, as I b? and therefore I, is increased. A comparison of Figs. 19 and

15 (for B* = l.O) shows this limiting behaviour clearly,

The effect on w_* of increasing ~B* is more complicated due to the
possibility of buckling of the support boom, just as in the constrained case.
Since buckling is essentially a static condition (w = 0), the critical load
is unaffected by allowing the main body to move, and we still have

‘\/B* = nTr, n = ].,2’ ..co (L“'?h)

The frequencies w * are shown, for (0 < NB* < 7.0), in Fig, 20, This range
includes the first two buckling points. Notice that the first two natural

frequencies go to zero respectively at these points. For a physical design, of
course, NB¥ would be below the first buckling load.

The angular momentum stored in the wheel introduces a unique parameter,
reflected in w. *, which is directly proportional to h if other quantities are
fixed. The variation of wn* with this parameter is shown in Fig. 21, in the

range (O S_wN* 5_7.0). For small wN*, the lowest natural freguency is very

close to, and asymptotes to, the rigid nutation frequency, but the two are
equal only when h = O, However, as h is increased, one of the higher natural
frequencies may be equal to w ¥. When this happens, a unique situation exists
in that both the flexible elements deflect, but the mode shapes are such that
the spacecraft motion is the same as it would be without flexibility, i.e., the
flexible motion does not exert any net torque on the main body. The frequencies
wn* are for the most part insensitive to wN*, except in a region that appears

to lie on an almost-straight curve passing through the origin, where an increase
in wnf takes place. The increase is expected as the gyroscopic "stiffness" is
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FREQUENCIES FOR OUT-0OF -PLANE. SHREWSYMMETRIC ARRAY BENDCING
INCLUDING EFFECT CF STCRED MOMENTUM AND SATELLITE MOTION

DIMENSIONLESS FREQUENCY

PR Sl
ettt S

i 1 -
L

2.0 4.0

DIMENSIONLESS NUTATION FREQUENCY OMGN

FIG., 21: Dependence of Unconstrained Frequencies on w



increased, although why it occurs only in a particular region and not more gradually
is not entirely clear. It may be verified that the frequencies in the limit wN*—ax
and I ¥ —o are the same, and are equal to the copstrained frequencies. The case

wN% — o 1s not physically realistic since it would cause strong in-plane forces
due to gyreoscopic coupling, thus invalidating a major assumption.

The variation of wn* with y is periodic with a period in y of 7 radians,

since I 1s periodic with this period, as may be readily verified. The amplitude

of this variation is imperceptible when Ilb = I3b' Hence, in Fig. 22 are plotted

mn* as a function of », for I =1, I3b* = 10, i.e., a highly non-symmetrical

%
1b ‘
main body. Even in this case only the first frequency is significantly affected.
However, this is not true for the modal gains - which are a measure of the torque
on the main body due to the flexible deflections - as will be seen later in
section 4.3.2,

For design purposes it is necessary to know the natural frequencies in
dimensional terms. To provide an appreciation of these, we consider some examples
in which some physical parameters, rather than dimensionless groups, are varied.
For this purpose, we choose

£ = 20,0 ft.
.005 slugs/ft° (4.75)
15 1b

ag

P

£

The values for p, m, B, I h and y are chosen in accordance with the

1b? I3b’
nominal dimensionless quantities (L4.73) chosen earlier, Note that in the plots
to follow, (L4.73) is satisfied only for these nominal values, not at all points
on the plots.

Figure 23 shows w as a function of o, for (0< o< ¢O7;slugs/ft2).
The other dimensional quantities are kept constant at their nominal values as

defined above, From the n?ndimensional variables it is seen that in regions where
wn* is constant, . oL 2. This behaviour is evident in Fig. 23, where the

frequencies decrease with increasing o.

The variation of w with L is shown in Fig. 24, for (0 < £ < 70 ft).
Here, df wn* were constant, we would expect a dependence b0y L=l. This is

seen for the shorter lengths in Fig., 2L4. We also see the first natural.frequency
going to zero at f = 62 ft, This is a consequence of the buckling condition
B¥ = 71 2, which becomes a condition on / for fixed P and B.

Figure 25 shows the variation of wn as the tension is varied in the

range (< P < 168.0 1bf). Again, for constant w *, we expect a dependence
W, ~ AP as the tension is varied, This is evident for low tensions and for the

higher frequencies. However, quite soon the first natural frequency reaches a
maximum and then gradually decreases until the first buckling load, near 146 1bf.

The three examples considered here are complementary to the dimensionless plots
where none of these parameters were varied. Other dimensional plots can easily
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be obtained, but will only reflect the dimensionless behaviour in greater detail.

The natural mode shapes are also of interest. It is not possible here
to give the varjiation of these with respect to individual parameters as exten-
sively as has been done for the frequencies, nor would it serve any useful purpose.
We therefore confine the presentation to particular interesting cases, correspond-
ing to selected points on the frequency plots. The shape plots presented need
some explanation. Each figure shows the body rotation 6n and the shape functions

u (y) and vn(y). The boom is shown as a thick line, the thin line representing
n

the sheet. The fact that the sheet seems to intersect the boom requires fuwther
explanation., For the CTS design, the sheet is offset by a distance sufficient
to prevent the possibility of contact. In some ether designs the sheet is split
along the middle lengthwise, allowing it to literally "go through" the boom.

On the plots however, the origin for u = O and v = O has been taken to be coin-
cident for convenience. The normalizafion condition used for these plots is
also slightly different:

R T %3 ol (4.76)
This is done to make the plots look reasonable, since otherwise they would be
difficult to visualize. The nominal parameter values are given in dimensional
terms by the dimensionless values in (L4.73), scaled to the values for £,c and P

in (4.75). Thus the shape plots are dimensional, not dimensionless, and the
characteristic length is £, the boom length. The same scale is used for "vertical"
and "horizontal" coordinate axes, so as not to distort the rotation angle of the
main body. On each plot , w , O and the gains kn (to be defined later) are
printed.

Figure 26 shows the first five modes corresponding to the nominal
parameters (4.73, 4.75). This is the general pattern of modes on most points
of the frequency plots presented. Roughly speaking, the number of half cycles
of the sheet function v_(y) corresponds to the mode number. The mode shapes
change only gradually wlen the frequencies change gradually, as with the mass
parameters, p*¥ and m¥, and the inertias Ilb*’ I3b* and y. Further results will

be presented on the variation with B¥* and wN*.

An interesting situation occurs when the support boom is close to
buckling. Figure 27 shows the first two modes at NB* = 3.1, just before buckling
occurs and the first frequency goes to zero. It is seen that the sheet undergoes
virtually no deflection in the first mode, in contrast to the usual situation
typified by the second mode.

On Fig. 20 showing the natural frequencies vs. Vﬁ*, there are some
points where two frequencies are very close to each other. The mode shapes
for two such cases are shown in Fig. 28, for the 5th and 6th modes at NB* = 2.35
and the 2nd and 3rd modes at ~B¥ = 3.40. It is observed that in both cases the
boom takes part in the motion to an unusual extent. This is understandable in
view of the fact that in both cases the frequencies are close to a boom natural
frequency (2nd in this case), as may be seen from Fig. 16 where the boom and
sheet frequencies are given,

Two natural frequencies are also observed to be very close together
on the plot of wn* VS wN*, Fig. 21. It is interesting to see what happens here

7k



W, =13.47 rad/sec k4 =0.000534

Wg =17.64 rad/sec ke =0.00311 34:0.50°

FIG. 26: Unconstrained Mode Shapes, Nominal Parameter Values



w,=0.32 rad/sec k, =1.45 3,:6.90°

W, = 5.26 rad/sec k,=0.00306 Og =0.49°

FIG, 27: Unconstrained Mode Shapes Near First Buckling Load,
NB* = 3.10



k,=0.0218
w, =17.27 rad/sec

k.=0.0226
W =18.35 rad/sec

FIG. 28a: Unconstrained Mode Shapes at NBx = 2.35, where w), = ws

k, = 0.0529
w, =9.08 rad/sec

ks; =0.0446
w; =9.71 rad/sec

FIG. 28b: Unconstrained Mode Shapes at NB* = 3.40, where w5 = w3



and to compare it with the cases presented above (Fig. 28). Figure 29 presents
two such mode shapes, for the 3rd and L4th modes at w,* = 4.2, and the 4th and
5th modes at w,* = 5.9. No unusual pattern is observed, in particular no large
boom deflections, presumably because the frequencies are not close to a boom
natural frequency.

This concludes the numerical examples pertinent to this section. Further
examples will be given after the attitude control implications of constrained and
unconstrained modes have been discussed, and the concept and analysis of 'gains'
introduced.

4,3 General Motion

The natural modes developed so far form a complete basis for the general
attitude motion which exists in response to external torques, that is, the general
motion can be expanded in terms of these modes. Following the outline of analysis
given in section 1.2 we now proceed to show how this may be done, using both con
strained and unconstrained modes. ;

4,.3.1 Expansion in Terms of Constrained Modes

The basic equations of motion which apply no longer have §(t) = 0, and
it is in fact desired to solve for the spacecraft attitude motion. Thus the
full set of equations and boundary conditions (4.18-4.24) apply. It is noted
that flexibility affects only one of the spacecraft equations, the'"®-equation"
4,18. We seek to expand the boom and sheet deflections in terms of U (y),

Mn(y) and the generalized "modal coordinates" Qn(t), to be determined below:

u(y,8) = ) ) (8)

e 2 (4.77)
v(v,t) = ) V) e (t)

n=1

from which it follows that (see Eq. L4.20)

©o

£(t) = Z F_GQ(t) (4.78)

n=1

with F_ defined similarly to Eq. (4.48):
L 4
P -2f (b+y)(pUn + ow Vn)dy - 2m(b+z)Un(z) (4.79)

n
(0}

Substitution into Eqs. 4.21 to 4.23 yields
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w,=9.10 rad/sec k,=0.255 ,=7.06°

w, =1018 rad/sec ks =0.803 85=925°

FIG. 29a: Unconstrained Mode Shapes for w * = 4.20, where w, = w

2 3

et //\\\\ & N T
</ \\\K/

w,=13.29 rad/sec k,=0.767 3, =1015°

W <1352 rad/sec kg =0.213 3, =6.01°

FIG. 29b: Unconstrained Mode Shapes for w * = 5.90, where w), Tw

N P



z PV." Q =ou [ZP v, Q. + (b+y) 5 J

Z (B Un"" + P Un”) Qg lz Unc.g,;1 + (b+y) g } (4.80) .

Z(B R e | =m [ZUméin | + (b+}3)'6'J

y=£ y=£

Here the range of summation (n = 1 to ) is impliéd.

The shape functions Uh and Vn satisfy the modal equations and boundary

conditions(4.31 and 4.32). Forming the sum of these for n = 1 to «» and subtract-
ing from (4.80) leads to the following equations:

) U (6 +ale) + (o) B

n=1

(L.81a)

Il
(@)

) W @, +ele) + (o) B

n=1

(L4.81b)

I
o

o0}
* 2 .0
+
Z u,(8) (e +a Q) + (b+4) 6
n=1
In view of the orthogonality condition (4.38), it is useful to form a Emn-type
expression from (4.81), i.e., perform

Y L
2 pj Um(u.81a)dy + 2crwf Vm(u.81b)dy +2m U . (£)(4.81c) =0
Y O

(o)

(4.81c)

]
o

using the definition afE%m(u.39), this gives
[>¢]
RN e T
mn ‘' n n n m
=1
since Emn = 0 for m # n and E%m1= cwﬂS, this gives the following equations for &

the generalized coordinates Qn:

AT T oIt Tl MR T (L4.82)
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The flexibility implications for the spacecraft main body motion are contained
in £(t), which is now completely specified.

For simulation purposes it is convenient to introduce Laplace trans-
formed quantities (denoted by an overbar) and arrange the motion equations in
block-diagram form, This yields, from Egs. 4.18 and 4.19,

i ’ © Knsh : :
56+wNS€- —2——2—5=Bl (4.83)
— s +Q
n=1 n
aE e 3R Ay

Where s is the Laplace transform variable, and the "modal gains" K are dimension-

n
less quantities defined as
2
Fn
K = —
» I cw£3
or, o
= 3
K = F ¥/I* (4.84)

where Rﬁ* = Fn/cw£3 is the dimensionless value of Fn.

A bound on the gains will now be demonstrated. From equations 4.81,
we form a Fn-type expression, i.e. perform

'
2 f (b+y)[p(k.8La)+ ou(4.81b)] dy + 2m(b+f)(4.81c) = O
(e]

This leads to

[+0]
e 2 v e
-ZFn (Q‘n . Qn Qn) % IA B8
n=1

where IA is the array moment of inertia defined as

L
By = 2(p + UW)k[‘ (b+y)2 dy + 2m(b+£)2 (4.85)
o

Now, using (4.82) and the definition of K. (4.86) can be re-written as

00

(-I;Z B 1) =0

n=1

.0
Since © is not zero in forced motion, we get
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z K. = IA/I (4.85b)

n=1

This relation is useful in checking the values of the gains obtained. Note that,
since the gains as defined by (L4.85) are always positive, we have an upper bound
on the Kn from this condition.

Sometimes it is more convenient to define new gains Kn' as
2 3
' = =
Kn A Kn Fn Jovd

The advantage of this is that Kn' depend only on the appendage properties, being

independent of satellite size. Of course the Kn‘ are no longer dimensionless.

A block diagram representation of the Laplace transformed equations
(4.83) is shown in Fig. 3l. A special notation is used to indicate the infinite
block corresponding to the sum in (4.83), this is explained in Fig. 30. It iscpossible
to ineludé a damping ratio { which is approximate and is vsuully small enough for
the modal representation to be valid. The block labelled "control system" is
assumed to produce correction torques Bl and 62 corresponding to attitude errors

in terms of & and €. Thus the transformations from (5,e) to the roll-yaw angles,
Eq. (4.25), and from the control torques (Tl’ T3) to the accelerations P, and 53,

Eq. (4.9), are assumed to be an intrinsic part of the control-system block., The
solution for © and € may be explicitly stated from Eq. (4.84) as

o
1
AN
n

n
+
28
n
1
112
l w
- =
o Bm
=1
Nean
~~
™
'—l
]
ml €
=
™
w
e’

(4.86)
(N
g 4+ .0
)

1 P
E==—2p 6)
52 3

The angles §,c were introduced mainly to simplify the motion equations
for the satel}ite center body. In a computer simulation of the attitude control
system such as the one given above, however, it may be more convenient to solve
for ¢ and y directly, using the original motion equations (4.6). In the Laplace
transformed form these can be written as

R e B - S = - .
SI]Jq_’+SIl3?//+hS¢-Z ey (¢ cy=ysy) ey = T,
n=1 ° i Qn
; (4.87)
o ai Te ) o g b &8 0 .
8 I33¢ e k@ -k S¢'+§Z ;g:-g—g (Pey-ysy)sy = I3
n=1 n

The block-diagram representation of (4.87) is shown in Fig. 32. It is more
complicated than Fig. 13, but is more realistic since an actual control system
would operate directly in terms of the roll and yaw angles.
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Numerical Examples

The dependence of gains on the dimensionless parameters p*, m* and B¥
is presented here for the example considered earlier for the frequencies. The
nominal values were taken as

p* = m* = 0.2, WB* = 1,0

Pigure 33 shows the gains when p* is varied in the range (0 < p* < 3.5). Simi-
larly, Fig. 34 shows the effect of varying m¥, in the range (0 < m* < 1.4). 1In
both cases the effect is a gradual change in K . Notice the use of a logarithmic
scale for the gains, so that very small values fall outside the scale range apd
are not shown. '

The situation is more complicated when B* is varied. Figure 35 shows
what happens when nB* takes on values in the range (0 < #/B* < 7.0). When a
buckling load is reached (zero frequency) the corresponding modes cease to exist,
which accounts for the sudden end of the first two gain curves. At some other
points it is noted that some gains to to zero, outside the scale range. At these
points the mode shapes are such as to produce zero net torque about the center of
mass, i.e., Fm = 0.

This completes the expansion of the general spacecraft motion in terms
of constrained modes. Next, we examine the expansion in terms of unconstrained
modes .

4,3.2 Expansion in Terms of Unconstrained Modes

The general motion of the spacecraft in the presence of external torques
can also be expanded using the unconstrained modes as the basis. We introduce
the generalized "modal coordinates" qn(t) and seek a solution of the form

©0

Y u) aye)
vl (4.88)

0

z v (¥)  q, (%)

n=1

u(y,t)

v(y,t)

Since in the unconstrained modes the body was allowed to move, the
body motion can also be expanded in terms of the same generalized coordinates.
However, the modes are relevant only in the presence of flexibility. Hence it is
useful to explicitly separate the "rigid" and "flexible" parts of the net
attitude motion, the former being defined as the components that exist when
the flexibility contribution is set to zero. Thus we have

8=A+ 0 €=E+e; (4.89)
where by definition, A and E satisfy
R R (4.90)
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The subscript "f" denotes the "flexible" part, which satisfies the equations:

6f + wN

+ £/I =0

€p

AL R Hah e

as may be shown by substituting (4.90) and (4.89) into the spacecraft motion equa-
tions (4.18-L4.19). Note that these equations are the same as those for the un-
forced case, Eq.(4.45). Integrating the second equation in (4.91) and substituting
into the first gives

2 2
Bp * Wy 6f+f/I=O
€p = Wy Op (L4.92)
Now we introduce the expansions
o0 o
By = Z o, W (t), aep = z e, 4,(¢) (4.93)
n‘=].‘ n:l

The objective of the following development is to relate 6f and ef, via the
generalized coordinates qn(t), to the "rigid" responses A and E, which are known

from a solution of equations (4.90). It should be noted that the steps thus far
can also be taken directly in terms of the roll and yaw angle (Q,y), but we have
used (6,e) to keep the algebraic manipulations simple.

A consequence of the substitutions (4,88,4.93) is

0

£(t) = -Z £ 9 (4.94)
n=1
where, it may be recalled (Eq‘. 4,48) that

L
g EL[; (b+y)(pun+ cwvn)dy - 2m(b+2)un(z) (L.48)
We also repeat for convenience the relation

e
L Sn(lqug/wn ) (4.47)

which formed an integral part of the development of "natural" unconstrained
motions.

When the expressions (4.88), (4.89) and (4.93) are substituted into 2
the appendage equations of motion (4.21-4.23), the following equations result:
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o]

Zl By e =iow [21 (v + (b+¥)8 ) 'q'n + (b+y)A ]

C
o0 ©o

), @ r e = p | ) (ar e)e) &+ (o) B ]

n=1 n=1

21{(Bun'"+ Pun'-Pyn') |y=z } q =m [nzl(un(i)+ (0+£)5) <'1.n+ (b+£)A J

The mode shape functions u (y) and v _(y) satisfy the differential equations and
boundary conditions (h.k9—ﬁ.52) derived earlier, Taking Egs. (4.49), (4.50) and
the first of (4.52) respectively, summing for n = 1 to o, and subtracting the
result from equations (4.95) in the same order, yields

) Lrg(w) + oo, 1(E, + 0,2 ) + (bry) B = 0 (4.963)
n=1
) Tug(v) + (o8 1(G, + wa) + (o) &= 0 (4.960)
n=1
) D8 + (oe£)8,1(&, + 0, %a) + (o+8)E = 0 (4.96¢)
n=1

In view of the orthonality condition (4.63) derived earlier, we forma = -
; : . mn
type expression from (L4.96), i.e., perform the operation

) L
2 UY[‘ (4.96a) Vm(y)dy + 2p\[\(h.96b)um(y)dy f‘2m(h.96c)um(£)= 0

(o]

Using the definitions of & ., (4.61) and £ (4.48), the resulting expression
can be compactly written as
©op
| LA 'z 2 L
(- £,0) (qtwa)=£ A (4.97)
n=l

We now wish to uncouple this infinite system of equations into separate equations
governing the generalized coordinates. Using the orthogonality condition (L4.63)
and the relation (4.47) between £ and 8 , we get
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3 2 A
owp” - I B (l-wNi/wm )
2 2

o AR

£ e 2
N A e I&m§n(1 - — --——5—) - Iaman(l-wN /wm )

E‘Tﬂ;

o

BO"
1

2

w W
m n

2
= 156, (w¥F/ w ), m#n

The normalization E,
% mm
written

[crw,Z3 - 16m2(l-wN2/ me)] (Eim 2 wmgqm)

00
2 2y oo 2 At 2 g
i “N 5m§2 (bn/wn )(qn i “n qn) g 6m(l-wN'/wm )
n=1

n#m

In order to uncouple the equations still further, we must get rid of the infinite
sum in (4.99). This can be accomplished as follows. We substitute the expansions

(4.98)

Uw£3 has also been used here. Hence Eq. (4.97) may be

(4.99)

(4.93) and (L4.94) into the first of the "flexible" equations (4.92), to get

When the relation (4.47) is inserted in (4.100), it gives

0
2 Bitis o Tioly
o ) @ fu)E, +ula,) = 0
n=1 |

Thus the infinite sum in (4.99) becomes simply

(2]
e e 2, (e 2 Oy @ plHy e 2
I “n 6m E: (6n/wn )(qn+ “n qn) o | (6m /wm )(qm+ “m qm)

n=1
n#m

Using this relation finally leads to an uncoupled form for (4.99):

ve 2
qm+ W e = rnlA s s M =1 Ly o ok 100

where
B D
I 6m(¥ e/ 1)

2 e 2
cwﬂ3-I 5, (l-EwN & W )
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(4.103)



The complete solution for § and e is obtained when Egs. (4.90) and (4.102) are
solved simultaneously for A, E and the generalized coordinates q (t). It is
convenient to express this solution in Laplace transformed form.” From Eq.(ke202)

2
8

- W n .
qn e g A (LF.].O)-I-)
Sk wn

To obtain\éf, we have two alternate formulations:

(i) One is directly obtained from (4.93):

e s?k y
b, = Z — A (4.105)
s + w
n=1 n

where
2 2 2
'8, (L - wy/ w")

(4.106)
2 2
owg- I 5, (l-QwN./wn2)

(ii) Another approach is to use the "flexible" motion equation (4.92), with the
expansion (4,94) for f(t). From equation (4,92) we have

6f = - (2;-2-> F/1 (4.107)
s tw
N
Now from (4.94) and (4.47) we have

(2]

s 2. 2 2

¥ - }: £ X 6n(l-wN./wn ) } s q,
n=1

combining this relation with (4.107) we obtain

= 52 = 2 ’2 -
bp = < '2——§>z 6n(l"wN /wn y 9,

SRl Gl

Now we insert equation (L4.104) for an to give

& o - §° k ' :
o (T_2> Z g Che
[ Ji wN n=1 i) wn
where 2
I @ng (L - wN?/wng)
ke (4,109)

owz3-1 6n2( l-2wN2/wn2)
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is directly available

Once & is known by either of the above formulations, €
from (4.92):

£

- i N -
§.q 10 (u,llo)
The roll and yaw angles @ and ¢ can be obtained as before by transforming § and -
€, via Eq. (4.29).
With an appropriate definition for the gains, fhe expressions (4.108) .

and (4.105) only differ in the presence of the factor (s/(s2+ wN?)) in the former.

While formulation (i) is thus simpler to simulate, formulation (ii) has the
property that all the gains are positive. This may be proved as follows. We start
with the inequality

) Y/
B UWL .[vn+ (b+y) 5n]2dy % 2Ql:_ [un + (b+y) 6n ]2 dy
+ 2m[u (£) + (b+£’,)6m]2 >0

Expanding the terms in the brackets and recognizing the familiar terms Eﬁn and
fn’ we obtain

2
= -
Hop ~ 2 €, Gt T 0RE 29 (4.111)

where IA is the array moment ‘of inertia, as previously defined:

4 2 2
I, = 2+ o) [ (om)® ay + 2m(out) (4.95)

Now, IA6n2 is transposed to the other side of (4.111), and the term I 6n!2 added
to both sides. Inserting then the relation (4.47) between f and § yields

2 2 2
cw!,3 wE B (l—2wN2/wn ) > (I-IA) &, (k.112)

Since I > I, for any finite center body, the denominator of the gain expression

(4.109) is always positive. The numerator is a square, hence it follows that
k > 0 alvays. From (4.112) we also obtain an upper bound on kn, so that

2
I(l-ng/wne)
8 <k i ey (4.113)
T i e ’
A
A property of the unconstrained gains of the first kind, k ', will now -

be proved, corresponding to the sum of the "constrained" gains K innEq.(h.88).
To do this we go back to the equations (4.96) and form from them a f -type
expression, i.e., perform the operation

9k



'
2f (b+y)[ow(k.968)+ p(4.96b)]dy + 2m(b+8) (h.96c) = O
o
This leads to

L=}

op 2 R £l
) (£, + 1,8, +ufa) + T, =0 (4.118)
n=1

where again I, is the array moment of inertia. Substituting for fn in terms of
I ang 6n and %earranging, we obtain

o ©
ss 2 2 Piilen 2 i

Zﬁn(-l + DYE F 67 )+ T Wy Z (6n/wn )@+ w ) = -1, & (4.115)

n=1 n=1 ;

The second term vanishes by virtue of (4.10l1). Using the modal equations (L4.102)
and the definition of k ' in (4.106) reduces (L4.115) to

0
z ko (IA-I) A= —IAA
n=1
Since A # O in general, we must have
0
I
el A
Z Bt T i (4.116)
n=1

Thus although the k ' may be both positive and negative, they form a convergent
sequence., Another identity concerning the k ' follows from (4.101). First we
combine Egs. (4.104) and (4,106) to give

e 2 3¢ '!'
(6,0 0" ) Bk 4

substituting this relation into (4.101) and recognizing that A # 0 in general,
we obtain

00 k '

z n2 =0 (4.117)
ALY

n=1 n

All kn' are not positive, but we note that, since the denominator of (4.106) is
always positive,

; b T Al
‘s1gn(kn ). = sdgall Wy /wn )

Thus kn' < O only if the corresponding natural frequency is less than the rigid
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body nutation frequency. For CIS, this is true only of the first frequency.
The remaining k ' are in fact almost identical to k 2 3 in view of the fact that,

from (4.106) and (4.109),

& 2, 2y o
. (1 Wy o, )kn

and wN << w, for CTS.

A simulation block diagram in terms of © and € is drawn in Fig. 36, &
corresponding to gains of the second kind. The block dlagram corrgspondlng‘to
the first kind k ' will be identical, except that the (s2/s2 + Wy ) block
will be absent. As in the constrained case, the control sydtem block is assumed

to contain the transformations necessary from (8,g) to (@,w) and from the centrol
and environmental torques (Tl,$3) to the accelerations (61,63), in the interests

of simplicity, Figure 36 should be compared with the corresponding diagram for
the constrained case, Fig. 31. The damping ratio ¢ may be heuristiecally!
inserted as before., The solution for © and € can be explicitly written as

;é'f;g{“ (Sw >Z swl(éf?ﬂ "3

(L4.118)

These expressions correspond to Eq. (4.86) for the constrained case. When

wy= 0 (no stored momentum), there is no coupling between § and €. Under these
circumstances, equations (4.86) and (P.llS) yield respectively

) 2 -1

s kn 4
<l _z 52+ Q 2 > Bl
n=1 n
L s2kn ;.
<1-+§: —;5:7:3§> By
n=1 n

Note also that in this case the distinction between kn' and kn disappears. ‘
Thus when Wy = 0, the following relation between the constrained and unconstrained
frequencies and gains exists:

6§ B)6S any- -

We now present a more useful but entirely equivalent block diagram
representation, explicitly in terms of the roll and yaw angles ¢ and 9 respectively.

(4.119)

For this purpose the following relations are defined, analogous to the (5,e) case
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¢;¢+¢f, w;‘l’+¢f (k.121)

where ® and ¥ are the "rigid" parts and satisfy, by definition, the equations

Tl g o L : .
Whed B gl (4.122)
133‘1’+Il3<1>- h§D=T3

and ¢f and.zpf are transformations of 6f and €os using the relations (4.25). We
also note that

A=® cosy - ¥ siny (4.123)
Enough information is now available to draw the block diagram shown in Fig. 37.
The transformation (4.25) is explicitly indicated. Figure 37 should be compared

with Fig. 32 for the constrained case; the increased complexity is evident,

Numerical Examples

For the example considered earlier for the frequencies, the dependence
of the gains on various parameters is now presented. Since the gains are dimen-
sionless, their dependence on the dimensionless groups presented in Eq. (L4.72)
is of the same form as wn*

kn = kn ( p*, m*, B*’b-)stigs I3b*s wN*’ 7) ()4.].2)4)

The nominal values chosen are repeated here for convenience:

p* = 0.2 m* = 0,2 B* = 1.0 b* = 0.1

*: *
Ilb 1.0 I3b

1.0 7 = w* = 0,0 | (4.73)

Since the neminal value of is taken to be zero, the two kinds of gains k j
and k are identical for this example, except when wN* is varied.

The variation of kn when p* varies in the range (0 < p*< 3.5) is shown

in Fig. 38, for the first few modes. Similarly, Fig. 39 shows k_Vvs. m¥, when m¥

varies in the range (0 <m* < 1.4). Note that the gains are plotfed on a logari-

thmic scale, and values which fall outside the scale range are 31mply omitted.

In both these plots the gains change only gradually as the "mass'" properties

are varied., . However, no consistent direction of change is apparent, unlike the

frequency plots. A gradual change is also present when Ilb* is varied, in the .

range (0 < Ilb* 5_7.0), with I3b* held constant at 1.0, and y = 0°. This is shown
in Fig. LoO.

The effect of varying B* is more complex, mainly because of the possi-
bility of buckling. Figure L1 shows the results when it is varied in the range
(0 < NB* < Ts 0), which is large enough to contain the first two buckling points.
Recall that at each of these points one natural frequency goes to zero, and
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effectively the corresponding mode ceases to exist. This accounts for the abrupt
end of two curves. It is also found that at some values of NB* the gains steeply
plunge towards zero, and are in fact zero at isolated points. This occurs when

there is no net torque acting on the body due to the flexible appendages, so that

5 = 0.
n

The angular momentum stored in the wheel is refelcted in the parameter
w,. ¥, which is directly proportional to h if other quantities are fixed. In this
case, when wN_% 0, a distinction must be made between kn' and k . The gains

plotted in Fig. 42, when w ¥ varies in the range (O < wg* 5_7.0?, are the lattet.

The plots for kn' would not offer much additional insight and are not presented.

It is seen in Fig. 42 that the gains sometimes plunge to zero. From the definition
of k_, Eq.(4.109), it is seen that this indeed happens when w, = w , i.e., natural
freqguency is equal to the rigid-body nutation frequency. Note thag the first
frequency Wy is never equal to Wys but higher frequencies may be, as seen in

Fig. 21. This is consistent with the fact that k., is zero only in the limiting

case wN* — 0. It should be mentioned that if kh were plotted, they would be

found to change sign after passing through zero, negative values being generated
when Wi > W, °

The variation of kn with y is periodic with a period in y of 7 radians,
like the frequencies wn*. This is because I has this period. Figure 43 shows the
variation when y is varied in the range (0 e Ay 3500)° For this particular example
the values I b* ="1.0, I b* = 10,0 were used. Note that all the gains are affected,
in contrast %o Fig. 22 wéere only the first frequency was significantly affected,
and the amplitude is relatively higher.

Some frequency plots were also presented when individual (dimensional)
physical parameters were varied, in particular o, {/ and P, The variation of
gains corresponding to these examples are presented in Figs. W (0 < o< 0T
slugs/ftg), 45(0< £ < 70 f£t.) and 46 (0 < P < 168.0 1b.) respectively. The gains
are of course still dimensionless. No definite pattern in the variation of the k
is apparent from these plots. s

Some further mode shape plots are suggested by the gain plots presented
here. In particular the mode shapes when the corresponding gain is zero may be
of some interest. There are essentially two situations where a gain becomes zero.
The first is when a natural frequency is equal to the rigid-body nutation frequency.
Figure 47 shows the mode shapes when k_, k, and k) , respectively, are nearly zero
due to this cause. It is observed tha% thé body angle tends to be quite small but
nonzero, Otherwise no extraordinary feature is apparent.

As mentioned earlier, zero gains also are found on the kp Vs. NB* plot
(Fig. 41). For example, k) goes to zero three times in the range of NB* considered.

The mode shapes corresponding to the first two of these points are shown in

Fig. 48. 'Here, small gains are zero only if §_ = O. The blanket and boom de- e
flections appear normal, except of course that they must balance so as to produce

zero net torque on the center body.

This brings the discussion of the roll-yaw attitude dynamics and its
interaction with array bending to a close. The distinguishing feature from the
pitch case is the coupling between two axes introduced by the momegtum wheel.
However, the flexibility is such as to affect one axis only. The general methods
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used here are applicable equally but the details will differ from application to
application,

5. SOME EXTENSIONS

The methods of analysis for a flexible satellite discussed above have
been applied to a simple geometrical configuration. However, these methods are
applicable to a much wider class of configurations. In particular, the continuum
mechanics approach can be extended in several respects, to take account of changes
in geometry, different boundary conditions, articulation of components etc. Some
of these will be illustrated in the present sectioen.

5.1 Unequal Boom and Array Length

The assumption of equal boom and array lengths is not quite true, as
may be seen from Fig. 4. While both the elements-—end at, and are attached to,
the tip piece, the blanket does not start until some distance along the boom;in
fact for CTS the "boom" actually extends slightly inwards into the center body.
We take the origin (y = 0) at the body surface,then if d be the distance from
y =0 to the array root, we have

v (X3Yst) =0, < yad (5.1)
Let the length of the boom be denoted £; the blanket length is then(£-d). Since
the boom does not contribute to the twisting stiffness, the only effect in twist/
pitch is to change the numerical value for 'f' to be used while calculating the
dimensional frequencies. The dimensionless plots presented are unchanged. Of
course, while calculating gains the condition (5.1) must be accounted for.

The roll-yaw/bending case is affected more substantially, for a new
dimensionless parameter (d* = d/ﬂ) is introduced. Considering the constrained
case first, the motion equations (4.28) are unchanged, except that (5.1) must be
used while calculating f. The boundary conditions (L4.29) are also unchanged
except that we now have

v(d) = 0 ‘ (5.2)

This in turn means that the mode shapes Uh(y) in (4.33) are affected; these must
now satisfy (5.2) instead of v(0) = 0. By analogy with the previous solution
(4.34), we can write the solution as

Vy(y) = agsink (y-d), y > d (5.3)

It is readily verified that this satisfies the array root condition. For y < d,
V_ is zero by definition. With (4.34) replaced by (5.3), the analysis proceeds
as before, leading to the following changes in the matrix elements (4.36):

m 5 = -Pk cosk(£-d)
mys = -sink (£-d) (5.4)

The frequencies are found as usual. The orthegonality condition and the normali-
zation adopted earlier are still applicable, because the array contributes zero to
the integrals for y < d. Hence the gains can be found as before and have the same
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properties, with the array inertia I

A being appropriately re-defined as

I, = gp,f (b+y)“dy + 2crwf (b+y) “dy + 2m(b+4) {5.5)
o d

The simulation block diagrams are of course unchanged. We do not present any
numerical results here because for most applications d is quite small.

The unconstrained case is treated similarly. The governing differential
equation (4.49) is unchanged as are the boundary conditions at y = . It is
readily verified that the following solution satisfies (L4.49) and the array root
condition:

vn(y) = a3sinnn(y-d) + [(b+d)cosnn(y-d)-(b+y)] 5, (5.6)

This form becomes identical to the earlier expression (L4.54) when d = 0. Insert-
ing the above expression, the analysis proceeds as before, leading to some changes
in the matrix elements (4.56). In making these changes, it must be remembered
that (5.6) is only applicable for y > d, Yo being zero by definition, for y < d.
The modified elements are given below.

shal
(@4

By = I(l-wN2/w2) -2m(b+14)2 +2ab(b+4) chal + 2m(b+4)

+ zcw[Pﬁgiél sk (8-a) + 2= (cx(-d) + kb s(4-d) -1)

K

%( £3-33)-b(£2-d%)-b3(4-0) ]

o a 3

A [bz swof |, shol | ohehod-shol
o

- (8°8 + b+ % £3)}

‘zw { b+d - (b+l ek (£-4) 1—2 g (z'd)}

P K i
m,), = =Prck (£-4) (5.7)
mgy), = -sk (£-d)

The frequencies are found as usual. Again, the orthogonality and
normalization conditions and the gains are still applicable, and the simulation
block diagrams and the gain identities derived earlier are unchanged.

5.2 Boom Root Flexibility

The support boom was assumed to be rigidly cantilevered at the root.
In reality it has some flexibility in bending which can be modelled at a coil
spring at the root, obeying the condition

B u"(0) = k u'(0) (5.8)
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Here k is a spring constant, not to be confused with the constrained gains k .
Thus (5.8) replaces the condition u'(0) = 0, and the remaining boundary conditions
and motion equations are unchanged.  This changes the boom mode shapes, whereas
the unequal length case affected chiefly the array modes. Again, pitch is not
affected by root flexibility because the boom does not contribute to the twisting
stiffness.

In this subsection, we shall assume equal boom and array lengths for
simplicity, as before. Consider the constrained case first. The general solu-
tion is

Un(y) =achay+ashay+ b,cB ¥ + bysB Y

Applying Uh(o) = 0 and (5.8) respectively to this gives

2 2
B (a8~ B, bl; D¢ k(znaz *+ By
B(@,= + B %) o

) B B = == 8 (5-9)
1 1 2 k Bn 1 Bn 2

Hence the solution in (4.34) is replaced by

a

_ - i)
U, = &, (cha y-cB y)+ a (shx y 5. spy) +paspy
where
2
Bla,” +B,°)
p = (5.10)
kB,

Thus an additional term appears due to root flexibility, which goes to zero as
the stiffness k —» , as expected. This additional .term leads to the following
additions to the matrix elements given in (4.36):

Amll = p(-352c5£ + PBcpL + mﬂgsﬁﬂ)
Am,. = p sBb (5.11)
Am3l =10 ﬁzsﬁﬁ

The remaining analysis proceeds as before. The orthogonality condition (L4.38-
4.39) still holds; although this is not obvious since one of the boundary con-
ditions is different, it may be shown following the lines suggested in Section
4. The gains and their properties, as well as the simulation block diagrams
remain unchanged. A new parameter, k, is now introduced - numerical examples

showing its effect on frequencies and gains will be given for the unconstrained
case only.
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For the unconstrained modes, the general solution is

un(y) = alchany + a shy y + bchny + bgsﬁny = (b+y)6n
Applying the conditions at the root giyves

& +.b =bd =0
1 2 n

2 B 3
B(ocn a,-B, bl) = k (ana2 +B.b,- 6n) (5.12)
an 6n n
b, . -(al-b6n), A E; (a2- a; ) + PR, i 6n

where p is defined as in (5.10). Incorporating these conditions into the solution
and redefining the arbitrary constants as done in Section 4 enables the solutien
to be written as

04
n

un(y) = al(chany-cﬁny)+ az(shany - -tz sB_Y)

-1
+ 6n(bchany -a

ko y-b-y) (5.13)
BO‘n
x PaESBny i D ® 6nShany
The terms at the end are extra terms arising from the root flexibility, and
vanish as the stiffness k — o, as expected, carrying these extra terms into the
analysis as before leads to the following additions to the matrix elements
given in (4.56):

Am | = E—b o [‘2m(b+ L)shad + ng{-b . S;M + (b+z)chal,}J

Am ., = p [2m(b+1,)show +v§—° b + S;ﬁ - (b+£) caﬂ}J

Amzl‘ = 2 o (so°cnot + P chod + m” shot )

An, = p (-BB°cpL + PBcBA + mospl)

Am3l =" - E—ba shal

Amy, = P sBL ! (5.14) ;
i o o s -

Am@ = =p 328614

118



The remaining analysis proceeds as before. Again, the same orthogonality
condition (4.6Q, 4.61) is valid despite the changed boundary conditions, as may be
proved along the lines shown in section 4. The gains and simulation block diagrams
are unchanged.

Numerical Example

Due to k, a new dimensionless parameter is introduced into the frequency
and gain variation:

wn* = wn* (p*,m*,b*,B*,Ilb*,IBb*,QN*syw,k*) (5.15)

Here the definitions (4.72) are valid, and
k* = B/kk (5.16)

We consider the same numerical example as before, with the nominal parameters

as in (4.73).

Figure 51 shows the variation of w * with k* in the range (0 < k*< 14.0),
wi th other parameters held fixed at their nofinal value. The values for k¥ = 0 of
course correspond to k =, i.e., the rigidly cantilevered boom. As the boom root
becomes more flexible (increasing k*) the frequencies drop gradually as expected.

For k¥ - o the situation resembles a hinged-boom condition.

The effect of k¥ on the unconstrained gains k_is seen in Fig.52. The
gains are seen to change only gradually, except that thé behaviour of gains
going to zero is observed here also. The.lower modes, especially the first gain,
is not affected much by k¥ in contrast to the first frequency, which shows the
largest sensitivity near k¥ = 0.

5.3 Sun-Tracking of the Solar Array

The spacecraft main body is earth-pointing and the array is sun-pointing.
Therefore a requirement exists for rotation of the array relative to the space-
craft. A uniform relative rotation at the rate of once per day is conceptually
simple but difficult to implement. In any case, a further source of array exci-
tation arises in this manner. It will now be shown how the analysis of Section 3
can be extended in a straightforward manner to include this relative motion.

The angle of the array with respect to the main body has been denoted
v, and heretofore y was treated as a constant. We now have

y = 7(t) (5.17)

It is possible to take tbe torque on the array as given, write a new equation of
motion for the array root, and thence provide a new differential equation corres-
ponding to the new unknown function y(t). However, since the emphasis here is

on the influence of flexibility, we shall take y(t) as known (rather than the
torque which governs it).

5.3.1 Equations of Motion

First, the motion equation for the overall spacecraft must be reexamined.
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In Eq. (3.2) we must replace 0 by 0+ & within the two integrands; the term Izbé
is unchanged. Then, to Eq. (3.3) the term IEA; must be added, where I,,, the pitch

inertia of the whole array, is given by Eq. (3.59). Therefore, using Eq. (3.5),
the satellite motion equation is

129 L0 20 b[ b[ (x,y,t) x dxdy
-w/2

w/e
+ 2(m/w)hf 1o v(x,0,t) xdx

O PO (5.18)

The blanket motion equation is similarly modified

Py —c'w{v—x e+';)} (5.19)

With the boundary conditions remaining
v(x,0,t) = 0 : v(x,l,t) = -x0(t) (5.20)

provided a(t) is now interpreted as the angle of rotation of the tip with respect
to the root (not with respect to the spacecraft). As for the tip-piece, it is
governed by
e w/2
= (e +Y+0) = Pb[ v'(x,0,t) xdx (5.21)
: -w/2
which is a modified form of Eq. (3.10).

5.3.2 Expansion In Terms Of €onstrained Modes

At this point, modal representations are introduced. Constrained modes
will be used first, and the corresponding development for unconstrained modes is
contained in Sect. 5.3.3. Let

vix,3t) = x ) A (9)Q(8) (5.22)
n=1
as) = ) A (B, (6)
n=1

When substituted into the equations of motion, these expansions yield:
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) @ +a)aE +8 4T =0
n=1

} (5.23)
Z (Ez;l 4 nneqn)An(z) Al | SR

n=1
which should be compared with Eqs. (3.65,66). The spacecraft motion equation
becomes
k foe]
" " . e )4
I8 +1,7=) FQ +T, +T, (5.24)
n=1
[Fn was defined by Eq.(3.68)].

Next, to uncouple the equation for the degrees of freedom associated
with structural flexibility, perform an operation on Eqs. (5.23) as indicated
in Eq.(3.70). The orthogonality and normality conditions are employed to render
the dependence of Qm(t) thus:

. F ae i
Qm + szQm = -OI.‘:T‘E- (9 + 7) (m = 132,-") (5'25)

these operations, when inserted into Eq.(5.24), can be written in terms of
Laplace transformed variables (denoted by overbars) as follows

©o 2 : - -
8K A R Ll I
2,z . = B le 2e” "2 2.
s7(6 + 7) =§Z = 2 s 8 (6 4+ 7) + CI N I2b sy (5.26)
8’ +'% 2 2
n
n=1

and this in turn, may be represented by the block diagram shown.in Fig. 53. The

sum I,= I,,+ I, . This figure, when compared with Fig. 8, shows that the addi-

tion of an arbitrary rotation of the array with respect to the main bedy can
be incorporated without great difficulty.

5.3.3 Expansion In Terms of Unconstrained Modes

As an alternative to Eq. (5.22) an expansion in terms of unconstrained
modes is now congidered, namely

A
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FIG. 53: Pitch Attitude Control Block Diagram Incorporating
Both Constrained Twisting Modes and Array Tracking




[}

o(8) = ) 8.2,(t) + 8(x)
n=1
Vasyst) = x ) a(y) q(6) i
n=1
a(6) = ) o (8) a,(8)
n=1

When substituted into the equations of motion, these expansions yields

(o]

Z (Hn+ wnzqn)[ o (v)+ en] 418 4 s

:=l } (5.28)
}: (H;+ wnzqn)[ an(ﬂ) * enJ + g.+ ; =i

n=1

which should be compared with Egs. (3.86,87). The spacecraft motion equation
becomes

A1)

=T, +T (5.29)

I8 + 1,7 26" Tou

which should be compared with Eq. (3.85). The last equation may be rewritten,
using Laplace transform notation, as

58 +7) = (T, T,)/1,

2=
* (I,/1,) (5.30)
This form is of more direct utility.
The modal equations (5.28) are uncoupled by the procedure indicated

in Eq. (3.88). When orthogonality and normality conditions are employed, the
uncoupled equations become

f
L1 2 m g | 44
4 FNTe. = (—3——— (6 +7) (5.31)
ow £—fmem

In Laplace transform notation then, Egs. (5.27a), (5.21), and (5.30) are combined
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as follows

s k
Po-L8+r) g H(B+7)
g8 -+ wn
- } (5.32)

P8 +7) = (Tt To ) L+ (1,/1)) 557

which may be represented by the block diagram shown in Fig. 54. This figure should
be compared with Fig. 10 showing the relatively simple incorporation of an arbitrary
array motion with respect to the main body. It is also of interest to compare the
duality of Figs.53 and 54 with that of Figs. 8 and 10.

6. CONCLUDING REMARKS

The analysis associated with attitude control of flexible spacecraft
entails a combination of attitude dynamics, structural dynamics, and control
system dynamics. Unfortunately, the present discussion draws to a close before
the latter discipline is given the attention it would deserve in the applications.
Nevertheless, certain definite conclusions are possible in connection with the
presentation of the former two. Some of these bear on the form, and others on the
content, of the preceeding analysis.

With regard to the form of the analysis the prominent alternatives were
examined in Sect. 1.4. Of these, the methods of continuum mechanics have been
emphasized because the particular class of spacecraft under consideration could be
modelled in a relatively simple manner to a high degree of accuracy. In view of
the extensive analytical framework which has been constructed on this basis, it
can be concluded that the traditional methods of analysis are quite viable provided
the geometry of the flexible elements is uncluttered. Such calculations, made
on the basis of 'closed form' results are of great help to the attitude control de-
signer for (at the least) preliminary design. Moreover, unless simulation shows
that there is a substantial interaction between the attitude control system and the
modal coordinates, it is not likely that more detailed calculations are warranted
using, for example, the method of finite elements. On the other hand, if preliminary
simulations made with the aid of a somewhat idealized closed form analysis give
warning that in the course of controlling the spacecraft attitude, significant
modal amplitudes gre excited, then further investigation using finite elements or,
indeed, any other promising technique is recommended.

Even more important perhaps are the conclusions on the content of the
analysis. Whatever approach is used, the object is most likely to be a modal repre-
sentation of structural flexibility, and each mode is characterized by its natural
frequency and its modal gain. The concept of natural frequency is familiarj; the
concept of modal gain is less so. The natural frequency depends on the relative
magnitude of stiffness and inertia as weighted by a particular mode shape. A quali-
tative appreciation of the modal gains can be gained from Egs.(A-9) and (A- 13)
for pitch/twist, or the corresponding equations for roll-yaw/bending, Egs. (4.85)
and (4.116). In the case of constrained modes, the modal gain is an indicator of
the fraction of the total spacecraft inertia which may be associated with a given
(constrained) mode. These fractions have their sum equal to If/(If+ Ir)’ the pro-

portion of the total satellite that is flexible. This proportion may, of course,
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be as high as unity. An unconstrained gain, on the other hand, is an indicator of
the fraction of the rigid spacecraft inertia which may be associated with & given
(unconstrained) mode. This fraction may be proper or improper with possible values
in the range (0,%). In any case, these fractions have their sum equal to I_./I_,
the proportion (possibly greater than unity) of the rigid inertia that is flexible.

A related concept is that of 'equivalent inertia'., For a single degree
of freedom system with torques impressed on the main body we have seen that

F(s) = I(s) s°B (6.1) g

where I(s) has been defined as the transfer function relating torque and angular
acceleration. Written in terms of a constrained modal expansion

= 32K
i(s) =1 <l -Z :ﬁf) (6.2)
: n=1 n

where I is the total inertia = Ir i ¢ Employing an unconstrained modal expan-

£
sion, on the other hand,

-1
J P S2kn
I(s) = 1 <l * Z T——é> (6.3)
s +wn
We recall the sums f
AL (6.4)
n=1
Z k= I/I (6.5)
n=1
Since
A Tl 0o (6.6)

Equation (6.4) may be used to rewrite Eq. (6.2) as

00 Q 2
I(s) = £y z <#82 K, I> (6.7) :
n

Similarly, Eqs. (6.6) and (6.5) may be used to rewrite Eq. (6.3) as
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B(s)7" =1, Z < i 1"1> (6.8)

n=1

These forms for the 'equivalent inertia' shed considerable light on the
role played bg the modal gains. Beginning with Eq. (6.7), the limit for zero
stiffness (Q n = 1,2,--=) is I(s) = I, as expected, while the limit for

zero flex1b111ty (Q -7 n = 1,2,6..) is I(s) = a8kl =0 "1, el

expected. When s = iQn s f(iQn) — o showing that no attitude motion results.

from sinusoidal excitation at an appendage natural frequency; the appendage acts
as a vibration absorber. Turning to Eq. (6.8), the 1imit for zero stiffness
(w - 03 n o ol e LY n) . I, as expected, while the limit for zero flexi-

blllty (w 2w s n=1,2,...) is I(s)"1= Ir_l- (= kn) i Ir-l - (If/Ir)é'Iéﬁs

expected. When s = iw , I(iw_) = O showing that the steady state tends to
resonance. -

A third modal parameter is the damping ratio ¢ n? corresponding to the

desire to represent dissipative mechanisms by an equlvalent 11ne%r viscous damp=
ing. The expression s2 + Qn2 is replaced by s + 2§n Qns * Qn . However this

procedure is not rigorous and the term 2§nﬂns is usually added after the structural

analysis is completed. For that reason this term has not been added to the block
diagrams of this report; the reader may add such a term if he wishes. In practice,
a measure of damping is provided by the attitude control system itself. That is,
even if { = 0, attitude oscillations will be attenuated, at least till their ampli-
tude is within the deadband of the sensor or controller. If satisfactory perfor-
mance depends on a £ > O, then it is essential to examine carefully the impli-
cations of the fact that this dissipative model is only an approximate one and

that reliable values of f are often not readily available.,

Some conclusions may be reached also on the relative desirability of
the unconstrained vs. constrained modal expansions. These two alternatives have
been developed in parallel throughout the report and it is clear that they both
have an equally firm foundation. Spacecraft designers seem to use constrained
modes whereas aircraft designers tend to use unconstrained (ie., system) modes;
this latter state of affairs (for aircraft) probably stems from the fact that there
is no part of the aircraft noticably more rigid than any other. In any case, the
aunconstrained modes have appealing characteristics. As discussed in Appendix A,
they simulate the attitude motion most accurately in the frequency bands of greatest
importance, namely, the system resonances. By contrast, the constrained modes
si mulate the attitude most accurately in the frequency bands of least importance,
namely, the system zeros (vibration absorber behaviour). The analysis of flight
data would also be expected to reveal the system (ie., unconstrained) natural fre-
guencies.

On the other hand, ground tests of appendages would tend to give the
constrained modal information most directly, hopefully including the equivalent
linear viscous damping ratio,{ . In fact, the constrained modes are inherently
characterizations of the appendages alone; both the natural frequencies, Qn,
and the dimensional gains, K ', depend only on array parameters., Therefore these
modes mMay be more natural to use in situations where the array excitation is more
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general in nature (for example, during acquisition when 'small deflections' may
be assumed even though 'small angles' may not be assumed). Moreover, it was shown
in Appendix A that eany given number, N, of system frequencies can be accurately
modelled with the aid of N + 2 constained modes, especially if the appendages are
not large. So unless there is a severe limit on the number of modes which can be
simulated (for example, the nunber of amplifiers on an analog computer, or the
computing time on a digital computer) the primary advantage of the unconstrained
expansion is less important. Furthermore, the task of analysis is reduced if
constrained modes are used. It is our experience that the development is more

d fficult to handle if the case of unconstrained modes; the orthogonality condit- a
ion, and the proper. fashion in which to impose this condition, are not straight-

forward. Thus, speaking somewhat loosely, if there is more computer power available

than analytical power, the constrained mode approach is probably the wisest course.

Not that the latter is without pitfalls; a curious instance occurs when the gains

Kn are miscalculated in such a way that Z K> 1, This is physically impossible

without a negative body inertia, and unstable behaviour is the penalty for this

oversight.

The additional complexity of the unconstrained modal expansion just
discussed is particularly evident if there is stored angular momentum. This is
clear from Section 4 where the parallel developments for both modal expansions were
presented. Indeed, it could have been even complex in the mathematical sense of
the word had not the assumption been tenable if no in-plane array deflections.

Some specific conclusions pertaining to the class of configurations
analyzed here also follow from the results presented. A dominant behaviour ob-
served is that the dimensionless frequencies are relatively insensitive to para-
meters variations. This applies to both the constrained ('flexible-part-only')
and unconstrained ('system') frequencies. The most obvious exceptions to this
are the parameters NB* and w, *, which affect the bending frequencies substantially,

albeit in a restricted range of parameter values. In general then,

owh®
¥ const. (6.9)

€
%k
1]

)
n ) A

Let us now look at some practical implications of (6.9). An important
consideration is the interaction between the control-system bandwidth and the
structural frequencies. As an indicator of this let us consider the ratio of the
lowest "flexible" unconstrained frequency W, and a characteristic control freguency

W and attempt to relate it to spacecraft design criteria, namely power requirement
W and the pointing accuracy (deadband of the control system) D,

Among the parameters in (6.1), 0 is usually fixed by the solar cell mass
density, and w by the diameter of the spacecraft which, in turn, is constrained
by the launch vehicle diameter. For given w, the power generated is directly pro-
portional to the length £. A further constraint relating P and £ arises from
preventing the possibility of buckling of the support boom. If we take P to be a
given fraction of the buckling load, that is a definite value of B¥ = PEQ/B, then
it follows from these constraints and (6.9) that F

0, ~NB/L ~ NB/W (6.10)
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Assuming that the stiffness B is provided by a thin-walled STEM boom as for CTS
and other applications, we have B ~ td~ where t and d are the boom thickness and
diameter respectively. On the other hand the density p ~ td, so that for a given
weight, B ~ a2, Inserting this gives

W d/w2 {61
Considering now the control-system frequencies, the kind of controller
used is obviously of fundamental importance. Besides this, w_ may be expected to

depend on the torque level T, the spacecraft moment of inertia I, and the pointing
accuracy D. For example, if we consider a mass-expulsion reaction control system
operating in a soft limit-cycle mode (pulsing only on one side of the controller
deadband), then it may be shown that the limit cycle frequency behaves as

1

(L)c E (60]_2)
Note that this does not depend on the thrust level and the minimum impulse bit,
because the controller is assumed to be such that these characteristics are de-
signed for efficient soft limit cycle operation. In any case, dimensional analysis
also yields a relation of the form (6.12). We can expand on this further. For
the configuration studied, and given o, W, we know that I ~ £3. Furthermore, the
major source of torque T is the solar radiation pressure torque, and this may be
assumed to be proportional to the solar panel area, i.e., T ~ / for fixed w. Sub-
stituting these relations in (6.12) and remembering the proportionality between £
and W, we have

)
% " WD e

Our indicator of control system - flexibility interaction is then

c W
LR I 6,14
5, o ( )

The boom diameter turns up here for a good reason: it has direct control over
flexural stiffness for a given weight. However the important thing observed from
(6.14) is that as power requirements for synchronous satellites with large flexible
solar arrays go up, and pointing accuracy requirements become more stringent, the
interaction problem looms larger. The concern is somewhat tempered by the fact

that for a given mission, W and D are inversely related, i.e., less power is needed
for an antenna which can be pointed to greater accuracy. The boom diameter d appears
to be the only "free" parameter for spacecraft structural design to avoid con-
troller-flexibility interaction, under these circumstances.

Another parameter whose effect on frequencies is directly affected by
flexibility is w *. For low values of w_, the rigid-body nutation frequency is
approximately a system frequency. As wy is increased however, the system nuta-
tion frequency does not increase linearly, but levels off to a constant value
(Fig. 21), since the flexible part of the spacecraft plays an increasing role in
the motion. Since in the rigid concept of the spacecraft Wy appears as the basic

dynamics frequency, another indicator of the influence of flexibility is the
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proximity of the lowest (nutation) system frequency to wN.

As a matter of interest, the preceding discussion raises the question
of how important flexibility is for the CTS mission, which in a very real sense
prompted the research reported here. It turns out that, at least in the nominal
on-orbit control situation, flexibility does not affect the dynamics or control-
system performance significantly. It can definitely be said that the stored
angular momentum for CTS is negligible insofar as its interaction with flexibility
is concerned, judging from the second criterion discussed above. However, CTS is
perhaps also an excellent example of how unexpected sources of excitation can turn
up. The Attitude Control analysis and design team found that the control system
for maintaining the array sun-pointing attitude had a frequency spectrum which
directly excited the solar panels in the pitch/twist mode, leading to a resonance
phenomenon. In this case a simple re-design of the controller solved the problem,
but there are numerous other sources of concern relating to flexibility effects on
modern spacecraft. See, for example, Ref. 7 . And, as just demonstrated above,
Fhis trend can be expected to continue in future spacecraft designs for which
the analysis of flexibility effects will be of great importance. It is hoped
that the present report has been a significant step in that direction.
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APPENDIX A: RELATIONSHIPS BETWEEN CONSTRAINED AND UNCONSTRAINED
MODAL, REPRESENTATIONS

One of the themes of this report is the duality between the constrained
and unconstrained modal representations of structural flexibility. This Appendix
will explore certain relationships between them and, it is hoped, shed further
light on the question of which representation to choose in a specific instance.

From Eq. (3.74), the pitch motion of the satellite (Laplace transformed)

was given:
has s2 K .
<1-Z Tn—2>e=é (A.1)
B 0
n=1 n

This motion is in response to external and controlling influences as represented
by 8(s), and the constrained modal representation has been used in Eq. (A.1).
Compare this now with the unconstrained modal representation, as given by Eq.

(3.92):
<1+n_ S+wn >® (A.2)

This was pointed out in Ref. 3 where the identity

[ 2 [
()6 Fe)- =

1

was deduced. In partieular, setting s = jwm we have

% = Kn 1
Z 7z i/ 5 (mwiyi2 ). ) (A.4)

and setting s = ij we have

Z 5 ity 5 A G | (A.5)

These equations are of theoretical importance since they establish the relation-
ships between the set (Kh, Q3 n= 1,2,...) and the set (kn, w3 n= - i A

Thus knowing one set, Eqs. (A.4) and (A.5) may be used to find the other set.

Before proceeding with such calculations a result for an infinite sum
of gains is noted. Form the following expression:

A-1




J/
% ov3jo (3.65)dy + % mw (3.66) = 0 (A.6)

In view of Eq. (3.68), this becomes
(2]
‘e 2 e i
-Z Fn(Qn +Q Q,) +I,0=0 (A.7)
n=1

where the inertia is introduced with the aid of Eq. (3.59). As the final step,
BEq. (3.72) is used for Qh - Qg Q,; recalling the definition of the constrained

gains, Eq. (3.75), we arrive at

<-12 i Kn+12A>§=o (a.8)

n=1

For non-trivial motion therefore

©0

I i
) k- 2 (8.9)
2
n=1

which is the result sought. Since all the gains are positive [ see Eq. (3.75)]
Eq. (A.9) has the effect of placing a bound on Kysq OnCE (K.5 n.= 1,,..,N) are
k.nown- 1 A

A similar result can be demonstrated for the unconstrained modal gains.
Form the following expression:

/) :
% sto (3.86)dy +% mi> (3.87) = 0 (A.10)

In view of Eq. (3.39), this becomes

0

Z (T, 0,-£.)(q, + wiq_n) A ®=0 (A.11)

n=1

where ‘again the inertia is introducgd with the aid of Eq. (3.59). As the final

step, Eq. (3.90) is used for §n + w'q ; recalling that f = I,8 , and the defi-

nition of the unconstrained gains, Eq. (3.93), we arrive at

[ Iy, Z k o+ IzA] 8 =0 (a.12) ¢



For non-trivial motion therefore

0
2k £
ook 2b preTeN

These results, Eqs. (A.9, 13) are analogous to those for roll-yaw as
given by Eqs. (4.85,116) respectively.

Return now to the subject of determining unconstrained modal parameters
given the unconstrained ones, or vice versa. In practice, only a few modes are
actually used. If only N modes are considered, then Egs. (A.4,5) become 2N
equations to be solved for the unknown parameters. For example, suppose then
the constrained parameters (K _,Q 5n=1s.. .N) are known and it is desired to
calculate the unconstrained parameters (kn,wn, n="1 .5, ,N). Theh; first, tske

the N equations given by Eq. (A.4); this may be rewritten as an Nth order poly-
nomial in w2 whose N roots are Wy ===y WS, Second, use the N equations given

by Eq. (A.5). Now that the wn2 are known, these become a set of N linear alge-

braic equations in the N unknowns (k ;3 n = 1,...N). The symmetry of Egs.(A.4,5)
makes it clear that they are applied in the reverse order if it is desired to go
in the other direction, that is,knowing (kn,wn; n=. Lo i, N) to find (Kn,Qn;

. S T VAP . )

This procedure will now be illustrated for two typical situations.
The first is 'membrane'-like (or 'string'-like, or 'sheet'-like behaviour); the
second is 'rod'-like behaviour. In the former instance, it is natural to
assume that Qn ~ n, and there is no loss of generality in taking

@ =n {n.=1.,2,54) (membrane) (A.1k)

Experience has shown that K B Qn 2; this may be seen by using, for example,
Eq. (3.75) for a string. Equatibn (3.76) is also of this form-ekcépt for slight
deviations for the first few modes). Denoting the proportionality by P, Wwe have

K. i~ p/Qn2 (o= YR ) (A.15)

The physical significance of p is learned from Eq. (A.9).

E e Lo (A.16)
n I+1I i
) i by
n=] |

where I is the inertia associated with the flexible portion of the structure,
and I 'Is the inertia associated with the relatively rigid part of the structure
(the part that is constrained not to move for the 'constrained' modes).

I, + I 1is therefore the total inertia. Using Egs. (A.15) and (A.14), the

interpretation of p is found as



Pom

p = = (Ir/If) (membrane) (A.17)

Pom = {Zﬂf rll—g ) }_l (A.18) -

The value of p,, happens to be 2.6001k4...; but the important point is that p is

where

an indicator of the relative magnitudes of the inertias of the flexible and rigid
portions of the vehicle. Specifically, smaller values of p (and hence of the
gains) correspond to more predominently rigid satellites.

To study 'rod'-like behaviour, it may be assumed that, in place of
Eq.(A.14),

~/£'zn =n T e R (rod) (A.19)

Since Eq. (A.15) and (A.16) are still appropriate, this leads to, instead of
Eq. (A.17),

Por

p = l—‘l'—(w (I‘Od) (Ao20)

P ={ Zzl( i;;) }—l (A.21)

The value of PQR happens to be 2.08363...; but again the importance of p stems

where

from its direct relationship to the proportion of the vehicle that is flexible,

For both these simple models ('membrane' and 'rod') the calculation
of unconstrained gains and frequencies will now be made. While so doing, a
significant trend will be evident that bears on the choice of modal representa-
tion. The presumption will be that the most important parameter regions in which
to model satellite flexibility accurately are those leading to large attitude
response, that is, in the neighbourhood of the unconstrained natural frequencies.
So the position may be taken that a flexibility model is worthy insofar as it
gets the system frequencies correct. Clearly an expansion in terms of uncon-
strained modes satisfies this requirement automatically. It can be decided what
upper 1limit on frequency is of interest and then simply include all unconstrained
modes whose frequencies are less than it is. The situation for a constrained
modal expansion is less clear. If N constrained modes are used then there will
indeed be N system frequencies but the approximation © = N leads to errors in
these frequencies - they will not be equal to wl ,w2 , == except as N — o, To .

study the size of such errors, the approximate values of wl ,-«,wNz may be found
by solving Egs. (A.H,S), where ZT is replaced by Zﬁ, as described two paragraphs

ago. The size of the error will depend on, in addition to N, the Ir/I ratio. The
frequency results are shown in Fig. (A.1) for 'membrane'-like behaviour and in
Fig. (A.2) for 'rod'-like behaviour. When Ir/If is large (vehicle predominantly

A=k



rigid), it is clear that the first N system frequencies are adequately predicted
by using an expansion in terms of N constrained modes. For small Ir/If (vehicle
predominantly flexible) it is necessary to use N+ 1 or N + 2 constrained modes

to represent the first N system (unconstrained) frequencies accurately. Similar

remarks can be made for the gains which are plotted in Fig. (A.3) for 'membranes®
and for Fig.(A.4) for 'rods'.
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APPENDIX B: VARIATION OF MOMENTS OF INERTIA

Herein we derive the expressions for moments of inertia of the spacecraft,

in particular the variation due to rotation of the solar arrays relative to the
center body. We make two simplifying assumptiops -

(i) The axis of rotation passes through the spacecraft center of mass, which
is assumed to coincide with the mass centers of the body and array sepa-
rately. This is not quite true for the CTS, but the error introduced is
small and can be readily accounted for if desired.

(ii) The offset between the boom and the array is neglected, compared with the
width and length of the blanket. Thus the boom and bl anket are coplanar,
and the boom centerline in the undeflected state coincides with! the axis
of rotation and the pitch axis.

The geometry of rotation under the above assumptions is shown in Fig. B.l. Let
the body inertia matrix in the roli-yaw (unprimed) frame be given as

) I 0 0
g™ 0 Ly 0 (B.1)
0 0 I3b

Similarly, the array inertia matrix in the rotating (primed) frame is constant
and is given by

y Lia 0 0
1 s
™ gl 0 I,, © (B.2)
0 0 I3A

Expressions for IlA etc can be readily written down owing to the planar mass dis-
tribution. We have

£ 2 2
IM=2@+Gﬂf (b+y)2dy + 2m(b+l)
v O

=2 (0 + ow)A(o%+ b + 42) + 2n(b+4)?
w/2
I, = 2(ct + =) x° dx
hy -w/2
- L (o3 + ) ; (8.3)
ang Ty, @ T

3A 1A 2A°

Note that the tip mass is assumed to be uniformly distributed along its length,
and that the expression for I3A follows from the planar mass distribution.

We need now to transform 5A' to the unprimed frame; the appropriate
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transforma?ion matrix is

cosy 0 -siny
Z = 0 1 0 (B.4)
siny 0 cosy

The total inertia matrix in the 1-2-3 frame is then, from the rule for transforming

matrices,
Bl
or,
Ill 0 Il3
I - b i
Il3 0 I33
where o o
Ill = Ilb i IlA cos y + I3Asin y
Top = Iy ¥ Ipy (8.5)
133 = I3b * I3A c0327 + IlAsin27
I13 = (I3A-I1A) sinycosy

Using the last of (B:3), these can be further re-arranged as follows:

K o il o
T ONORS 1 I W A" S

o} AL
133 = 133 - I2A arnnig ek

[

Yoo
133 I2A§;n Y (B.6)

The zero superscript refers to the "nominal" moments of inertia, i.e., with y = 0.
We see that

(1) The nominal body-fixed axes are no longer principal axes; a product of
inertia occurs due to array rotation.

(ii) The changes in the moments of inertia from the nominal principal-axes
values (y = 0) are periodic with y, having a period of 180° which
corresponds to 12 hours in orbit. Secondly, the amplitude of these
changes is of the order of I2A which is usually quite small compared

to any € the other inertias (e.g. for CTS, Ioa
o

Ill ,I33o = 650 slug-ftz). The net result is that the effects of
rates of change of the inertia moments are negligible, and we are

quite justified in treating the variable inertia on a quasi-static
basis.

=3 slug-ft2 whereas

B=3



The effect of ¥y on the unconstrained gains and frequencies in bending
was shown numerically in Section 4, Figs. 22 and 43. The pitch gains and fre-

quencies are not directly affected by y, since I

> remains unchanged.
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APPENDIX C: BOOM AND ARRAY DYNAMICS

In this section we analyze the motion of the boom and sheet separately,
considering their natural frequencies and relating these to the frequencies of
the conbined system. This helps to explain some of the features noted on the plots
given in Section 4. The buckling condition is also derived.

C.l Twisting

In the twisting mode, the boom is assumed to contribute negligible stiff-
ness. Hence the dynamics are the same as those analyzed in Section 3 under con-
strained motions; only the array frequencies are involved, subject to boundary
conditions given in Section 3. Hence twist will not be considered further.

C.2 Bending: Boom Only

The governing differential equation for the boom is
Bu"" + Pu" + pu = 0 (Cit)
The appropriate boundary copditions are

u(e) = u'(e) = 0, u"(4)

]
o

(c.2)

]
(2,

(Bu" + P(u' - §) - uid) |
y=0

In the last of (2) it is assumed effectively that a massless sheet exists which
transmits tension, and does not deflect itself. Thus the tension P does not
remain fixed in direction, but always points towards the origin. As usual, we
seek a solution of the form u(y,t) = U(y)coswt, which when substituted into
(%.%) and (C.2) leads to the following equations for the mode shape function
Uly):

BU"" 4 PU" o psz =0
U(e) = U'{o) =0, U"LL) = 6 (c.3)
BU"' + P(U'-U/L) + nm2Ul =0

y=L

The following solution to (3) may be verified, which satisfies the boundary con-
ditions at y = O:

U

cl(cosh Qy-cosBy) + c2(sinh oy - %-sinBy)

wh - 2
B k] v B . DY X 23)1/
12

(W 22+ bow®s + P) / 2B) /

The two remaining boundary conditions at y = £ can be arranged in matrix form

to give a system of linear homogeneous equations for cy and Cyt

(c.h4)

p
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where

1k
e = (e, ¢,)

aml -
8y, = o? costol + 52 cospl .
a, = o? sintof + oPsingl ;
a,, = (P + Bo°)sinmof + B(P-B8°)sinpl
+ (mw®-P/L)(costol - cospl) (C.6)
8yp = a(P + Boze)sinhaz - a(P-Baz)cosﬁw

+

(m®-P/2) (sintorf - S singf )

The characteristic equation for w is found by setting the determinent of (C.5)
to zero, which is the only condition under which a non-trivial solution exists:

M Bos il R =0 (c.7)

For plotting purposes the frequencies found from this are nondimensionalized by

"array" parameters
w¥ = w chza/P (c.8)

Here 0 and w are of course not related to the boom dynamics.

C.3 Buckling

The condition for buckling of the boom can be derived by a static
analysis (w = 0) similar to the one above. Since the boundary conditions and
"equation of motion" do not change except for the elimination of time derivatives,
we can derive this condition more simply by taking the limit of (C.7) as w — 0.
We have

lim & w0, lim B = @75 (c.9)

w =0 w = 0

In taking the limit of (C.6), it is necessary to retain terms of first order in
@ to arrive at non-trivial terms in the expansion (C.7). Thus to first order
in @,

n

Bzcosﬁﬂ, 8, % oBsinBl A

= -(P/L)(1-cospl) (¢c.10)

11

[
]

21 '
8, = +(P/4)(asing £/B)

1
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Substituting into (C.7) and dividing by aP/f (o # O following the standard
procedure for limits) gives

B sinBl cosBl + B sinBl(l-cosBl) = 0
Hence, buckling occurs when
Bl =0y, No&)i800 i

In terms of P, substituting for B from (C.9), we have

P—Bf- = n21r2, R R S (c.11)

B*

where the notation corresponds to that in the text, Eq. 4.43. The lowest buckling
load occurs when NB* = 7. Note that this agrees with the frequency plots presented
in the text. This result is not affected by boom density or tip mass.

C.4 Bending: Array Only

In the absence of the boom, the array obeys the simple string equation:
Pv" = oW V (¢c.12)
The boundary conditions appropriate to a free end are
v(e) =0, v'(f) =0 (c.a3)

The natural mode shape V(y) corresponding to (C.12) and satisfying the boundary
condition at y = 0 is

V(y) c,sinky , k = Gwa (c.1k)

Applying the condition at y = £, non-trivial solutions exist only for

kf = nm/2 , R W, (OGN

Hence the dimensionless natural frequencies defined by (8) are simply

w* = 27, . n=1,3,5... (¢.15)

C.5 Array-Boom Interaction: Numerical Example

When the array and boom are allowed to vibrate as one system, the con-
figuration is identical to that considered under constrained (bending) modes
previously. It can in fact be shown, by considerations of equilibrium at the
tip where these two yibrating elements are attached, that the combined character-
istic equation of Section 4.follows from knowing the individual characteristic
equations derived above. We shall not prove this here, but by a numerical example
we demonstrate the relationship of the constrained natural frequencies to the
boom and array freguencies obtained from (C.7) and (C.15) respectively.
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The numerical values of the relevant dimensionless parameters p¥,
m* and B¥ will be taken identical to those in the text, Eq. 4.73. The frequencies
wn* were shown as a function of WB¥* in Fig. 16. The straight horizontal lines

correspond to the array frequencies (C.l5), and the curved lines to the boom
frequencies. Note that in Egq. C.8, while w is independent of P, w* goes to
infinity as P — 0, forced by ~B* =API2/B. -

The similarity of Fig. 16 to Fig. 15 for the constrained natural
frequencies has already been discussed. Indeed the curves differ mainly in the ¢
region when the array and boom frequencies are close together. A notable exception
is that the expected curve corresponding to (C.15) with n = 1 does not appear in
the constrained frequencies. This may be attributed to the fact that, when the
boom is also vibrating, the boundary condition at y = £ in (C.13) is not quite
appropriate. The equivalence of buckling loads should also be noted. Heuristi-
cally, one may say that the boom and array are weakly coupled, since they are
attached only at one point along their length, i.e., at the tip. This fact
can be interpreted as the reason for the closeness of the frequencies of the
contained system to those of its components. However, no attempt is made here
to pursue this argument quantitatively.
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