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Abstract
When deployed in production, machine learning
models sometimes lose accuracy over time due to
a change in the distribution of the incoming data,
which results in the model not reflecting reality any
longer. A concept drift is this loss of accuracy over
time. Drift detectors are algorithms used to detect
such drifts. Drift detectors are important as they
allow us to detect when a classification model be-
comes inaccurate. Some possible uses of drift de-
tectors can even go as far as detecting adversarial
attacks on machine learning algorithms.[10] The
detectors discussed in this paper are Margin Den-
sity drift detectors. Their evaluation is made within
an unsupervised context, where we assume no test-
ing labels are available. In real world applications
of machine learning models, this might often be the
case, as finding labels is costly. Experiments in this
paper have found that margin density detectors can
be useful tools in detecting the first drift for syn-
thetic data, even though parameter tuning must be
done to achieve high accuracy for some datasets. In
an unsupervised environment with more than one
drift, the drift detectors are unreliable as was seen
in experiments involving real world data. With this
paper comes an implementation of margin density
detectors for future endeavors.

1 Introduction
Concept Drift

A limitation of machine learning models deployed in pro-
duction is that their classification accuracy sometimes de-
creases over time. This is because the data they are classify-
ing changes over time, and stops reflecting the data they were
training on. This naturally occurring change in the data over
time is called a concept drift. A drift detector is what is used
to detect such a shift in data[7]. The inability to detect drift
in data could lead to relying on an inaccurate classification
machine learning model. Being unable to detect concept drift
can also be seen as a security threat, as concept drifts can be
attacks on the machine learning model. [10] This paper will
focus on a type of unsupervised drift detector.

Unsupervised drift detectors are drift detectors that only
rely on the labels for the training sets. Unsupervised drift
detectors are especially important because it is expensive to
get labels for data in real world situations. In this paper, a
margin density detectors will be evaluated in an unsupervised
environment.

Research Question
This paper will be a general as well as a comparative study of
multiple drift detectors within the margin density detector cat-
egory. Being able to apply the best drift detection techniques
to real world data is important to have good accuracy and per-
formance. Therefore, the overarching question that this paper
partially attempts to answer is this one: How well do unsu-
pervised concept drift detectors identify concept drift in case

of synthetic and real-world data? My sub question will fo-
cus on Margin Density detectors, and will therefore be: How
well do Margin Density-based concept drift detectors identify
concept drift in case of synthetic/real-world data?

The paper will be divided into these following sections:

1. Related works, where this paper will describe the rele-
vant literature pertaining to unsupervised drift detection
and margin density detectors.

2. The Methodology section where this paper will describe
how drifts were found in the real world data. It will also
describe implementation details of the experiment.

3. The Result section where relevant results are presented.

4. The Discussion section, where relevant results will ex-
tensively be analyzed.

5. A Responsible research section dedicated to ethical mat-
ters and considerations.

6. A Conclusion which will summarize the findings of this
paper.

The contributions of this paper are summarized below:

1. It describes a methodology and with if finds real world
drift in certain real world datasets.

2. It evaluates margin density detectors under the same ex-
perimental setup and gives insight into their strengths
and limitations.

3. It offers an implementation of multiple margin drift de-
tectors found in multiple papers. This will allow further
research using margin density detectors which to the best
of our knowledge do not yet have publicly available im-
plemented code. [7]

4. It experiments with a K nearest neighbors classifier
based margin drift detector which has not been done be-
fore, to the best of our knowledge.

This paper presents a replicative and comparative study of
margin density detectors and its contributions are therefore
mostly experimental. It describes concretely how different
drift detectors from the same category(margin density) com-
pare to each other. The setup of this project is suitable due
to the fact that it assembles multiple different classifiers and
compares them under the same experimental setup. It also
evaluates the detectors on real world data in an unsupervised
environment, which to the best of our knowledge, has never
been done before. To find how margin density detectors com-
pare to mixed, clustering similarities, and Data-distribution
based detectors, a meta analysis might be done outside the
scope of this paper.

2 Related work
2.1 Unsupervised Drift Detectors
Unsupervised drift detection is a relatively unexplored sub-
field of drift detection [4]. Most existing work describes novel
techniques or algorithms, and sometimes how they relate to
specific industry practices (which is outside of our scope).
Some examples are the MD3 algorithm, [8], or the NN-DVI



algorithm.[3]. There is also overview literature [1] that as-
sembles multiple different approaches to detecting concept
drift with unsupervised algorithms. Even with overviews,
there are no comprehensive analysis of how multiple types of
unsupervised concept drift detectors compare to each other
when it comes to their performance on the same data sets.
Our broad project seeks to bridge that gap in knowledge by
regrouping many detectors and directly comparing them to
each other. Once again, this paper is only a part of the project,
and will focus on margin density detectors specifically. Other
papers will describe mixed, clustering similarities, and Data-
distribution based detectors.

2.2 Margin Density Detectors
Margin density detectors were first introduced as detectors us-
ing the margins of soft margin support vector machines to es-
timate drift. Margin density is defined as Margindensity =
Dm ÷ Dt where Dm is the number of data points inside
the boundaries and Dt is the total number of data points. A
diagram of margin density with soft margin support vector
machines can be seen in figure 1. The reason such a met-
ric is used is that for support vector machines, significant
movement of data within the margin should reflect a change
in accuracy, as the data is close to the decision boundary.
This assumes a coupling of the training model with the drift
detector.[8]. We could however also make an arguement that
detectors are similar and will reflect drifts in the same places,
which is found to be true in this paper’s experimental section.
The detectors described below are the ones implemented for
this paper, and are based, if somewhat loosely on these princi-
ples. The margin density detectors mentioned in this paper all
use the chunk based algorithm (uses batches of data instead
of a stream) approach without the forgetting factor λ,[8] as
none of the experiments are made with sliding windows.

Figure 1: Margin Density of a soft margin SVM

MD3V1
The first algorithm implemented for this paper is based on the
first margin density detector invented [8] (at least by name).
The algorithm starts by training a support vector machine
with the training data and labels. The margin density (as de-
scribed in section 2.2)of the training data set is recorded, and
is set to be the maximum, and minimum seen. Once the de-
tector is trained, it can detect whether a batch of data contains

a drift. It does this by comparing the maximum - minimum
density seen to the newly found batch density. If it is greater
than a parameter ρ (to be chosen) away, we define it as a drift.
Having such a parameter unfortunately makes this drift detec-
tor very dataset dependent, as will be seen later.

MD3V2
The second detector was implemented as an improved version
of the first one. It takes into account the standard deviation
of the margin density of the training data [9]. This allows for
a statistical approach in choosing a threshold for defining the
drift, which reduces dataset dependence. This algorithm uses
K cross validation on support vector machines to estimate the
expected value and the standard-deviation of the accuracy and
margin density. Once those values are found, a support vector
machine is trained on the labeled training data to be able to
estimate the margin density, and consequently drift of the data
it will be analyzing. When deciding whether there is a drift
in a given dataset; the detector compares the expected mar-
gin density to the margin density of said dataset, and if the
difference of those is larger a threshold θ standard deviation
away(depending on how sensitive to change in margin den-
sity ), a drift is suspected. Since the definition of drift relates
to a drop in accuracy, the algorithm then needs the labels to
calculate how far from the expected accuracy the calculated
accuracy is. A drift is confirmed when the accuracy is farther
than an arbitrary amount of standard deviations away. Some-
thing that one might notice is that we can only use this drift
detector with support vector machines, which is not ideal, es-
pecially if conceptually, the coupling of the detector and clas-
sifier is somewhat important. What if the data classification
is more accurate with other classifiers?

MD3 X
The third algorithm[9] used in this paper seeks expand the
definition of margin density to allow margin density drift de-
tectors to be made with ensemble classifiers as well as support
vector machines. The margin density defined for ensemble
classifiers is an uncertainty metric. The probability for each
class is calculated as the amount of classifiers in the ensemble
that have voted for a certain class given a data point divided
by the total number of classifiers in the ensemble. If the prob-
ability the data is in class 1 - the probability that it is in class
2 is bigger than a tunable parameter θm(margin of uncer-
tainty),then the data point is within the margin. The margin
density or ”blindspot density”, is the total number of points
within this margin divided by the total number of points. Re-
placing the measure of margin, one can now use algorithm
for MD3 V2, with bagging classifiers instead of support vec-
tor machines.

Fuzzy margin Density(FMD)
There are other variants to calculate the margin density. The
algorithm used to detect drift stays identical, but the func-
tion to calculate the margin density is different. One of those
papers describes the fuzzy margin density, for example[11].
The fuzzy density algorithm uses the third algorithm defined
in this paper, but changes how one calculates the blindspot
density. It seeks to improve the previous detector. The new



equation is described in Figure 2, where x is the data point, y
is the class, and Prs is the probability that x is in class y.

Figure 2: Fuzzy Margin Density [11]

3 Methodology
3.1 Implementation of concept drift detectors

The implementation of the algorithms was made to be con-
sistent with the way they might have been implemented in
the papers. This lead to the choice of the scikit-learn [6] li-
brary, which was also used by the authors of the algorithms
this paper will implement. The programming language used
was python, version 3.9. This version was used because it is
the highest version able to run the environment required for
the scikit-learn-intelex library at the time. This library allows
a substantially faster runtime for many classifiers of the clas-
sic sklearn library. The popular library numpy was used for
data handling outside of the classifiers. This includes mostly
calculation of margin density, and an implementation of cross
validation[9].

All algorithms implemented in this paper use the classifiers
provided by the sklearn library. MD3V1,and MD3V2 use the
SVM classifier with a linear kernel. The MD3X and FMD
algorithms were implemented using the class BaggingClas-
sifier with a feature sampling of .5. The experiments were
then done with a CART tree classifier, and a KNN classifier.
The Tree classifier using a CART algorithms was used even
though the described tree algorithm in the paper is a C4.5[9].
No C4.5 tree algorithms could be found with implementa-
tions that had appropriate run times for our experiments. The
choice of the sklearn CART algorithm was made due to its
runtime speed[5] and consistency with the rest of our code.
This is a limitation of this paper; when it comes to replicat-
ing implementations of referenced algorithms fully for exper-
imentation. This trade-off was also done with the airplanes
dataset. The class LinearSVC was used with a Nystroem ker-
nel approximation instead of a simple linear SVM. This was
done to greatly increase processing speed, at the cost of some
classifying accuracy.

To tune how accurately a drift detector can detect drift on a
given dataset, many hyperparameters have to be considered.
For brevity’s sake, only the experimental results of the rec-
ommended parameters[8][9] [11]will be displayed for each
dataset, with some clear exceptions. Separate data and ex-
periments regarding tuning parameters of the detectors will
only be mentioned. For MD3V1, the parameter ρ = .075,
and C = 1 for the trained SVM. [9]. For the MD3V2 al-
gorithm, θ = 2 (standard deviation multiplier),K = 5 cross
validations, with SVM hyperparameter C = 1 for consis-
tency with MD3V1. FDM and MD3 X implemented ensem-
ble classifiers with feature bagging with half of the features
present, and 20 classifiers each. [11][9]. The KNN classi-
fier was made with an optimized K (from 4-40) maximizing

the accuracy using cross validation. All tables shown will
be from implemented algorithms that use the aforementioned
tune-able parameters.

3.2 Description of datasets
Synthetic Data
There were three distinct synthetic sets of data sets and dis-
tribution used. SEA, AGRAW 1, AGRAW 2 as descried in
another paper [7]. All of them represent a distribution that
changes over time in an attempt to make classifiers lose accu-
racy. An important feature of those datasets is that they only
contain one drift. SEA has purely numerical data, AGRAW 1
and 2 have both categorical and numerical data. Each of those
sets had one abrupt drift version of themselves with many
gradual drift versions of themselves each having a different
drift width. The definition of the drift width is: the moment
between the start and end of a drift [7]. The drift widths con-
sidered for each data sets are 500, 1000,5000,10000,20000.
In each of those sub sets are 100000 data points. They are
to be seen as continuous in time with data point zero being
the first data point and data point 100000 being the last re-
ceived data point. The first 30000 points are to be used as
labeled training data, and the subsequent data should be used
as unlabeled testing data.

3.3 Data setup
Pre-processing:

Before the data was able to create and be processed by the
the drift detectors, it had to be pre-processed to be usable. The
libraries used were pandas; for the data frames, and numpy,
for the encoders and scalers. Since, the sklearn implementa-
tion for SVMs does not support categorical data, it data had to
be changed to numerical form. To do this, we used three dif-
ferent encoding methods and compared their performances.
”Target”, ”One Hot”, and ”Ordinal” encodings were used.
The results displayed for all data tables shown in the next
section are derived from ordinally encoded experiments. All
three of these encoding methods will be discussed in the next
section. Before being used by the classifiers, the data had to
be scaled, as the SVM classifier had a poor runtime and clas-
sification performance without scaling. The loss of perfor-
mance was due to the fact that the scale of the features affects
how much a feature is weighted, since the SVM algorithm
maximizes distance between separating hyperplanes.[9] The
dependency on the scale of the features was negated by nor-
malizing them with a minmax scaler. This scaler was taken
from the sklearn library, and was used for all experiments de-
scribed later.

Synthetic Data
All synthetic data had similar characteristics and had to be
processed in similar ways. The data was split into 10 testing
batches of 10 thousand data points. The first 30 thousand data
points were used to train the drift detectors. Once they were
trained, the drift detectors were tested successively on the re-
maining batches. In each of the data sets, the drift occurred in
batch 3 (after the training data). This setup can be visualized
in figure 3



Figure 3: Data Setup Synthetic Data [7]

Real World Data
The Weather dataset was divided into a training set of 6053
samples and a set to be detected of 12106 samples. Two ex-
periments were done with the batches to be detected. Those
12106 samples were divided monthly, with 30 samples per
patch, and the other experiment had them divided yearly, with
365 samples per batch. It describes meteorological data from
Nebraska, with the purpose of the classifier being to predict
rain.

The ELECT2 dataset was divided into a training set of
15104 samples and a set to be detected of 30208 samples.
Those 30208 samples were then further divided into yearly
predictions with 365 samples per batch. This dataset repre-
sents data about energy prices and relevant information, with
the purpose of the classifier being to predict increasing or de-
creasing electricity prices.

The Airplanes dataset was divided into a training set of
179794 samples and a set to be detected of 359589 samples.
Those 359589 samples were then further divided to create
batches of 17000. This dataset contains flight related data
and information, with the purpose of the classifier being to
predict if a flight is delayed or not.

Unlike in the synthetic data, the batches where the drift oc-
curred was unknown in the real world data, which meant that
the drift had to be defined from the characteristics the data
exhibited. Since a drift is defined as the loss in accuracy over
time in the context of a classifier, the approach taken was to
find such loss in accuracy. Ideally, the most accurate and least
biased classifier would have been used to find such a loss in
accuracy, and our method tried to replicate such conditions.
Practically it would still be possible for a non ideal classifier
classifier to detect an accuracy loss, so we assumed some er-
ror margin. To estimate accuracy, a cross validation approach
was used on a few classifiers to maximize performance. The
classifier with the highest performance was then used to esti-
mate the drifts. The classifiers used were:

• K nearest Neighbour(KNN)

• Support Vector Machine (SVM)

• CART Random Forest

• Gaussian Process Classifier

• Ada Boost Classifier

• GaussianNB

• QuadraticDiscriminantAnalysis

Method used to find real world drifts:
F irstly, the chosen real world dataset was divided into sub-
sets according to their characteristics mentioned above to al-
low a good estimate of classification accuracy. An example
would be the ELECT2 dataset.This dataset was divided into
a training set of 15104 samples and a set to be detected of
30208 samples. Those 30208 samples were then further di-
vided into yearly predictions with 365 data points per batch.

Secondly, a classifier was trained on the training set. This
was done by dividing the training set into batches that are the
same size as the ones for the testing set. In this case, the
training set was divided into batches of 365 data points. Ran-
domly, a batch within the training set was chosen to serve as a
testing batch. The rest of the data was used to train the classi-
fier. The classifier was then run on the randomly chosen batch
to find the accuracy at which the classifier predicts that batch.
This procedure was repeated with 39 more random batches.
Those results were then used to create a normal distribution
with expected classifier accuracy µ, and standard deviation σ.
The decision to use 40 random samples was made to have a
sufficient sample size for the central limit theorem to hold.
This procedure was repeated until each classifier had a nor-
mal distribution.

Lastly, The classifier with the highest expected accuracy
was chosen to predict the the classes of the data in the se-
quential batches, in the set to be detected. The accuracy at
which the classifier predicted the classes of the batches was
then compared to µ, with a batch being labeled as a drift if
the accuracy of prediction of the classifier on that batch was
lower than a standard deviation away. One standard deviation
was chosen as only 16 percent of the data should be that far
below the mean, meaning that the chosen batch is most likely
drifting. Figure 4 shows the batch classification of the clas-
sifier with the highest expected accuracy for ELECT2. The
classifier is an ADA Boost Classifier with an expected accu-
racy of .856, and a standard deviation of about .054. The bar
going through the graph represent the accuracy threshold de-
termining the classification of the batch into a drifting or non
drifting batch. This procedure was done multiple times for
ELECT2 for confirmation.

3.4 Evaluation metrics
Synthetic Data
The evaluation metrics used are ”False positive rate, and ”La-
tency” [7]. False positive rate calculates the amount of times
a drift detector detects a drift before a drift happens, and La-
tency describes how late it detects the drift, compared to when
a drift does happen. The exact equations are shown in figure
5

Real World Data
For real world data, the metrics used are the drift accuracy,
and the false positive rate (FPR). The drift accuracy is a mea-
sure of how many drifts the detector is able to find. The ex-
act equation is Driftscorrectlyfound÷TotalDrifts. The
FPR is calculated as NM ÷NT where NM is the amount of
non drifting batches that were classified as drifting, and NT
is the total non drifting batches.



Figure 4: Accuracy of ADA Boost Classifier on Elec2 dataset

Figure 5: Data Setup Synthetic Data [7]

4 Results

4.1 Synthetic data

Should contain all the results we obtained from our detectors
with different parameter sets (e.g. different encodings):

Abrupt drift

Before describing the experimental results, some context
needs to be given to its interpretation. Margin density de-
tectors use the blindspot or margin density of their detectors
to try and detect a change in accuracy. Below are some graphs
showing the shape of margin density graphs for the synthetic
datasets. What are the properties of margin density when a
drift is detected?

Figure 6: Accuracy of Abrupt Agraw1

Figure 7: Margin Density of Abrupt Agraw1

Figure 8: Margin Density of Abrupt Agraw2

These figures exemplify well the shapes of both accuracies
and margin densities. All datasets broadly have that shape,
with gradual drift accuracies having a bit more slope. From
these figures one can find three important properties, which
can be generalized to all other datasets present in this paper.
Firstly, margin density will often have a rapid change when
a drift occurs. Secondly, the margin density can either have
an increase or decrease when a drift occurs. Thirdly, after the
first drift, a change in margin density might not represent a
change in accuracy as well as for the first drift, as can be seen
in figure 8.

For the experiments displayed in the next section, Ordi-
nal encoding was used. Target Encoding and One hot encod-
ing were also tried on the abrupt drift datasets, as well as the
gradual drift datasets with width of 20 thousand data points.
The drift detecting capabilities of the detectors with one hot
encoding and target encoding were almost identical. The
only difference being that the latency for the agraw2 20 be-
came 0.2 for MD3V2, meaning the detector performed worse.
Experments with the other encoders were discontinued after
those experiments, in favor of the ordinal encoder for the rest
of the synthetic data.



Table 1: FPR Synthetic

sea A agraw1 A agraw2 A

MD3 V1 0 0 0
MD3 V2 1 0 0
MD3 Tree 1 1 1
MD3 KN 0 0 0
Fuzzy Tree 1 1 1
Fuzzy KN 0 0 1

Table 2: Latency Synthetic

sea A agraw1 A agraw2 A

MD3 V1 0.25 0.25 1.0
MD3 V2 0.0 0.0 0.0
MD3 Tree 0.0 0.0 0.0
MD3 KN 1.0 1.0 1.0
Fuzzy Tree 0.0 0.0 0.0
Fuzzy KN 1.0 1.0 0.0

As we can see, on recommended parameters, the MD3V2
algorithm performs the best on the agraw datasets while the
MD3V1 algorithm performs best on the Sea datasets. After
performing some experiments, it was found that by changing
the parameter ρ for MD3V1, it could be perfectly tuned to
detect a drift drifts for Agraw datasets with no false positives
or latency. Changing θ for MD3V2, achieved the same effect.
Increasing both of those parameters would increase Latency,
and reduce the FPR. Drifts detection of both SEA and Agraw
datasets could not be made simultaneously with one drift de-
tector. Different values of K up to 20 for cross validation were
used to detect drift more accurately. This did not change the
results.

The MD3 Tree algorithm consistently had a high FPR, and
a low latency. Upon closer inspection, it was found that the
standard deviation and mean density of the detector were both
0. The fuzzy counterpart had the same problem. The blind
spot density graphs represented drifts in accuracy well, but
the detector was unable to take advantage of it.

The MD3 KN either had high Latency or high FPR. Upon
further investigation, it was found that the expected value
for the detector was either significantly higher than the batch
blind spot density, or significantly lower, and its standard de-
viation was abnormally high. We attempted to find param-
eters that would allow accurate drift detection. Experiments
were made increasing K neighbors to 200, then 1000, and the
cross validation amount was increased to 50, but the results
did not change significantly.

Gradual drift

Table 3: FPR Gradual

M 1 M 2 M T M KN F T F KN

sea A 0 1 1 0 1 0
agraw1 A 0 0 1 0 1 0
agraw2 A 0 0 1 0 1 1
agraw1 05 0 0 1 0 1 0
agraw1 1 0 0 1 0 1 1
agraw1 5 0 0 1 1 1 0
agraw1 10 0 0 1 0 1 0
agraw1 20 0 0 1 0 1 0
agraw2 05 0 0 1 0 1 0
agraw2 1 0 0 1 0 1 0
agraw2 5 0 0 1 0 1 0
agraw2 10 0 0 1 0 1 0
agraw2 20 0 0 1 1 1 1
sea 05 0 1 1 0 1 1
sea 1 0 1 1 0 1 0
sea 5 0 1 1 0 1 0
sea 10 0 1 1 0 1 0
sea 20 0 1 1 0 1 1

Table 4: Latency Gradual

M 1 M 2 M T M KN F T F KN

sea A 0.2 0.0 0.0 1.0 0.0 1.0
agraw1 A 0.2 0.0 0.0 1.0 0.0 1.0
agraw2 A 1.0 0.0 0.0 1.0 0.0 0.0
agraw1 05 0.2 0.0 0.0 1.0 0.0 1.0
agraw1 1 0.2 0.0 0.0 1.0 0.0 0.0
agraw1 5 0.2 0.0 0.0 0.0 0.0 1.0
agraw1 10 0.2 0.0 0.0 1.0 0.0 1.0
agraw1 20 0.4 0.0 0.2 1.0 0.0 1.0
agraw2 05 1.0 0.0 0.0 1.0 0.0 1.0
agraw2 1 1.0 0.0 0.0 1.0 0.0 1.0
agraw2 5 1.0 0.0 0.0 1.0 0.0 1.0
agraw2 10 1.0 0.0 0.0 1.0 0.0 1.0
agraw2 20 1.0 0.0 0.0 0.0 0.0 0.0
sea 05 0.2 0.0 0.0 1.0 0.0 0.0
sea 1 0.2 0.0 0.0 1.0 0.0 1.0
sea 5 0.2 0.0 0.0 1.0 0.0 1.0
sea 10 0.2 0.2 0.0 0.2 0.0 1.0
sea 20 0.4 0.2 0.0 1.0 0.0 0.0

The results for gradual drifts show that an increase drift width
will increase the latency for the SVM based detectors.



4.2 Real-world data
Weather:

Table 5: FPR Weather

MV1 MV2 M T M KN F Tree F KN

Monthly 0.996 1.0 1.0 0.864 1.0 0.783
Yearly 0.933 1.0 1.0 0.800 1.0 0.933

Table 6: Accuracy Weather

MV1 MV2 M T M KN F Tree F KN

Monthly 1.0 1.000 1.0 0.842 1.0 0.828
Yearly 1.0 0.888 1.0 0.833 1.0 1.000

The drift detection capabilities of margin density drift detec-
tors is relatively low for the weather data set, with a high false
positive rate detected. Experiments with the values of the pa-
rameters θ = 4 were tested in an attempt to tune the detector.
The experiments with the tuned detectors had a lower false
positive rate, but also a lower drift detection accuracy.

Electricity:

Table 7: Electric Dataset

Elec Acc Elec FPR

MD3 V1 1.000000 0.962963
MD3 V2 0.892857 0.962963
MD3 Tree 1.000000 1
MD3 KN 1.000000 1
Fuzzy Tree 0.982143 1
Fuzzy KN 1.000000 1

The drift detection capabilities of margin density drift detec-
tors is relatively low for the electricity data set, with a high
false positive rate detected. The same experiments with θ = 4
were made, with the same results as with the weather dataset.
Changing the amount of cross validations yielded similar re-
sults.

Airplanes:

Table 8: Airlines

Air Accuracy Air FPR

MD3V1 0.0 0
MD3V2 0.0 0
MD3 Tree 1.0 1
MD3KNN 1.0 1
Fuzzy Tree 1.0 1
FuzzyKNN 0.0 0

The drift detection capabilities of the margin density detectors
is relatively low for the airplanes dataset, with a low accuracy,
or a high false positive rate.

5 Discussion
5.1 Synthetic Data
Performance under abrupt drift

As shown in the result section, the MD3 V1 algorithm ac-
curately detected drift in only some of the dataset. The dataset
which was accurately predicted, however, depended on the
tuning parameters used by the algorithm. This shows that
this detector can have high accuracy on detecting drift when
there is only one drift, and only in some circumstances. The
main issue one faces when using this detector is that it needs
to be tuned in a data dependent way. Further researh could be
done to tune the detectors without requiring knowledge about
the incoming drift. To our knowledge, this is not something
that has been done yet[8],[9],[11] [10]. Currently, the only
way to tune the detector for an accurate drift detection is to
experiment with a known drift, which defeats the purpose of
the detector. This is also true for the MD3 V2 algorithm

The MD3 Tree and its fuzzy counterpart were unable to
deliver any useful results. The margin density graphs resem-
bled the ones from MD3 V2, but the standard deviation and
expectation for the blindspot density is equal to 0. Our hy-
pothesis is that the CART trees are over-fitted on the train-
ing data when it comes to blindspot density, since they use
feature bagging. This happens in the datasets used for this
paper because those datasets only have a restricted amount
of non linearly dependent features, and they might therefore
not create much ”disagreement” in the ensemble classifier. In
future research, one could investigate the effects of increased
number of linearly independent features and bootstrap aggre-
gation on the drift detection accuracy of Tree based blindspot
density algorithms.

The MD3 KN algorithm algorithm and its fuzzy counter-
parts also have expressive margin density graphs which show
drifts. The standard deviation and accuracy calculated by the
cross validation for each dataset is however very different
from what it should be to give meaningful results. The cause
of this is unknown. This detector has been tested with multi-
ple tunings, as was described in the result section. Presently,
this drift detector is highly unreliable.

The difference in drift detection accuracy between the
fuzzy and original MD3 algorithms were not made clear with
the experimental results. This is partly due to the inability of
blindspot density based detectors to detect drift accurately.

Performance under gradual drift
The results from experiments on gradual drifts show that
overall, the performance of the drift detectors doesn’t change
much when compared to abrupt drifts. The latency of the drift
detection does increase, but experiments have also shown that
increasing the sensitivity of the detectors by decreasing the ρ
and θ value of the MD3 algorithms would make the detectors
more sensitive to change, therefore allowing them to detect
gradual drifts earlier. No significant change is to be reported
for MD X and FMD detectors.

5.2 Real world data
As shown in the experiments, the drift detecting performance
of all the detectors is poor on the given real world data. Even



though the accuracy of the detectors is high, the false pos-
itive rate is also high. Tuning the values ρ and θ showed
a decrease in FPR, but they also showed a decrease of drift
detection accuracy. A viable hypothesis about the low accu-
racy of drift detection under this setup is that the measure for
margin density is not suitable to predict accuracy, but only to
predict an accuracy change for the first drift. As mentioned
or shown in the experimental results, margin density graphs
showed change when there was an accuracy change, a mar-
gin density change could be found in the same batch. The
experimental results also demonstrated that the margin den-
sity change could be either positive or negative when there
was an accuracy drop. Furthermore, they showed that after
the first drift, a large margin density change could happen
without being reflected in the accuracy classifying accuracy.
This last observation can be explained by the fact that margin
density is reliant on the original distribution of the data. If a
drift were to happen, the subsequent changes of margin den-
sity would not reflect the changes in data points around the
decision boundary any longer. They would instead reflect the
density of random space in the new data distribution, which
might not have any relation to the change in accuracy of the
classifier. This makes the margin density metric mostly un-
reliable after the first drift if one were to attempt accuracy
change predictions. This is why in the original papers[8],[9],
the detector is re-trained after a drift is found, so that it can
reflect the new distribution. The algorithm therefore works
best as a semi-supervised drift detector.

6 Responsible Research
6.1 Ethical Concerns
This study did not use any methods that would place it un-
der ethical scrutiny. All sources used are published papers,
which are cited below in my reference page. The synthetic
data-sets have been created by our supervisor, from whom
we have the authorisation of use. The real world data is taken
from open source data sets, and has the authorization to be
used in research. Additionally, it does not violate anyone’s
privacy under the GDPR rules. All the libraries used are open
source. The impact of this research is also not in question,
as it is simply a replicative and comparative study of already
existing drift detectors. One may debate on the ethics of how
drift detectors might be used, but that is out of the scope of
responsibility of this paper.

All principles from the Netherlands code of conduct for re-
search are also followed [2]. All results were reported and
explained accurately in their context. The methodology was
made as close as possible to the papers it originated from, and
any difference was explained. All code and data are publicly
available, with a simple API for further research or validation.
This research was made in an academic context and indepen-
dently, and was therefore not influenced by any non-scholarly
consideration.

6.2 Methodology and Replication
A main limitation of the study from our supervisor’s paper
was that it lacked implementations for drift detectors.[7] Our
project’s papers not only make a comparative analysis, but

they seek to solve this problem by implementing those drift
detectors. This means that it will not only allow the repro-
ducibility of our papers, but will help with replicating results
from other papers that use unsupervised drift detectors. All
code will be made available, with parameters used, and all li-
braries are well known, reliable, easy to access, and do not
require any special hardware, except maybe for some val-
ues, which will anyway have been made public in this pa-
per. Apart from results achieved from classifiers involving
randomness like KNN, the results given in this paper are ex-
tremely reproducible, as all instructions are also given in both
the related works and the methodology. Not only that, but the
code and functions are available in a user-friendly way, which
allows for further research building on our implemented drift
detectors. The datasets are described and will also be made
available.

7 Conclusion
7.1 How well do Margin Density-based concept

drift detectors identify concept drift in case of
synthetic/real-world data?

As fully unsupervised training detectors, The MD3V1, and
MD3V2 detectors detect drifts relatively well on synthetic
data for abrupt and gradual drift given that only the first drift
must be detected. The out of the box implementation works
for some datasets only. For other datasets, the margin den-
sity parameters must be tuned, which can thus far not be done
without knowing information about the drift ahead of time.
This is true for abrupt and gradual drifts. This is a limitation
of the Margin density detectors which could be addressed in
further research. The MD3 X and FMD detectors performed
quite poorly on the synthetic data. The exact cause is not
known. For the CART ensemble tree classifier version, it is
hypothesized that over-fitting and the dimensionality of the
data might play a role. Other limitations of margin density
detectors when it comes to detecting drift can be found in
their respective authors’ papers.[8][9] [11] As fully unsuper-
vised training detectors, margin drift detectors do not accu-
rately predict accuracy drop over time for real world data.
This is most likely due to the fact that margin density detec-
tor were made to be re-trained every time a drift is detected,
and that margin density is ultimately not a good metric to
predict accuracy. Given experimental results, margin density
seems to only predict a change in accuracy of the distribu-
tion associated with its classifier. Further research could be
done to find how well margin density detectors predict the
first drift in real world data. All code for the implementations
of the drift detectors will be made available, which resolves
the current limitation of unsupervised drift detectors being
unimplemented.[7]
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