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Abstract – Many biological systems form colonies at high density. Passive granular systems will
be jammed at such densities, yet for the survival of biological systems it is crucial that they are
dynamic. We construct a phase diagram for a system of active particles interacting via Vicsek
alignment, and vary the density, self-propulsion force, and orientational noise. We find that the
system exhibits four different phases, characterized by transitions in the effective diffusion constant
and in the orientational order parameter. Our simulations show that there exists an optimal noise
such that particles require a minimal force to unjam, allowing for rearrangements.

Copyright c© EPLA, 2019

Introduction. – Many biological systems consist of
collections of individuals. Examples include herds of mam-
mals, flocks of birds, bacterial colonies, and tissues. Such
systems are intrinsically nonequilibrium, as each micro-
scopic unit composing the system consumes energy to pro-
pel itself. One of the earliest self-propelled particle models
was proposed by Vicsek et al. and describes the flocking
behavior of birds. The original Vicsek system featured
point-like self-propelled particles and displayed a second-
order phase transition with spontaneous ordering below a
critical point [1]. The existence of the ordered phase was
apparently in violation of the Mermin-Wagner theorem,
which excludes ordered phases for a continuous O(2) sym-
metry in d = 2. Toner and Tu explained the existence of
the ordered phase, attributing it to enhanced density fluc-
tuations as a means of long-range information transfer.
Unlike the 2D XY model, which undergoes a Kosterlitz-
Thouless transition with only quasi-long-ranged order be-
low the critical point, the 2D Vicsek model displays true
long-range order [2–4]. A later finite-size scaling analy-
sis showed the actual Vicsek transition to be a nonequi-
librium first-order transition, and much work has been
done since the original Vicsek model to understand the
role of enhanced density fluctuations in nonequilibrium
systems [5–7]. Moreover, variants of self-propelled parti-
cle models have emerged since the Vicsek model in order
to capture phenomena like adhesion forces and nematic

(a)E-mail: t.idema@tudelft.nl

ordering [8]. In some cases, like flocks of birds, the agents
can be adequately modeled as point particles with no ex-
cluded volume. For bacterial colonies and tissues, how-
ever, the density is so high that the cells are in physical
contact with each other. At such a high density, these
systems risk becoming jammed. Nonetheless, the con-
stituents rely heavily on rearrangements for their survival,
leading us to ask how such colonies prevent jamming.

The phenomenon of jamming has been studied as a fea-
ture of granular systems, which are composed of finite-
sized particles with purely repulsive potentials. Such
systems undergo a phase transition from a “liquid-like”
phase to a “solid-like” phase with increasing density,
characterized by a sudden arrest of the motion of the
constituent particles, which are then locked into a small
subset of their phase space. This transition has a nonequi-
librium character due to the dissipative forces of parti-
cle interactions, yet much work has been done to extend
the methods of equilibrium statistical physics to such
systems [9,10]. The jamming transition is qualitatively
sketched in jamming phase diagrams, which indicate the
locations of the jammed and unjammed (solid and liq-
uid) states in temperature-density-stress space; a system
becomes jammed at a “high enough” density, with “low
enough” stress and temperature [11,12]. For athermal par-
ticles in two dimensions with no applied stress, this tran-
sition occurs at a critical packing fraction ρc = 0.842 [13].

Previous research has investigated the jamming transi-
tion in dense, active systems. For instance, in a confluent
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tissue model with a self-propulsion force, the jammed
state is distinguished by a sudden drop in the diffusion
constant, as well as a simultaneous change in the cell
geometry [14]; this transition was also observed in exper-
iments [15]. Other approaches include vertex models [16]
and Voronoi models [17] for epithelial cells. Fily et al.
studied a confined system without alignment, and illus-
trated the resulting density distribution as a function of
boundary shape [18]. Henkes et al. studied a high-density
self-propelled particle model, with soft repulsive interac-
tions and propulsion alignment with the instantaneous ve-
locity. For a confined system of 10000 particles, they found
that a large self-propulsion force allowed the system to un-
jam above ρc = 0.842, and observed giant number fluctu-
ations below ρc [19].

We expand on these results by studying a model with
soft repulsion and Vicsek alignment, where the particle
self-propulsion directions interact explicitly. We scale our
system size to 100000 particles, with periodic boundary
conditions, and consider the dynamics near jamming. We
sketch a phase diagram in order to relate the jamming
transition and the ordering transition, and we show that,
at densities well above the passive jamming density, the
system is able to unjam both below and above the order-
ing transition’s critical noise. We quantify the amount of
rearrangement in the system by introducing an effective
diffusion constant, and find an optimal noise such that
particles require a minimum self-propulsion force to un-
jam. We measure the system’s velocity correlation func-
tion above and below the ordering transition in order to
understand the effect of interparticle interactions on the
system’s dynamics near jamming. We find giant density
fluctuations above ρc, and we also find, surprisingly, that
the system is able to order even in the jammed state, in
the absence of density fluctuations.

Model system. – We place N soft, self-propelled par-
ticles in a square with linear size L and periodic boundary
conditions, and impose the dimensionless packing fraction
ρ =

∑N
i=1 πa2

i /L2. To prevent crystallization, the radii of
the particles ai are drawn from a Gaussian distribution
with mean μ = ā and standard deviation σ = ā/10. We
consider systems in which viscous forces dominate over
inertial forces, e.g., cell tissues or colonies of unicellular
organisms. The dynamics of the particles are then over-
damped and governed by Stokes’ law:

�Fi = ζi�vi. (1)

In eq. (1), particle i moves at velocity �vi in proportion
to the total force �Fi exerted on it. The proportionality
constant ζi depends on the viscosity η and the particle’s
radius ai, and is given by ζi = (32/3)ηai in two dimen-
sions and ζi = 6πηai in three dimensions [20]. The total
force on the particle is the sum of steric repulsion forces
with all particles j that generate overlap, �Frep,j , and a
self-propulsion force, �Fsp. We choose a simple harmonic
repulsion, such that the force is proportional to, and in

the direction of, the linear overlap �dij . Hence, the total
force is

�Fi =
∑

j

�Frep + �Fsp =
∑

j

k�dij + Fspθ̂i (2)

=
∑

j

�dij + λsaiθ̂i, (3)

where k is the spring constant for the repulsion force. In
eq. (3), we scale all distances in units of the average parti-
cle radius ā = 1 and choose k = 1, setting the characteris-
tic force kā = 1. This allows us to define the dimensionless
parameter λs = Fsp/kā which sets the strength of the self-
propulsion in our simulations. The self-propulsion term is
proportional to the particle’s radius so that all particles
would move at the same velocity in the absence of overlaps.

The unit vector θ̂i indicates the direction of each par-
ticle’s self-propulsion, which is determined by the Viscek
alignment rule. At each time step, each particle “senses”
the orientations of its neighbors, and aligns itself with
its neighbors’ average direction. This sensing occurs with
some error, which we model as a noise Δθ. We can then
write the for orientation of particle i:

θ̂i = 〈θ̂j〉j∈Ni + Δθ, (4)

where Ni is the set of particles in the neighborhood of
particle i. We define the neighborhood to be the region
of space enclosed by a radius of 2.8ā around the center of
particle i. We choose this distance such that two neigh-
boring large particles are considered neighbors, while two
small particles separated by a third are not. The random
rotation angle Δθ is drawn from a uniform distribution
on λn

[−π, π
]
. λn = 0 represents total alignment, while

for λn = 1, each particle performs a random walk with no
alignment with its neighbors. The order parameter quan-
tifies the global alignment in the system, and is defined as

φ =
1
N

∣∣∣∣∣
N∑

i=1

�vi

|�vi|

∣∣∣∣∣ , (5)

which equals unity when all particles move in parallel, and
approaches zero when the system has no global order.

To define our time scale, we realize that two average-
sized overlapping particles in an overdamped regime will
see their overlap decrease according to an exponential
with a decay time τrelax = ζ̄/k. We choose this physi-
cal time to be the unit time, τrelax = 1. We also note that
there is a time interval at which the particles orient them-
selves, τorient. We fix a time step Δt = τorient/τrelax = 0.1
so that there are several “sensing events” for each relax-
ation time. With this choice of scaling, we can write our
equations of motion as

�vi =
∑

j

�dij

ai
+ λsθ̂i, (6)

θ̂i = 〈θ̂j〉j∈Ni + Δθ, (7)
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(a) (b) (c)

Fig. 1: Screenshots for simulations with 5×104 particles, show-
ing the qualitative phase behavior. Individual particles are
shaded to indicate the amount of overlap: dark blue particles
have little overlap, and light blue particles have more overlap.
In (a) the system is ordered, but jammed, with a low self-
propulsion force, and the pressure is homogeneously distributed
across the system. In (b) we increase the self-propulsion force
and the system unjams, forming a Vicsek-like ordered state
(φ > 0) with giant density fluctuations, indicated by the exis-
tence of a high-density region and a low-density region. This
gives the particles plenty of space to rearrange, and is accom-
panied by an increase in the effective diffusion constant. In (c),
we increase the noise above the critical noise so that the global
ordering vanishes (φ = 0) and the giant fluctuation disappears,
replaced by smaller fluctuations of lesser magnitude. The ef-
fective diffusion constant drops, but smaller “flocks” form and
the system is still unjammed. The simulations are placed in
the phase diagram of fig. 4 [21].

which we integrate at every time step according to

�xi(t + Δt) = �xi(t) + �vi(t)Δt. (8)

Our system now has three free parameters: the packing
fraction ρ, self-propulsion force λs, and noise λn. The
time step Δt is not a free parameter; it is coupled to the
self-propulsion velocity, and so it sets the scale of λs. In
our simulations, we allow the system to relax for 1 × 105

time steps, during which we let the particles rearrange as
passive particles and come to a stable configuration. We
then thermalize the system for an additional 1 × 106 time
steps, during which we slowly and linearly ramp up the
self-propulsion force to its final value, at which point we
begin measurements.

Results and discussion. – The jamming transition
for soft, passive particles is at ρc = 0.842; we ran simu-
lations for densities ρ ∈ {0.88, 0.94, 1.00}. Except where
noted, the simulation results are for systems of N = 1×105

particles.

Simulation screenshots. In fig. 1 and in the supple-
mentary videos fig1a.mp4, fig1a zoom.mp4, fig1b.mp4,
fig1b zoom.mp4, fig1c.mp4, fig1c zoom.mp4, we show
simulations at three different conditions, resulting in three
qualitatively different states. Figure 1(a) illustrates a
jammed state, fig. 1(b) an unjammed state in the ordered
phase, and fig. 1(c) an unjammed state in the disordered
phase. These systems are highlighted in the phase diagram
(fig. 4).

(a) (b)

(d)(c)

Fig. 2: Selected MSD curves for simulations with 1 × 105

particles at a density of ρ = 0.88. Every particle has rear-
ranged at least once if the value of the MSD is greater than 1.
From (a) through (c), we increase λs and find that an ini-
tially jammed system is able to unjam when the particles push
harder. In (d), we increase the noise and find that the system
jams, even for large self-propulsion speed. These four curves
are highlighted in fig. 3(b).

Mean-squared displacement and effective diffusion. A
perfectly ordered system (λn = 0 and φ = 1) will exhibit
global translation in the lab frame, but no rearrangements,
as each particle aligns perfectly with its neighbors. We
therefore measure particle trajectories by considering the
mean-squared displacement from the center of mass x̄ of
the system:

MSD(t) =
1
N

N∑
i=1

[(
xi(t) − xi(0)

) − (
x̄(t) − x̄(0)

)]2

. (9)

In a jammed system, particles are not able to travel more
than a distance ā because they are obstructed by their
neighbors. This effect is known as caging, and is visible in
the mean-squared displacement as a plateau. In order to
quantify the rearrangements in our system, we performed
a linear fit with the assumption that MSD(t) = 4Dt, which
would be the case for a perfect random walk in two dimen-
sions. We ignore the first 1×106 time steps, the transient,
in the linear fits.

Some examples of MSD curves for both jammed and
unjammed states are shown in fig. 2. The curves in fig. 2
reveal that small changes in noise or self-propulsion speed
can have order-of-magnitude effects on the effective dif-
fusion constant. Therefore, near jamming, the calculated
values of D provide an approximation for the amount of
rearrangement in the system. We consider our system to
be jammed if the MSD plateaus at MSD(t) < ā2, or if the
fitted diffusion constant does not allow for displacements
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1.000.940.88 ρ

λs

λn
0.2 0.4 0.6 0.8

-10
-12

-6
-8

-2
-4

log10D
c
b
a

d

Fig. 3: Phase diagram slices from mean-squared displacement
analysis, showing the values of the calculated diffusion constant
in the ρ-λs-λn parameter space. The blue dots represent un-
jammed systems and the red dots represent jammed systems.
The interpolated contour roughly indicates the self-propulsion
strength necessary for unjamming. In (a), we fix the noise value
λn = 0.3 and find that the effect of increasing the density is to
increase the self-propulsion force required for unjamming. In
(b) we show the effect of noise on the jamming dynamics for
constant density ρ = 0.88. The four points indicated a, b, c, d
are the four MSD curves in fig. 2. We know that the system is
always jammed for λn = 0.0, and we see that the system also
jams for λn ≥ 0.6 for the range of λs we measured here. The
valley suggests an optimum noise for unjamming.

larger than ā during our measurement of the MSD. Note
that D does not indicate Brownian motion, because parti-
cle displacements result from the particles’ activity rather
than the conversion of heat to kinetic energy. The cal-
culated values of D are shown in fig. 3. We set the
diffusion coefficient for marginally jammed systems to
(4 × 4 × 106)−1. Jammed systems are shown in red in
fig. 3, while unjammed systems are shown in blue. We find
unjammed systems even at densities far exceeding the jam-
ming density when the particles exert a sufficiently large
self-propulsion force.

The contour separating jammed from unjammed sys-
tems indicates the required self-propulsion strength to un-
jam for a given noise and density. We see that the effect of
increasing the particle density is to increase the required
self-propulsion force for unjamming; in more crowded en-
vironments, particles must push harder to get past their
neighbors. In fig. 4, we zoom in to the contour’s minimum,
and find that particles are able to marginally unjam for
λs = 1 × 10−3 and λn = 0.475. We zoomed in even more
in fig. 5 and found a minimum of λn at λc ≈ 0.465 for
three different densities.

Time-averaging the MSD curves proves difficult, as the
particle trajectories are contingent on their histories. Fur-
thermore, the simulations are already computationally de-
manding, so averaging over many simulations or longer
times is infeasible. We therefore will study other quantities
to give further insight into the dynamics near jamming.

Order-disorder phase transition. Motivated by the ex-
istence of long-range order in the Vicsek model and its
relevance for active jamming, we studied the behavior of

10-2

10-3

10-4

λs

λn
0.40 0.45 0.50 0.55

unjammed,
disordered

unjammed,
ordered

jammed,
ordered

jammed,
disordered

a

b c

Fig. 4: Phase diagram near the critical point for a density ρ =
0.88, showing the relationship between the ordering transition
and the jamming transition. The colors are the same as in
fig. 3. The contour separates jammed from unjammed states,
while the vertical line separates the ordered (φ > 0) from the
disordered (φ = 0) state. The points denoted a, b, and c
are the simulations illustrated in fig. 1. An initially jammed
system (a) below the critical noise can unjam when the self-
propulsion force is increased so that the particles are able to
push past their neighbors (b). Increasing the noise just above
the critical point will cause the order parameter to fall to zero,
though the system will remain unjammed (c). Increasing the
noise further will jam the system, as the correlation length
decreases (see fig. 8).

(a) (b)

λs

λn
0.45 0.46 0.47 0.48 0.45 0.46 0.47 0.48 0.45 0.46 0.47 0.48

(c)

λn λn

5·10-3

1·10-3

2·10-4

Fig. 5: Phase diagram near the critical point, for ρ = 0.88 (a),
for ρ = 0.94 (b), and for ρ = 1.00 (c). The colors are the
same as in fig. 3. We use the position of the minimum in each
of these three plots to estimate a critical point λc = 0.465 at
which transport is enhanced. The minimum is less obvious for
ρ = 1.0, but the value of D is enhanced at λn = 0.465 for
λs = 0.05 (uppermost values, dark blue dots).

the order parameter in our system of finite-sized parti-
cles, and found an order-disorder transition near a criti-
cal noise value of λn = λc = 0.465, as shown in fig. 6.
Figure 5 shows higher values of the effective diffusion con-
stant near this critical noise value, indicating that trans-
port is enhanced near the critical point. We speculate
that biological systems might sit near this critical value so
that they are able to rearrange with a minimum of effort.
Furthermore, when we combine the two phase transitions
in a single plot, fig. 4, we find an additional unjammed
state which is disordered, indicating that Vicsek-like flock-
ing is not necessary for unjamming. This phase is also
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0.2

0.3

0.4
0.5

λc-λn
0.01 0.05

(λc-λn)
β

0.45 0.50λn

0.4
0.3

ø
ø
ø

ø
ø

ø0.2
0.1

0.5

0.0

4.8
3.6
2.4
1.2

6.0

0.0

·10-3

∆

0.40

∆

)b()a(

Fig. 6: Dependence of the order parameter φ on λn at ρ = 0.88
and λs = 0.002. The data in (a) suggests a critical point near
λn = 0.465, where the order parameter falls to zero and the
fluctuations peak, though the smoothness of the curve near the
critical point suggests persistent finite-size effects. Panel (b)
shows φ on a log-log scale, with a power-law fit: φ ∼ (λc−λn)β ,
with λc = 0.465 and β = 0.206 ± 0.004.

illustrated in the screenshot in fig. 1(c) and in the curves
in figs. 2(b), (c).

Below the critical noise, our system shows spontaneous
ordering, consistent with a second-order phase transition
at the critical point λc. Furthermore, the variance in the
order parameter, σ2 = 〈φ2〉 − 〈φ〉2 shows a sharp peak
at the transition, a characteristic of second-order transi-
tions (fig. 6(a)). This result is different from both the XY
model (no ordering in the thermodynamic limit) and the
Vicsek model (first-order phase transition in the thermo-
dynamic limit). In fig. 6(b), we plot the value of the order
parameter φ as a function of |λc − λn| on a log-log scale
near the critical point. We find power-law behavior, with
a critical exponent β. The uncertainty in β comes from
the reported confidence of the fit, while the error bars in-
dicate the standard deviation in the order parameter for
a given noise value, σ =

√〈φ2〉 − 〈φ〉2.
Relationship between the jamming transition and the

order-disorder transition. Figure 4 shows that the jam-
ming and ordering transitions result in four distinct
phases. The unjammed, ordered phase is characterized by
Vicsek-like dynamics with enhanced density fluctuations.
Increasing the noise results in a disordered phase where
the system is unjammed, characterized by small coherent
flocks which collide, allowing for particle rearrangements
at their boundaries (note that “disordered” here refers to
fact that φ = 0 and is not a statement about the pack-
ing geometry). Decreasing the self-propulsion strength or
increasing the noise further from this phase moves the sys-
tem to a state which is jammed and disordered. Surpris-
ingly, decreasing the noise at low self-propulsion speed can
result in a jammed, ordered state, with suppressed den-
sity fluctuations, which we seek to explain in the following
section.

Long-range order and ordering in the jammed state.
Figure 6 showed that long-range order can exist in the
unjammed phase. Because the particles interact via Vic-
sek alignment, we expected that the system might display
long-range order, in accordance with the Toner-Tu the-
ory [3,4]. To investigate if true long-range order exists in

0.5

0.6
ø

0.7

0.2

0.3

0.4

105104 N103

λn = 0.30
λn = 0.32
λn = 0.34
λn = 0.36
λn = 0.38

λn = 0.40
λn = 0.42
λn = 0.44
λn = 0.46

Fig. 7: Finite-size effects: how the order parameter depends
on system size in the ordered, jammed phase. Each curve rep-
resents one fixed λn ∈ [0.30, 0.46]. All curves are for ρ = 0.94
and a small self-propulsion force λs = 1 × 10−4. We averaged
the order parameter for only 1×105 time steps in order to allow
the study of large systems. For a KT transition which obeys
the Mermin-Wagner theorem, the order parameter should fall
to zero in the infinite-size limit.

the jammed state, we measured the order parameter as a
function of system size, up to a maximum system size of
5 × 105 (700 × 700) particles (fig. 7). Our results suggest
that the order parameter for a jammed system barely falls
for system sizes varying over three orders of magnitude.
If the jammed state were to display a Kosterlitz-Thouless
(KT) transition at the critical noise, the ordered phase
should not exist in the thermodynamic limit, in agreement
with the Mermin-Wagner theorem. Density fluctuations
are suppressed in the jammed state, and so cannot be an
ordering mechanism as in the Toner-Tu theory (see also
fig. 9). We might expect the Mermin-Wagner theorem to
take over in this phase and destroy long-range order.

We considered several possible mechanisms for long-
range information transfer. Each particle in this model
has an average of six nearest neighbors, more than in the
prototypical XY model, so it could be that any “spin
waves” forming in this system are “stiffer” than in the
XY model and so have a longer wavelength, pushing the
thermodynamic limit to larger sizes. Moreover, the ge-
ometry of the packing (roughly hexagonal with defects)
allows for more paths between a given particle pair than
in the XY model, as well as shorter diagonal paths, in
contrast to the strictly “Manhattan” distances of the XY
lattice. The geometry could therefore provide a mecha-
nism for enhanced information transfer. A packed colony
of cells could possibly exploit this geometry in order to
“communicate” across a system which is large in terms
of biological length scales, even though strictly speaking,
the system would be disordered in the limit of infinite
size. Henkes et al. also proposed a mechanism of infor-
mation transfer due to an active, jammed system’s vibra-
tional modes [19]; this mechanism may be at work here as
well.
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0.465

0.48
0.49
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0.52
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Fig. 8: The velocity correlation function in the ordered (a)
and disordered (b) phases, where the legend indicates the
value of λn. All displayed curves are for ρ = 0.94 and
λs = 1 × 10−3. In both (a) and (b), the nearest-neighbor
correlation appears lower than expected because overlapping
particles are repelling each other. We therefore exclude this
value from our fits. The curves begin to cross over to ex-
ponential decay around λc = 0.465. The fitted values with
increasing λn are η = 0.26, 0.31, 0.33, 0.33, 0.27. In (b), the
value of the correlation length falls; with increasing noise,
lc = 37.4, 24.3, 17.3, 10.2, 7.0, 3.5. In (c), we plot the fitted cor-
relation lengths as we approach the critical noise from above,
and fit the six rightmost points to a power law lc ∝ |λn −λc|ν .
The fit is not as good near the critical noise; we can also see
this in (b) near the critical noise, where the fits begin to devi-
ate from straight lines. Notably, just above the transition, the
correlation length extends over a significant number of parti-
cles, suggesting the formation of small, coherent flocks while
in the globally disordered phase. This result differs from the
case of the 2D XY model, in which the exponent ν is not de-
fined; instead, the correlation length diverges even faster than
a power-law, according to lc ∝ exp(bt−1/2), with t the reduced
temperature and b a constant [22].

Correlation function. To better understand the un-
jammed state in the disordered phase, we measured the
velocity correlation

C(r) =
1

n(r)

∑
{i,j|rij=r}

�vi · �vj

|�vi||�vj | , (10)

where n(r) is the number of pairs separated by a dis-
tance r. We find that the form of the correlation func-
tion is a power-law decay below the critical noise, and
changes to an exponential decay above the critical noise,
with a correlation length which decreases with increasing
|λn − λc|, as shown in fig. 8:

C(r) ∝
⎧⎨
⎩

1
r2−d+η

, λn < λc,

e−r/lc , λn > λc.

Though the system is globally disordered for noise val-
ues above λc, a nonvanishing correlation length indicates
that small, coherent flocks can still form in the disor-
dered phase. This suggests a mechanism for unjamming
in which flocks collide and allow rearrangements at their
boundaries.

Density fluctuations. We can further quantify the sys-
tem’s dynamics just above the critical point by consider-
ing the scaling of the density fluctuations in the system.
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Fig. 9: The scaling of density fluctuations ΔA with expected
area 〈A〉; the scaling follows the relationship ΔA ∝ 〈A〉m. All
curves are for constant density ρ = 0.88. A horizontal line
in (a) indicates a scaling exponent m = 1

2 . In (a) we show
the results of five simulations, and in (b) we draw the phase
boundaries from fig. 3 and place the simulations from (a) in
the parameter space. a: in the ordered, unjammed phase, the
system shows Vicsek-like density fluctuations with m ≈ 1. b: in
the disordered, unjammed phase, particles are rearranging, but
the global density wave in the Vicsek phase is suppressed in
favor of smaller flocks. c: in the jammed, ordered state, just
below the jamming transition, the particles are pushing on each
other and forming small density waves, though not quite hard
enough to unjam. d, e: in the jammed state with very low-self
propulsion force, the actual values of the fluctuations ΔA are
very small, resulting in poorer linear fits.

In the grand canonical ensemble of equilibrium statisti-
cal physics, point particles enter and leave a system with
independent probabilities, and the number fluctuations
scale as

ΔN ∝ N1/2. (11)

It is known that active systems exhibit “giant number
fluctuations,” reflected in a scaling exponent m > 1

2 , due
to orientational coupling [6,7]. With our finite-sized par-
ticles, we measure area fluctuations in a “measurement
circle” of a given size, centered at the system’s center of
mass, and fit the scaling exponent m:

ΔA ∝ Am. (12)

Figure 9 shows the values of m in the λn-λs parame-
ter space. The value of m changes smoothly across the
phase boundaries, but gives insight into the dynamics in
the different phases. In the ordered, unjammed phase,
m ≈ 1, in agreement with results for point particles, and
as illustrated in fig. 1(b) [6,7]. When the noise increases,
the system becomes disordered, though small flocks form
and the system is still unjammed, as illustrated in fig. 1(c).
A jammed system in the ordered state, just below the jam-
ming transition, can show weak scaling, indicating that
the particles are forming small density waves, but are not
pushing hard enough to unjam. When the self-propulsion
force decreases even further, the density fluctuations are
totally suppressed, as in fig. 1(a).

Conclusions. – We simulated a collection of soft,
self-propelled particles with Vicsek alignment at packing
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fractions ρ ∈ {0.88, 0.94, 1.00}, well above the passive crit-
ical packing fraction ρc = 0.842. We constructed a phase
diagram in the ρ-λs-λn space which distinguishes jammed
and unjammed packings. Systems jam for too little noise,
as the particles align in parallel and cannot push aside
their neighbors. They also jam for too much noise, in
which case the particle velocities decorrelate from those of
their neighbors, and the particles become caged.

The system undergoes a second-order phase transition;
below a critical noise λn = λc the system spontaneously
orders. This is indicated by power-law behavior of the
order parameter near the critical point, and by the form
of the correlation function, which crosses over from expo-
nential to power-law decay. This behavior differs from the
point-like Vicsek model, which shows a first-order transi-
tion, and the XY model, which does not order in d = 2.

With a strong enough self-propulsion force, particles can
unjam in both the ordered and disordered phases. In the
disordered phase, particles are able to unjam by form-
ing small, colliding flocks. By fitting the correlation func-
tion, we found a nonvanishing correlation length for these
systems, with a noise value λn > λc. The correlation
length roughly follows a power-law divergence just above
λc, again in contrast to the XY model.

There is an optimal noise value near λc at which parti-
cle transport is enhanced, and particles are able to unjam
with a minimum self-propulsion. The exact value of the
minimum is difficult to determine due to the noisy dynam-
ics, illustrated in the MSD curves. A system of 5 × 105

(700×700) particles shows surprising ordering even in the
jammed state (very small λs). Even though the particles
are barely moving, the information about their velocities
is able to propagate across the entire system. This hap-
pens without the enhanced density fluctuations displayed
by the active, unjammed systems, and could result from
the vibrational modes or packing geometry.
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[1] Vicsek T., Czirók A., Ben-Jacob E., Cohen I. and
Shochet O., Phys. Rev. Lett., 75 (1995) 1226.

[2] Kosterlitz J. M. and Thouless D. J., J. Phys. C: Solid
State Phys., 6 (1973) 1181.

[3] Toner J. and Tu Y., Phys. Rev. Lett., 75 (1995)
4326.

[4] Toner J. and Tu Y., Phys. Rev. E, 58 (1998) 4828.
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