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In order to achieve the goal of 20% renewable energy in 2020, as set by the European
Union, large o�shore wind farms are either under construction or in development through-
out Europe. As many of the \easy" locations are already under development, o�shore wind
farms are moving further o�shore into deeper waters, which results in a set of new techni-
cal challenges. One of these challenges comes from the fact that the traditional solution of
placing monopile-foundations is possibly no longer su�cient to anchor the latest generation
of wind turbines to the seabed. This requires that di�erent and more complex types of
o�shore structures, such as jackets, are used as foundations. Appropriate models for these
more complex foundations, are often not available in aero-elastic simulation software. The
current design practices, such as equivalent interface sti�ness and mass matrices for the
o�shore structure, could lead to errors in the coupled simulations due to dynamics that
are not modeled. In this paper an alternative method, Impulse Based Substructuring, is
proposed to e�ciently and accurately include the dynamic behavior of the support struc-
ture in the load simulations. The method is demonstrated using the NREL 5MW reference
turbine and UpWind reference jacket. It is shown that the method is able to accurately
compute the coupled dynamics and requires only a number of small augmentations to the
standard Newmark time integration scheme for nonlinear �nite element models.

I. Introduction

Present day media are full of items on peak oil, rising oil prices, climate changes, CO2 reductions and
our continuously growing energy needs. More sustainable ways of generating power on an industrial scale
need to be implemented, simply because the currently used resources will someday be exhausted, or become
una�ordable. The Europe Union has acknowledged this fact, therefore setting a target of 20% renewable
energy in 2020. One of the more promising ways of generating renewable electricity on a large scale for
achieving this goal is provided by wind energy. As many of the favorable onshore locations are usually also
densely populated and therefore not suited for large wind farms, much of these farms will have to be built
o�shore.

Since a lot of the shallow, near-shore sites have already been built or are under development, the current
trend is to go to deeper waters which are usually also further o�shore. Combining this trend with the
ever increasing sizes of o�shore wind turbines, gives that the traditional o�shore solution, the monopile, is
often no longer (economically and technically) feasible. Therefore, more complex o�shore structures, such
as tripods and jackets, are needed for the installation of these o�shore wind turbines. However, combining
these more complex structures with the aero-elastic wind turbine models leads to some challenges, as the
models of these o�shore structures generally consist of signi�cantly more degrees of freedom (DoF) and thus
lead to a huge increase in computational e�ort. In addition to this, there is often a clear design split between
the foundation designer and the turbine manufacturer, who are both reluctant to share their detailed models
as that would infringe on their intellectual properties. The most common approach to overcome these issues
is to apply Guyan reduction in order to create a superelement1,2 of the o�shore foundation model. This
reduction method statically reduces the (linearized) o�shore structure to its interface with the turbine, hence
decreasing the number of DoF to only six. But what is often disregarded is that this leads to a very crude
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simpli�cation of the reality, as all of the internal dynamic behavior of the o�shore structure and almost all
potential coupling between the dynamics of the o�shore structure and turbine is neglected. By not including
this behavior in the models, the loading and hence the cumulative damage on both the turbine and o�shore
structure can be signi�cantly underestimated or overestimated.3

In this paper an alternative method is presented for coupling the wind turbine to the o�shore structure
in aero-elastic simulations. The method, named Impulse Based Substructuring,4 uses the impulse responses
of the o�shore structure in order to create a substructure that includes all the (internal) dynamic behavior
of the o�shore structure. As the impulse response functions are basically input-output relations, the number
of degrees of freedom of the model can be reduced simply to the number of inputs and outputs required.
Firstly, section II will present some of the basics about Impulse Response Functions and how to obtain and
use them. In section III the theory behind the method will be briey explained and it will be shown how to
assembly a nonlinear �nite element model to an impulse response function in order to compute the coupled
behavior. If one wants to perform simulations that start from a nonzero initial condition, one needs to
solve an initial nonlinear static problem, which is presented in section IV. In section V the method will be
applied for coupling the NREL 5MW reference turbine to the UpWind reference jacket, thus demonstrating
its accuracy. Finally, in section VI the conclusions are presented.

II. Time Integration using Impulse Response Functions

As the name already implies, Impulse Response Functions (IRFs) show the response of the system at
hand excited by unit impulse force. Hence, they give the input-output relationship of a system or structure.
As any force in time can be seen as a succession of impulses over time,5 IRFs can be used to determine
the time response of a system. In this section it will be shown how to obtain and use these IRFs for time
integration.

A. Time integration using the impulse response functions

Firstly, starting from the equation of motion of a linear(-ized) dynamic system:

M �u(t) +C _u(t) +Ku(t) = f(t). (1)

Here, M denotes the mass matrix, C the damping matrix, K the sti�ness matrix, f(t) the external force,
which is a function of time and u(t); _u(t); �u(t), respectively the displacements, velocities and accelerations,
which are also a function of time. In the frequency domain �u(!) = i! _u(!) = �!2u(!), and the equations
can be written in the form �

�!2M + i!C +K
�
u(!) = Z(!)u(!) = f(!) (2)

The equations of motion are transformed from the time to the frequency domain in Eq. (2), where Z(!) is
the dynamic sti�ness matrix, which is the inverse of the dynamic exibility matrix Y (!), as shown in Eq.
(3).

Z(!)�1f(!) = Y (!)f(!) = u(!) (3)

So, if one would be interested in the time response of a system caused by a certain input force, Eq. (3) can
be transformed back to the time domain via an inverse Fourier transform, which would result in:

u(t) =

tZ
�=0

Y (t� �)f(�)d� , (4)

where, Y (t) is the impulse response function of the dynamic system at hand. This integral equation is known
as a convolution product or Duhamel integral, and can be discretized in order to solve it in a numerical way.

B. Discretization of a convolution product

The obtained convolution integral, given in Eq. (4), is a continuous equation and needs to be discretized
in order to be used for numerical computations. By regarding the applied force f(t) as a sum of discrete
impulses, one could interpret this integral as being a sum of the responses to impulse excitations between
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t = 0 and t = � . In general however, the analytical impulse response function is not available, therefore one
can compute a discrete numerical approximation Y (tn), for tn = 0 : : : tnmax . Due to this, the integral in Eq.
(4) is replaced by a �nite sum, which converges to the exact solution as dt goes to zero.

un = dt

n�1X
i=0

Yn�ifi (5)

Note that the sum in Eq. (5) is from 0 to n� 1 , since Y0 = 0. This is due to the fact that the displacement
response at t = 0 to an impulse at t = 0 is zero. In this sum, it is assumed that both the impulse response
function and the forcing function are piecewise constant. A more accurate approximation would be to assume
a piecewise linear variation of the forcing function a the di�erent time stations, which would result in the
following sum.

un =
dt

2

n�1X
i=0

Yn�i

�
fi + fi+1

�
(6)

Although this discretization is more accurate than the one given in Eq. (5), it still only allows to compute
the response of a system initially at rest.

C. Computing the response from nonzero initial conditions

The response of a linear system to an external force, starting from a set of non-zero initial conditions, can
be regarded as a superposition of a dynamic response (v(t)) and the initially applied displacements (u0).

u(t) = v(t) + u0 (7)

Substituting Eq. (7) into the linear equations of motion of a general dynamic system, gives

M �v(t) +C _v(t) +Kv(t) = f(t)�Ku0, (8)

where we change the variable from u(t) to v(t). As discussed in subsection B, this can be rewritten into a
discretized convolution product

un = u0 +
dt

2

n�1X
i=0

Yn�i

�
~fi + ~fi+1

�
, (9)

where,
~fi = fi �Ku0.

A brief introduction to discrete time integration using the impulse response matrices and the convolution
product has been given. In the next sections these methods will be used for deriving the Impulse Based
Substructuring method.

D. Computing the Unit Impulse Response Functions

For computing the unit impulse force response functions, the Newmark time integration scheme is used.
There are several initial conditions one can use to compute the impulse response functions.4 In this paper
it is assumed that a unit impulse is given in the �rst time step (t0 = 0), this is chosen as it is consistent
with the constant average Newmark method. From this assumption, the following initial conditions can be
derived

u0 = 0

_u0 = 0

�u0 = M�11j
dt

,

(10)

where 1j is a vector with a unit coe�cient for dof j. Note that, throughout this paper the constant average
acceleration variant of the Newmark ( = 0:5; � = 0:25) is used. This thus implies that the values of the
forcing function vary linearly between the di�erent time stations, as can be seen in �gure 1. Due to this,
the system with the initial conditions given in Eq. (10) is in fact excited not by a unit pulse, but by a half
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f(N)

t1t0 t2 tn
t(s)

fi

Figure 1. Force impulse in the constant average acceleration Newmark scheme

unit pulse and the �nal result has to be corrected for this. Using these initial conditions and performing a
time simulation, one is able to obtain the accelerations, velocities and displacements of all DoF as a result
of the impulse at DoF j. Thereby determining the jth column of the Unit Impulse Response Matrix, which
is shown for displacements here. Hence, computing the response of the system to an initial impulse on each
degree of freedom where a force is applied (inputs), the entire set of IRFs, as needed in Eq. (6), are found.
They can be written in a matrix form as:

Y (tn) =

266666664

Y11(tn) : : : Y1j(tn) : : : Y1N (tn)
...

. . .
...

. . .
...

Yj1(tn) : : : Yjj(tn) : : : YjN (tn)
...

. . .
...

. . .
...

YN1(tn) : : : YNj(tn) : : : YNN (tn)

377777775
(11)

E. Using an impulse response due to a distributed load

In engineering practice however, the o�shore foundations is excited by waves and currents on a large part
of the structure. If this is now seen from a modeling perspective, this area will consist of a large number
of nodes in a �nite element model, and the number of entries in the matrix containing the required IRFs
would grow quadratically with respect to the size of the force loaded area. In order to overcome this issue,
we describe these forces as a summation of space distributions of the force (�i(x)), multiplied by their
corresponding force amplitudes (�i(t)):

f(x; t) =

n�X
i=1

�i(x)�i(t) = �� (12)

As can be seen, separation of variables is applied to the force f(x; t), which is dependent on both time (t)
and location (x). By substituting Eq. (12) into Eq. (4), the impulse response describes the response of a
structure due to a distributed load.

u(t) =

tZ
0

Y (t� �)�(x)�(�)d� (13)

Suppose that the system contains a large number (p) of force loaded dof (input) with only N response dof
of interest (output), such that N << p. In Eq. (13) Y (t) is a N � p � nmax sized matrix (where nmax is
the number of time steps), hence computing the needed IRFs and evaluating the convolution integral will
be computationally expensive. Using the shape distributions of the load to reduce the size of the impulse
response function, leads to:

u(t) =

Z t

0

Y�(t� �)(x)�(�)d� (14)

where,
Y�(t) = Y (t)�. (15)

This step reduces the size of the impulse response function from N � p� nmax to N � p� � nmax, where p�
equals the number of force shape distribution functions and p� << p. This approach will be used in order
to incorporate the wave loading on the jacket structure in the coupled load simulations.
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III. The Impulsed Based Substructuring Method

As the goal of this work is to combine the o�shore structure, which is given as a set of IRFs, and the wind
turbine, which is a nonlinear FE model, a method had to be found to assemble these two in order to obtain
the coupled dynamic behavior. Firstly, the necessary conditions for assembly are discussed and secondly it
is shown how to rework the equations in order to obtain the coupled set of equations and �nally, a owchart
is given which summarizes the method.

A. Conditions for assembly: Compatibility and Equilibrium

Starting from the set of uncoupled equations, where the variables with superscript (s) denote the o�shore
structure, which is described in its IRFs and the variables with superscript (r) denote the wind turbine,

which is given as a (non-) linear FE model and p(r)( _u
(r)
n ;u

(r)
n ) is the nonlinear force vector which contains

all the aerodynamic forces and possibly other nonlinear sti�ness and damping contributions.a In case of an

operational turbine, the rotor will rotate and hence, the mass matrix M (r)(u
(r)
n ) also becomes nonlinear.8>>><>>>:

u(s)
n = u

(s)
0 +

dt

2

n�1X
i=0

Y
(s)
n�i

�
~f
(s)
i + ~f

(s)
i+1 � g

(s)
i � g

(s)
i+1

�
M (r)(u(r)

n )�u(r)
n + p(r)

�
_u(r)
n ;u(r)

n

�
= f (r)

n � g(r)n

(16)

Here, ~f
(s)
i = f

(s)
i �K(s)u

(s)
0 and gn denotes the unknown interface forces between the o�shore structure

and the wind turbine, which will ensure the coupling between the two substructures. In order to obtain a
fully coupled set of equations, two conditions have to be satis�ed.6 The �rst one being compatibility, which
means that the displacements of the interface nodes of both structures have to be equal, which thus means
that no gap is allowed between the two substructures.

u
(s)
[b] = u

(r)
[b] , (17)

where the subscript [b] denotes the interface (or boundary) nodes. The compatibility condition can also be
written using signed Boolean operators that work on the boundary DoF within the full set of DoF, such thath

B(s) B(r)
i " u(s)

u(r)

#
= Bu = 0 (18)

The second condition is Equilibrium, which states that the sum of the forces at the connecting nodes have
to be equal to zero, such that no resulting force between the substructures exists.

g
(s)
[b] + g

(r)
[b] = 0 (19)

This means that the interface forces have to be opposite in sign and equal in magnitude. Using the signed
Boolean operator B from Eq. (18), this relation can be written as:"

g(s)

g(r)

#
= �BT�, (20)

where � are known as Lagrange Multipliers that denote the magnitudes of the interface forces. Hence, by
using Eq. (20), the number of unknowns is reduced. Substitution of both the compatibility condition, given
in Eq. (18), and the equilibrium condition, as given in Eq. (20), into Eq. (16), results in the set of coupled
equations. 8>>>>>><>>>>>>:

u(s)
n = u

(s)
0 +

dt

2

n�1X
i=0

Y
(s)
n�i

�
~f
(s)
i + ~f

(s)
i+1 �B

(s)T
�
�i + �i+1

��
M (r)

�
u(r)
n

�
�u(r)
n + p(r)

�
_u(r)
n ;u(r)

n

�
= f (r)

n �B(r)T�n

Bun = 0 ,

(21)

aIt should be noted that, although in this paper the methodology is presented for a case with only two substructures, the
approach is general and can easily be extended to more substructures.
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In the next section, it will be discussed how to rewrite these equations in order to solve them in a time
stepping scheme.

B. Solving the coupled set of equations

As the goal is to develop a coupled time integration scheme, an adequate time discretization for the wind
turbine substructure has to be applied. As the Newmark time discretization7 is the most common for
computing the time response of a (nonlinear) �nite element model, it will also be applied for the current
method. In the Newmark scheme, a Taylor expansion is used to deduce the velocities and displacements of
the next time station, according to:

_un = _un�1 + (1� )dt�un�1 + dt�un = _̂un + dt�un

un = un�1 + dt _un�1 + dt2(
1

2
� �)�un�1 + dt2� �un = ûn + dt2� �un,

(22)

where _̂un and ûn are referred to as the predictors and are depending on the displacements, velocities and
accelerations of the previous time step. As the system of equations of motion, given in Eq. (21), for the
turbine is assumed to be nonlinear, they can be written as

r(r)n

�
�u(r)
n ; _u(r)

n ;u(r)
n ;�n

�
= M (r)

�
u(r)
n

�
�u(r)
n + p(r)

�
_u(r)
n ;u(r)

n

�
+B(r)T�n � f (r)

n = 0. (23)

Here, r
(r)
n is the residual force vector and can be regarded as an error on the equilibrium, which should be

made equal to zero. By inverting the original Newmark relations (22) we obtain

�u(r)
n =

1

dt2�

�
u(r)
n � û(r)

n

�
_u(r)
n = _̂u(r)

n +


dt�

�
u(r)
n � û(r)

n

�
,

(24)

where both the accelerations and velocities are written as a function of the displacements only. By substi-
tuting Eq. (24) into Eq. (23), the residual becomes a function of the displacements and interface forces.

r(r)n

�
u(r)
n ;�n

�
= 0 (25)

In order to minimize this nonlinear set of equations, we would like to solve it using Newton-Raphson
iterations, while only iterating on the displacements and not the interface forces. Hence, it is required to
�nd an explicit relation between the set of displacements and the interface forces. Starting from the �rst
line of Eq. (21), the response can be split in a known part (analog to the \predictor" used for Newmark)
and an unknown part,

u(s)
n = ~u(s)

n �
dt

2
Y

(s)
1 B(s)T�n, (26)

where,

~u(s)
n = u

(s)
0 +

dt

2

n�2X
i=0

Y
(s)
n�i

�
~f
(s)
i + ~f

(s)
i+1 �B

(s)T
�
�i + �i+1

��
+
dt

2
Y

(s)
1

�
~f
(s)
n�1 + ~f (s)

n �B(s)T�n�1

�
(27)

Substituting this into the compatibility equation, given in Eq. (18)

h
B(s) B(r)

i " ~u
(s)
n � dt

2 Y
(s)
1 B(s)T�n

u
(r)
n

#
= 0, (28)

and rewriting this, gives us an explicit equation for �n.

�n =
�
B(s)Y

(s)
1 B(s)T

��1 h
B(s) B(r)

i " ~u
(s)
n

u
(r)
n

#
, (29)
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“Uncoupled” response to an external force

t = t+ dtt = t+ dt t = t+ dtt = t+ dt

Prediction

Computing the residual

Initial quasi static equilbrium

Convergence?

Computing the correction

Correction

Yes

Yes

No

No

Y (s), f (s)Y (s), f (s)

Prediction

Interface force

Correction

Converged

λn =
(
B(s) dt

2
Y
(s)
1 B(s)T

)−1
Bunλn =

(
B(s) dt

2
Y
(s)
1 B(s)T

)−1
Bun

u
(s)
n = u

(s)
n − dt

2 Y
(s)
1 B(s)T λnu

(s)
n = u

(s)
n − dt

2 Y
(s)
1 B(s)T λn

r
(r)
n =M(r)ü

(r)
n + p(r)(u̇

(r)
n ,u

(r)
n )−

f
(r)
n +B(r)T λn

r
(r)
n =M(r)ü

(r)
n + p(r)(u̇

(r)
n ,u

(r)
n )−

f
(r)
n +B(r)T λn

||r
(r)
n || < ǫ ||f

(r)
int
||||r

(r)
n || < ǫ ||f

(r)
int
||

St(u
(r)
n )∆u

(r) = −r(r)nSt(u
(r)
n )∆u

(r) = −r(r)n

ü(r)n = ü(r)n +
1

βdt2
∆u(r)

u̇(r)n = u̇(r)n +
γ

βdt
∆u(r)

u(r)n = u(r)n +∆u(r)

ü(r)n = ü(r)n +
1

βdt2
∆u(r)

u̇(r)n = u̇(r)n +
γ

βdt
∆u(r)

u(r)n = u(r)n +∆u(r)

M (r), S(r), p(r),

ü
(r)
0 , u̇

(r)
0 , f

(r)

M (r), S(r), p(r),

ü
(r)
0 , u̇

(r)
0 , f

(r)

u̇(r)
n
= u̇

(r)
n−1 + (1− γ)dtü

(r)
n−1

u(r)
n
= u

(r)
n−1 + dtu̇

(r)
n−1 + dt

2
(1
2
− β

)
ü
(r)
n−1

ü(r)
n
= 0

u̇(r)
n
= u̇

(r)
n−1 + (1− γ)dtü

(r)
n−1

u(r)
n
= u

(r)
n−1 + dtu̇

(r)
n−1 + dt

2
(1
2
− β

)
ü
(r)
n−1

ü(r)
n
= 0

u(s)
n
= u

(s)
0 +

dt

2

n−2∑

i=0

Y
(s)
n−i

(
f̃
(s)
i
+ f̃

(s)
i+1

−B(s)T λi −B
(s)T λi+1

)

+dt

2
Y
(s)
1

(
f̃
(s)
n−1 −B

(s)T λn−1

)

u(s)
n
= u

(s)
0 +

dt

2

n−2∑

i=0

Y
(s)
n−i

(
f̃
(s)
i
+ f̃

(s)
i+1

−B(s)T λi −B
(s)T λi+1

)

+dt

2
Y
(s)
1

(
f̃
(s)
n−1 −B

(s)T λn−1

)

u(s)
n
= u(s)

n
+
dt

2
Y
(s)
1 f̃ (s)

n
u(s)
n
= u(s)

n
+
dt

2
Y
(s)
1 f̃ (s)

n

Figure 2. Integration scheme for the non-linear IBS case

Substituting Eq. (29) into Eq. (23) gives a direct (non-linear) relation between the residual and the set of
displacements.

r(r)n

�
u(r)
n

�
= 0 (30)
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This is the non-linear problem, that will be minimized using Newton-Raphson iterations. Hence we succes-
sively solve the following set of linear equations

S(u(r)
n )�u(r) = �r(r)n , (31)

where, S(u
(r)
n ) is the iteration matrix. Using the computed �u(r) the accelerations, velocities and displace-

ments are updated.

�u(r)
n = �u(r)

n +
1

�dt2
�u(r)

_u(r)
n = _u(r)

n +


�dt
�u(r)

u(r)
n = u(r)

n + �u(r)

(32)

This process is repeated until the residual is smaller than the set convergence criterium and requires us to
compute the Jacobian (or iteration) matrix S(r).

S(r)
�
u(r)
n

�
=
@r(r)

@u(r)
=
@p(r)

@u(r)
+
@p(r)

@ _u(r)

@ _u(r)

@u(r)
+M (r) @ �u(r)

@u(r)
+
@M (r)

@u(r)
�u(r) � @f (r)

@u(r)
+
@B(r)T�

@u(r)
(33)

Note that by including the interface forces in the residual (23) and subsequently using this residual to
compute the Jacobian matrix (33), the inuence of the neighboring substructures is included in the Newton-
Raphson iterations. Substituting Eq. (29) into Eq. (33) and only expanding the last term of Eq. (33) shows
the contribution of the neighboring substructure in the Jacobian matrix.

@B(r)T�

@u(r)
= B(r)T

�
B(s)Y

(s)
1 B(s)T

��1
B(r) (34)

This can be physically interpreted as a condensation of the linear substructure into the non-linear substruc-
ture. After the nonlinear subsystem is converged, all the (condensed) linear subsystems are updated using
the computed interface force.

u(s)
n = ~u(s)

n �
dt

2
Y

(s)
1 B(s)T�n, (35)

and a new time step is started. The method for coupling IRFs and nonlinear FE models is shown in �gure
2, where the iteration-loop is enclosed by the doted line.

IV. Computing the coupled response from an initial static equilibrium

In section III the Impulse Based Substructing (IBS) method has been described as a coupled time
integration method. This method needs to be initialized using a set of initial conditions, similar to any
other time integration method. In general there are two types of initial conditions one can apply for time
simulations. The �rst being the method of initial accelerations, where one assumes the system is at rest
( _u0 = 0, u0 = 0) and uses the force at the initial time (t0) to compute the set of initial accelerations.

M �u0 = f0 � p
�

_u0;u0

�
= f0 (36)

As this initial force can be seen as applying an initial impulse to the system, it will result in high initial
accelerations and (unwanted) transient e�ects in the computed responses. The other approach one can apply,
is to start from an initial static equilibrium (u0 6= 0).

0 = f0 � p
�

_u0 = 0;u0

�
(37)

As this is a nonlinear problem, one needs to resort to methods for solving nonlinear problems (e.g. Newton-
Raphson). Since this method leads to less transient e�ects from the initialization of the time integration
method, it is often preferred for computing the operational behavior of structures and machines.

Hence, this section will present the method for initializing the simulations using an initial static equi-
librium. The ones interested in starting the simulations using the initial accelerations are referred to the
references.8
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A. Initialization of the IBS method

In order to start with the time integration scheme as presented in �gure 2, the initial conditions need to be
determined as a �rst step. As was already mentioned, the method will start from an initial static equilibrium.
Hence, by substituting �u0 = 0 and _u0 = 0 into Eq. (21), the initial static problem is obtained.8>><>>:

K(s)u
(s)
0 = f

(s)
0 �B(s)T�0

p(r)(u
(r)
0 ) = f

(r)
0 �B(r)T�0

Bu0 = 0 ,

(38)

The method for solving this coupled static problem is analog to the approach used for solving the cou-
pled dynamic problem in section III. Firstly, the set of equations for the residual of the nonlinear part is
determined.

r(s)
�
u
(s)
0 ;�0

�
= p(r)(u

(r)
0 ) +B(r)T�0 � f (r)

0 (39)

The residual is now still a function of the displacements and the interface forces, hence we would like to
obtain a relationship expressing the interface forces as a function of the displacements. This can be obtained
by substituting the �rst line of Eq. (38) into the compatibility equation.

h
B(s) B(r)

i "
K(s)�1

f
(s)
0 �K(s)�1

B(s)T�0

u
(r)
0

#
= 0 (40)

Rewriting this equation leads to an expression for the interface forces (�0).

�0 =
�
B(s)K(s)�1

B(s)T
��1 h

B(s) B(r)
i " K(s)�1

f
(s)
0

u
(r)
0

#
(41)

By substituting Eq. (41) into Eq. (39), the residual is no longer explicitly dependent on the interface forces
(�0). In order to minimize the residual, the Newton-Raphson approach is used. Therefore we successively
solve

S
(r)
0 �u

(r)
0 = �r(r)(u(r)

0 )

u
(r)
0 = u

(r)
0 + �u

(r)
0 ,

(42)

where S
(r)
0 is the iteration (or Jacobian) matrix, until the residual is smaller than a chosen threshold or

convergence criterion. The iteration matrix S
(r)
0 is obtained for the static case by computing the derivative

of the residual with respect to the displacements.

S
(r)
0 =

@r(r)

@u(r)
=
@p(r)

@u(r)
� @f (r)

@u(r)
+
@B(r)T�

@u(r)
(43)

Assuming here that the external load is independent of the displacements of the structure, this results in
the following iteration matrix.

S
(r)
0 =

@p
(r)
0

@u
(r)
0

+B(r)T
�
B(s)K(s)�1

B(s)T
��1

B(r) (44)

Analog to the iteration matrix used in section III, it is clear that the sti�ness of the neighboring linear
substructures is condensed in the iteration matrix of the nonlinear part. Hence, in Eq. (42) we iterate on the

global problem and thus �nds the global u
(r)
0 . Substituting the obtained displacements into Eq. (41) gives

the interface forces, which after substitution into the �rst line of Eq. (38), leads to the set of displacements
for all the linear substructures that are described in their IRFs. The now obtained displacements serve as
the initial conditions for the time integration scheme given in �gure 2.
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B. Obtaining the static exibility matrix

In the previous subsection the sti�ness matrix of the linear subsystem is used to �nd the initial static
equilibrium. But, as there is a relation between the sti�ness matrix and the IRFs, the sti�ness matrix is not
required in order to �nd this static equilibrium. If we would apply a constant (unit) force in the convolution
product given in Eq. (4), we would obtain

u(t) =

tZ
�=0

Y (t� �)1jd� , (45)

where 1j is a vector with a unit coe�cient for dof j. If t goes to in�nity, the dynamic response will damp
out and only the static response remains.

u(1) =

1Z
�=0

Y (t� �)1jd� = K�11j (46)

Hence, we can obtain the static exibility matrix K�1 by simply integrating the IRFs from t = 0 to in�nity.

K�1 =

1Z
�=0

Y (�)d� , (47)

By discretizing the continuous convolution product given in Eq. (47) and assuming that we can truncate it
after k + 1 timesteps, we can directly �nd the static exibility matrix.

K�1 � dt
kX
i=0

Yi, (48)

Substituting of Eq. (48) into Eq. (38) results in8>>>>><>>>>>:
u
(s)
0 = dt

kX
i=0

Yi

�
f
(s)
0 �B(s)T�0

�
p(r)(u

(r)
0 ) = f

(r)
0 �B(r)T�0

Bu0 = 0 ,

(49)

and can be used to determine the initial static equilibrium, as was described in subsection A. Note that this
is relatively cheap, as the summation given in Eq. (48) needs to be done only once and no factorization is
required in Eq. (49).

V. Application to an O�shore Wind Turbine

In order to show the e�ectiveness of the method, a case study has been selected. In this case study, the
structural model of the NREL 5MW turbine9 has been taken and coupled to the UpWind reference jacket
model,10 which was also used in the OC4 benchmark study.11 Both models are shown in �gure 3. The wind
turbine is modeled as a nonlinear �nite element model, where the nonlinearity arises from the nonlinear
damper that is attached to the hub-node. This damper is added for simulating an aerodynamic coupling,
even though this damper is far from accurately describing the actual aerodynamic behavior, it demonstrates
that the method can handle nonlinearities. The wind loading is represented by randomly distributing a
random force and a constant force over the entire rotor. The UpWind jacket is modeled using impulse
response functions that were computed for the interface DoF, together with the IRFs due to the distributed
wave loading, as is described in section II. In this section, two di�erent load cases are shown. The �rst load
case is one where only the equivalent wind loading is applied over the rotor and it is shown in subsection A.
For the second load case (subsection B), equivalent wind loading is applied over the rotor and the o�shore
jacket is excited by wave loads. In both cases the results obtained from the IBS method are compared to
those of a Newmark time integration performed on the full, non-substructured, model of the o�shore wind
turbine, comprising of the jacket and wind turbine.
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Figure 3. Models of the Upwind reference jacket (left) and the NREL 5MW turbine (right)

A. Wind loading on the rotor

Firstly, we look at the case where only the equivalent wind loading is applied. As the wind loading in the
case of the substructuring analysis is exactly equal to the loading applied on the full model, the accuracy
of the IBS method can be evaluated from the obtained results. In �gure 4 it can be seen that the method
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Figure 4. Comparison of time responses obtained by IBS and full Newmark time integration, wind loading
only

retrieves the same results as for the non-substructured model. The time response of the reference model,
which is the full FE model of the jacket and turbine combined, shows a perfect match with the time response
computed using the Impulse Based Substructuring method. The relative error is shown in �gure 5, which is
computed according to Eq. (50).

�u(t) =
jjuref (t)� uIBS(t)jj

jjuref (t)jj
(50)
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Figure 5. Relative error �u in the x-direction, wind loading only

From �gure 4 it can be seen that, although very small, the error is not equal to zero. This can be explained
from the fact that in the Newton-Raphson iterations the residual (error on the equilibrium) is minimized
up to a certain tolerance (in this case jjrnjj < 10�6jjpn � BT�jj). Hence, by setting this tolerance more
strict, the errors on the displacements become smaller. As the dynamic behavior represented by the Impulse
Response Functions is numerically exact, the exact same result would be obtained if we would iterate up
to the point where the residual is zero. Note that in practice this can never be achieved due to numerical
errors.

B. Combined wind and wave loading

For the second load case, the jacket structure is excited by sea waves, which are assumed to be irregular
(linear) waves with a signi�cant wave height of 9.40 m, and a current with speeds up to 1.2 m=s2 at the
mean sea level.10 The wave forces are computed beforehand, which is done by assuming small velocities of
the structure, hence discarding the relative velocity terms in the Morrison equation.12 The wave forces have

0 10 20 30 40 50 60 70 80 90 100
10

-3

10
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10
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time (s)

0
(!

)

 

 
Single time step

Mean value

Figure 6. Norm of the force error when using a POD representation with 15 modes.
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been reduced using �fteen force shape distributions over the structure, as was presented in section II. This
reduces the vector of applied forces from p-entries, related to the DoF of the physical model (p = 1062), to
only a limited number of distributed forces (p� = 15). The space distributions have been determined using a
proper orthogonal decomposition (POD) analysis on the force time series, where only the 15 most important
proper orthogonal modes (POMs) where retained. Using the force space distributions (which we will call
\modes" from now on and are assumed to be normalized), the modal force amplitudes (�), as presented in
Eq. (12), are computed according to:
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Figure 7. Comparison of time responses obtained by IBS and full Newmark time integration, wind and wave
loading

�(t) = �Tf(t), (51)

which can be expanded back to physical forces by projecting them on the set of retained modes

~f(t) = ��Tf(t). (52)

By taking the L2-norm (per time step) of the di�erences between the original applied forces (f(t)) and the
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Figure 8. Relative error �u in the x-direction, wind and wave loading
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reduced forces ( ~f(t)) and dividing this by the L2-norm of the original applied forces, a qualitative measure
(�(t)) is found for the amount of force \lost" due to the reduction step,

�(t) =
jjf(t)���Tf(t)jj

jjf(t)jj
. (53)

The result is shown in �gure 6. It can be seen that after the reduction step (on average) 99.2% of the
L2-norm of the force was retained. But it should be noted that locally a larger error can exist, which could
cause errors on the computed response of the structure. The results from the time integrations are shown
in �gure 7, which again appear to be a nearly perfect match. If �gures 5 and 8 are compared to each other,
we note that the error, computed using Eq. (50), made on the displacements is slightly bigger. This comes
from the fact that the reduced wave loads are an approximation of the original time series of wave loading.
Nevertheless, this clearly demonstrates that the idea of using an impulse response due to a distributed load,
can be easily applied within the IBS framework and can produce excellent results.

VI. Conclusions

From this work it was shown that the Impulse Based Substructuring method can be applied to couple
any type of (linearized) o�shore structure to a wind turbine in order to compute the coupled dynamic
response. The method can be easily implemented, as it only requires a number of small augmentations to
the standard Newmark time integration scheme for non-linear systems, combined with a simple scheme to
solve the discretized Duhamel integral. From the �gures it can be seen that the achievable accuracy is in
the same order as the convergence criteria set for the Newton-Raphson iterations.

In addition it is shown that the method is able to compute the time response of structures which start
from non-zero initial conditions. Therefore, the time integration can be initialized from a static equilibrium,
hence eliminating any unwanted transient e�ects at the start of the time integration.

Finally, it is shown that the Impulse Based Substructuring method can also be applied to structures which
have relatively large force loaded areas. This is done by allowing one to compute the impulse responses due
to a distributed load. Combining this idea with proper orthogonal decomposition methods in order to �nd
the predominant force distribution shapes gives an e�cient and accurate method for including wave loading
on an o�shore structure in the analysis.
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