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SUMMARY

Many modern devices, such as mobile phones, hearing aids and (hands-free) acoustic human-
machine interfaces are equipped with microphone arrays that can be used for various appli-
cations. These applications include source separation, audio quality enhancement, speech
intelligibility improvement and source localization. In an ideal anechoic chamber, the sig-
nals received by ideal microphones are just attenuated and delayed version of the original
sound. However, in practice, obstacles such as the floor, the ceiling and the surrounding
walls will reflect the sound to the microphones. Also, the microphone itself will generate
noise, distorting the recorded signals. Lastly, it is possible that multiple point sources are
active simultaneously. When we consider one point source as the target signal, the other
sources could be considered interfering signals. These distortions make it difficult to get
access to the target signal. Therefore, spatial filtering is often applied to the microphone
signals.

To achieve satisfying performance, these spatial filters typically need to be adaptive to
the (changing) scene. Specifically, the filter coefficients depend on the acoustic-scene re-
lated parameters that model the microphone signals. These parameters, such as the relative
transfer functions (RTFs) of the sources, the power spectral densities (PSDs) of the sources,
the late reverberation and the ambient noise, are typically unknown in practice. Therefore,
estimation of these parameters is crucial and thus the main focus of the dissertation. While
it is relatively straightforward to estimate these parameters in less complex acoustic scenes,
these algorithms are usually not applicable and not extendable to more complex acoustic
scenes. Therefore, the complexity of the estimation methods needed depends on the com-
plexity of the acoustic scene.

In Chapter 3, we consider the simplest acoustic scene in this dissertation, where there
is only a single source in a reverberant and noiseless environment. The parameters that
we aim to estimate are the RTFs, the PSDs of the target signal and the PSDs of the late
reverberation. A joint estimator using a single time frame is first proposed, having a closed
form. Then, a joint estimator using multiple time frames having the same RTF is proposed,
where the solution for each iteration step is in closed form. The parameter estimation
accuracy and the additional performance of noise reduction, speech quality and speech
intelligibility of the proposed method are compared to various state-of-the-art reference
methods. The proposed method reduces computational costs and improves performance as
demonstrated by the experiments.

Next, we extend the noiseless signal model in Chapter 3 to the noisy model in Chapters
4 and 5. In Chapter 4, we focus on RTF estimation and propose an estimator that is robust
to the late reverberation and noise PSD errors. This is achieved by using only off-diagonal
elements of a simplified covariance matrix. The experiments demonstrate the effectiveness
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of the proposed method. In Chapter 5, a joint estimator of the RTFs, the PSDs of the
source, the PSDs of the late reverberation, and the PSDs of the ambient noise is proposed
when using a single time frame as well as when using multiple time frames that share the
same RTF.

Beyond the acoustic scene of a single point source, in Chapter 6 and 7, we consider the
scenario of multiple point sources. In Chapter 6, we first consider the case where the en-
vironment is close to non-reverberant and noiseless. Under this assumption, we propose
a method to estimate the RTFs. We obtain satisfying estimates by averaging covariance
matrices for as many time frames as possible without suffering too much from model mis-
match errors caused by distortion signals. This method is based on a comparison of several
estimates from different averaged covariance matrices, which is somewhat heuristically mo-
tivated and not satisfying for reverberant and noisy environments. Therefore, in Chapter 7,
we propose a robust method that works in reverberant and noisy environment and estimates
not only the RTFs but also the PSDs of the sources and the late reverberation.

As in most of the works we have introduced, we use the prior information that several
consecutive time frames share the same RTF. However, this is only possible if the source
stays at the same position during these time frames. In Chapter 8, we therefore propose a
method to adaptively segment signals into segments where the source is considered static.
The proposed method is combined with the estimator we proposed in Chapter 3 for estimat-
ing the parameters of a single non-static source. It is shown in the experiments that with
our proposed adaptive time segmentation, the estimation performance is improved over the
use of a fixed time segmentation.



SAMENVATTING

Veel moderne apparaten, zoals mobiele telefoons, gehoorapparaten en (handsfree) akoes-
tische mens-machine-interfaces zijn uitgerust met microfoonarrays die voor verschillende
toepassingen kunnen worden gebruikt. Deze toepassingen omvatten bronscheiding, verbe-
tering van de audiokwaliteit, verbetering van de spraakverstaanbaarheid en bronlokalisatie.
In een ideale echovrije kamer zijn de signalen die door ideale microfoons worden ontvangen
slechts een verzwakte en vertraagde versie van het oorspronkelijke geluid. In de praktijk
zullen obstakels zoals de vloer, het plafond en de omringende muren het geluid echter naar
de microfoons reflecteren. Ook zal de microfoon zelf ruis genereren, waardoor de opgeno-
men signalen worden vervormd. Ten slotte is het mogelijk dat meerdere puntbronnen te-
gelijkertijd actief zijn. Wanneer we één puntbron als het doelsignaal beschouwen, kunnen
de andere bronnen als storende signalen worden beschouwd. Deze vervormingen maken
het moeilijk om toegang te krijgen tot het doelsignaal. Daarom wordt er vaak ruimtelijke
filtering toegepast op de microfoonsignalen.

Om bevredigende prestaties te bereiken, moeten deze ruimtelijke filters doorgaans adap-
tief zijn aan de (veranderende) scéne. De filtercoéfficiénten zijn met name afhankelijk van
de akoestische scénegerelateerde parameters die de microfoonsignalen modelleren. Deze
parameters, zoals de relatieve overdrachtsfuncties (RTF’s) van de bronnen, de vermogens-
spectraaldichtheden (PSD’s) van de bronnen, de late nagalm en de omgevingsruis, zijn in de
praktijk doorgaans onbekend. Daarom is het schatten van deze parameters cruciaal en dus
de belangrijkste focus van het proefschrift. Hoewel het relatief eenvoudig is om deze para-
meters te schatten in minder complexe akoestische scenes, zijn deze algoritmen meestal niet
toepasbaar en niet uitbreidbaar naar complexere akoestische scénes. Daarom hangt de com-
plexiteit van de benodigde schattingsmethoden af van de complexiteit van de akoestische
scene.

In hoofdstuk 3 beschouwen we de eenvoudigste akoestische scéne in dit proefschrift,
waarbij er slechts één bron is in een galmende en ruisloze omgeving. De parameters die
we willen schatten, zijn de RTF’s, de PSD’s van het doelsignaal en de PSD’s van de late
nagalm. Eerst wordt een gezamenlijke schatter voorgesteld die gebruikmaakt van één tijds-
bestek, met een gesloten vorm. Vervolgens wordt een gezamenlijke schatter voorgesteld
die gebruikmaakt van meerdere tijdsbestekken met dezelfde RTF, waarbij de oplossing voor
elke iteratiestap in gesloten vorm is. De nauwkeurigheid van de parameterschatting en de
extra prestaties van ruisonderdrukking, spraakkwaliteit en spraakverstaanbaarheid van de
voorgestelde methode worden vergeleken met verschillende state-of-the-art referentieme-
thoden. De voorgestelde methode verlaagt de rekenkosten en verbetert de prestaties, zoals
blijkt uit de experimenten.

Vervolgens breiden we het ruisloze signaalmodel in hoofdstuk 3 uit naar het ruismodel

XIIT



X1V

in hoofdstukken 4 en 5. In hoofdstuk 4 richten we ons op RTF-schatting en stellen we een
schatter voor die robuust is tegen de late nagalm en ruis-PSD-fouten. Dit wordt bereikt door
alleen off-diagonale elementen van een vereenvoudigde covariantiematrix te gebruiken. De
experimenten tonen de effectiviteit van de voorgestelde methode aan. In Hoofdstuk 5 wordt
een gezamenlijke schatter van de RTF’s, de PSD’s van de bron, de PSD’s van de late nagalm,
en de PSD’s van het omgevingsgeluid voorgesteld bij gebruik van een enkel tijdsbestek en
bij gebruik van meerdere tijdsbestekken die dezelfde RTF delen.

Naast de akoestische sceéne van een enkele puntbron, beschouwen we in Hoofdstuk 6 en
7 het scenario van meerdere puntbronnen. In Hoofdstuk 6 beschouwen we eerst het geval
waarin de omgeving bijna niet-nagalmend en ruisloos is. Onder deze aanname stellen we
een methode voor om de RTF’s te schatten. We verkrijgen bevredigende schattingen door
covariantiematrices te middelen voor zoveel mogelijk tijdsbestekken zonder al te veel last te
hebben van modelmismatchfouten veroorzaakt door vervormingssignalen. Deze methode
is gebaseerd op een vergelijking van verschillende schattingen van verschillende gemid-
delde covariantiematrices, wat enigszins heuristisch gemotiveerd is en niet bevredigend
voor nagalmende en ruisende omgevingen. Daarom stellen we in hoofdstuk 7 een robuuste
methode voor die werkt in galmende en lawaaierige omgevingen en die niet alleen de RTF’s
schat, maar ook de PSD’s van de bronnen en de late galm.

Zoals in de meeste werken die we hebben geintroduceerd, gebruiken we de voorafgaande
informatie dat verschillende opeenvolgende tijdsbestekken dezelfde RTF delen. Dit is ech-
ter alleen mogelijk als de bron gedurende deze tijdsbestekken op dezelfde positie blijft. In
hoofdstuk 8 stellen we daarom een methode voor om signalen adaptief te segmenteren in
segmenten waarbij de bron als statisch wordt beschouwd. De voorgestelde methode wordt
gecombineerd met de schatter die we in hoofdstuk 3 hebben voorgesteld voor het schatten
van de parameters van een enkele niet-statische bron. In de experimenten wordt aange-
toond dat met onze voorgestelde adaptieve tijdssegmentatie de schattingsprestaties worden
verbeterd ten opzichte van het gebruik van een vaste tijdssegmentatie.



INTRODUCTION

It is not knowledge, but the act of learning, not the possession of but the act of getting
there, which grants the greatest enjoyment.

Carl Friedrich Gauss



1.1. MICROPHONE ARRAY

microphone array is a set of microphones that can be used to simultaneously record

sound at multiple locations aiming to improve the quality and intelligibility of a
particular target signal. The application of microphone arrays is ubiquitous, being used
in hearing aids, mobile phones, teleconferencing, hands-free acoustic human-machine
interfaces and acoustic surveillance including security and monitoring. Depending on
the intended applications, these devices are equipped with different types of microphone
arrays.

For instance, the number of microphones can range from a few microphones to
several hundreds. Using a larger number of microphones provides more information,
typically leading to better performance, but it also increases the complexity and the
cost. Smartphones, for example, typically have 2 to 4 microphones to enhance the
audio recording quality. A conferencing system can have 8 microphones, while more
sophisticated systems like acoustic cameras have tens or hundreds of microphones.

The microphone array geometry is another factor that can vary among the different
microphone arrays. Common array geometries include linear, circular, spherical, and
arrays with a random topology. The microphones are placed in a certain geometric
structure for reasons such as the complexity, the device structure and the application
needs. For instance, uniform linear arrays are commonly used since they can simplify
the estimation problem. In smartphones, the microphones are usually arranged in a
linear configuration along the top or bottom edges of the devices to fit within their
slim profile. Some devices need a three-dimensional localization ability, hence the
microphones cannot be placed within the same line. In this dissertation, the microphone
geometry is not a limiting factor although in most experiments we will use linear arrays.

The last factor we want to introduce is microphone directivity, which refers to the
sensitivity pattern of a microphone. The major types of microphones have a cardioid
(uni-directional), bi-directional, omnidirectional or shotgun sensitivity pattern. Cardioid
microphones have the greatest sensitivity at the front, only partially at the sides, and
little at the back; Bi-directional microphones have the greatest sensitivity at both the
front and the back; Omnidirectional microphones have equal sensitivity in all directions;
Shotgun microphones have highly focused sensitivity in a single direction only. In this
dissertation, we consider only omnidirectional microphones.

In daily life situations, the signals recorded by the microphones are inevitably
distorted. The microphone signals are a mixture of the target signal and various
distortions like reverberation, interfering sources and diffuse noise. Since the individual
signal components in the microphone signals are unknown, we need to use some form of
prior information to extract the target signal. For instance, the different components can
be assumed uncorrelated across time. Moreover, since different components typically
have a distinct spatial distribution, we can use microphone arrays to extract the target
signal based on spatial information with significant improvement on the quality and
intelligibility compared to using a single microphone.
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1.2. ACOUSTIC DISTORTIONS

1.2.1. REVERBERATION

The microphone recordings can be distorted by various acoustic sources. One typical
type of distortion is reverberation, which is caused by reflections in the room. When a
sound source is transmitted inside a room, the sound signal arrives at the microphone
through different paths, including not only a direct path but also numerous reflections
via other paths caused by surrounding objects like the walls. These reflections are
delayed versions of the direct path signal, whose magnitude attenuates as the delay time
increases. For speech signals, the reflections are in general harmful to speech quality
(SQ). The early reflections are however beneficial to the speech intelligibility (SI) [1],
while the late reverberation is also harmful to SI. Therefore, reducing the reverberation
(dereverberation) is an essential problem in the microphone array signal processing area.
The reverberant level of a room can be characterized by reverberation time (RT), Tg.

clean speech

time

reverberant speech

time

Figure 1.1: A clean speech signal and a reverberant speech signal. The reverberant
signal has been scaled larger by a factor of 5 for better visibility.

The RT measures the time it takes for the sound pressure level to decay 60 dB after
the sound has been stopped. For outdoor conditions with no reflection objects or an
anechoic chamber with perfect absorption, the RT equals zero seconds. Within a car, the




RT is typically less than 0.2 s. In an office room, the RT is typically in the range of 0.2
s to 0.8 s, while for a class room, it has values between 0.4 s and 1 s. For larger rooms
like a church or auditorium, it can be several seconds [2].

The RT mainly depends on the room volume and the materials that construct the
room. It can also be affected by the room’s shape and objects placed within the room.
Therefore, for each room, in practice the most accurate way to measure the RT is
using real on-site recording data. However, for rooms with regular shapes, an empirical
equation can be used, which is known as Sabine’s equation [3],

0.161V
So

60 = (1.1)
with V the room volume in m?, S the total surface area and o the average absorption
coefficient. Another equation was proposed by Carl F. Eyring of Bell Labs in 1930
[4] to better estimate the RT in "dead" rooms, which means small and very absorptive
rooms. The well-known Eyring’s equation is

0.161V

Too = ——— .
0 T SIn(1-a)

(1.2)
Note that if a =1, i.e., the room is perfectly absorbing, the RT should be zero, as
calculated by Eyring’s equation.

1.2.2. NOISE AND INTERFERERS

Noise sources can be classified into point sources and the more diffuse noise sources.
To obtain the signal of interest, we can use microphone arrays to remove the noise.
The type of algorithm that is required to reduce the noise depends on the given prior
information. In this dissertation, we consider both point interferers and microphone
self-noise (as a more diffuse noise type). Notice that for many of the algorithms, the
self noise could be replaced by other types of diffuse noise, as long as the coherence
matrix of the diffuse noise is known.

In scenarios like meetings or crowded places, where multiple speakers (point sources)
are active simultaneously, we have multiple point sources of which one speaker is
considered as the target source and the remaining ones as the interferers. Typically, the
interfering signals are non-stationary and their locations are unknown. Moreover, there
are usually many reflections due to the reverberation. All these facts make it difficult to
remove these distortions from the recorded microphone signals.

Other than the interfering noise, the microphone self-noise also needs to be considered.
The self-noise exists as long as the microphone starts working, even in a silent
environment. It originates from the addition of many noise components such as thermal
noise, shot noise and air molecule Brownian motion. For instance, the random motion
of electrons within the microphone’s electronic components, such as resistors and
transistors, can generate thermal noise. Also, shot noise is generated by the gate currents
running through semiconductor junctions, such as in field-effect transistors (FETSs) or
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bipolar junction transistors (BJTs). The sound pressure level (SPL) L, can be used to
measure the microphone self-noise level, expressed as

L, =20log,, L dB, (1.3)
Po

where p is the root-mean-square sound pressure and pg is the reference sound pressure.
The commonly used reference sound pressure is pg =20 uPa. The threshold of human
hearing has a SPL of 0 dB, which is roughly equal to the sound of a mosquito flying 3
meters away. While a normal conversation at 1 meter away is in the range of 40 to 60
dB SPL. For microphone self-noise, the SPL of expensive high-quality microphones is
between 3 to 10 dB SPL. The majority of other less expensive microphones can have a
SPL of 10 to 20 dB.

Note that in addition to interfering point sources and microphone self-noise, we will
also consider the late reverberation (i.e., the combination of late reflections, say, sums
after the early reflections) that can be modelled as a spatially homogeneous sound field
characterized by a time-invariant spatial coherence matrix with a time-varying PSD.
Note that, by using a different spatial coherence matrix, we can also model other noise
signals such as wind noise.

1.3. SPATIAL FILTERING

In the previous section, we have introduced the different signal components in a
microphone recording. Since the spatial locations of the microphones in an array
are different, each microphone signal consists of different combinations of these
contributions as they result from different spatial propagation modelled by different room
impulse responses. We can combine these spatial observations (in a linear/ non-linear
way) to extract the signal of interest.

To extract the target signal from the reverberant and noisy microphone signals, spatial
filters have been widely used. Although non-linear filtering methods have shown
performance gain over linear filtering methods [5], the commonly used filtering methods
are linear due to their simplicity and low complexity. These linear spatial filters are also
known as beamformers, which refers to the fact that under certain condition they form a
beam in the direction of arrival (DOA). Initially, beamformers were formulated based on
pure geometric information of the scene (sources and microphones’ location/direction),
which is translated into the DOAs. More generally, they can also be formulated using
source-to-microphone acoustic transfer functions (ATFs).

When the DOA of the target source and the microphone positions are known a
priori, fixed beamformers (FBFs) can be used to preserve the sources coming from a
given direction, while eliminating sources that come from all other directions (including
noise sources and reflections of the target source). The delay and sum beamformer
(DS) is a commonly used FBF, which is also known as Bartlett beamformer [6]. It
averages microphone signals after applying delay compensation in order to preserve the
target, since the direct path signals for different microphones are attenuated and delayed
versions of each other. When the DOA is estimated, the beamformer is called semi-fixed.




Above mentioned filters are data-independent. For the sake of higher performance,
data-dependent spatial filters are widely used. A well-known beamformer in this category
is the minimum variance distortionless response beamformer (MVDR), which is also
known as Capon’s beamformer [7]. It is designed to minimize the output noise power
while preserving the target signal after filtering. Unlike other array signals coming from
a single direct path, microphone array signals contain reflections. Therefore, the MVDR
for microphone array signals depends on acoustic transfer functions (ATFs) or relative
transfer functions (RTFs) instead of the steering vector modeled by DOA. The ATF
describes the spatial information from the source to the microphones. The RTF describes
the relative spatial information between the microphones for a given source. When the
true ATF or RTF is given, the MVDR can preserve the target signal perfectly. However,
the ATF or RTF is unknown in practice and hence needs to be estimated with high
accuracy. An extension of the MVDR filter known as the linearly-constrained minimum
variance (LCMYV) filter is also widely used.. The LCMV uses multiple linear equality
constraints to introduce more control on the filter. For instance, the LCMYV can be used
for spatial cue preservation in a binaural setting or to cancel interferers with nulling
constraints.

In complex scenarios with multiple sound sources, the MVDR may not provide
sufficient noise reduction, since it is designed to keep the target source undistorted.
To address this limitation, a post filter can be added to adjust the trade-off between
noise reduction and signal distortion. When choosing the single-channel Wiener filter
as the post filter, the MVDR with this post filter forms the well-known multichannel
Wiener filter (MWF) [8]. The MWF is designed to minimize the mean square error
between the target signal and the filtered signal. Some variants of the MWF such as the
SDW-MWEF [9], were proposed to better control the trade-off between noise reduction
and signal distortion. Both the MVDR and the MWF can be seen as special cases of
the SDW-MWE, where the MVDR obtains the lowest signal distortion and the MWF
obtains the best noise reduction performance. When using the MWE, the post-filter
needs information of the power spectral densities (PSDs) of the target signal and the
noise. These PSDs are also unknown in practice and hence need to be estimated.
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Figure 1.2: Microphone array signal processing diagram.

The typical flowchart of microphone array signal processing based on frequency
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domain linear filtering is shown in Fig. 1.2. The time domain signals recorded by
microphones are transferred to the frequency domain, using the short-time Fourier
transform (STFT). For each frequency, we estimate the parameters of interest, given
multiple noisy microphone signals. Then we can use linear filtering to extract the target
signal, based on the parameters we estimated. Collecting the reconstructed signals from
all frequencies, we use the inverse short-time Fourier transform (ISTFT) to obtain the
target signal in the time domain. The parameter estimation block in this process is the
focus of this thesis.

1.4. RESEARCH QUESTIONS

To extract a target signal from a noisy and reverberant environment, we can thus exploit
techniques such as spatial filtering when we have access to multiple microphones. To use
such techniques, we need the signal-dependent or acoustic scene-dependent parameters
such as the relative transfer functions (RTFs) and the power spectral densities (PSDs) of
the point sources. In practice, these parameters are unknown and need to be estimated
using the signals recorded by the microphones. However, depending on the scenarios,
the estimation problem can be very challenging and sometimes even ill-posed as we can
have many unknown parameters, few microphones and non-stationary sources.

Many methods have been proposed in recent years to estimate the parameters, e.g., [2],
[10]-[20]. Typically, the unknown parameters include the sources’ RTFs, the sources’
PSDs, the reverberation PSDs and the noise PSDs. Many estimation methods only
consider the estimation of a subset of them by assuming that the remaining parameters
are known. In [14], [17], for example, the signal received as the direct path is considered
as the target signal and therefore the RTFs can be modelled by the DOA of the source
position and the microphone array geometry. By further assuming the DOA is known,
the RTFs are considered known. However, not only the direct sound, but also the
early reflections can be beneficial to speech intelligibility [1]. They are therefore often
considered as part of the target sound, making DOA modelling not suitable for RTFs. It
is therefore very challenging to estimate the RTFs. In most works of this dissertation,
we will focus on the joint estimation of these typically unknown acoustic parameters.

Meanwhile, most existing methods [10], [11], [13]-[15], [17]-[19] use only a single
time frame (related to a single covariance matrix) to estimate the parameters. However,
time frames (especially adjacent ones) often share some common information like the
RTFs. This could be exploited to obtain better estimates [16].

In [16], the task of joint estimation of the unknown parameters using multiple
time frames was proposed, leading to quite good performance. However, the method
proposed in [16] suffers from a rather high computational cost, which hinders real world
applications of this method. Therefore, there is a need for methods that can achieve the
same state-of-the-art estimation performance, while having low complexity.

The main contents of this dissertation addresses the problem of estimating these
signal model parameters from observed microphone array signals, aiming at providing
low complexity based approaches to estimate the parameters jointly. This problem is




still very general as the parameters of interest can vary depending on the scenarios
considered. In the following, we will present our specific research questions for various
acoustic scenarios of increasing complexity: from a single point source in a noiseless
reverberant scenario, to a highly complex scenario with multiple sources, reverberation
and noise.

Reverberant Reverberant & Noisy
(b)
Late (2
Single
source
(c) (d)
(@) (@)
M U Itl ple (2%,\2 ((on)
sources
NG

Figure 1.3: Illustration of different acoustic acenarios.

The first scenario we consider is the simple case of a single point source. The research
question is then:

(RQ 1): How to estimate the microphone array signal parameters for a
single source?

Depending on the environment and what parameters we aim to estimate, we subdivide
RQ 1 into the following three questions.

First, as introduced in Section 1.2.2, when using high-quality microphones or when
the sound sources have a high SPL, the signal-to-noise ratio (SNR) of the microphone
signals can be about 50 dB. In this case, a noiseless signal model can be assumed. The
parameters of interest are then composed of the RTF and the PSDs of the source and the
late reverberation, which leads to the question:

(RQ 1.1): How to estimate the microphone array signal parameters for a
single source in a reverberant but noiseless environment?

For this scenario as illustrated in Fig. 1.3 (a), we will present the signal model in
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Fig. 2.2 (a) and propose a maximum likelihood estimator in Chapter 3.

A natural next step is to consider both a reverberant and noisy environment as
illustrated in Fig. 1.3 (b). In such a case, for a single source, we first consider an
estimator for the RTF specifically, leading to research question RQ 1.2:

(RQ 1.2): How to estimate the RTF for a single source in a reverberant and
noisy scenario?

Then, we continue to investigate possible estimators for a joint estimation of the RTF
and the PSDs of the source, the late reverberation and the noise:

(RQ 1.3): How to estimate the microphone array signal parameters jointly
for a single source reverberant and noisy scenario?

For both research questions 1.2 and 1.3, we will present the signal model in Fig. 2.2
(b). For RQ 1.2, we will propose a RTF estimator in Chapter 4. For RQ 1.3, we will
propose a joint estimator for the RTF of the source and the PSDs of the source, the late
reverberation and the noise in Chapter 5.

(RQ 2): How to estimate the microphone array signal parameters for
multiple sources?

For the second research question, we decide to face the more challenging problem of
multiple sources. The problem involving multiple sources is closely related to other
research areas that have attracted much interest, such as factor analysis [21] and blind
source separation [22], [23]. Therefore, we can get inspiration from methods proposed
in these research fields to solve our estimation problems.

For this multi-source scenario, we start by assuming the environment is nearly
non-reverberant and noiseless. We focus on the estimation of the RTFs of the multiple
sources. The acoustic scenario is illustrated in Fig. 1.3 (c).

(RQ 2.1): How to estimate the RTFs for multiple non-reverberant sources?

Non-reverberant implies that there are only early and direct reflections, but no late
reflections. The signal model related to this question will be presented in Fig. 2.2 (c)
and the estimator will be proposed in Chapter 6.

In the next step, we consider a noisy and reverberant environment illustrated by
Fig. 1.3 (d), where the noise component is assumed to be stationary (i.e., with constant
PSD), leading to the following question:

(RQ 2.2): How to estimate the microphone array signal parameters for
multiple sources in a reverberant and noisy environment?

We will show the corresponding signal model in Fig. 2.2 (d) and propose a joint
estimator for the RTFs of the sources and the PSDs of the sources and the late
reverberation in Chapter 7.

When solving some of the estimation problems listed above, we assume that the
source does not move for a duration (longer than the stationary period of speech signals).
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Figure 1.4: Research questions summary of the dissertation.

With this assumption, we can make use of the prior information that the RTF is constant
for this duration and obtain improved estimation performance (mainly on the RTF
estimation). In practice, this duration can vary from zero to the whole signal duration
if the source keeps moving or is always static, respectively. However, for scenarios in
between these two, i.e., the source is static (not moving) only for a short unknown

duration, it is

crucial to consider the question:

(RQ 3): How to determine the time segment during which the source is

static?

We will propose a method to answer this question in Chapter 8. This method will be
combined with the estimator proposed in Chapter 3 for the single source reverberant

scenario.

A summary of all research questions is presented in Fig. 1.4.
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1.5. DISSERTATION CONTRIBUTIONS AND OUTLINE

In this section, we describe the dissertation outline and summarize the contribution of
each chapter. A contribution overview is presented in Fig. 1.5.

Reverberant Reverberant & Noisy

CRapIER4IRTF estimator,
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. the late reverb PSD and the
time frames. X X . )
noise PSD using multiple time
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Chapterizl . oint estimator of

. . . RTFs of the point sources
Multiple CHaperBIRTF estimator in a _
sources |close to non-reverberant and and the PSDs of both point

: ) sources and the late
noiseless environment. .
reverberation.

ChapER8IAdaptive time segmentation combined with a
proposed joint estimator.

Figure 1.5: Contribution overview of the dissertation.

CHAPTER 2

The background theory for microphone array signal processing are provided in Chapter 2.
We first introduce the mathematical signal model and its limitations in the time domain.
Then, we introduce the signal model in the frequency domain and explain the reasons
behind the assumptions made for different acoustic components. In addition, we show
the general framework of linear filtering for source separation, dereverberation and noise
reduction. We review some classic filtering techniques and the corresponding parameters.
At last, we give definitions to different segment durations of the signals that we will
exploit and explain the practical meaning behind these definitions.
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CHAPTER 3

When using high-quality microphones inside a room where the speech sources energy
is sufficiently large compared to the noise energy (e.g., the speaker standing not far
from the microphone array), we can assume a noiseless case. That is the scenario of a
single reverberant source we consider in Chapter 3. The parameters need to be estimated
include the relative transfer functions (RTFs) from source to microphones, source power
spectral densities (PSDs) and PSDs of the late reverberation. We first consider the joint
estimation using a single time frame and find the solution that has a closed form. In this
joint estimation case, the solution of the RTF estimator turns out to be simple covariance
whitening and the solution of the PSDs can also be esaily obtained using the estimated
RTF. Similar to [16], we assume the RTF changes slower than the PSDs and multiple
consecutive time frames share the same RTF. In this case, we expect performance gain
by using multiple time frames to estimate the parameters jointly. Based on the maximum
likelihood cost function, we cannot obtain a closed form solution for the multi-time
frame case like the single time frame case. We therefore propose to solve the problem
in an iterative fashion. In each iteration step, the estimator has a closed form solution.
Therefore, the proposed method has a much lower computational complexity compared
to the method from [16].

CHAPTER 4

In practice, microphones are noisy with a noise level that depends on the microphone
quality. Depending on the microphone-source distance, this influences the SNR. In
anyway, we cannot assume a noiseless scenario in practice as we did in Chapter 3.
However, we can still assume the noise to be stationary, which implies an estimate of
the noise PSD is easily available, e.g. by means of a voice activity detection (VAD).
With the estimated noise PSD, we can subtract the noise component from the noisy
covariance matrix and use methods that assume noiseless scenarios. The problem is
that such a methodology relies on the accuracy of the noise PSD estimate. In other
words, such methods are sensitive to the noise PSD estimate. To break the limitations of
such methods, we propose a method that does not need noise PSD information and can
estimate the RTF directly from the noisy covariance matrix.

CHAPTER 5

For a single source in a reverberant and noisy environment, the problem of joint
estimation of the RTF of the target source and the PSDs of the three components (target
source, late reverberation and noise) becomes more complex than the single-source,
reverberant but noiseless scenario, which we have considered in Chapter 3. To estimate
all these parameters in a joint fashion while maintaining low complexity, we consider
the least square cost function instead of the maximum likelihood cost function.

In this work, we do not only consider the estimation using a single time frame, but
also consider the case of using multiple time frames that share the same RTF. For the
single time frame case, these is one existing reference work aiming at solving the joint
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estimation problem using the least square cost function [15]. Based on [15], we propose
an improved algorithm and extend it to the multiple time frames case. Note that, the
proposed algorithms are all iterative. Also, although we assumed the PSDs to be positive
during the iterations, the estimates we get can become negative. To solve this issue, we
propose several ways to both upper bound and lower bound the PSD estimates only for
cases where such bad estimates happen.

CHAPTER 6

After solving the joint estimation problem for a single source, we can move on to the
next more complex problem: mutliple sources. In Chapter 6, we start from the simplest
case that the environment is little reverberant and close to noiseless.

As we mentioned before, the multi-source scenario is related to the blind source
separation problem. In this work, we show that one classic blind source separation
method, JOINT (also called SOBI), can be modified to estimate the RTFs of the sources.
Furthermore, we propose a more robust method that proposes various factorizations in
the first step of JOINT and get several estimated RTFs. Among these RTFs, we select
a best estimate regarding to the minimum cost function value. Note that this approach
of trying various initializations increases the computational complexity, even though the
overall complexity is still much better than the state of the art method (refered to as
SCFA). In addition, this approach appears to be a bit heuristic. In the next chapter,
we therefore find a way to calculate the first step in an optimal way, which makes the
algorithm faster and more robust, even in a reverberant and noisy environment.

CHAPTER 7

The last and most complex estimation problem in this dissertation is to estimate the
parameters of interest for multiple sources in a reverberant and noisy environment. The
parameters include the RTFs of the point sources and the PSDs of both point sources
and the late reverberation. To solve this problem at low complexity, we estimate the
parameters subsequently, where we first find a late reverberation PSD estimator and
then propose a joint estimator for the sources’ RTFs and PSDs. Note that we still
only consider stationary noise component such as the microphone self-noise. Since the
microphone self-noise can be assumed stationary, we can estimate the noise covariance
matrix when all sources are absent. With the estimated noise covariance matrix, we can
subtract it from the noisy covariance matrix to get an estimate of the covariance matrix
for the remaining components. In consequence, we can use the method based on the
noiseless signal model to solve the estimation problem. However, since we almost surely
get estimation errors when subtracting estimated covariance matrices, the method based
on a noiseless signal model might not work. For instance, this could lead to a negative
estimate of the late reverberation PSD. Therefore, we propose a more robust estimation
scheme for the late reverberation PSD estimator. Then, for the RTFs and PSDs of the
point sources, we can subtract the covariance matrix of the late reverberation and noise
from the noisy covariance matrix to get an improved estimate of the source covariance
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matrix. Given a set of the source covariance matrices (corresponding to multiple time
frames sharing the same RTFs), we show how we can modify an existing blind source
separation method called SOBI to solve the estimation problem. Furthermore, we can
use a linear combination of these source covariance matrices at the first step of the
modified algorithm. Then, by analysing the variances of the error matrix of the sample
covariance matrix, we propose an optimal linear combination where the coefficients can
be calculated from the estimated parameters: the late reverberation PSD and the noise
PSD.

CHAPTER 8

In previous chapters, we either assume the sources are static or assume that we know
which time frames share the same RTF. However, in practice, the sources can be moving
and we do not know whether any two time frames share the same RTF. Therefore, in
this chapter, we present an algorithm to obtain an optimal adaptive time segmentation
and combine this with the joint maximum likelihood estimator (JMLE) discussed in
Chapter 3 for jointly estimating the RTF, source PSD and late reverberation PSD of a
single source in a reverberant environment.

CHAPTER 9

In this last chapter, we give a summary of all the works in this dissertation. Other
than the conclusions, we discuss some possible directions that we consider interesting
and valuable for future investigation. In addition, we also propose some open questions
in these research directions and share our thoughts and suggestions on how to address
these questions in future research.
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BACKGROUND

All models are wrong, but some are useful.

George Edward Pelham Box

This chapter aims to provide the necessary and sufficient background knowledge for
the main contents of this dissertation. The introduction of the microphone signals and
their processing techniques will be continued, mainly using mathematical formulations
instead of high-level descriptions as in the previous chapter.

This chapter is organized as follows. In Section 2.1, we introduce the signal model in
the time domain. Time-domain microphone signals are often processed in the frequency
domain by applying the short-time Fourier transform (STFT) procedure, as we will also
do in this dissertation. Therefore, in Section 2.2, we express the signal model in the
frequency domain.
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2.1. TIME DOMAIN SIGNAL MODEL

We assume that R point sources s,(f) for r =1,--- R are active inside a room and
generate sound waves. These sound waves travel through the air and arrive at each
microphone after being attenuated, reflected and delayed. The received waveform not
only includes a direct path from the original position to the microphone position, but
also an infinite number of reflections, due to the existence of the surrounding objects
such as walls. These reflections and the direct path form only one part of the received
microphone signals, since there exists also ambient noise originating from other point
sources or more diffuse sources. Typically, this combination of signals is assumed to be
additive and sampled in time. We consider an array of M microphones and move from
the physical domain to the discrete time signal domain. Let the discrete microphone
signals be denoted by y,, (¢) for m =1,--- ;M with m the microphone index and where ¢
now represents the discrete time index.

At the m-th microphone, the summation of the reflections for the r-th source s, (f) can
be modelled as the convolution between the source s, (¢) and the time-varying acoustic
impulse response (AIR) a, (t,7), where 7 is the discrete delay time index. That is

ianm (t,7)s, (t — 7). 2.1)

7=0

The AIRs can be seen as the microphone recording of the impulse that was emitted at

early late

0 50 100 150 200 250
7 (ms)
Figure 2.1: Acoustic impulse response split into two parts: the early part and the

late part. This AIR is simulated using the Image method [!] with the
reverberation time 0.4 s and source-to-microphone distance 3.27 m.

the source position. Therefore, it can be time-varying when the source, the microphones
or the other objects move in the room. When they are all static, we can consider the
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AIRs to be time-invariant. In this dissertation, the AIRs are assumed either always static
(i-e., arm (7)) or static for a short duration.

Fig. 2.1 shows an AIR generated using the Image method [1] with the reverberation
time of 0.4 s and source-to-microphone distance of 3.27 m. Note that it has both
positive and negative values. We used a vertical line at T =32 ms to divide the AIR
into two parts. The left part is called the early part, which includes the direct path
and early reflections. The largest value corresponds to the direct path and the first few
sparse peaks correspond to the first few reflections. The right part corresponds to the
late reflections or late reverberation. It can be seen that the late reflections are densely
distributed and cannot be distinguished from each other. Also, their magnitude decays
nearly exponentially.

We use vy, (¢) to denote the noise component at the m-th microphone. Note that in
most works of this dissertation, we only consider the microphone self-noise. The noisy
and reverberant signal y,, thus can be modelled as

R

ym(Z)ZZ ia,,m(t,r)s,(t—r)Jr i A (8,T) 8, (t—7T) p + v (1), (2.2)

r=1 | 7=0 T=To+1

Xrn (1) Lrm(t)

where x., (f) denotes the early reflections and I, () denotes the late reflections. Note
that the time domain signal model Eq. (2.2) consists of an infinite number of parameters
due to the infinite impulse response. In practice, a finite impulse response is used by
T
considering Iy, () = Y apm(t,7)s-(t —T), where 7; generally takes value of several
T=Te+
hundreds. Note that the large number of parameters leads to high computational cost [2].
Therefore, the frequency domain signal model is often used, which we will introduce in
Section 2.2.

2.2. STFT DOMAIN SIGNAL MODEL

Since the Fourier transform of a convolution of two signals is equivalent to a
multiplication of the Fourier transforms of the two signals and the Fourier transform can
efficiently be implemented using an FFT, we can significantly reduce the complexity
by using frequency domain processing instead of time domain convolution. However,
the microphone signals (in particular the reverberant speech signals) are non-stationary.
A full-length Fourier transform of the microphone signal is therefore not appropriate.
However, it is typically assumed that the vocal tract has a similar shape for time intervals
of about 20-30 ms [3]. Speech signals are therefore often considered to be short-time
stationary for a short duration (20-30 ms) referred to as a time frame. Therefore,
the short-time Fourier transform (STFT) is commonly used to process the microphone
signals.
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The STFT coefficients of a signal s(z) are given by

Zs W (r—IT)e I RkIT), (2.3)

where y (¢) denotes an analysis window of length K, k is the frequency bin index and T
represents the time shift of the window. Given a specific analysis window, and given
that we can find a synthesis window ¥ (¢) such that

1
Zwt—lT (t—IT) = e (2.4)

for all 7, then we can resconstruct the time domain signal s () perfectly using

K—1
=Y Y sk —1T)d T, (2.5)
I k=0

Note that, when 7 < K, there might be multiple analysis windows satisfying the
condition in Eq. (2.4) for a given synthesis window. Considering the STFT coefficients

of the early reflections x(r) = ): a(t)s(t—1), we should note that strictly speaking,

they are not just the multlphcatlon of the STFT coefficients of the AIR and the source
signal s(¢), but the following inter-frame and inter-band convolution between the AIR
and the source signal [4] due to the window function applied in the STFT procedure,

that is,
K—1
x(Lk=Y Ys(—tK)a(l',kK), (2.6)
K=0 1

where a (I’ k,k') is the impulse response in the time-frequency domain given by [4]

a(l' kK ZZa G —t+1T) S TRy (1) TR 27)

This representation is an accurate model but involves multiple ﬁltering steps. This can
be simplified by only considering the subband filtering (k' = k) [5], i

~Ys(i—1'K)a(l' k). (2.8)
ll

The above approximated signal model is known as the Convolutive transfer function
(CTF) model, which has been considered in some works such as [6], [7]. Note that the
CTF model usually needs less taps compared to the time domain convolution, but it
has not often been used in practice, since it still relies on quite a number of unknown
parameters to be estimated [8].

If the frame-length is sufficiently large and the analysis window W (¢) is smooth
compared to the AIR, we can approximate W (f — 7)a(7) by W (¢t)a(t). The convolution
in Eq. (2.6) can be approximated by a multiplication, i.e.,

x(L,k) ~s(1,k)a(l,k), (2.9)
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which is known as the multiplicative transfer function (MTF) model or the narrowband
approximation. The MTF model has been widely assumed in many works such as
[9]-[11]. Despite its simplicity and widely usage, the MTF model has other problems,
of which the most notable one is the gain ambiguity for each single source and the
permutation ambiguity for multiple sources.

The gain ambiguity comes from the fact that we will have the same signal x(/,k)
even if we use a scaled s(/,k), say cs(l,k) and the inverse scaled a(l,k), say %a(l,k)
for any constant ¢ # 0. This gain ambiguity has been avoided by considering the relative
transfer function (RTF) between microphones for each source. In this case, the target
signal is no longer the sound source generated at the source location but the direct
and early reflections at a reference microphone. For instance, when selecting the first
microphone as the reference microphone, the RTF for the first microphone is 1. For the
other microphones, the RTF is the ratio between the ATF of that microphone and the
ATF of the first microphone. The choice of the reference microphone can be determined
by, for instance, aiming at improving the SNRs [12]. In this dissertation, we always
select the first microphone as the reference.

When considering multiple sources, the STFT domain signal model of the early
reflections at the m-th microphone then becomes

Xm =Y 8 (1,k) arm (1,k). (2.10)

We also have to deal with the permutation ambiguity, which means that we do not know
which of the STFT coefficients s, (I,k) (with r=1,--- R) across frequency belong to
the same source r. This problem is beyond the scope of this dissertation and methods on
this topic, to name a few, were investigated in [13], [14]. In this dissertation, we assume
that the permutation has been perfectly aligned such that for all s, (/,k) it is known for
every frequency bin to which source r it belongs.

Altogether, in vector form, the STFT coefficients of the microphone signals can be
represented by

R
y(Lk) =Y a.(1.k) s, (1,k)+d (1,k)+ v (l,k) € C¥*! .11)
r=1
N——
x(1,k)

where each column vector is stacked with M elements such as y(l,k) =
i (1,k), -~ ,yar (I,k)]".  Vector d(l,k) denotes the STFT coefficients of the late
reverberation component and v(/,k) denotes the STFT coefficients of the noise
component.

Typically, y (I,k) can be assumed to follow a circularly-symmetric complex Gaussian
distribution with zero mean and cross power spectral density (CPSD) matrix

Py (lak) =E [y (lvk)yH (lak)]

2.12
=Py (I,k) + Py (1,k) + Py (1,k) € CM*M, @12
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where we have assumed that x(/,k), d(/,k) and v(l,k) are statistically mutually
uncorrelated. If the sources are also assumed uncorrelated, we have

Py (Lk)=Ey(L,k)y" (1,k)]

R (2.13)
=Y ¢, (1,k)a, (1,k)al (1,k) + Py (1,k) + Py (1,k) € C"M,
r=1

where ¢, (1,k) :E[|s,(l,k)|2] is the PSD of the r-th source. We can also write
Eq. (2.13) in the more compact form of

Py (I,k) = A(Lk)P(L,k) A7 (1,k) + Py (1,k) + Py (1,k) € CMM, (2.14)

where P(l,k) is diagonal with diagonal elements ¢,(l,k) for r=1,---,R and
A(l7k) = [al (lak) y AR (lak)]

Typically, the covariance matrix of the late reverberation Pj(l/,k) can be assumed
to be the product of a time-invariant full rank spatial coherence matrix I'(k) and a
time-varying PSD ¢y (1,k) [15], [16], that is,

Py (1,k) = ¢, (1, )T (k) . (2.15)

Since the late reverberation is a sum of many late reflections, we can use the law
of large numbers to get many useful properties. For instance, the time domain late
reverberation signal can be assumed to follow a zero-mean Gaussian distribution with
its amplitude decaying exponentially (according to the room’s reverberation time Tg)) as
the delay time [8], [17]. In most experiments of this dissertation, we assume that the
reverberant sound field is diffuse, homogeneous and isotropic. Under this assumption
we can calculate the normalized correlation (interchannel coherence) between every two
different microphones analytically [18]. Assuming a spherical diffuse noise field for the
late reverberation, we can use the following expression to calculate the interchannel
coherence [18],

. 2nfsk d;
I'; j (k) =sinc (I{SZC’) , (2.16)
where sinc () = Si?g'), d; ; is the inter-distance between microphones i and j, f is the

sampling frequency, c is the speed of sound and K is the FFT length. For a cylindrical
diffuse sound field, another similar expression exists to calculate the interchannel
coherence, where the sinc function is replaced by the Bessel function [18]. For more
complex situations where the spatial coherence matrix is difficult to describe, we assume
it is time-invariant and can be measured. In summary, I'; ; (k) is always assumed given
and the parameter that needs to be estimated is the time-varying PSD ¢y (,k).

2.3. DETAILED PROBLEM FORMULATION

Since there is a lot of variety among real world acoustic scenarios, we consider in this
dissertation various scenarios ranging from a single-source and reverberant scenario to
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multi-source reverberant and noisy scenario. The different scenarios were presented in
Fig. 1.3. We also illustrated the contribution of each Chapter in Fig. 1.5 and summarized
the research questions in Fig. 1.4. These figures are linked to the scenarios in Fig. 1.3,
with corresponding sub-figure indices indicating the relationship among contributions,
research questions, and scenarios. In this section, we present different signal models (in
particular the STFT domain signal model and its corresponding covariance matrix) in

Fig. 2.2, corresponding to the scenarios from Fig. 1.3.

Reverberant Reverberant & Noisy
(a) (b)
Single y(/)=as(7)+d(7) y(I)=as(/)+d(!)+v(/)
source ) , v P, (I)=¢,(I)aa" +4,(I)T
{ (l)_¢s (l)aa +¢7 (l)r}/:] { ¢v (l)I },1
(c) non-reverberant (d)
R R
_ y(1)=> s, (/) v()=a,s, (1)+d(1)+v(l)
Multiple r=l : = '
sources P, (/)= Zklaﬁ,, (I)a,a” P, (/)= ﬁ:ﬁ (a,a” +¢, ()T +4,1
=AP(/)A" | =AP(/)A" +¢, (1)L +4,1

Figure 2.2: Different signal models for different scenarios (for each frequency).

» Fig. 2.2(a) depicts a single-source reverberant signal model, which addresses
Research Question 1.1 (see Fig. 1.4) and will be explored in Chapter 3 (see
Fig. 1.5).

» Fig. 2.2(b) presents a single-source reverberant and noisy signal model, which
addresses Research Questions 1.2 and 1.3 (see Fig. 1.4) and will be investigated
in Chapter 4 and Chapter 5 (see Fig. 1.5).

e Fig. 2.2(c) illustrates a multi-source signal model in a non-reverberant and noiseless
environment, which addresses Research Question 2.1 (see Fig. 1.4) and will be
explored in Chapter 6 (see Fig. 1.5). Note that in the experiments of Chapter 6 we
will apply this method to a low-reverberant, near-noiseless environment.

e Fig. 2.2(d) depicts a multi-source reverberant and noisy signal model, which
addresses Research Question 2.2 (see Fig. 1.4) and will be investigated in
Chapter 7 (see Fig. 1.5).

* We will also present an adaptive time segmentation method as mentioned in
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Chapter 1. This addresses Research Question 3 (see Fig. 1.4) and will be
investigated in Chapter 8 (see Fig. 1.5). While this method can be combined with
almost any of the methods presented in this thesis, we only assume a single-source
reverberant signal model, which is the same as the model shown in Fig. 2.2(a).

Note that we omitted frequency indices in Fig. 2.2 since we will process each
frequency bin separately. We use the time frame index to indicate that some parameters
are time varying (with the index) and some are time invariant (without the index). We
also use time frame index from 1 to N to indicate that we will use the signals within a
time segment.

2.4. FILTERING

Given the multimicrophone observation y € C¥, we can use a filtering function f(-) to
reconstruct the target signal s:

§=£(y). 2.17)

The filtering function can be non-linear but the corresponding filter design is challenging.
In recent years, researchers use neural networks to learn non-linear filtering operations
[19]. While neural networks are powerful tools for non-linear filtering of microphone
signals, they have many limitations such as data dependency, computational demands,
and generalization and interpretability issues, which must be carefully considered in
real-life audio processing systems. In contrast, linear filtering methods have been widely
used in real applications mainly due to their simplicity. The signal estimated using linear
filters can be written as

M
S=wly="Y wiym (2.18)
m=1

To demonstrate the effectiveness of our proposed methods for signal model parameter
estimation, we will constrain ourselves to linear filters in the following chapters.

241. mwr
Let the error between the target signal s and the reconstructed signal § be
e=s—§=s—wly. (2.19)

Typically, we consider the signals to be random. We can therefore find the optimal filter
coefficients by minimizing the variance of the error or find the minimum mean square
error (MMSE), that is

E [\eﬂ —E [\s - wHyﬂ = wHP,w— 2% {W!E[s"y]} +E [|s|2} : (2.20)

where the signals s and y have been assumed zero mean.

In this dissertation, we consider the combination of the direct and early reflections of
the r-th signal at the reference microphone to be the target signal, i.e., s,. The remaining
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signal components including the interfering signals, the late reverberation and the noise
are considered as distortion. Note that in general we consider a multi-source scenario.
The filters related to a single source scenario can be derived similarly, by setting R = 1.
Given Py in Eq. (2.13) and the cross-correlation term E[s}y] = ¢,a,, the minimizer of
the cost function in Eq. (2.20) is given by

w =(¢aaH+P)"¢a:M (2.21)
MWF rardy n rdr l+¢ra{:1Pn_1ara .
with
R
Po= Y ¢,a,a +P+P,. (2.22)

r():l,ro;ér
The above filter is the well-known multichannel Wiener filter (MWF). As we set the r-th
signal as the target, the noise covariance matrix P, includes the interfering signals (i.e.,
the remaining point sources), the late reverberation and the ambient noise.

We can see that, before we can use the MWF filter, we first need to estimate the filter
parameters, which include the PSDs and the RTFs of all the source signals {¢,,a,}* |,
the covariance matrix of the late reverberation P; and the covariance matrix of the
ambient noise Py. If Py and Py are further modelled as P; = ¢,I" and Py = ¢,I (only
considering microphone self-noise) with I" given, then the parameters that need to be
estimated include the PSD of the late reverberation ¢, and the PSD of the microphone

self-noise @, .

2.4.2. MVDR

Depending on the properties that we want for the reconstructed target signal, we
need different filtering methods. For instance, the MWF filter aims at reducing the
noise component in the reconstructed signal. We can also reduce the noise energy
while keeping the reconstructed signal undistorted. That leads to another well-known
and widely-used linear filtering method, the minimum variance distortionless response
(MVDR) filter. Specifically, instead of finding the MMSE as with the MWE, the MVDR
is the solution to the following optimization problem

minw/P,w s.t. wa, = 1. (2.23)
w

The above problem has a closed-form solution, which is

WMYDR = (2.24)

The MVDR requires knowledge on a, and P,. Estimating these can still be very
challenging especially if noise or interfering components have time-varying PSDs.

Applying the MVDR to the noisy microphone signal y, we have
al’p, "y

, 2.25
afP, 'a, (2.25)

H _
WuvDRY =
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which is known to be a sufficient statistic for the target source s, under a Gaussian noise
assumption [20], [21]. That means there is no information loss on s, by using Wi, oy
instead of y. Therefore, further processing such as the MMSE estimation can be applied
directly to the MVDR output instead of being applied to y. Moreover, it has been shown
[22] that the MWEF filter can be factorized into an MVDR filter and a post filter (single
channel Wiener filter), that is

WywF = o 7 WMVDR (2.26)
o+ (aﬁpni ar)
or
WyWF = o WMVDR- (2.27)

O+ Wi DR PaWav DR
Moreover, both the MVDR and the MWF can be seen as special cases of the speech
distortion weighted MWF (SD-MWF) [23]. The optimization problem of SD-MWF is
min|1 —w”a,|* ¢, + uw"Ppw, (2.28)
w

where u is a parameter used to manipulate the tradeoff between speech distortion (the
first term) and noise reduction (the second term). The SD-MWF also has a closed-form
solution, which is

oPn'a, [
ptoafPalar g 4y (allPy'a,)

WSD-MWF = — WMVDR- (2.29)

We can choose the value of u in the interval (0,00) to get different levels of speech
distortion compared to noise reduction. The two special cases are gt = 1, which gives us
the MWF filter, and pt — 0, which identifies the MVDR filter.

2.4.3. MPDR

The last filter we want to introduce is the minimum power distortionless response
(MPDR). The optimization problem and the solution for the MPDR are

minw/Pyw s.t. wa, = 1. (2.30)
w
and
P, 'a
WMPDR = % (2.31)
a’'Py""a,

It has been proven that the MVDR and the MPDR are equivalent [24], [25], if
Py = q),aaH +P,. We can see that to calculate the MPDR filter, we only need to estimate
the RTF vector and Py. However, the MPDR is less robust to RTF errors compared to
other filters [25] like the MVDR.
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2.5. TIME SEGMENTATION

As mentioned in previous sections, we often use the STFT procedure to transform
time-domain microphone signals y () into the frequency domain signals y (/,k), that is,

y(LK) =Yy (0) (e —I1T)e /R, (232)

With this procedure, we apply an analysis window v (¢) to the microphone signal y (¢)
before an N-length FFT is applied to the signal. The window length is usually very short
in duration (about 30 ms), which means that y(¢) v (r —IT) only captures information
within a short duration. We define this duration as a sub-time frame indexed by /.

We also showed that in order to use the spatial filters such as the MVDR and the
MWE, we need to estimate the acoustic scene related parameters, among which the
covariance matrix of y(/,k), Py. A common way to estimate Py is using the sample
covariance matrix

il

L 1 o

Py (k) = — Y vk (2.33)
SF =1+~ 1)Ly

However, this requires the assumption that the microphone signals are stationary and
ergodic over the time indices / =1+ (i —1)Lys,---,iLyy. On the other hand, speech
signals can be assumed to be stationary for a short duration of at most 50 ms. It means
that when using 50% overlap and 30 ms frames to obey the stationarity assumption, Ly
should be less than 2 windows. Such a small value of Ly leads to inaccurate estimated
covariance matrices. Also, with only 2 samples, the estimated covariance matrix has a
rank of less than 2, which hinders the way for further parameter estimation. We therefore
select values of Ly in the range of 20 and 40. Although the microphone signals in this
duration are not stationary, the sample covariance matrix can be seen as the estimate of
the average of the different ground truth covariance matrices within this duration. We
define this duration of Ly windows as a time frame.

Lastly, we define the duration that the sound source position does not change as a
time segment, i.e., the duration over which a is assumed not to change. Since the
time segment duration is usually much longer than the time frame duration, we are in
this dissertation interested in the number of time frames per time segment. With that
knowledge, we can use the prior information that the RTF a is constant for multiple time
frames that belong to the same time segment. For a static sound source, we can choose
the number of time frames very large. However, in practice, we need to consider the
computation time and the latency. The number of time frames per time segment, can
therefore not be too large. For a moving source, we might need to detect the point in
time that the source position changes and adapt the time segment accordingly.
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Late

Figure 3.1: Illustration of a single reverberant source.

In this chapter, we will consider the single-source reverberant scenario as illustrated
in Fig. 3.1, with which we will address research question 1.1 shown in Fig. 1.4 using
the signal model presented in Fig. 2.2 (a).

Estimation of the acoustic-scene related parameters such as relative transfer functions
(RTFs) from source to microphones, source power spectral densities (PSDs) and PSDs
of the late reverberation is essential and also challenging. Existing maximum likelihood
estimators typically consider only subsets of these parameters and use each time frame
separately. In this chapter we explicitly focus on the single source scenario and
first propose a joint maximum likelihood estimator (MLE) to estimate all parameters
jointly using a single time frame. Since the RTFs are typically invariant for a number
of consecutive time frames we also propose a joint maximum likelihood estimator
(MLE) using multiple time frames, which has similar estimation performance compared
to a recently proposed reference algorithm called simultaneously confirmatory factor
analysis (SCFA), but at a much lower complexity. Moreover, we present experimental
results which demonstrate that in terms of the estimation accuracy, together with the
performance of noise reduction, speech quality and speech intelligibility, our proposed
joint MLE outperforms those of existing MLE based approaches that use only a single
time frame.
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3.1. INTRODUCTION

Microphone array signal processing has ubiquitous applications like source dereverbera-
tion [1]-[4], noise reduction [5]-[8], source separation [9]-[11] and source localization
[12]. These applications heavily depend on acoustic-scene related parameters such as
relative transfer functions (RTFs), power spectral densities (PSDs) of the source, PSDs
of the late reverberation and PSDs of the microphone self noise. These parameters are
typically unknown in practical scenarios. Therefore, estimation of these parameters is an
essential problem for microphone array signal processing applications.

As speech sources are typically non-stationary, their PSD changes over time.
Moreover, the source might be moving, resulting in changes in the RTF as well. The
estimation of the RTF and the PSDs of the source and the late reverberation is therefore
rather challenging, especially when considering to estimate them simultaneously at low
complexity. To get a full understanding of the problem, we constrain ourselves in this
chapter to the single source reverberant scenario and focus on the joint estimation of the
source’s RTF, PSD of the early reflections and the PSD of the late reverberation. In
future work, we will extend this towards the multi-source scenario.

There are many existing methods that consider maximum likelihood estimation of
these parameters [1], [13]-[16]. However, most of these methods do not estimate the
parameters in a joint manner. In [1], [13], the RTFs are assumed to be known and
the MLE for the PSDs of the source and the late reverberation is proposed. In [2],
the estimate of the late reverberation is obtained without estimating the RTFs or the
PSDs of the source. In [14], the RTFs are estimated given that the PSDs of the late
reverberation are assumed to be known or have been estimated. In [15], by assuming
the late reverberation is stationary, the expectation maximization (EM) method [17] was
used to estimate the RTFs and the PSD of the source. However, in practice, the late
reverberation is non-stationary and the PSDs of the late reverberation can change from
time-frame to time-frame, which limits the scenarios to which the method in [15] can be
applied.

Apart from the fact that most reference methods only estimate a subset of these
parameters, all these methods, i.e., [1], [13]-[16], use each time frame separately.
However, in most practical scenes, the RTFs change slower than the PSDs of the source
and the late reverberation, and can be assumed invariant for a number of consecutive
time frames. Therefore, better estimates of these parameters can be obtained by
using the time frames that share the same RTFs jointly. A recently proposed method
referred to as the simultaneous confirmatory factor analysis (SCFA) method considers
the joint estimation of these parameters using multiple time frames [18] and has a much
better estimation performance compared to methods using each time frame separately.
However, since the problem formulated in [18] is non-convex, this method suffers from
a rather high computational cost, which makes it difficult to be applied when dealing
with practical problems.

To estimate all the aforementioned parameters of interest jointly and accurately with
low computational complexity, we first propose a joint maximum likelihood estimator
(MLE) using a single time frame. This has a closed form solution and can be
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solved efficiently. Note that recently the joint MLE using a single time frame is also
proposed in [16], but we provide an alternative proof. More importantly, we propose
an extension, which is a joint MLE using multiple time frames. This extension uses
the rough estimates obtained by the MLE for a single time frame as initialisation and
estimates all the parameters in an iterative manner. Since the computational cost for
each step in the proposed method mainly comes from an eigenvalue decomposition, it
has similar computational complexity as the MLE approach for a single time frame.
Experimental results demonstrate that our proposed MLE for multiple time frames has
similar estimation performance compared to the recently proposed SCFA method from
[18], but, at a much lower computational complexity. Moreover, both the proposed
and SCFA methods outperform two other reference methods that consist of combining
several existing state-of-the-art methods.

The remaining parts of the chapter are structured as follows. We present the notation,
the signal model and the main goal of this chapter in Section 3.2. In Section 3.3,
we propose the joint maximum likelihood estimator using a single time frame in
Section 3.3.1 and using multiple time frames in Section 3.3.2. In Section 3.4, we first
introduce some reference methods and compare them to our proposed joint MLE in
different acoustic scenarios. In the last section, Section 3.5, conclusions will be drawn.

The matlab code of the joint MLE can be downloaded from:
http://sps.ewi.tudelft.nl/Repository/

3.2. PRELIMINARIES

3.2.1. NOTATION

In this chapter, we denote scalars using lower-case letters, vectors using bold-face
lower-case letters and matrices using bold-face upper-case letters (in some cases with
subscripts using bold-face lower-case letters, e.g. Py). Matrix notation with subscripts
using two lower-case letters (e.g. Py; D) denotes the element of the matrix. R (-) and 3 ()
represents the real part and the imaginary part of a complex-valued variable, respectively.
Further, E () denotes the expected value of a random variable, tr(-) denotes the trace of
a matrix, and if not further specified, |-| denotes the determinant of a matrix. Finally,
diag[ay, - ,apm] denotes a diagonal matrix with diagonal elements ay,---,ay and |||,
denotes the Frobenius norm of a matrix.

3.2.2. SIGNAL MODEL

We consider a single acoustic point source observed by a microphone array consisting
of M microphones with an arbitrary geometric structure in a reverberant and noisy
environment. Decomposing the signal into its direct component with its early reflections,
and the late reverberant components, we can write the signal received at the myy
microphone in the short-time Fourier transform (STFT) domain as

Ym (k) = X (1, k) + Ly (1, k) + v (1, k), 3.1
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where i is the time-frame index and k is the frequency bin index, x, (i,k) is the sum of
the direct components and the early reflections, I, (i,k) is the sum of all late reflections
and vy, (i,k) is the microphone self-noise. The direct components and early reflections
are beneficial for speech intelligibility [19]. The combination of these components,
denoted by x,, (i,k) in Eq. (3.1), forms our target signal. In this work, we differentiate
between time segments (indexed by f) and time frames (indexed by i). Each time
segment consists of N time frames, i.e., for each 8, i=(f —1)N+1,---,BN. The target
signal at the m,;, microphone is given by

Xm (i,k) = am (B, k) s (i,k), (3.2)

where a,, (B,k) is the relative transfer function (RTF) for source s from the reference
location to the m;;, microphone in time segment 3 and s is the target source including
direct and early reflections at the reference microphone. Note that, for ease of
analyzing, we use the multiplicative transfer function (MTF) approximation instead of
the convolutive transfer function (CTF) approximation in Eq. (3.2). CTF can be more
accurate than MTF but has a more complicated signal model [20], [21]. We assume that
the RTFs are constant during a time segment (thus during multiple time frames that
fall in one segment) and a; = 1, which means that the first microphone is selected as
the reference microphone. Stacking the M microphone STFT coefficients into a column
vector, we have

y(i,k) = a(B,k)s(i,k) +1(i,k) + v (i,k) € CM*1, (3.3)

3.2.3. CROSS POWER SPECTRAL DENSITY MATRICES

We assume the STFT coefficients of the microphone signal have a circularly-symmetric
complex Gaussian distribution’, i.e.: y(i,k) ~ Nc(0,Py(i,k)), where Py(i,k) is the
noisy cross power spectral density (CPSD) matrix, expressing the covariance across
microphones. Assuming that all components in Eq. (3.3) are Gaussian distributed with
zero mean and mutually uncorrelated, we have

Py (i,k) = Py (i,k) + Py (i,k) + Py (i,k) € C*M (3.4)

where Py is given by
Py (i,k) = p(i,k)a (B, k)a" (B.k), (3.5)

and where p(i,k)=E {|s(i,k)|2} is the power spectral density (PSD) of the source

at the reference microphone with |-| the absolute value. Note that although the
mutual uncorrelation assumption is commonly used, these components are not perfectly
uncorrelated in practice.

The CPSD matrix of the late reverberation component is commonly modelled as [1],
[26]

1Although a super-Gaussian distribution can better model the coefficients [22]-[24], the estimators based
on it are much more cumbersome than that based on the Gaussian distribution [25] and hence are not
considered in this chapter.
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where the time-varying coefficient y(i,k) is the PSD of the late reverberation and the
time-invariant matrix I" (k) is the spatial coherence matrix of the late reverberation. I" (k)
is assumed to be non-singular and known in this chapter. Several methods have been
proposed to measure I' (k) by using pre-calculated room impulse responses [27] or by
using knowledge on the microphone array geometry [28], [29]. We use the latter one
and model the coherence matrix as a spherically isotropic noise field [30]

. 27'Cfsk d,'j
I'(k)= — 3.7
() =sine ( 22LE4L), G
where sinc (x) = S%, ;,; 1s the inter-distance between microphones i and j, fs is the

sampling frequency, ¢ denotes the speed of sound and K is the number of frequency
bins.

Lastly, the microphone self-noise component is assumed to have slow varying statistics
and its CPSD matrix Py (i,k) can be modelled as a time-invariant diagonal matrix with
its M diagonal elements being the PSD of the self noise corresponding to the M
microphones

Due to its time-invariant property, a voice activity detector (VAD) can be used to detect
the noise-only segments of the signal such that the covariance matrix of the noise can be
estimated [31]. Moreover, the power of the microphone self-noise is usually very small
compared to the other components. Therefore, we assume in this chapter that Py (k) is
negligible or can be subtracted from the noisy covariance matrix.

3.2.4. PROBLEM FORMULATION

Based on the assumptions made in the previous subsection and Egs. (3.5) and (3.6), we
can rewrite the noisy CPSD matrix for each time frame i as

Py (i,k) = p(i,k)a(B,k)a" (B, k) +7(i,k)T (k). (3.9)

Each time frame 7 consists of 7y; overlapping sub frames indexed by #;, each with equal
length N;. For a visual interpretation of time segments, frames and sub frames see
Fig. 3.2. Assuming the noisy signal is stationary within a time frame, we can estimate
the CPSD matrix per time frame i based on a sampled covariance matrix using the
sub-time frames, that is,

5 o LTy
P = y (t5,k) y(¢ 3.10
Y(l7 lT:gf IZI S7 S7 ) ( )

where y(t;,k) denotes the STFT coefficients vector, where [-] denotes taking the
next highest integer. Note that each time frame contains multiple sub-time frames as
illustrated in Fig. 3.2 and these sub-time frames are used to estimate the covariance
matrix of a single time frame. Notice that across the time frames of one time segment,
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Figure 3.2: Tllustration of the durations of Time segment (TS), time frames (TF) and
subframes (SF).

the RTF vector is assumed to be constant and the PSDs of the source and late
reverberation power Y (i,k) are assumed to be time-variant.

Accurate estimation of the parameters from the signal model in Eq. (3.9) is very
important for speech enhancement and intelligibility improvement algorithms. However,
this is also very challenging when the source is only stationary for a short time and
microphone and source positions are time varying. The main goal of this chapter
therefore is to estimate the RTF vector, the PSD of the source and the PSD of the late
reverberation simultaneously using N estimated CPSD matrices IA)y (i,k) fori=1,--- N,
while the source is only stationary within a time frame and the RTF changes from
segment to segment. Since we process the signal for each frequency bin independently,
we omit the frequency bin index k in the following sections for notational convenience.

3.3. JOINT MLE

In this work, we present a novel maximum likelihood estimator (MLE) to jointly
estimate the parameters from the signal model in Eq. (3.9). Note that MLEs have been
proposed before in this context [1], [13], [15], but typically they assume that the RTF
vector a is known and only determine the MLEs of p (i) and y(i) for each time frame
i separately. We will first in Section 3.3.1 propose the joint MLE estimator of p(i),a
and y(i) using the estimated noisy CPSD matrix for a single time frame. Since the
CPSD matrices for multiple time frames in a single time segment share the same RTF
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vector, we can use these matrices jointly to obtain a better estimate of a. Therefore, we
will also propose in Section 3.3.2 the joint MLE estimator of p(i),a and y(i) using the
CPSD matrices for multiple time frames.

3.3.1. JOINT MLE FOR A SINGLE TIME FRAME

Assuming that the Ty sub-time frames in a single time frame i per frequency band
k are independent and identically distributed (i.i.d.), we can write the joint PDF

(1), ,y(Ty)) as

. Ty
i (PyPyl)]> ’ 3.11)

where f’y is given in Eq. (3.10) and Py in Eq. (3.9). The negative log-likelihood function
with respect to (w.r.t.) p,a and Y is given by

—L(p.a,y) = Tys [log|Py| +tr (ByP; )], (3.12)

where the additive constant term TyrMlog7 has been omitted as it is irrelevant for the
parameters of interest. The MLEs of p,a and y are given by minimizing the cost
function in Eq. (3.12), i.e.,

argminlog [Py| +tr (lA)yP;l) . (3.13)
pay

To solve this problem, we reparameterize the signal model in Eq. (3.9) as
Py = paa’ + T
=L (pL 'aa”L " 4 y1) L (3.14)
=L (paa” +yI)L”,

aliTla

Therefore, the optimization problem in Eq. (3.13) can be cast as

where L is the Cholesky factor of " (i.e. I'=LLY), a= LH;Z‘ and p = pa’T' 'a.

argminlog[Py| +tr (PyPy ') . (3.15)
pay

By using this reparameterization, we can make the estimation of a independent of the
estimation of p and 7y. Therefore, the joint estimation of these parameters can be
decomposed into two simpler estimation steps, as we will show below.

The first term in Eq. (3.15) can be rewritten as
log|Py| = log |L (ﬁﬁﬁH + 1) LH|
=log (|L| (paa+y) ¥~ ' [L7]) (3.16)
=log (|[]) +log (5 +7)+ (M —1)log(y),
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where we have used the fact that a4 = 1. The second term in Eq. (3.15) can be
rewritten as

tr (PyPy ) = tr (P [L (paa" +y1) L¥] )

(
- tr( w(paa +yI)_1)

D ==l
N B vy~ 2paa
—tr Py (y 1 L2
Tt (" 1+r1ﬁﬁﬂﬁ>) 3.17)
—tr(y'Py) — t<1lr”p1“>w55H>
1% V2P anp =
=t ! w wd,

where IA’W = L_llA’yL_H and the Sherman—Morrison formula [32] is used to calculate
(paa + 1)~ !
Substituting Eq. (3.16) and Eq. (3.17) in Eq. (3.15) and omitting the constant irrelevant

term log (|T]), the cost function from Eq. (3.13) can eventually thus be expressed in the
following useful form,

argminlog (P+7) (j/M_l) +tr (y_lﬁw)
P . (3.18)

Since only the last term in Eq. (3.18) depends on a and 11;’?13 > 0, the estimate of a
can be obtained by solving

argmax alP,a. (3.19)
a
The solution of Eq. (3.19) is known as the principal eigenvector of Py, and the optimum
value of 7Py is the principal eigenvalue Apax of Py.

Substituting the optimal a from Eq. (3.19) in Eq. (3.18), we can find the estimates of
p and 7y by solving

argmin f =log [(F+7) 7" +u(y'Py)
n (3.20)

Y’
1+,},_1~A'max

Taking the partial derivatives of the cost function in Eq. (3.20) w.r.t. p and 7y and setting
them equal to zero, respectively, we obtain
af 1 M-1 (L 'PLH)
a¥ Pty v e
27+
p(2y+p) PRYER),
(P +7p)’

(3.21)
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and

al _ L . ;Lmax

IbPEY  (y+p)
Solving Eq. (3.21) and Eq. (3.22) for p and 7, we obtain
MApax —tr (f’w)

=0. (3.22)

pP= M—1 ) (3.23)
LT (pw) — Amax
¥= — -1 (3.24)

To show that (j,§) is the minimum point of function f, we derive its second order
derivatives

2f 1 _M_1+2tr(f’w)
I B+ 7 7 (3.25)
2hmax (=37°P = 37" — )
+ 3 3 )
Y(v+p)
82f 1 Zamax
_ 7 3.26
9P (p+1’  (r+p) o
azf 1 2A'max
S + , (3.27)
ap? B+y°  (r+p)
At point ($,7), we have
M—1)° 1
oIl _ . S+ >0, (3.28)
(9’}/2 =7 ( (P ) 2'Inax) (A’max)z
2% f 1
I >0, (3.29)
dp? p=p (Armax)2
92f I f ( *f )2 _ (M= 1) (Anan)? ~0. (3.30)
972957 \19p) | v=7 " (tr(Py) — Aumr)’
pP=p

Therefore, (p,§) is the minimum point of function f. Furthermore, we can show that
p,§ are both positive such that they can be used as the estimates of j and 7. Since
Py, is a positive definite matrix and it’s typically not scaled identity matrix, we have

tr(;;w) < Apax < tr (Pw) Hence from Eqs. (3.23) and (3.24) it follows that p > 0 and

#> 0. Note that this examination of the Hessian matrix and p,§ being positive is absent
in [16].

Finally, we obtain the optimal estimates of p and a using the estimated p and a by
setting

4=No (Lﬁ) (3.31)
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and

S

_ P
N —1Aa?
AT 'a

where No (x) means taking normalization w.r.t. the first element of x.

p= (3.32)

As mentioned in [16], the estimation of a is consistent with the covariance whitening
method [5], [14], while we provided an alternative proof that this estimate equals the
MLE of a. More specifically, the proof in [16] with respect to the estimation of the
PSDs does not include the examination of the Hessian matrix and the estimates of the
PSDs being positive. This examination of the Hessian matrix being positive definite
is necessary, since setting the partial derivative to zero does not give us the optimal
estimate when the Hessian matrix is not positive definite. Also, the examination of
estimates of the PSDs being positive is necessary, since the PSDs should always be
positive. Moreover, the proof in [16] is based on the proportion of the likelihood
function, which makes it difficult to analyze the cost function for multiple time frames.
While, in this work, our proof is based on the likelihood function itself and the extension
to multiple time frames is straightforward.

3.3.2. JOINT MLE FOR MULTIPLE TIME FRAMES

In the previous subsection we considered the joint MLE for p, ¥ and a given a single
time frame. As a is assumed to stay fixed across multiple frames in a segment, we
consider in this subsection the joint ML optimal estimates of p (i), y(i) for i=1,--- ,N
and a using all time-frames in a segment.

Assuming that the N time frames are independent, we can write the negative
log-likelihood function of the STFT coefficients as

N
L= _;TSf [log [Py (i) +tr (By (1) Py (1)] (3.33)

where non-essential constant terms have been omitted. The joint MLEs for p (i),
y({)¥i=1,--- ,N and a are the solution to the optimization problem

N
argmin 3 log[Py ()| +1r (Py () Py " (7). (334)
p(i),a, (i) i=1

By reparameterizing the signal model in a similar way as in the previous subsection, i.e.,
P L 'a 5 Hp—1 : : :
using a = —=—2_ and p = pa”I"" "a, the CPSD matrix for each time frame i has the
BAT Vrn PP
form
Py (i) =L (p(i)aa" + y(i) 1)L, (3.35)

and the optimization problem in Eq. (3.34) can be cast as

N
argmin Y log [Py (i)| +tr (By (i) Py ! (1)). 536
ﬁ(i%ﬁ»)/(i) =1
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Substituting Eq. (3.16) and Eq. (3.17) in Eq. (3.36) and omitting the irrelevant constant
terms, the cost function can be expressed as
N
argmin Y log [ (7 () + 7 (1) (v())" )]
p(0)Ay(0) i=1
ttr (y(i)_lf’w (i)) (3.37)
N—2 ~
i 1) CHE o~
— L_pl().aHPw (i)a
L+y(@) p()

where similar manipulations have been carried out as in Eq. (3.18).

)

To estimate &, we can focus on the last term of Eq. (3.37). Hence, the estimation of a
is the solution of the following optimization problem

ar, maxN AL~H" N3
i i:zl<7(i)+ﬁ(i) ON Pw<>a>’ (3.38)

which is the principal eigenvector of the matrix

v b 15

Lii-rmro 639
Note that unlike the estimation of & in a single time frame case where the estimate is the
principal eigenvector of Py, the estimate is now the principal eigenvector of a weighted
sum of the whitened CPSD matrices for all time frames and the weights depend on
the estimation of (i) and y(i) for i=1,---,N. Therefore, a closed form solution to
Eq. (3.38) does not exist and we propose a recursive estimation approach.

For the first step, we estimate the parameters for each time frame independently using
the method proposed in Section 3.3.1. In this case, we will obtain N different estimates
of the RTF vector, say, a (i), which is the principal eigenvector of L~'Py (i) L~ per
frame i. Given a(i) for a single frame i, the estimates of /(i) and 7y (i) are obviously
identical to expressions in Eq. (3.23) and Eq. (3.24), that is,

_ M (i) —tr (Py (i)

p (i) T : (3.40)
’f’(l) — tr (PW (ll.gl)__llmax (l) , (3.41)

where Amax (i) is the principal eigenvalue of Py ().

For the second step, we use the initial estimates of p (i) and y(i) to calculate the
matrix in Eq. (3.39) and then use its principal eigenvector as the estimate of the RTF
vector a. Next, we use the estimated a in Eq. (3.37) and find new update estimates
of j(i) and (i) based on the estimate a which was found using the joint information
across all time frames in a segment. That is,

 MA"Py ()& —u (Py (i)
V= M—1

(3.42)

e
—
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and . o
tr (Py (i) —4 Py (i)a
M-—1 ’

7() =

Note that 4" Py (i)& < Amax (i) < tr (Py (i)), hence §(i) > 0. But j (i) in Eq. (3.42) can
become negative. We replace these negative values using the initial estimates from
Eq. (3.40) and store their corresponding time frame indices as index set G, which will
not be included when calculating the weighted sum in Eq. (3.39) to estimate the RTF
vector in the next step.

(3.43)

In the remaining steps, we repeat the second step until the relative change of

2H A N . . . . .
a Py (i)a between the current iteration and the last iteration does not exceed a certain
number &, or a certain number of iterations has been executed.

3.3.3. ROBUST PARAMETER ESTIMATION

In [18], it has been shown that linear inequality constraints on the parameters of interest
can be used to improve the robustness of the estimation. Herein, we introduce these
constraints on the RTF, the PSD of source and the PSD of the late reverberation. Note
that, after obtaining estimates in each step of our proposed method, we can project the
estimates into the constraint intervals introduced below. These constraints can effectively
avoid large underestimation or overestimation errors and therefore can improve the
robustness of our proposed joint MLE for multiple time frames.

CONSTRAINTS FOR THE RTFS

Considering only the direct path component, the anechoic acoustic transfer function
(ATF) has the following equation [33]

1 j2mkd;
= - 3.44
4= ana; P ( Ke ) ’ (344)

where ¢ denotes the sound speed, K is the FFT length and d; is the distance between the
source and the i;;, microphone (d; > 0). The RTF in the k;, frequency bin is then given
by (with the first microphone selected as the reference microphone)

a; (k) = %exp <—j2”k(;;dl)). (3.45)

Using Eq. (3.45), for any frequency bin, a tight bound for both the real and imaginary
parts of a; is given by

di
When not only the direct path component but also the early reflections are considered,
the RTF value might exceed the tight bound above and we need to use a looser bound.
Observing di < dy;+d; (dy,; is the distance between the first microphone and the iy,
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microphone) and assuming d; > dmax (i.e. the distance between the source and each
microphone is not smaller than a given small value dyax), a looser bound for RTFs is

_ dl,i + dmax < dl,i + dimax

dmax h

<R(a),S (a;) (3.47)

dmax
Note that after obtaining a at each step in our proposed method, we first normalize it

with its first element to estimate the RTF vector & and then project the estimated RTF
d]‘iJdeax d]‘iJdeax

vector into the interval |— ,
dmax dmd

. Finally, we calculate the reparameterized
L 'a

Vatir-1a°

vector using a =

CONSTRAINTS FOR THE SOURCE PSDS

In Eq. (3.9), using the fact that a; =1 and I'; | = 1, we have

Py () =p ) +7(@). (3.48)
Hence, an upper bound for p (i), by using a prefixed constant § (with & > 1), is found as
p(i) <8Py, (i) —7(i), (3.49)

and the upper bound for the reparametrized parameter j (i,k) is

pi) < 8Py, (i) —y(i)[a"T"a. (3.50)

CONSTRAINTS FOR THE LATE REVERBERATION PSDS

As shown in [18], the following constraints can be applied to ensure better speech
intelligibility performance by reducing overestimation errors on the PSD of the late
reverberation [3], [34]

v < min|[diag (P, (i))] . (3.51)
Since I'y,p =1 form=1,--- M, we have
Py, (i) = p (i) amaly +7(i), (3.52)

where p(i)aman® is positive. Hence we have Py (i) > y(i) for all m and Eq. (3.51)
holds. ’

3.4. EXPERIMENTS

In this section, we evaluate the estimation performance of the proposed methods as well
as the performance on noise reduction, speech quality and speech intelligibility. We
will first introduce the reference methods in Section 3.4.1 and the evaluation metrics
in Section 3.4.2. Then, in Section 3.4.3, we consider a static source scenario and use
the simulated room impulse responses (RIRs) to construct the microphone signals. At
last, in Section 3.4.4, we consider both the static source scenario and the source-moving
scenario and use the RIRs recorded in real life from [35].
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3.4.1. REFERENCE METHODS
COMBINATION OF EXISTING METHODS

The first reference method we consider utilizes several existing methods [2], [13], [14]
to estimate the PSD of the late reverberation, the RTF vector and the PSD of the
source successively. First, by assuming a noiseless or high SNR scenario, we use the
eigenvalue decomposition-based method proposed in [2] to estimate the PSD of the late
reverberation. With this estimate, we use the covariance whitening method in [14] to
estimate the RTF vector. Finally, we use the method proposed in [13] to estimate
the PSD of the source. Note that although this reference method is a combination of
existing state-of-the-art methods, this combination has the same estimation steps as the
joint MLE estimator for a single time frame presented in Section 3.3.1. Note also that
this reference method only considers using the CPSD matrix for a single time frame.
Therefore, when dealing with multiple time frames in one time segment, we can either
use it to estimate parameters for all time frames independently or averaging the CPSD
matrices for all time frames in a time segment and use it to estimate parameters with
this averaged CPSD matrix. For convenience, we refer to this first case as ‘Refl’ and
the second case as ‘Ref2’ in each figure.

SIMULTANEOUS CONfIRMATORY FACTOR ANALYSIS

The recently published method in [18] is also used for comparison in all the experiments.
This method is based on confirmatory factor analysis (CFA) and non-orthogonal joint
diagonalization principles and, hence, is called the simultaneous confirmatory factor
analysis (SCFA) method. Note that the SCFA method is very accurate and can estimate
the RTF matrix, the PSDs of the early components of the sources, the PSD of the late
reverberation, and the PSDs of the microphone-self noise jointly, but, also has high
computational complexity. With the SCFA method, the parameters estimation problem is
modelled as the following optimization problem

jf((;)’l? = argmin Z log [Py (i)| +tr (Py (i) Py (7))
y Ly ;(E;) alf i=1 (353)

s.t. Py (i) = Py (i) + Py (i) + Py

where Py (i), Py (i) and Py are defined in Egs. (3.5), (3.6) and (3.8), respectively. This
problem is not a convex problem and the computational complexity is high. In [18],
the problem is solved iteratively and the fmincon procedure in the standard MATLAB
optimization toolbox is used to decrease the value of the cost function in Eq. (3.53) for
each iteration. The iteration terminates if a given estimation accuracy is achieved or the
iteration number exceeds a certain number.

Although the SCFA method can estimate the RTF matrix and the PSDs jointly, it is
computationally not efficient and sometimes may have a wrong estimate because it deals
with a non-convex problem and does not assure a global optimal solution. Therefore,
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a set of “box constraints" is proposed in [18] to improve the robustness of the SCFA
method. In our experiments, we used the same constraints as in Egs. (27),(38),(39)
and (40) in [18].

3.4.2. EVALUATION METRICS

In all the experiments, three types of performance comparison between the proposed
method and the reference methods are presented. We first compare the estimation error
of the parameters of interest. For the RTF vector, we use the Hermitian angle measure
(in rad) [36] which is averaged over all frequency bins and time segments

b ket [a(6 £)"4(5.0)
& & afCCOS(nausk)npwkn)

Ea= (3.54)

B(K/2+1)

For the PSDs of the source and the late reverberation, we use the averaged error (in dB)

K/2+1
loﬁgu% i ‘1°g< '“3)!

E, = .
BN(K/Z—H) (3.55)
and y
B N K/2+1
10 Zl Zl Z ‘10g< ik;)‘
E =27 , (3.56)

BN (K/2 +1)
where |-| denotes taking the absolute value in Eqs. (3.54) to (3.56).

Then, we provide the speech intelligibility and quality comparison among the
estimated sources constructed using parameters that are obtained by different methods.
That is, we use estimated parameters to calculate the following multi-channel Wiener
filter (MWF)

A

W= P WMVDR, (3.57)

A A H A
D+ Wyrvpr Rin WMVDR

where wyypr 1S the minimum variance distortionless response (MVDR) beamformer
[37]

.
a
WavDR = —m 2 3.58
MVDR = R Ta (3.58)
and A
R, = 9T, (3.59)

Note that I" is calculated by Eq. (3.7) for all methods by assuming the distance between
each microphone pair is known. For the SCFA method, we set R, = yI"+P,, since
SCFA can provide an estimate of the PSD of the microphone self noise.

After reconstructing the estimated sources, we use the segmental signal-to-noise-ratio
(SSNR) [38] to measure the noise reduction performance. In addition, we compare the
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speech intelligibility performance using the speech intelligibility in bits (SIIB) measure
[39], [40]. The speech-to-reverberation modulation energy ratio (SRMR) measure [41] is
also calculated in each scenario to demonstrate the speech quality and intelligibility of
all reconstructed sources.

Finally, we compare the computation time between our proposed method and the
reference methods.

3.4.3. EXPERIMENTS WITH SIMULATED RIRS

SETUP

5
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0 1 2 3 4 5 6 7

Figure 3.3: Top view of the acoustic scene. The red circle denotes the source. The cross
in the center denotes the set of microphones. A zoom-in of that set of four
microphones is provided in the little square.

To simulate room impulse responses from source to microphones, we use the image
source method [33]. The four microphone signals are then constructed by convolving the
speech source (with a duration of 35 s) with each of the four room impulse responses
corresponding to each microphone. The positions of four microphones and the position
of the source are shown in Fig. 3.3, and the dimensions of the simulated room are set to
7 x5 x4 m. Since we used the SCFA method as a reference method, the parameters used
in the experiments are similar to those used in [18]. Subsequently, microphone self-noise
is simulated by adding realizations of a zero-mean uncorrelated Gaussian process with
variance o2, such that the SNR per microphone due to the self-noise is equal to the
values as specified in each figure. Note that since we consider only the microphone
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self-noise, the noise energy is relatively low resulting in large SNR values of about 50
dB. The sampling frequency is f; = 16 kHz. Per sub-time frame, the sampled noisy
microphone signals are converted to the frequency domain using the STFT procedure,
where the sub-time frames are windowed with a square-root Hann window with a length
of 512 samples (i.e. 32 ms) and an overlap of 50% between sub-time frames. The true
RTF is set to the early reflections of the room impulse response, which is set here as the
512-length FFT of the first 512 samples of the room impulse responses, as this equals
the early part (first 32 ms) of the impulse response that falls within a single sub-frame.
Each time frame consists of Ny =40 overlapped sub frames. The prefixed parameters
are 0 = 1.1 and dyax = 0.02 (i.e. the distance between each microphone and the source
is larger than 0.02 m).

RESULTS

In Fig. 3.4, we fix the reverberation time Tgo at 1 s and obtain noisy speech with the
SNR fixed at 50 dB. We change the number of time frames in a time segment from 1 to
8. The CPSD matrix of the microphone self noise is subtracted from the noisy CPSD
matrix for JMLE, Refl and Ref2 in this scenario. The performance comparison among

056 12 10
—SCFA ——SCFA ——SCFA

E, (rad)

SSNR (dB)

Figure 3.4: Performance vs the number of time frames.

JMLE and the other three reference methods is shown in Fig. 3.4 as the number of time
frames used in each time segment changes from 1 to 8. When using only one time
frame, JMLE, Refl and Ref2 have exactly the same estimates of the RTF and the PSDs
of the source and the late reverberation as expected and their estimation performance is
better than SCFA. When the number of time frames in a time segment increases, the



3.4. EXPERIMENTS 51

RTF estimation performance for Refl nearly does not change since this method always
uses each time frame independently and does not use the prior information that the RTF
is constant for all time frames in a time segment. However, for JMLE, SCFA and Ref2,
the estimation error of the RTF decreases with the increase of the number of time frames
in a time segment. For a larger number of time frames, i.e. a longer segment, among
these three methods, JMLE and SCFA have similar performance, and both notably
outperform Ref2. The PSD estimation performance for JMLE, SCFA and Refl does not
change much since the PSDs can differ time-frame by time-frame. However, the PSD
estimation performance for Ref2 decreases when the number of time frames increases
because Ref2 assumes the source is stationary during a time segment, which is mostly
not true in a practical scene. For the noise reduction performance and the speech quality
and intelligibility performance, we can see that JMLE and SCFA have larger SSNR,
SIIB and SRMR values compared to the other two reference methods in most cases.

3.4.4. EXPERIMENTS WITH RECORDED RIRS

The performance of all methods is now compared using recorded room impulse responses
from [35]. The reverberation time of the RIRs include 0.36 s and 0.61 s. The positions
of the microphones and the position of the source used to record the impulse responses
are shown in Fig. 3.5. The source is placed at a distance of 2 m from the center of the
uniform linear microphone array of 8 microphones which have inter-distances of 8 cm.
Although the angles of the source include {—90°,—75° ---,90°} in [35], we use only
{0°,15°,30°,45°,60°} in this work. We will first consider a static source scenario and
evaluate the performance for various SNR values. Then, we will show the influence on
the estimation performance of all methods when the source position changes at specific
moments.
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Figure 3.5: Setup for the real RIRs.
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Figure 3.6: Performance vs SNR.

STATIC SOURCE

For the static source scenario, we use the RIRs for the source position fixed at 0° and
the reverberation time of 0.61 s. We obtain noisy speech with the SNR simulating the
microphone self noise ranging from 10 dB to 50 dB. Notice that realistic values for
microphone self noise are in the order of 40 to 50 dB. Each time segment contains 8
time frames. Note that in this scenario, the prior information of the microphone self
noise is used by none of the methods and for JMLE, Refl and Ref2, we simply ignore
the microphone self noise and use the CPSD matrix of the noisy signal directly.

The performance comparison among JMLE and the other three reference methods is
shown in Fig. 3.6 as the SNR increases from 10 dB to 50 dB. As shown in Fig. 3.6,
JMLE and SCFA outperform Refl in the RTF estimation performance and outperform
Ref2 in the PSDs estimation performance (of the source and the late reverberation).
As the SNR becomes larger, all methods have both better RTF and PSD estimation
performance. However, JMLE shows the most significant improvement compared to
the other methods. For the noise reduction performance and the speech quality and
intelligibility performance, JMLE and SCFA still outperform the other two reference
methods.

Table 3.1: Computation time comparison.
method SCFA | JMLE | Refl | Ref2
Normalized run time | 1310 19 6 1
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In Table 3.1 we show the normalized computation time comparison among all
methods, where we have averaged the run time over all cases for each method. As
expected, SCFA needs significantly more time compared to the other three methods.
The computational cost of the proposed method using multiple time frames mainly
comes from the calculation of the eigenvalue decomposition of an M x M matrix in
each iteration, which has a complexity of order M>. The total complexity order is
thus (N + N;)M? with one initial step and N; iterative steps. Similarly, for Refl, its
complexity order is NM? with N the number of time frames in a time segment. For
Ref2, its complexity order is M3. Therefore, the time cost ratio among JMLE, Refl and
Ref2 is N;+N:N:1=18:8:1, which is similar to the real averaged run time ratio in
Table 3.1. Note that the proposed method using multiple time frames can be initialized
by either Refl or Ref2. In this work, we present only using Refl as the initialization
step. If the Ref2 is used as the initialization, the complexity order of JMLE will be
(N; + 1)M>.

MOVING SOURCE
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Figure 3.7: Performance vs time segments (TS) with the reverberation time 0.36 s.

For the moving source scenario, we place the source at 0° and change the position
to 60° in steps of 15° every 7 s. Since each time frame contains 40 sub-time frames
of 32 ms taken with 50% overlap and each time segment contains 8 time frames, the
time segment duration is about 5.12 s. The 35 s speech is divided into 6 complete time
segments (the last incomplete time segment is not used). Only the microphone signals
during the first and the fourth time segments are received from a single source position.
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In all other segments, the source position changes during the segment. We evaluate the
estimation performance of all methods for per time segment.

In Fig. 3.7, the reverberation time is 0.36 s. For comparison, we show the estimation
performance of all methods when the source position is fixed at 0° in Figs. 3.7a, 3.7c
and 3.7e. As shown, the estimation performance of all methods does not change much
for different time segments, except the poor PSDs estimation performance of the Ref2
method. In Figs. 3.7b, 3.7d and 3.7f, we show the estimation performance of all methods
when the source position is moved from 0° to 60° by 15° every 7 s. The vertical dashed
lines in these figures denote the time point when the source position is changed. As
shown, the estimation performance during the first and the fourth time segments is best
among others for the methods using multi-time frames in their estimation as during these
time segments, the source position is fixed while during other time segments the source
position is changed. The RTF estimation performance is influenced the most while the
late reverberation PSD estimation performance is influenced the least by source position
change. The reason is that the RTF contains information on the source position, while
the late reverberation can be considered as a diffuse noise field. For the Refl method, its
estimation performance is not affected much since it estimates the parameters frame by
frame instead of segment by segment and only four time frames are affected by source
position change.

3.5. CONCLUDING REMARKS

We considered the problem of estimating the RTFs, the PSDs of the source and the
PSDs of the late reverberation jointly for a single source scenario. We first proposed
a joint maximum likelihood estimator (JMLE) using a single time frame, which has a
closed form solution and can be solved efficiently. Then, we proposed a joint MLE
using multiple time frames that share the same RTF and achieved similar estimation
accuracy, together with the performance of noise reduction, speech quality and speech
intelligibility, compared to the SCFA method, which both outperform the other reference
methods combining several existing state-of-the-art methods. Moreover, it is also shown
that the proposed JMLE for multiple time frames has a much lower computational
complexity than that of the SCFA method.
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Late

Figure 4.1: Illustration of a single source, reverberant and noisy scenario.

In the previous chapter, we considered a reverberant but noiseless environment. In
this work, we include the noise component and consider a single source reverberant and
noisy scenario as illustrated in Fig. 4.1. With this chapter, we will answer research
question 1.2 shown in Fig. 1.4 using the signal model presented in Fig. 2.2 (b).

Spatial filtering techniques typically rely on estimates of the target relative transfer
function (RTF). However, the target speech signal is typically corrupted by late
reverberation and ambient noise, which complicates RTF estimation. Existing methods
subtract the noise covariance matrix to obtain the target-plus-late reverberation covariance
matrix, from where the RTF can be estimated. However, the noise covariance matrix is
typically unknown. More specifically, the noise power spectral density (PSD) is typically
unknown, while the spatial coherence matrix can be assumed known as it might remain
time-invariant for a longer time. Using the spatial coherence matrices we simplify the
signal model such that the off-diagonal elements are not affected by the PSDs of the late
reverberation and the ambient noise. Then we use these elements to estimate the target
covariance matrix, from where the RTF can be obtained. Hence, the resulting estimate
of the RTF is insensitive to the noise PSD. Experiments demonstrate the estimation
performance of our proposed method.
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4.1. INTRODUCTION

Microphone arrays are widely used for hands-free speech communication applications
such as mobile phones and hearing aids. Spatial filtering techniques like the minimum
variance distortionless response (MVDR) beamformer [1], [2] and the multichannel
Wiener filter (MWF) [2], [3] are often used to extract target signals from the noisy
microphone recordings typically corrupted by reverberation and ambient noise. However,
these filters critically rely on knowing the relative transfer functions (RTFs) from source
to microphones. In the previous chapter, we assumed a noiseless environment. However,
in practice, the environment is usually noisy. Therefore, in this chapter, we address the
RTF estimation problem of a single source in a reverberant and noisy environment.

Several RTF estimation methods have been proposed in recent years [4]-[11],
including the covariance subtraction (CS) method [7]-[9] and the covariance whitening
(CW) method [8]-[10]. In reverberant and noisy environments, these methods require the
noise and late reverberation covariance matrices to be known. The CW method subtracts
the noise covariance matrix from the noisy covariance matrix prior to whitening by the
late reverberation covariance matrix. However, the noise covariance matrix is usually
unknown. In this chapter, we model the noise covariance matrix as a time-varying noise
PSD multiplied by a time-invariant spatial coherence matrix. In that case, the noise
PSD is assumed unknown, but the spatial coherence matrix can be assumed known as
it might remain time-invariant for a longer time. Under this relaxed assumption, we
propose a method to estimate the RTF in a reverberant and noisy environment, which
avoids using the noise PSD and is insensitive to noise PSD estimation errors.

4.2. PRELIMINARIES

4.2.1. SIGNAL MODEL

We consider the problem of estimating the RTFs of a single acoustic source in a
reverberant and noisy environment using an array of M microphones with an arbitrary
configuration. In the short-time Fourier transform (STFT) domain, the signal received at
the m-th microphone is given by

Y (1, k) = X (1,k) + 1y (L k) + v (LK), 4.1)

with [ the time-frame index, k the frequency bin index, and m the microphone index.
Let x,, denote the speech including the direct and early reflections of the source. Let ry,
denote the late reverberation including all the late reflections of the source, which can
be considered diffuse. Further, v,, denotes the ambient noise component and microphone
self-noise. The early speech component can be modelled as

X (1K) = a (1,6) s (1K), (4.2)

with ay, (I,k) the RTF of the source from the reference microphone to the m-th
microphone. Without loss of generality, we select in this work the first microphone
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as the reference microphone, which means a; = 1. Stacking all M microphone signals
{ym}M_ into a vector, we have

y(1,k) =a(l,k)s(I,k)+r(l,k)+v(l,k)c C*T, (4.3)

Assuming the three components in Eq. (4.3) to be mutually uncorrelated, the noisy
covariance matrix is given by

Py (1,k) 2Py (1,k) + Py (1,k) + Py (1,k), (4.4)

where Py 2E {aq”} for q=y,x,r or v with E {-} the expectation. From Eq. (4.2), we
have

Py (1,k) = ¢ (1,k)a(l,k)a (1k), (4.5)

with @, (I,k) the PSD of the source at the reference microphone. For the late
reverberation, we adopt the commonly used model from [12]

Py (lak) = ¢7 (l7k) F(k) ’ (4.6)

where ¢y (/,k) is the unknown PSD of the late reverberation and I' (k) is the non-singular
and known spatial coherence matrix which can be calculated using the microphone array
geometry [13]. For the residual noise, we assume its covariance matrix has a similar
form, i.e.,

Py (l,k) =¢y (l,k) ¥ (k) ) 4.7

where ¢, (I,k) is the unknown PSD and ¥ (k) is the known spatial coherence matrix.

4.2.2. PROBLEM FORMULATION

Using Eqs. (4.5) to (4.7), we can formulate the noisy covariance matrix as
Py(l,k)=¢5(I,k)a(l,k) aH(l,k) + oy (1, )T (k) + ¢, (1, k) ¥ (k) . (4.8)

We assume the microphone signals to be stationary over a frame consisting of Lg
sub-time frames, indexed by I, and estimate Py (¢,k) for one frame using the sample

ILg
covariance matrix Py (0,k) =1/Ly Y y(ls,k)y" (I, k).
ly=14(I-1)Ly

The aim of this work is to estimate the RTF vector a(¢,k) using the estimated
covariance matrix Py (¢,k) and the known spatial coherence matrices I'(k) and ¥ (k),
while the PSDs ¢y (4,k), ¢y (¢,k), and ¢, (¢,k) are all unknown. Prior to presenting our
proposed method in Section 4.4, we summarize in Section 4.3 the CW method from
[10] that is meant to estimate a(¢,k) assuming the complete Py (¢,k) is known instead
of only W (k). For notational simplicity, we omit the frequency and time indices as all
processing will be done per time-frequency bin independently.
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4.3. STATE OF THE ART AND MOTIVATION

Existing methods for RTF estimation include the covariance subtraction (CS) method
and the covariance whitening (CW) method. The CW method has been shown to
outperform the CS method [8], [9]. Therefore, we introduce here only the CW method.
To use the CW method, we need to assume the covariance matrix of the noise Py is
given, and subtract it from the noisy covariance matrix Py, that is

Py =Py — P, = g,aa” +¢,T. (4.9)

With the signal model from Eq. (4.9), the CW method can estimate the RTF vector in
1
three steps. First, it whitens the noisy signal using I'2, which is the principal square-root
1
of the spatial coherence matrix I" satisfying I' =1"2 I'? with T'? the Hermitian transpose

1
of I'Z. Note that the square-root is not unique and in this work, we use the Cholesky
decomposition. The covariance matrix after whitening has the form

P, =T 2P, I % = ga,a, +9,1, (4.10)
where a,, = I 2a is a scaled version of the principal eigenvector of P,. Hence

the second step is to take the eigenvalue decomposition of P, and find its principal
eigenvector u. The last step is to estimate the RTF vector by

h= (4.11)

where e = [1,0,--- 7O]T.

A weakness of the CW method is that it needs to assume the covariance matrix of
the ambient noise is known and subtracted. Subtracting an estimated noise covariance
matrix Py = ¢,'%¥, the covariance matrix after whitening becomes

P, = da,a,7 + 0+ AT IWL 7, (4.12)

with A¢, the noise PSD estimation error. Here, a,, is no longer a scaled principal
eigenvector of P,,. Hence, inaccuracies in ¢, will lead to significant estimation errors in

A

a.

4.4. PROPOSED METHOD

For the case that not the complete covariance matrix of the ambient noise is known,
but only W, we propose an alternative way to estimate the RTF vector by using the
off-diagonal elements of a simplified covariance matrix. The proposed method will be
less sensitive to estimation errors due to variations in the noise PSD ¢,. Note that the
technique using only off-diagonal elements of a matrix was used before in [14] for the
PSDs estimation and in [15] for radio telescope arrays.
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4.4.1. PARAMETER IDENTIfIABILITY

Before using any estimation methods, the identifiability condition that the number of
equations is equal or larger than the number of unknowns should be satisfied [16].
Since P, is a Hermitian matrix, in Eq. (4.8) there are M? knowns (taking Hermitian
symmetry and complex values of the data into account). Since a; =1, there are
2(M —1) unknowns due to the complex-valued a and there are 3 unknown real-valued
PSDs. Therefore, we have altogether the necessary condition

M*>2(M—1)+3, (4.13)

which means M > /2 +1. Noticing that M should be an integer value, we have M > 3.

4.42. stvPLIfiICATION

In Eq. (4.8), since the spatial coherence matrices I' and ¥ are assumed to be known, we
can simplify the signal model by using the square-root decomposition (e.g. the Cholesky

decomposition) of ¥ = wrp?

Py =W iPW T = gaal + oW T T 4l (4.14)
and the eigenvalue decomposition (EVD) of woiry-t — UA, U, such that

P, = U"PU = ¢g,aa" + ¢,Ay+ 9.1, (4.15)
\\_/-/

Py

where 3 = U¥d = UFW ™ 2a,

4.4.3. COVARIANCE MATRIX RECONSTRUCTION

The simplified covariance matrix in Eq. (4.15) is now a summation of a rank-1 matrix
P, and a diagonal matrix ¢oyAy+ ¢, 1. Hence, the elements of l_’y have the form

P ... _ ¢s|dm|2+¢)/zm+¢v i=j=m
PY{Z,J} - { ¢sdld; l?é ] ) (416)

where A, is t_he {m,m}-th element of Ay. From Eq. (4.16), we know that_the off-diagonal
elements of P, are equal to the corresponding off-diagonal elements of Py, i.e.,

Py =Py for i j. 4.17)

Therefore, in order to estimate P, by P, prior to calculating a, we first have to estimate
the diagonal elements of P, as the off diagonal elements are already known from I_’y.
From now on we will use the estimated covariance matrix l_’y and show that we can use

the off-diagonal elements of f’y to estimate the diagonal elements of P,.
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For the m-th diagonal element, we can select any 2 other microphones m,,m, from
the remaining M — 1 microphones and obtain the following estimates

2

/__?z Py{m,,,mq}Py{mr,mp} _ ¢sa_mpdfnq¢sam,a_:n[,

Os|@m, " (4.18)
y{mhmq} ¢samramq
or A
Y Py Lo, Oslim, @y, Pslim, @,
ol | ot Pt} _ 8, e 419
Py{mq,mr} ¢Samqam

Since f’y is Hermitian, Eq. (4.19) is the conjugate of Eq. (4.18). By taking the average
of Eq. (4.19) and Eq. (4.18), one can insure a real valued estimate of P, {mpimp}-

The choice of m, and m, should satisfy that m, # m, #m, and 1 <mg,m, <M.
Therefore, there are (M — 1) (M —2) different estimates of (Mdmp 2, say the set L. We

find all the estimates and take their mean value as the final estimate of P, {mpmy} that is,
1 . 2
x{mp,mp} M—1)(M—-2) Z ¢S‘amp ’

2
V| am, | "L

(4.20)

44.4. RTF ESTIMATION

SIHCC P, = ¢,aa’, we can estimate a scaled version of a by the principal eigenvector of
P denoted as u. From & = UYW¥ 2a and a 1 = 1, we can estimate the RTF by

B ‘P%Uu
eT‘I‘%Uu

&>

421

4.5. EXPERIMENTS

To verify the performance of our proposed method, we simulate a room with dimension
7 x5 x4 m and place a speech source as well as 10 microphones in the room forming a
line array, as depicted in Fig. 4.2. Note that for some experiments, only the first a few
microphones are used from left to right. The signal received at each microphone is a
convolution between the speech source and the corresponding room impulse response.
The room impulse responses are simulated by the image source method [17]. Moreover,
we calculate the spatial coherence matrix of the late reverberation by assuming a

nfsk d") with sinc (x) = sinx/x, d; ;
the inter-distance between microphones i and j, f; the sampling frequency, ¢ the speed of

sound and K the number of frequency bins. The spatial coherence matrix of the ambient
noise is set to the identity matrix, i.e. W =1 simulating microphone self-noise by a

spherically diffuse sound field, i.e., I'; j (k) = sinc (




66

5
n °
—~ 3 B
B -
SN o0
2.49 [+ttt
|
3.41 359
0 .

0 1 2 3 4 5 6 7
z(m)
Figure 4.2: Top view of the acoustic scene with a zoom-in of microphones. The source
is denoted by the red circle.

zero-mean uncorrelated Gaussian process with the same variance for each microphone.
The noisy microphone signals are sampled at a frequency of f; = 16 kHz and processed
by the STFT procedure including windowing and FFT. We use a square-root Hann
window with a duration of 12.5 ms and an overlap of 75% between two adjacent time
frames. The FFT length is 256. The true RTF is calculated by 256-length FFT of the
first 200 samples of the room impulse responses. The RTF estimation error is evaluated
by the Hermitian angle measure (in rad) [6]

L K/2+1 | (003 (K|
Yy Y acos(,,’ﬂ)
()|,
(BRG] NI (rad)

(=1 k=1
E,= 4.22
N L(K/2+1) *22)
0.74 1.6
—ow
0.72] 14 ——Prop
1.2
f 07/ i
1
0.66 ‘ ‘ ‘ 0.6 e
5 10 15 20 20 -10 0 10 20 00
size of set L Ey,

(a) Performance of the proposed method as a  (b) Performance in terms of E, as a function
function of the size of L. of the noise PSD estimation errors.

Figure 4.3: Evaluation of the proposed and CW method.

For the results shown in Fig. 4.3, we use 6 microphones with reverberation
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time Ty = 0.3 s and signal-to-noise ratio (SNR) of 30 dB. Hence, we will have
(M—1)(M—2)=20 different estimates of each of the diagonal elements of P,. As
shown in Fig. 4.3a, the more estimates we average, the smaller the RTF estimation error
becomes. Therefore, in the following experiments, we will average all different estimates
in our proposed method. In Fig. 4.3b, the estimation performance of the CW method
and our proposed method (referred to as ‘Prop’) are compared as a function of the noise
PSD estimation error in dB, i.., Es =10logyy (¢,/d). Note that ¢, is the mean of the
trace of the noise covariance matrix. Ey, ranges from an overestimation error of -20 dB
to an underestimation error of oo dB (i.e. not subtracting anything before whitening) in
Fig. 4.3b. Since the proposed method is independent of the noise PSD, the proposed
method is not affected by Ey, and is presented as a horizontal line in Fig. 4.3b. Note
that even at 0 dB, the proposed method outperforms ‘CW’, because the true noise
spatial coherence matrix is not identical to, although close to, the identity matrix in the
experiments.

+CWn h 1
08 //’M +CW_ 1 —~CW, 1
e SCFA —CW H
S —~—Prop 08 SCFA]
0.6 oy ——Prop
06
04
10 20 30 40 50 02 04 06 08 1
0.4
SNR (dB) Tso 3 4 5 6 7 8 9 10
(a) RTF estimation error vs (b) RTF estimation error vs M
SNR. Teo- (c) RTF estimation error vs M.

Figure 4.4: Performance comparison of the proposed method, the CW method and the
SCFA method.

In Fig. 4.4, the simultaneous confirmatory factor analysis method (SCFA) [5] is also
included for comparison, which minimizes the maximum likelihood cost function using
the ’fmincon” MATLAB procedure after calculating the gradient and Hessian matrix
at each updating step. Note that ‘CW,’ refers to CW without subtracting the noise
covariance matrix, i.e., Eg = dB, while ‘CW’ refers to Ey, =0 dB. In Fig. 4.4a, we
use 6 microphones and fix the reverberation time to 0.3 s, and only change the SNR
from 10 dB to 50 dB. In Fig. 4.4b, we use 6 microphones, fix the SNR to 30 dB, and
only change Ty from 0.2 s to 1 s. From these results, it follows that our proposed
method and the SCFA method have a similar performance and both outperform the CW
method in most scenarios. As the SNR increases or the Ty decreases, all methods
improve. However, the proposed method has better performance compared to ‘CW’ for
low SNR or small Ty, as the reverberation-to-noise ratio is small in both cases resulting
in relatively large impact from the noise component.

In Fig. 4.4¢c, we fix the reverberation time to 0.3 s, the SNR to 30 dB, and only change
the number of microphones from 3 to 10. The estimation performance of the proposed
method is shown to be less good for a small number of microphones, but improves
very fast when using more microphones and reaches almost the same performance as the




68

SCFA method for large M. The reason is that we use only the off-diagonal elements
of the simplified covariance matrix I_’y in the proposed method. The percentage of the
number of elements in P, we omit is M/M? = 1/M, which decreases as the number of
microphones increases. In Table 4.1, we average and normalize the computation time

over all scenarios per method. The runtime for Prop is close to CW, but much lower
than for SCFA.

Table 4.1: Computation time comparison.
methods | SCFA | Prop | CW
run time | 286.97 1 0.67

4.6. CONCLUSIONS

We considered the problem of estimating the RTF for a single source in a reverberant
and noisy environment. We proposed a method that uses only off-diagonal elements of
the simplified covariance matrix which are not affected by the late reverberation and the
noise PSDs. Experiments show that the RTF estimation performance of the proposed
method is insensitive to the noise PSD errors and reaches the performance of the SCFA
method while using much less computation time. Both the proposed method and the
SCFA method outperform the CW method, in most scenarios, especially for low SNR,
low reverberation time and a large number of microphones.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

REFERENCES

O. L. Frost, “An algorithm for linearly constrained adaptive array processing”,
Proc. IEEE, vol. 60, no. 8, pp. 926-935, 1972.

S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech”, IEEE Trans. Signal
Process., vol. 49, no. 8, pp. 1614-1626, 2001.

B. D. Van Veen and K. M. Buckley, “Beamforming: A versatile approach to
spatial filtering”, IEEE ASSP Mag., vol. 5, no. 2, pp. 4-24, 1988.

M. Tammen, S. Doclo, and I. Kodrasi, “Joint Estimation of RETF Vector and
Power Spectral Densities for Speech Enhancement Based on Alternating Least
Squares”, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp. 795-799.

A. 1. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, ‘“Robust joint
estimation of multimicrophone signal model parameters”, IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 27, no. 7, pp. 1136-1150, 2019.

R. Varzandeh, M. Taseska, and E. A. P. Habets, “An iterative multichannel
subspace-based covariance subtraction method for relative transfer function

estimation”, in Proc. IEEE Hands-free Speech Commun. Microphone Arrays,
2017, pp. 11-15.

I. Cohen, “Relative transfer function identification using speech signals”, IEEE
Trans. Speech Audio Process., vol. 12, no. 5, pp. 451-459, 2004.

S. Markovich-Golan and S. Gannot, “Performance analysis of the covariance
subtraction method for relative transfer function estimation and comparison to the
covariance whitening method”, in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2015, pp. 544-548.

S. Markovich-Golan, S. Gannot, and W. Kellermann, “Performance analysis of the
covariance-whitening and the covariance-subtraction methods for estimating the
relative transfer function”, 2018, pp. 2499-2503.

S. Markovich, S. Gannot, and I. Cohen, “Multichannel Eigenspace Beamforming
in a Reverberant Noisy Environment With Multiple Interfering Speech Signals”,
IEEE Trans. Audio, Speech, Language Process., vol. 17, no. 6, pp. 1071-1086,
2009.

69



70

REFERENCES

[11]

[12]

[13]

[14]

[15]

[16]
[17]

O. Schwartz, S. Gannot, and E. A. P. Habets, “Multi-microphone speech
dereverberation and noise reduction using relative early transfer functions”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 23, no. 2, pp. 240-251,
2015.

S. Braun and E. A. Habets, “Dereverberation in noisy environments using
reference signals and a maximum likelihood estimator”, in Proc. EURASIP Eur.
Signal Process. Conf., 2013, pp. 1-5.

S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A consolidated
perspective on multimicrophone speech enhancement and source separation”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25, no. 4, pp. 692-730,
2017.

N. Ito, H. Shimizu, N. Ono, and S. Sagayama, “Diffuse noise suppression using
crystal-shaped microphone arrays”, IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 19, no. 7, pp. 2101-2110, 2011.

A.-J. Boonstra and A.-J. van der Veen, “Gain calibration methods for radio
telescope arrays”, IEEE Trans. Signal Process., vol. 51, no. 1, pp. 25-38, 2003.

S. A. Mulaik, Foundations of factor analysis. CRC press, 2009.

J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics”, J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943-950, 1979.



o

ALTERNATING
LEAST-SQUARES-BASED
MICROPHONE ARRAY
PARAMETERESTIMATION FORA
SINGLE-SOURCE REVERBERANT
AND NOISY ACOUSTIC SCENARIO

This chapter is based on the article published as: C. Li and R. C. Hendriks. “Alternating
Least-Squares-Based Microphone Array Parameter Estimation for a Single-Source Reverberant and
Noisy Acoustic Scenario”. In: IEEE/ACM Trans. Audio, Speech, Language Process. 31 (2023), pp.
3922-3934.

71



72

Late

Figure 5.1: Illustration of a single source, reverberant and noisy scenario.

In this chapter, we consider a single source reverberant and noisy scenario as
illustrated in Fig. 5.1, which is the same as the scenario we considered in the previous
chapter. However, instead of considering the RTF estimation only, we will also estimate
the PSDs of the source, the late reverberation and the noise. We will propose a joint
estimator to answer research question 1.3 shown in Fig. 1.4 using the signal model
presented in Fig. 2.2 (b).

Acoustic-scene-related parameters such as RTFs and PSDs of the target source, late
reverberation and ambient noise are essential for microphone array signal processing but
are challenging to estimate. Existing methods typically only estimate a subset of the
parameters by assuming the other parameters are known. This can lead to unmatched
scenarios and reduced estimation performance. Moreover, many methods process time
frames independently, despite they share the same RTF. In this chapter, we will propose
a joint estimator using multiple time frames. We first modify an existing alternating least
squares (ALS) method using a single time frame. Then, we extend it to use multiple
time frames. Furthermore, we propose more robust constraints on the PSDs to avoid
large estimation errors. We compare our proposed method (JALS) to the state-of-the-art
SCFA method, the JMLE method from Chapter 3 and the ALS method. The experiments
on estimation accuracy, predicted speech quality, and predicted speech intelligibility
demonstrate that JALS has a performance similar to SCFA, both which outperform ALS
in all scenarios and outperform JMLE particularly in low SNR scenarios. Moreover,
JALS is the least computational complex, confirmed by the measured processing time,
which is significantly lower than SCFA.
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5.1. INTRODUCTION

Hands-free speech communication applications like mobile phones and hearing aids are
commonly used nowadays. Equipped with microphone arrays, these devices can record
and analyze the speech signal for various applications. Unavoidably, the microphone
signals are corrupted by reverberation and ambient noise, which can degrade the speech
quality and intelligibility [1], [2]. Hence, techniques like spatial filtering are used to
extract the target signal from the noisy microphone signals. Typically, these spatial
filters depend on acoustic-scene-related parameters such as relative transfer functions
(RTFs) and power spectral densities (PSDs) of the source, the late reverberation and
the ambient noise. In practice, these parameters are typically unknown. Therefore,
an essential problem with hands-free speech communication applications is to estimate
the aforementioned parameters. Note that there are non-parametric techniques such as
blind beamforming or blind source separation [3], [4] that can extract the target signal
without estimating the parameters. However, in this work we only focus on parametric
beamformers where the estimated parameters can be used as a prior information on the
acoustic scene.

Due to the non-stationarity of the speech signal, the PSDs of the target source and the
late reverberation are time-varying. The PSDs of the ambient noise can be time-varying
as well, depending on the working environment of the microphone arrays. The RTFs
can change over time as well depending on whether the source is moving relative to the
array. The facts that these parameters can be time-varying and corruptions caused by
reverberation and ambient noise are present, make the estimation of these parameters
rather challenging.

In recent years, many methods have been proposed to estimate these parameters, see
e.g., [5]-[14]. Many of these methods only estimate a subset of the parameters by
making some strict assumptions about the acoustic scenarios and the knowledge of the
remaining parameters. For example, in [5], [9], [12], the RTFs of the target source
are assumed to be known such that the speech PSD, late reverberation PSD and noise
PSD can be estimated. In [6], the PSD of the late reverberation is assumed to be
known and the RTF of the target source is estimated. In [7], the RTFs and the PSDs
of all sources and the noise covariance matrix are estimated. However, it is assumed
that the late reverberation component is stationary and only a single source is active
per time frequency tile. In [8], the noise covariance matrix is assumed known and the
late reverberation PSD is estimated. In Chapter 3 and [13], the noiseless scenario is
assumed, neglecting the estimation of the ambient noise PSD.

From the above overview, we see that existing methods for parameter estimation from
the acoustic scene all assume a subset of parameters to be known. However, erroneously
assuming a subset of the parameters to be known can lead to unmatched scenarios,
and thus to reduced noise reduction performance. This emphasizes the importance of
accurate joint parameter estimation. A second important point is the fact that, apart
from a few exceptions, e.g., [11], [14], many of these methods process the time frames
independently, despite the fact that they may share some common information. For
instance, the RTFs corresponding to some adjacent time frames are the same if the




74

sound source is static during these time frames. In such cases, we could use these time
frames jointly to obtain better estimates of the RTFs [11], [14].

The joint estimation of parameters using multiple time frames is realized in [11] in a
reverberant and noisy environment, using the simultaneous confirmatory factor analysis
(SCFA) method. As expected, SCFA has much better estimation performance compared
to methods using each time frame independently, especially for the RTF estimation
[11]. Nevertheless, SCFA has a rather high computational cost. Therefore, we recently
proposed some alternative methods that can achieve a nearly similar performance as
SCFA, but at a much lower complexity [14].

In [14], we considered a single reverberant source scenario and proposed a joint
maximum likelihood estimator (JMLE) for the parameters of interest. In the current
work, we extend the signal model from [I14] to the noisy case. Specifically, we
model the noise component as a spatially homogeneous sound field characterized by a
time-invariant spatial coherence matrix with a time-varying PSD. We can assume the
spatial coherence matrix is known, as assumed in [9]. Further, we consider the use
of multiple time frames to jointly form a segment. The RTF is considered constant
across the segment, while the PSDs of the target’s early reflections, the PSDs of the late
reverberation and the ambient noise PSD are allowed to change from frame-to-frame.
The focus herein is to jointly estimate the source’s RTF, and the PSDs of the early
reflections, the late reverberation and the ambient noise at low complexity. We will use
the least squares (LS) error as a cost function, i.e., minimizing the Frobenious norm of
model error matrices. Note that the LS cost function has been considered in [10] as well
to estimate these parameters and the LS minimization was solved by an alternating least
squares (ALS) method. However, we will show in this work that the ALS based method
from [10] can suffer from a parameter identifiability issue and thus needs to be modified
to obtain more accurate estimates. Note also that the ALS method from [10] uses each
time frame separately. Hence, we will extend the modified ALS method such that it
uses multiple time frames jointly to improve the estimation performance. In addition,
we propose constraints on the estimated PSDs that are more robust than the ones used
in [10] to avoid large estimation errors. Note that minimizing the least squares cost
function for multiple time frames jointly can be seen as a special case of the joint
diagonalization problems modeled in [15]-[17], except that the problem proposed in our
work has additional constraints on some of the parameters and the single target source
is disturbed by both the late reverberation and the ambient noise.

The remaining parts of the chapter are structured as follows. In Section 5.2, we
introduce the notation used in this chapter, present the signal model and formulate the
problem discussed in this chapter. In Section 5.3, we will present the existing ALS
method, propose a modified ALS method and extend it to a method using multiple time
frames. After that, we will compare our proposed methods to some state-of-the-art
reference methods in various simulated acoustic experiments in Section 5.4. Finally, we
will draw the conclusions in Section 5.5.

The matlab code of the proposed methods can be downloaded from:
http://sps.ewi.tudelft.nl/Repository/
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5.2. PRELIMINARIES

5.2.1. NOTATION

In this chapter, we use lower-case letters to denote scalars, bold-face lower-case letters
for vectors and bold-face upper-case letters for matrices. Matrix notation with subscripts
using two lower-case letters (e.g. Pyl‘,') denotes the element of the matrix. Matrix
notation with superscripts T,*,H denotes taking the transpose, the conjugate and the
conjugate transpose of the matrix, respectively. R (x) and 3 (x) represent the real part
and the imaginary part of a complex-valued variable x, respectively. Further, E[] refers
to the expectation operator, tr(-) refers to taking the trace of a matrix, and if not
further specified, |-| denotes taking the determinant of a matrix. Finally, diaglay,--- ,apm]
denotes a diagonal matrix with diagonal elements a;,---,ay and ||-|| denotes taking
the Frobenius norm of a matrix.

5.2.2. SIGNAL MODEL

We consider a reverberant and noisy environment, in which a single acoustic point source
is recorded by an array of M microphones with an arbitrary geometric structure. The
microphone signal received at the my, microphone in the short-time Fourier transform
(STFT) domain is given by

Ym (L k) = X (1K) + 1y (LK) + v (1K), (5.1)

where [ is the time-frame index and k is the frequency bin index, x,, ({,k) is the sum of
the direct sound and the early reflections, ry, (/,k) is the sum of all the late reflections
in time frame ! and frequency bin k, and v, (I,k) contains the ambient noise and
microphone self-noise. Since the direct components and early reflections are beneficial
for speech intelligibility [18], the combination of these components forms our target
signal,

X (1) = a (1K) s (1, k), (5.2)

where s (I,k) contains the direct and early speech component recorded by the reference
microphone and a, (I,k) is the relative transfer function (RTF) between the reference
microphone and the my,;, microphone. By selecting the first microphone as the reference
microphone, we have the prior information that a; = 1. Note that we use the
multiplicative transfer function (MTF) approximation in Eq. (5.2) for ease of analyzing,
instead of the convolutive transfer function (CTF) approximation [19], [20]. Stacking
the M microphone STFT coefficients into a column vector, we have

y(1,k) =a(l,k)s(l,k)+r(l,k)+v(l,k) e CH*, (5.3)

where y (1,k) = [y1 (I,k),---,yu (I,k)]" and the other vectors are defined in the same
way.
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5.2.3. CROSS POWER SPECTRAL DENSITY MATRICES

By processing in short time frames, we can assume the three components in Eq. (5.3) to
be stationary and mutually uncorrelated within a time frame. The PSD matrix of the
noisy microphone recordings can therefore be expressed as

Py (1,k) =E[y(Lk)y" (1,k)]

54
= Py (LK) + Py (1K) Py (1K) € T, G
where Py is given by

Py (1,k) = o5 (1, k)a (l,k)a (1,k), (5.5)

and ¢, (l,k)=E [|s(l ,k)|2} is the PSD of the target source at the reference microphone

with |-| taking the absolute value. However, notice that across frames, s and r might be
correlated.

The CPSD matrix of the late reverberation component is commonly modelled as [5],
[21]
P, (lak) :¢7(l7k)r(k)a (5.6)

which is a spatially homogeneous and isotropic sound field with a time varying PSD
¢y (l,k). The spatial coherence matrix I'(k) is time-invariant. Hence, I'(k) can be
estimated in advance using the information on the microphone array geometry [22]—[24].
We assume a spherically isotropic noise field [25] and model the {i,j}-th element of
I'(k) as

2 fk d;
T ; (k) = sinc (1{‘ ;’) , (5.7
where sinc (x) = Si%, ;; 1s the inter-distance between microphones i and j, fs is the

sampling frequency, ¢ denotes the speed of sound and K is the number of frequency
bins.

Lastly, we assume that the residual noise component has a similar CPSD matrix
formulation as the late reverberation, i.e.,

Py (lvk) =¢y (l,k)\P(k), (5.8)

where W (k) is the known spatial coherence matrix and ¢, (/,k) is unknown PSD. We
assume that W (k) is non-singular and linearly independent with I" (k) (i.e. ¥ (k) is not a
scaled version of I (k)). Note that when considering the microphone self noise only, we
have ¥ (k) =L

5.2.4. PROBLEM FORMULATION

Based on the assumptions made in the previous subsection and Egs. (5.5), (5.6)
and (5.8), we can rewrite the noisy CPSD matrix for each time frame [ as

Py (1)=¢s (Ha()a (1)+ oy ()T + ¢, (1) P. (5.9)
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Figure 5.2: Visualisation of the definition of time segment (TS), time frames (TF) and
sub frames (SF).

Note that we omit the frequency bin index k in Eq. (5.9) and hereafter for legibility
since the signals will be processed for each k independently. By making the RTF vector
a dependent on the time-frame index [/, we implicitly assume that the relative source
position or room acoustics can change from time frame to time frame. However, we
consider in this work a semi-static source scenario by assuming the RTF a does not
change for N (a finite number) time frames (N ranges from 1 to 8 in our experiments,
corresponding to a duration of approximately 0.5 s to 5 s). We denote the set of N time
frames sharing a single RTF by a time segment with index . The noisy CPSD matrix
then becomes

Py ()=¢s(Da(B)a” (B)+ oy ()T + ¢, (1), (5.10)

with B =[]+ 1.

Further, we define sub frames indexed by #;, where Ty overlapping sub frames form
a time frame. See Fig. 5.2 for a visual interpretation of time segment, time frame and
sub frame. Since the noisy signal is assumed to be stationary within a time frame, we
can estimate the CPSD matrix per time frame i based on a sampled covariance matrix
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using the sub-time frames, that is,

Y
b= Y vy (5.11)
Sf =14(1-1)Tys

where y (¢,) denotes the STFT coefficients vector.

Accurate estimation of the parameters from the signal model in Eq. (5.10) is very
important for speech enhancement and intelligibility improvement algorithms. However,
this is also very challenging when the source is only stationary for a short time and
microphone and source positions are time varying. The main goal of this chapter
therefore is to estimate the RTF vector, the PSD of the source, the PSD of the late
reverberation and the PSD of self-noise simultaneously using N sequentially estimated
CPSD matrices f’y (1) for one time segment f3, i.e., for N time frames, while the source
is only stationary within a time frame and the RTF changes from segment-to-segment.

5.3. ALS-BASED JOINT ESTIMATION

To jointly estimate the parameters of interest, we consider the use of alternating least
squares (ALS) based methods. Note that a two-step ALS method has been proposed
before in this context [10]. In Section 5.3.1, we will first introduce the method
proposed in [10]. Then in Section 5.3.2 we will propose a modified version of the ALS
method based on two improvements over the original method to overcome parameter
identifiability issues and potential numerical issues due to matrix singularities. Note that
in [10] each time frame is utilized separately. However, if we assume the CPSD matrices
for multiple time frames in a single time segment share the same RTF vector, we can
use these time frames jointly to estimate RTF a with improved accuracy. Therefore, we
will extend the modified ALS method to the case using the PSD matrices for multiple
time frames in Section 5.3.3.

5.3.1. ALS FOR A SINGLE TIME FRAME

In [10], for each single time frame, the estimates of the RTF vector a and the PSD

T . S .
vector ¢ = [¢S,¢y, (Pv] are obtained by minimizing the Frobenius norm of a model
mismatch error matrix, i.e.,

N . L1012
argminHPy—(;)SaaH—(1)7,1"—(1)\,‘I’HF7 (5.12)
a9

where A means the estimated A. Note that the cost function in Eqg. (5.12) is non-convex.
To solve Eq. (5.12), a two-step ALS method is used by assuming that for either a or ¢,
an estimate is given and then estimating the other parameter vector.

More specifically, by assuming the RTF vector a is known or already estimated, the
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estimate of ¢ can be obtained by solving
o H N ~ (12
argminHPy — p,aall — g, - quF, (5.13)
¢

which has the following closed form solution [10]

¢ =@, 'b, (5.14)
where
(a¥a)®  affa atlwa
®,— | a'Ta tr{f‘Hf'} tr{f‘HA} , (5.15)
allwa tr{f‘H‘i‘} tr{‘i’H‘i‘}
and

b— tr{f'HlA’y} . (5.16)

When assuming the PSD vector ¢ is already estimated, the RTF vector a can be
estimated by minimizing the cost function with respect to a, that is

PN T
argminHPy—(psaaH—q)yl"—(pv‘PHF, (5.17)
a

which also has a closed form solution [26] given by the scaled principal eigenvector of
the matrix Py = Py — ¢,I' — ¢,'¥, which is

a=,/2v, (5.18)

where A and v are the principal eigenvalue and eigenvector of Py. The two steps are
performed iteratively.

For the first step, the method in [10] finds an initial estimate of the RTF vector a by
taking a random value or using a coarse estimate of the direction of arrival of the target
source. For the second step, the PSD vector ¢ is estimated via Eq. (5.14) with @, and b
calculated using the initial estimate 4. Using the estimate of ¢, matrix Py is calculated
in the second step and the RTF vector a can be estimated again via Eq. (5.18). For the
next iterations, the two steps are repeated and the estimates of a and ¢ are updated in an
alternating fashion until a given convergence criterion is achieved or a certain number
of iterations I are executed. Note that since each step reduces the cost function value,
this method can converge to a local minimum even though the global minimum is not
guaranteed. The ALS method is summarized in Algorithm 1. Note that the convergence
rate of alternating least square based methods is slow [27].
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Since PSDs should be positive by definition, all the estimated PSDs need to be lower
bounded. In [10], the estimates of the PSDs are updated in the following way':

{¢s7¢)/7¢v} :max({¢5a¢7a¢v}78>7 (5.19)
and
P
{6407.6,} = min <{¢s,¢y, o} SMY)> , (520)

where € is the machine precision.

Algorithm 1: ALS method
Input: f’y, f‘,‘i‘,init.ﬁ, 1
Output: a, ¢
1 for all k,I do
for iter=1:1 do
Compute ®, using Eq. (5.15) and b using Eq. (5.16).
Estimate ¢ using Eq. (5.14).
Constrain the estimates of PSDs using Eq. (5.19) and Eq. (5.20).
Calculate Py = Py — ¢,I" — ¢ .
Take EVD of Py to find its principal eigenvalue and eigenvector.
Estimate a using Eq. (5.18).

X N A U AW N

9 for next time frame: use a = a/a; as the initial estimate.

5.3.2. MODIfiED-ALS FOR A SINGLE TIME FRAME

An important condition for parameter estimation is the fact that the estimation problem
itself needs to be identifiable [28]. Specifically, in the problem of jointly estimating the
RTF vector a and the PSDs, the following condition should be satisfied for any two sets

of parameters {a, s, ¢y, 9, } and {a, s, Py, 0, }:

o,aa” + ¢, + ¢, ¥ = §,aa"" + ¢, + ¢, ¥
) RN . . (5.21)
o5 = ¢s,a = 57¢7 = ¢}'a oy = ¢y

In the ALS method [10], Izowever, E‘l‘ (5.21) does not hold. To see this, let (55 =4¢, and
a=13, we have ¢aa” = ¢aa” but ¢, # ¢, and a # a. Therefore, any proper scaling of
a and ¢, can be a solution as well. To solve this issue, we use the prior information that

Note that this step can be replaced by solving bounded-variable least squares (BVLS) problem, but using
BVLS does not improve the estimation performance while increasing the computation cost based on
our experimental tests.
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a; = 1. In the final iteration, after estimating a using Eq. (5.18), we add a normalization
step for both a and ¢; using the constant ¢ = d;:

A

a2 (5.22)
C
and
By b el (5.23)

Notice also that in each iteration of the ALS method, if the estimated ¢; has an
unusually small value (e.g. eps), the elements of the estimate of a in Eq. (5.18) will
have rather large values. This will lead to large values of the first column and the first
row of the matrix @, in Eq. (5.15), which means ®, is close to being singular or badly
scaled. To solve this issue, we can constrain the norm of the estimate of the scaled
RTF vector to 1 by simply using the principal eigenvector instead of the scaled one
in Eq. (5.18). Note that estimating the scaled a and ¢ is allowable because we will
normalize them using Eqs. (5.22) and (5.23) eventually in the last step.

The modified alternating least squares (MALS) method aims at minimizing the
following cost function

N . o112
argmin HPy — paall — g0 — ¢‘I’H 7 (5.24)
a,6,.97.9v F
where a= —2_ and ¢, = ¢,a”a. Since §,aa” = ¢p;aa’, the solution to Eq. (5.24) will

Vafla ~
also be the solution to Eq. (5.12). Once the estimates a4 and ¢, are obtained, the
estimates of the RTF vector and the PSD of the source are given by

a+— —, (5.25)

S

and
05 < Oslar]*. (5.26)

Similarly as in [10] and as described in Section 5.3.1, The optimization problem in
Eq. (5.24) can be solved in an alternating fashion. Assuming a is already available
(from a previous iteration or initialization), @ = [@s,¢y,@,] is estimated by the least
squares estimate

$ _ <I>;1f), 5.27)
where Hoan N
1 a I'a a Ya
®,— | ATh f'”f"} w{tMwl | (5.28)
3'a o f‘H‘i'} ooy
and

.
P tr{f‘HAy} . (5.29)
{
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When an estimate of (]J is known from the previous iteration, we calculate the matrix
P, = P q)yl" ¢, and obtain the estimate of @ by

[-“1>%

=v, (5.30)

where Vv is the principal eigenvector of Py. We terminate the algorithm after a sufficient
number of iterations. a and ¢ are then obtained using Eq. (5.25) and Eq. (5.26).

The MALS method is summarized in Algorithm 2.

Algorithm 2: MALS method
Input: Py, [, init.a, 1
Output: a, ¢
1 for all k,I do
2 for iter=1:1 do
3 Compute ®; using Eq. (5.28) and b using Eq. (5.29).
4 Estimate ¢ using Eq. (5.27).
5
6
7

Calculate Py = f’y — 9T — @V‘i‘
Take EVD of Py to find its principal eigenvector.
Estimate a using Eq. (5.30).

8 | Estimate a and ¢, using Eq. (5.25) and Eq. (5.26).

5.3.3. ALS FOR MULTIPLE TIME FRAMES

In the previous subsections, the joint estimation of the RTF vector a and the PSD vector
¢ is performed for a single time frame based on the ALS approach. However, in many
cases, a can be assumed to be constant across multiple frames in a time segment. With
this prior information, we consider in this subsection the joint estimation of a, and the

PSD vector ¢ = {d) (1+B-1)N)" - ¢(BN)" ! using all time-frames in a segment,
where ¢(l) = [‘PS (l)7¢7(1)7¢V(1)]T for [ = 1+(ﬁ - I)Na aﬁN

The alternating least squares method using multiple time frames jointly (JALS) aims
at minimizing the sum of the Frobenius norms of the model mismatch error matrices for
all time frames / that fall in the same segment j3, i.e.,

BN
argmin HPy — ¢ (1) aal? — ¢y (l Yy —o, (1 ‘I‘H (5.31)
a9 = 1+(B HN
Like the MALS method, we reparameterize a and ¢(/) for =1+ (8 —1)N,--- ,BN

a

by a= e and @(1) = ¢,(I)a’a, which gives us the following cost function

BN
argmin Z

N ~ |12
_ Py (1) =6 (& — g, ()E -0, (Y| . (532)
a0 I=1+(B—1)N
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To solve Eq. (5. 32), we also use a two-step ALS method by either assuming a is
given and estimating ¢ or assuming @ is estimated and estimating a.

When an estimate of a is already given, the minimization with respect to ¢ is
BN

argmin Z
¢ I=1+(B-1)N

By (1)~ 8, (38" — o, ()T~ 0, (. (5.33)

which is equivalent to minimizing the cost function for each time frame / separately,
ie.

argmin

Py (D)~ ¢, (@™ — oy (NT 9, (1)

(5.34)

VIELH(B-1)N,~ BN

as @ (I) is defined per time frame. For each time frame I, Eq. (5.34) has a closed form
solution

6 () =d;'b(), (5.35)
where s e
i W) i)
d,—| ala tr r tr , (5.36)
ﬁH‘i’fz tr{l"H } tr{ }
and
8Py (4
b(l)= {FH y(l)} : (5.37)

When an estimate of ¢ is given, 4 can be obtained for a segment 8 by minimizing

BN . .. .
argmin )" Py (1) —¢s (1)aa” —9()T— ¢, ()P 2 (5.38)
i =1 (BN F
We define Py (1) = Py (1) — ¢, ()T — §, (1)¥ and reformulate Eq. (5.38) as
BN . R 2
argmin Y Py (1) — ¢ (l)ﬁaHH
a  I=1+(B-1)N F
BN ~ 2 S A
—argmin ¥ [(4,(1)a"a)” ~26,() 3Py (1)
a  I=1+(B-1)N
BN . A , (5.39)
— argmin —2a" < Y 6P, <l>> a
a I=1+(B—1)N

a

= argmax al! ( l;‘,v 55 () Py (l)) a

A I=1+(B—1)N

where we have used the fact that 274 = 1. The solution for a is the principal eigenvector

BN A A .
of T o) [B(1)-¢nF-41)¥].

I=1+(B—-1)N
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The alternating least squares method using multiple time frames jointly (JALS) is
summarized in Algorithm 3.

Algorithm 3: JALS method
Input: f’y, f‘,‘i‘,init.ﬁ, 1
Output: a, ¢
1 for all k, B do
2 for iter=1:1 do
3 Calculate ®; using Eq. (5.36) and b (/) using Eq. (5.37).
4 Estimate ¢ (/) using Eq. (5.35) for each /.
5 Calculate Py (1) =Py (1) — ¢, ()T — 6, (1) ®.

BN s
6 Estimate & using the principal eigenvector of y o () Px (1).
I=1+(B-1)N

7 | Estimate a and ¢ (/) using Eq. (5.25) and Eq. (5.26).

5.3.4. ROBUST PSD CONSTRAINTS

In [11], it has been shown that linear inequality constraints on the parameters of interest
can be used to improve the robustness of the estimation. In [10], the PSD of the source,
the PSD of the late reverberation and the PSD of the ambient noise are constrained by
Eqgs. (5.19) and (5.20). In this section, we introduce more robust constraints on the
PSDs to avoid large underestimation and overestimation errors.

UPPER BOUNDS

To avoid large overestimation errors, we can use upper bounds for the PSDs. For the
diagonal elements of Py, it holds that

Py, (1) =8 (1) |@nl* + 0y () Toum + S (1) - (5.40)
Since the three additive terms in Eq. (5.40) are positive, we have
{600 1anl 07 (1) Ty 00 (1) ¥ } <Py, (1), (5:41)
for all m. Hence, the upper bound for the PSDs of the target source is
~ P l
s (1) < min y’f’"g e (5.42)
" |G|

Similarly, the upper bounds for the PSDs of the late reverberation and the ambient
noise are

¢y (1) < min { —ny"”” 0 } ! (5.43)
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9y (1) < min { PZI’Z"’:J(nZ) } : (5.44)

Note that I’ ,, =1 in Eq. (5.7) and that ¥,, ,, = 1 when considering only self-noise and

each microphone has the same self-noise PSD. In that case we thus have

tr (Py)
M

{oy(D), 0. (1)} < min {Py,, (D} < ; (5.45)
which is tighter than the bound in Eq. (5.20) as used in [10]. Hence, by using
Egs. (5.43) and (5.44), the overestimation errors for the PSDs of the late reverberation
and the ambient noise are smaller than the errors using Eq. (5.20), resulting in better
speech intelligibility performance [29], [30].

LOWER BOUNDS

To avoid large underestimation errors, we need lower bounds for the PSDs as well. In
both [10] and [11], the prior information was used that the PSDs should be positive,
setting the lower bounds for all PSDs to €. That is, when obtaining negative incorrect
estimates of the PSDs, these are replaced by the minimum value €. However, this will
lead to very large under estimation errors. Therefore, we propose the use of tighter
lower bounds derived from other prior information on the PSDs.

For the normalized PSD of the source ¢, and the PSD of the late reverberation Oy, we
can see that they have a similar distribution on the time-frequency domain as illustrated
in Fig. 5.3.

Based on this, we make the assumption that the ratio between the normalized PSD of
the source and the PSD of the late reverberation is bounded on both sides, i.e.

C < j;;g; < C% (5.46)
or

Cioy (1) < ¢ (1), (5.47)
and _

G5 (1) < 9y (1), (5.48)

for all (I,k) pairs. Using Eqs. (5.47) and (5.48), we can constrain the estimated PSDs
of the source and the PSDs of the late reverberation in the following way. We first
initialize C; and C, by an initial value like C; = C;, =1 for the first time frame / = 1.
For the [-th time frame, we update C; and C while making ¢, (/) and ¢y (I) positive in
the way shown in Fig. 5.4.

We first update C; (/) and C; (1) by

min{C1 (I—1) i’y((j;} g, (1) > 0,6, (1) > 0

i ()= ’
Ci(l-1) else.

, (5.49)
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Figure 5.3: Time frame and frequency distribution of the target source PSD and the late

reverberation PSD. Each time frame has a length of 0.64 s.

and

<

min{Cz (i—-1), Y(i’l’;)} if$, (1) > 0,6, (1) >0

G (1-1) else.

S

G ()=

With C; (1) and C; (1), we update ¢, (1) by

1

—~ S

A , () ifg, (1) > 0
6,()=1 Ci(§(1) if6,(1)>0.9,() <0

o (1) ifd,(1)<0,0 (1)<0

M-1
b
m=1

2min .
where ¢, (/) is calculated by

amin . — 13
¢, =min {

I)Ym,m Ym+1,m+1

P Jamen

(5.50)

(5.51)

(5.52)

where we used the fact that Pym7m=¢3s|5m|2+¢y+¢v for m=1,---,M and

Figure 5.4: Decision flow for updating Cy,C, $S and qSy.
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Py =Py = &y (|c’im|2 — |dm+1|2). Then, we update (ﬁy(l) by

& (1) if9,, (1) >0
or(D=1 C2()9,(1) ifgs(1)>0,0,(1)<0 (5.53)
oy (1) ifgy (1) < 0,4, (1) <0
where q%‘,“i“ (1) is calculated by
. 2min M
gumin — min{ Py — 0, |dn|>— @, } . (5.54)
m=1

For the PSD of the ambient noise, the lower bounds depend on the stochastic property
of the noise component. We use the following way to constrain ¢, (). First, we give the
lower bound C3 an initial small value €. Then, we update C5 as

C. (171)4"]9\/(1) Iy
G)=d 2 ie()>0 (5.55)
G(l-1) else

With Cs, we estimate @, (/) by

s () ifg (1) >0
¢v(l)—{ Cy(l—1) el (5.56)

Note that the above procedure dealing with non-positive estimates of the PSDs might
give us values larger than the upper bounds we derived before in Eqs. (5.42) to (5.44).
Therefore, we first execute the above procedure and then upper bound all the estimates.

5.4. EXPERIMENTS

In this section, we will evaluate our proposed ALS-based methods in various scenarios.
In addition to the ALS method proposed in [10], we introduce in Section 5.4.1 two more
reference methods, namely JMLE [14] and SCFA [11]. In Section 5.4.2, we present
the evaluation metrics for all methods. We compare the performance of all methods in
various scenarios in Sections 5.4.3 and 5.4.4.

5.4.1. REFERENCE METHODS

The two reference methods introduced here are both based on the maximum likelihood
(ML) cost function:

min

l

log [Py (1)] +tr (By (1) P, (1)). (5.57)

N
=1
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JMLE

In our recent work [14], we assumed a noiseless scenario and proposed a joint maximum
likelihood estimator (JMLE) to estimate the RTF of the target source, the PSDs of
the target source and the PSDs of the late reverberation jointly. The JMLE method
performances well and has low computational complexity. However, the performance of
JMLE is not robust for low SNR scenarios due to the noiseless signal model assumed in
[14], which is

Py () = ¢ (Da(B)a™ (B) + ¢, (DT (5.58)

SCFA

The last reference method we use for comparison is the simultaneous confirmatory
factor analysis (SCFA) method [11]. SCFA performs well in reverberant and noisy
environments. However, SCFA comes with a high computational cost due to solving the
following non-convex optimization problem

argmin Y, log[Py (1) +tr (By (1) P} (1))
6,(1),a(B)="
oy (1), ¢y , (5.59)
st. Py (1)= gy (Da(B)a” (B) + oy (D T+ 4,1,
ap (B): 17¢S (l) Z 07¢7(l) Z 0>¢v Z 07

where ¢,I corresponds to the microphone self noise, which is assumed to be white
Gaussian noise. In [11], the above optimization problem is computed iteratively. At each
iteration, the parameters are updated and the cost function value is reduced by solving
a non-linear constrained optimization problem. The updating procedure is terminated
when meeting a local minimum. Note that due to the non-convexity of the optimization
problem, the number of iterations needed is large. Hence the computational cost of this
method is relatively high.

5.4.2. EVALUATION METRICS
ESTIMATION ERRORS

The first evaluation metric is the estimation error of the parameters of interest. For the
RTF vector, we calculate the Hermitian angles between the estimated RTFs and the true
RTFs and average them over different frequency bins and time segments, that is,

B K Ja(B.4)"a(B.0)
Bél kgl arccos (Ila(ﬁk)lzfl(ﬁk)z)
E,=

B(K/2+1) (5.60)

Note that this metric evaluates the alignment of the estimated RTF with the ground-truth
RTF, but cannot reflect scaling errors. For all types of PSDs, we use the symmetric
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log-error distortion measure [31]
B BN  K/2+1 _
oy v fee($0)]
B=11=1+(B—1)N k=1 ith
BN(K/2+1) ’

E;i= (5.61)
with i € {s,7,v}. In the following experiments, we will also show the detailed PSD
estimation performance by using the overestimating errors (denoted as Ef;:’) and the
underestimation errors (denoted as E;l“) as used in [29]

0y [;fv K%H‘min{O,log(g;

B=11=1+(B—1)N k=1

(LK)
(LK)

= 5.62
’ BN (K/2+1) ) (5.62)
and , /
B N K/2+1 _
10y Y ¥ max{olog(44d)}
E}ll‘l _ B=1l=1+(B—1)N k=1 i\l (5 63)

! BN (K/2+1)
Note that, typically, large underestimation errors in the source PSDs and large
overestimation errors in the noise PSDs can cause large target source distortions when
applying the estimates in a noise reduction framework. Also, large underestimation
errors in the noise PSD are likely to cause musical noise [29]. We therefore also
quantify the performance in terms of predicted quality and intelligibility when used in
combination with a noise reduction algorithm, as explained below.

PREDICTED QUALITY AND INTELLIGIBILITY

We can construct the following multi-channel Wiener filter (MWF) [32] based on the
estimated parameters to extract the target signal,

_ s (1) Wamvpr (1)
s (1) + Wnvor (1) R (1) Wavpr (1)

where wyypr (/) is the minimum variance distortionless response (MVDR) beamformer

w(l) (5.64)

[33]
A1
. wn (DA(1)
1) = 3 , 5.65
WmvpRr (/) ("R (D) (5.65)

and where W(l) is used as $(I) = w(I)?y(l). After estimating §(I), the time domain
signal is reconstructed by calculating the IFFT followed by an overlap-add procedure.
Note that for the JIMLE method, R, (1) = ¢,(/)I" due to its noiseless signal model.

After applying the MWEF filter to the noisy signal, we obtain the estimated target signal
and evaluate the noise reduction performance using the segmental signal-to-noise-ratio
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(SSNR) [34], the speech intelligibility performance using the speech intelligibility in
bits (SIIB) measure [35], [36] and the speech quality performance using the perceptual
evaluation of speech quality (PESQ) measure [37].

COMPUTATION TIME

The last evaluation metric is the computational time comparison between our proposed
methods and the reference methods.
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Figure 5.5: Geometric setup for the real RIRs.

5.4.3. EXPERIMENTS WITH SIMULATED NOISE
SETUP

We use speech signals originating from the TIMIT database [38] and recorded RIRs
to simulate realistic acoustic scenarios. The RIRs are downloaded from the database
in [39], which were recorded in a room with size 6 x 6 x 2.4 m. The geometric
setup for the recording is shown in Fig. 5.5. The sound source was placed 2 m
away from the center of the uniform linear microphone array at 0°. This array has
8 microphones and 8 cm inter-distances. At each microphone, we synthesize the
reverberant signal by convolving the speech source (with a duration of 35 s) with the
corresponding RIR. Subsequently, we add noise components to the reverberant signals
simulating the microphone noise at specified signal-to-noise ratios (SNRs) to synthesize
the microphone signals. In the following, we will consider white Gaussian noise to
simulate microphone selfnoise with variance 6 calculated from given SNR values for
each microphone. Since the signal is non-stationary, we calculate the SNR by averaging
the target signal-to-noise ratio over the whole time duration.

In this experiment, we used the following parameters setting: The sampling rate is
fs =16 kHz. The sampled noisy microphone signals are processed by the STFT for
each sub-time frame. As analysis and synthesis window we use the square-root Hann
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window with a length of 32 ms with 50% overlap between adjacent sub-time frames.
Note that each time frame consists of T;y =40 overlapping sub-time frames and has a
duration of 0.64 s. The FFT length is 512. The speed of sound is set to 344 m/s.
Note that the first 512 samples of the RIRs are used to calculate the true RTFs as these
parts of the RIRs fall within each current sub-time frame and the remaining parts are
considered as the late reverberation. Note that for ALS-based methods, we use the
same random vector as an initial estimate of the RTF for the first time frame in a time
segment (ALS and MALS) or for a time segment (JALS).

RESULTS

o
o

o
o

Max Error Distance
o o
N ~

50 100 150 200 250

Frequency bin

Figure 5.6: Maximum error distance for different frequency bins.

We first show the sensitivity of the ALS method to the initialization in Fig. 5.6. For
each frequency bin, we generate the initial RTF estimates randomly and independently
100 times. Each time we generate two Gaussian distributed vectors as the real part and
the imaginary part of a complex random vector and normalize it with its first element.
With the initial RTF estimate, we apply the ALS method and obtain an estimated
RTF. We calculate the Hermitian angle error of the estimated RTF for each initial RTF
estimate, resulting in 100 different RTF errors for each frequency bin. We subtract the
maximum with the minimum of these errors as the maximum error distance in Fig. 5.6.
As shown in this figure, the initialization does not have a significant impact on the RTF
estimation errors for the ALS method.

In Fig. 5.7, we compare our proposed methods with all the other reference methods
as a function of the number of time frames in a time segment varying from 1 to
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8. The reverberation time is 0.61 s and the SNR is fixed at 0 dB. To evaluate how
the robust constraints of the PSDs proposed in Section 5.3.4 help the estimation of
the parameters of interest, we also included the modified ALS method without using
the robust constraints in Section 5.3.4 but using Eqgs. (5.19) and (5.20), referred to as
MALS,. When using only a single time frame in each time segment, the RTF estimation
errors for the ALS-based methods and the SCFA method have similar values which are
much lower than the JMLE method as shown in Fig. 5.7a. The reason is that JMLE
was derived from a noiseless signal model [40]. The signal model mismatch error is
thus large for the JMLE in a 0 dB environment. When increasing the number of time
frames in each time segment, the RTF estimation errors for ALS, MALS, and MALS
(the three ALS-based methods using a single time frame) do not vary much; while the
RTF estimation errors for JALS, JMLE and SCFA (methods using multiple time frames)
become much lower. The RTF estimation errors E, for methods using a single time
frame fluctuate slightly because the first time frame of a time segment use random
initial estimate of the RTF. The other time frames use the estimate in the previous time
frame as the initial estimate. E, for ALS and MALS, are close to MALS due to the
normalization process in the Hermitian angle metric in Eq. (5.60). The drawback of
the Hermitian angle metric is that any scaled estimate will have the same value. The
bad scaling of ALS can be reflected in the target source PSD estimation errors, where
ALS has much larger errors compared to the other methods as shown in Fig. 5.7b.
In Figs. 5.7c and 5.7d, we can see that MALS, has similar performance with ALS,
which both use the PSDs constraints in Egs. (5.19) and (5.20). While, MALS using
the robust constraints of the PSDs proposed in Section 5.3.4 has much lower errors
compared to ALS and MALS,,. As expected, the PSDs estimation errors do not change
much as a function of the number of frames in a segment since the PSDs are time
frame variant parameters. In Figs. 5.7b to 5.7d, we show the underestimation error and
overestimation error for the PSDs. Our proposed methods (MALS and JALS) have
improved performance compared to ALS and similar performance compared to SCFA.
As shown, ALS has the worst underestimation errors for all the PSDs. This is due
to the lack of a normalization step and using the value € to replace negative values
in the ALS method. JMLE has the largest overestimation errors for PSDs of the late
reverberation. This is due to the noiseless signal model that is assumed with JMLE.
In a low SNR environment, the JMLE method considers the ambient noise as late
reverberation and gives larger values when estimating the PSDs of the late reverberation.
For noise reduction performance evaluated by SSNR in Fig. 5.7e, our proposed JALS
has the best performance, which is slightly better than SCFA but much better than the
other methods. For the speech intelligibility performance evaluated by SIIB and the
speech quality performance evaluated by PESQ in Figs. 5.7f and 5.7g, the proposed
JALS, MALS and the reference method SCFA outperform the other methods.

In Fig. 5.8, we compare all the methods while changing the variance of the ambient
noise component such that the SNR increases from 0 dB to 40 dB. The reverberation
time is 0.36 s and each time segment contains 8 time frames. As shown in Fig. 5.8a,
the RTF estimation errors become lower for all methods when the SNR becomes larger.
SCFA and our proposed method JALS have the best overall performance, which is much
better than methods using a single time frame (ALS and MALS). For low SNR, JMLE
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Figure 5.7: Performance vs the number of time frames. In Figs. b, ¢ and d, the gray bars
indicate the underestimation errors, the colored bars indicate overestimation
errors and the methods from left to right are SCFA, JALS, JMLE(in Figs. b
and c¢), ALS and MALS.
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is worse than JALS, but when increasing the SNR, JMLE improves the fastest as its
model mismatch error is smaller and has a smaller RTF estimation error than JALS for
40 dB SNR. We can see that when the signal model mismatch error is neglectable, the
MLE-based methods (SCFA and JMLE) perform better than the ALS-based methods
(JALS). For the PSDs estimation errors in Figs. 5.8b to 5.8d, SCFA has the best
performance with only JMLE reaching a similar performance for high SNR scenarios.
Our proposed ALS-based methods (MALS and JALS) perform much better than ALS.
For noise reduction and speech intelligibility performance in Figs. 5.8e to 5.8g, MALS
and JALS have similar performance with SCFA and much better performance than ALS.
When increasing the SNR, JMLE has the most significant improvement and gets close
to the performance of MALS, JALS and SCFA for 40 dB SNR.

Table 5.1: Computation time comparison.
method SCFA | ALS | MALS | JMLE | JALS
Normalized run time | 154.65 | 6.27 5.7 1.66 1

We also evaluate the computation time for all methods and average these over
all cases shown in Fig. 5.8. Then, we averaged and normalized the run time for
all methods with respect to the run time for JALS as shown in Table 5.1. We
sort the run time for all the methods in descending order from left to right. As
expected, SCFA is the most time-consuming method. JALS and JMLE are the two
fastest methods. The computational cost mainly comes from the inversion of a 3 x 3
matrix (complexity of order 33) and the eigenvalue decomposition of an M x M matrix
(complexity of order M3) for the ALS-based methods (ALS, MALS and JALS). For
the case that each time segment has N time frames, ALS and MALS process each
time frame separately and execute [ iterations N times. Hence, they have a complexity
of order I x N X (33+M3). For JALS, we only need to calculate the eigenvalue
decomposition I times. Hence, its complexity order is Ix M>+1x N x33. The
complexity order of JMLE is (N +1) X M3 [40]. In this experiment, we have M =8,
N =28 and I =10. Therefore, the time cost ratio among ALS/MALS, JMLE and
JALS is I XN x (33 +M?) : (N+1) x M? : I x M? +1 x N x 3% ~5.92:1.27 : 1, which is
approximately similar to the real averaged run time ratio in Table 5.1.

5.4.4. EXPERIMENTS WITH RECORDED NOISE
SETUP

In this experiment, we generate the RIRs using the image source method [41]. The
dimension of the room is 7 x 5 x4 m. In this simulated room, we have a single speaker,
four microphones and a recorded wash machine noise from the ESC-50 database [42] as
shown in Fig. 5.9. Note that we also added a white Gaussian noise to each microphone
signal to simulate the microphone selfnoise at a SNR of 50 dB. The other settings
are the same as those of Experiment 1. For ALS-based methods, we assume an ideal
voice activity detector is used and the spatial coherence matrix of the ambient noise is
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Figure 5.9: Top view of the acoustic scene with a zoom-in of microphones.

calculated using the noise only time frame with the following equation

Tn
Y yi (tnak)yj(tnvk)*
W, (k) = =1 (5.67)

T, O\ [T 5\
(£ bitR) (£ bonnl)

with |x| the absolute value of x and {i,j} the microphone indices. For SCFA, the
spatial coherence matrix of the ambient noise is modeled as the identity matrix in [11].
For JMLE, the ambient noise is not considered. Hence, these two methods will have
sever model mismatch errors in this experiment. Note that SCFA can be extended to
handle spatial coherence matrices different from the identity matrix. However, it takes
some effort to calculate the gradient and the Hessian matrix of the cost function and
will not be addressed in this work.

RESULTS

In Fig. 5.10, we compare all the methods while changing the reverberation time Tgy of
the RIRs from 0.2 s to 1 s. Each time segment contains 8 time frames. We can see
that our proposed JALS method has the best performance in all the metrics evaluated.
For the RTF estimation error in Fig. 5.10a, the ALS-based methods ALS, MALS and
JALS have degraded performance as Ty increases. However, SCFA and JMLE have
improved performance. This is due to the model mismatch caused by the ambient
noise component. When increasing Tgo, the ratio between the correctly modeled late
reverberation component and the incorrectly modeled ambient noise component becomes
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larger. For the PSDs estimation errors of the target source and the late reverberation
in Figs. 5.10b and 5.10c, SCFA and JMLE have large over estimation errors due to
considering the ambient noise as the target source and the late reverberation. The ALS
method still has the worst performance in Figs. 5.10b and 5.10c. While, for the noise
PSD estimation error in Fig. 5.10d, SCFA has the worst performance due to erroneous
spatial coherence matrix used. In Figs. 5.10e to 5.10g, our proposed multiple time
frames method JALS has improved performance over our single time frame method
MALS, which both outperform all the other reference methods.

5.5. CONCLUDING REMARKS

We proposed alternating least square (ALS) based methods to estimate the RTFs, the
PSDs of the source, the PSDs of the late reverberation, and the PSDs of the ambient
noise jointly for a single reverberant and noisy scenario. We first modified an existing
ALS method to obtain more accurate estimates using a single time frame. Then,
we extend the method to use multiple time frames that share the same RTF jointly.
Furthermore, we imposed more robust constraints on the estimated PSDs. Experimental
results demonstrated that the proposed methods achieve similar performance compared
to the SCFA method in terms of estimation accuracy, noise reduction performance,
speech quality, and speech intelligibility. The proposed methods outperform the existing
ALS-based method and the JMLE method assuming a noiseless signal model, especially
in low SNR scenarios.



(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

REFERENCES

K. L. Payton, R. M. Uchanski, and L. D. Braida, “Intelligibility of conversational
and clear speech in noise and reverberation for listeners with normal and impaired
hearing”, J. Acoust. Soc. Amer., vol. 95, no. 3, pp. 1581-1592, Mar. 1994.

J. Xia, B. Xu, S. Pentony, J. Xu, and J. Swaminathan, “Effects of reverberation
and noise on speech intelligibility in normal-hearing and aided hearing-impaired
listeners”, J. Acoust. Soc. Amer., vol. 143, no. 3, pp. 1523-1533, Mar. 2018.

P. Comon and C. Jutten, Handbook of Blind Source Separation: Independent
component analysis and applications. Academic press, 2010.

E. Vincent, N. Bertin, R. Gribonval, and F. Bimbot, “From Blind to Guided Audio
Source Separation: How models and side information can improve the separation
of sound”, IEEE Signal Process. Mag., vol. 31, no. 3, pp. 107-115, 2014.

A. Kuklasinski, S. Doclo, S. H. Jensen, and J. Jensen, “Maximum likelihood PSD
estimation for speech enhancement in reverberation and noise”, IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 24, no. 9, pp. 1599-1612, 2016.

S. Markovich-Golan and S. Gannot, “Performance analysis of the covariance
subtraction method for relative transfer function estimation and comparison to the
covariance whitening method”, in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2015, pp. 544-548.

B. Schwartz, S. Gannot, and E. A. Habets, “Two model-based EM algorithms for
blind source separation in noisy environments”, IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 25, no. 11, pp. 2209-2222, 2017.

I. Kodrasi and S. Doclo, “Analysis of eigenvalue decomposition-based late
reverberation power spectral density estimation”, [EEE/ACM Trans. Audio,
Speech, Language Process., vol. 26, no. 6, pp. 1106-1118, 2018.

I. Kodrasi and S. Doclo, “Joint Late Reverberation and Noise Power Spectral
Density Estimation in a Spatially Homogeneous Noise Field”, in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2018, pp. 441-445.

M. Tammen, S. Doclo, and I. Kodrasi, “Joint Estimation of RETF Vector and
Power Spectral Densities for Speech Enhancement Based on Alternating Least
Squares”, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp. 795-799.

A. 1. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, “Robust joint
estimation of multimicrophone signal model parameters”, IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 27, no. 7, pp. 1136-1150, 2019.

99



100

REFERENCES

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

(20]

(21]

(22]

(23]

[24]
[25]

[26]

Y. Laufer and S. Gannot, “Scoring-Based ML Estimation and CRBs for
Reverberation, Speech, and Noise PSDs in a Spatially Homogeneous Noise Field”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 28, pp. 61-76, 2020.

P. Hoang, Z.-H. Tan, J. M. de Haan, and J. Jensen, “Joint Maximum Likelihood
Estimation of Power Spectral Densities and Relative Acoustic Transfer Functions
for Acoustic Beamforming”, in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2021, pp. 6119-6123.

C. Li, J. Martinez, and R. C. Hendriks, “Joint Maximum Likelihood Estimation
of Microphone Array Parameters for a Reverberant Single Source Scenario”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 31, pp. 695-705, 2023.

A.-J. Van Der Veen, “Joint diagonalization via subspace fitting techniques”, in
Proc. IEEE Int. Conf. Acoust., Speech Signal Process., IEEE, vol. 5, 2001,
pp. 2773-2776.

K. Rahbar and J. Reilly, “A frequency domain method for blind source separation
of convolutive audio mixtures”, IEEE Trans. Speech Audio Process., vol. 13,
no. 5, pp. 832-844, 2005.

S. Degerine and E. Kane, “A Comparative Study of Approximate Joint
Diagonalization Algorithms for Blind Source Separation in Presence of Additive
Noise”, IEEE Trans. Signal Process., vol. 55, no. 6, pp. 3022-3031, 2007.

J. S. Bradley, H. Sato, and M. Picard, “On the importance of early reflections for
speech in rooms”, J. Acoust. Soc. Amer., vol. 113, no. 6, pp. 3233-3244, 2003.

R. Talmon, I. Cohen, and S. Gannot, “Relative Transfer Function Identification
Using Convolutive Transfer Function Approximation”, IEEE Trans. Audio, Speech,
Language Process., vol. 17, no. 4, pp. 546-555, May 2009.

Y. Avargel and I. Cohen, “System Identification in the Short-Time Fourier
Transform Domain With Crossband Filtering”, IEEE Trans. Audio, Speech,
Language Process., vol. 15, no. 4, pp. 1305-1319, May 2007.

S. Braun and E. A. Habets, “Dereverberation in noisy environments using
reference signals and a maximum likelihood estimator”, in Proc. EURASIP Eur.
Signal Process. Conf., 2013, pp. 1-5.

E. A. P. Habets and S. Gannot, “Generating sensor signals in isotropic noise
fields”, J. Acoust. Soc. Amer., vol. 122, no. 6, pp. 3464-3470, Dec. 2007.

S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A consolidated
perspective on multimicrophone speech enhancement and source separation”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25, no. 4, pp. 692-730,
2017.

H. Kuttruff, Room acoustics. Crc Press, 2016.

B. F. Cron and C. H. Sherman, “Spatial-correlation functions for various noise
models”, J. Acoust. Soc. Amer., vol. 34, no. 11, pp. 1732-1736, 1962.

C. Eckart and G. Young, “The approximation of one matrix by another of lower
rank”, Psychometrika, vol. 1, no. 3, pp. 211-218, Sep. 1936.



REFERENCES 101

(27]

(28]

[29]

(30]

(31]

(32]
(33]

[34]
[35]

(36]

(37]

(38]

(39]

[40]

[41]

[42]

A. M. Sardarabadi and A.-J. van der Veen, “Complex factor analysis and
extensions”, IEEE Trans. Signal Process., vol. 66, no. 4, pp. 954-967, 2018.

T. Soderstrom and P. Stoica, System Identification. Prentice-Hall International,
1989.

T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based noise power estimation
with low complexity and low tracking delay”, IEEE Trans. Audio, Speech,
Language Process., vol. 20, no. 4, pp. 1383-1393, 2011.

S. Braun, A. Kuklasifiski, O. Schwartz, O. Thiergart, E. A. Habets, S. Gannot,
S. Doclo, and J. Jensen, “Evaluation and comparison of late reverberation power
spectral density estimators”, IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 26, no. 6, pp. 1056-1071, 2018.

R. C. Hendriks, J. Jensen, and R. Heusdens, “DFT domain subspace based noise
tracking for speech enhancement”, in Proc. Interspeech, 2007, pp. 830-833.

H. L. V. Trees, Optimum Array Processing. John Wiley & Sons, Inc., Mar. 2002.

M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques
and Applications. Springer Science & Business Media, 2013.

P. C. Loizou, Speech enhancement: theory and practice. CRC press, 2007.

S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An instrumental intelligibility
metric based on information theory”, IEEE Signal Process. Lett., vol. 25, no. 1,
pp- 115-119, 2017.

S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An evaluation of intrusive
instrumental intelligibility metrics”, IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 26, no. 11, pp. 2153-2166, 2018.

I.-T. Recommendation, “Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment of narrow-band
telephone networks and speech codecs”, Rec. ITU-T P. 862, 2001.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, D. S. Pallett, N. L. Dahlgren, V. Zue,
and J. G. Fiscus, TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.

E. Hadad, F. Heese, P. Vary, and S. Gannot, ‘“Multichannel audio database in
various acoustic environments”, in Proc. IEEE Int. Workshop Acoust. Signal
Enhanc., Sep. 2014.

C. Li, J. Martinez, and R. C. Hendriks, “Low Complex Accurate Multi-Source
RTF Estimation”, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2022,
pp- 4953-4957.

J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics”, J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943-950, 1979.

K. J. Piczak, “ESC: Dataset for Environmental Sound Classification”, in Proc.
ACM Int. Conf. Multimed., Brisbane, Australia: ACM Press, 2015, pp. 1015-1018,
ISBN: 978-1-4503-3459-4.







LOWCOMPLEX ACCURATE
MULTI-SOURCE RTF
ESTIMATION

This chapter is based on the article published as: C. Li, J. Martinez, and R. C. Hendriks. “Low Complex

Accurate Multi-Source RTF Estimation”. In: Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
2022, pp. 4953-4957.

103



104

Late

Figure 6.1: Illustration of multi-source reverberant scenario.

In previous chapters, we only considered a single source scenario. In this chapter and
the next chapter, we will consider a multi-source scenario. In this chapter, we assume
the late reverberation has little energy and the environment is noiseless as illustrated in
Fig. 6.1. We will propose an RTF estimator to answer research question 2.1 shown in
Fig. 1.4 using the signal model presented in Fig. 2.2 (c).

Many multi-microphone algorithms depend on knowing the relative acoustic transfer
functions (RTFs) of the individual sound sources in the acoustic scene. However,
accurate joint RTF estimation for multiple sources is a challenging problem. Existing
methods to jointly estimate the RTF for multiple sources have either no satisfying
performance, or, suffer from a very large computational complexity. In this chapter, we
propose a method for robust estimation of the individual RTFs in a multi-source acoustic
scenario. The presented algorithm is based on linear algebraic concepts and therefore
of lower computational complexity compared to a recently presented state-of-the-art
algorithm, while having a similar performance. Experimental results are presented to
demonstrate the RTF estimation performance as well as the noise reduction performance
when combining the estimated RTFs with a beamformer.
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6.1. INTRODUCTION

Microphone arrays are ubiquitous these days and can be used for applications like
source separation [1]-[3], dereverberation [4]-[6], noise reduction [7]-[10] and sources
localization [11]. These applications have in common that they heavily rely on
acoustic-scene dependent parameters like relative acoustic transfer functions (RTFs),
power spectral densities (PSDs) of the sources, PSDs of the late reverberation and PSDs
of the microphone self-noise. In particular the RTF plays a very important role in
beamforming applications. knowing and having an accurate estimate of the RTF per
source is very important, for example, to steer a beamformer in the right direction [12],
or preserve the spatial cues in binaural noise reduction algorithms [8]. However, accurate
RTF estimation is also rather challenging. In this chapter we therefore specifically focus
on estimating the RTFs and present an algorithm to jointly estimate the individual RTFs
of the sources in the acoustic scene.

RTF estimation for a single point source in noise is a problem that has been addressed
before in several papers, e.g. [13]-[15]. In this work, we consider the more general
and more challenging case of simultaneously RTF estimation for multiple sources. A
few methods have been proposed for multiple source RTF estimation in recent years
[16]-[18]. In [16], the RTFs are estimated by updating the initial estimate of the RTFs
in an iterative fashion. However in reality, the a priori information of the RTFs might be
unknown. In [17], the expectation maximization (EM) method is used to estimate the
RTFs by assuming that, in each time-frequency bin, only a single source is active, which
thus puts limitations on the acoustic scenarios. In [18], a simultaneous confirmatory
factor analysis (SCFA) method was proposed to estimate the RTFs and also the PSDs of
sources, late reverberation and the microphone self-noise jointly. However, due to the
non-convexity of the problem formulation, the SCFA method in [18] has a rather high
computational cost and is therefore currently less applicable for real-time applications.

To accurately estimate the RTFs jointly for multiple sources, our starting point is the
algorithm proposed in [1]. This algorithm was developed for blind source separation
and is based on linear algebraic concepts. We start with presenting the method from
[1], but from a different perspective, such that our proposed algorithm can be better
understood. Next, we propose a more robust method, which is also based on linear
algebraic concepts and has relatively low computational complexity. The simulations
demonstrate that our method is more accurate compared to the reference algorithm [1]
and of much lower complexity compared to the state-of-the-art SCFA method from [18],
while having a comparable performance.

6.2. PRELIMINARIES

6.2.1. SIGNAL MODEL

We consider R acoustic point sources observed by a microphone array consisting of
M microphones with an arbitrary geometric structure under the assumption that the
signal-to-noise ratio (SNR), i.e., the SNR due to the diffuse noise, is relatively high,
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the late reverberation is neglectable and the number of microphones is larger than the
number of the sources (i.e., M > R). In the short-time Fourier transform (STFT) domain,
the signal received at the m-th microphone can be modelled as

R
ym (i,k) = Zamr(ﬁak)sr(i’k)v (6.1)
r=1

where i is the time-frame index, k is the frequency bin index and ay, (B,k) is the m-th
element of the RTF vector a, (,k) corresponding to source s, in time segment f3 at
microphone m. In this work, we differentiate between time segments (indexed by ) and
time frames (indexed by 7). Each time segment consists of multiple time frames. We
assume that the RTF vector is constant during a time segment (thus during multiple time
frames that fall within one segment) and a;, =1 for r = 1,...,R, which means that the
first microphone is selected as the reference microphone. Stacking the M microphone
STFT coefficients into a vector, we have

R
y(i,k) =Y a.(B.k)s.(i,k) € CM*!. (6.2)

r=1

We assume that all the sources are mutually uncorrelated for each frame of a time
segment, which leads to the following second-order statistical signal model

R
Py (i,k) = Y p,(i,k)a, (B,k)a) (B,k) € C"M, (6.3)
r=1

where p,(i,k) = E {|s, (i,k)|2} is the power spectral density (PSD) of the r-th source

at the reference microphone. The covariance matrix can be rewritten in the following
matrix form

where the RTF matrix is given by
A(B.k) = [al(ﬁﬂk)""vaR(ﬁvk)] (6.5)

and the PSD matrix is given by

The main goal of this chapter is to estimate the RTF matrix A (f8,k) using estimated
covariance matrices {Py (i,k)} with i =1+ (B —1)N,---, BN, where N is the number of
time frames in a time segment.

6.2.2. COVARIANCE MATRIX ESTIMATION

In addition to time frames and time segments, we now also define sub time-frames. Each
time frame consists of N, overlapping sub-frames indexed by ny, with equal length Tj,
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where the sub-frame length is much smaller than the time frame length such that N is a
large integer. Assuming the signal is stationary across a time frame, we can estimate
the covariance matrix per time frame i based on the sample covariance matrix using the
sub-frames’ samples, i.e.,

A 1
Py (lak) Z y nSa nsa )H7 (67)

ng=1

where y (ny, k) is the STFT coefficient vector. Notice that within the time frames of one
time segment, the RTF matrix is a constant matrix and the PSDs of the sources are
assumed to be non-stationary, which means that the signal powers can change over the
frames.

6.3. RTF ESTIMATION

In Section 6.3.2, we propose an improved algorithm to estimate the RTF matrix. The
starting point is the method presented in [1], which is originally meant for blind source
separation. Since the RTF is defined per frequency and per time segment, from now on,
frequency indices and time segment indices are neglected for ease of notation.

We first write the covariance matrices Py (i) into the form
Py (i) = A (i))A" (i),fori=1,--- N, (6.8)

where A = A+/P (i) and the diagonal matrix /P (i) is the unique non-negative square
root of P( /). Note that A equals the normalized version of matrix A (i) where the
columns of A (i) are normalized with respect to their first element, which is the square
root of the PSD of each corresponding source. Hence, estimation of A and P (i) can be
converted into the estimation of A (i) for any time frame i. With this conversion, the
covariance matrices for all the other time frames in the same segment can be represented
by A (i). That is

Py (j) = AP(j) A"
= AVP (/P ()P (j) /P (i)y/P()A" 6.9)

=A()P(j)A" (i), for j=1,---,N,

where P (j) = \/P~L(i))P(j) /P ) is a diagonal matrix.

6.3.1. JOINT DIAGONALIZATION METHOD

We first summarize in this section the joint diagonalization method from [1] to put our
work in perspective. This method was originally proposed for blind source separation
and used in, e.g., [1], [19], to estimate the mixing matrix instead of the RTF matrix.
Therefore, although the estimation steps are the same as in [|], we summarize this
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method when used in a different context to better understand our proposed method that
we present in Section 6.3.2.

The method in [1] focuses on estimating A (1). Then, matrices Py (i) in the segment
can be represented by A (1) using

Py (i) =A(1)P(i))A¥ (1),fori=2,--- N, (6.10)

where

f’(i):\/P”(])P(i) \/P*](l) (6.11)
is diagonal. Notice that Py (1) = A (1) A (1).
Consider the singular value decomposition (SVD) of A (1), i.e.,
A(1)=UxV4, (6.12)

where U is an M x R complex sub-unitary matrix (i.e., U"U =1), £ is a R x R diagonal
matrix and V is a complex valued R x R unitary matrix. The estimation of A is
decomposed into the estimation of the three matrices U, X and V.

The estimates of U and £ can be obtained from Py (1). Using the SVD of A(1) in
(6.8), Py (1) can be expressed as:

Py (1) =A(1)A" (1)
=uzvivzu” (6.13)
=Uziut.
Since U is a sub-unitary matrix and 2% is a diagonal matrix, (6.13) is an eigenvalue

decomposition of the matrix Py (1). Hence we can calculate U and X by taking the EVD
of Py (1).

The estimation of V can be solved by using estimated U, ¥, and the covariance
matrices for all other time frames in the same segment. Taking the SVD of A(1) in
(Eq. (6.10)), Py (i) for i=2,--- ,N can be expressed as

Py (i) = A(1)P() A" (1)

- (6.14)
=UZVAP (i) vEUS,
Now we construct a new set of matrices Py (i) using U and
Py, (i) =X '"U"Py ())UZ"!
NG S () 615

=VIP(i))V.

As V is an orthogonal matrix, it can be obtained by computing the eigenvectors of the
matrices {Py (i)}, with i=2,--- |N.
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If N=2, we can estimate V by taking the EVD of Py (2). In case of equal
eigenvalues, the corresponding eigenvectors are not unique. Hence, in order to obtain
the correct estimate of V, we need to assume that the diagonal matrix P (i) has distinct
diagonal elements, which means that the following inequalities should be satisfied for
every two sources r; and ry,

(2, P2
()7 (D)

(6.16)

where p,(i) denotes the PSD of the ry;, source in the iy, time frame.

If N > 2, the estimation of V becomes a joint diagonalization problem: find a unitary
matrix V such that {VP, (i)V#} with i=2,--- N is a set of diagonal matrices or
has minimal off-diagonal elements. The Jacobi-like algorithm proposed in [20] can
be used to solve this joint diagonalization problem, which reduces the original joint
diagonalization problem into finite sub-problems having closed-form solutions (see [20]
for more details). To make sure the joint diagonalization problem has a satisfying
solution, we also need to make an assumption on the PSDs of the sources: for every
source ry, there exists one time frame iy such that the following inequality holds for any
other source r;:

Pr, (lO) Pry (10)

pr(1) © pr(1)

for any rp # ry. (6.17)

Finally, we estimate A (1) by multiplying the estimated U, £ and V as in (Eq. (6.12)).
Normalizing A (1), we eventually obtain the estimate of the RTF matrix A. Note that
having estimated 1&(1) we can also estimate the individual source PSDs. To do so,
we use the diagonal elements of VPy (i)V/ to estimate P(i). Using the definition
A (1) =A+/P(1) in combination with (Eq. (6.11)) we obtain the PSDs of all sources for

all time frames in the segment.

This algorithm is summarized in Algorithm description 1.

Algorithm 4: Joint Diagonalization Method (JOINT)
Input: Estimated IA’y (i),fori=1,--- N,
Output: A and P(i) fori=1,-- N,
Estimate U and X from EVD of Py (1).
Construct new matrices Py, (i) for i=2,--- |N.
Estimate V and P (i) for i =2,--- N using the Jacobi-like algorithm [20].
Estimate A (1) by multiplying U, £ and V.
Estimate A by normalizing A (1) with its first row.
Estimate P (i) for i = 1,---,N using the first row of A (1) and P (i) for
i=2,---N.

A 1 AR W N -
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6.3.2. ROBUST JOINT DIAGONALIZATION

The algorithm introduced in Section 6.3.1 focuses on estimating the RTF matrix A using
the estimated covariance matrices P (i) for i =1,--- ,N. However, instead of using the
individual matrices 13(1') as done in the first step in Algorithm 1, we can also choose to
estimate the RTF matrix from any linear combination of estimated covariance matrices
in segment B . By using an average of estimated covariance matrices instead of a
single estimated Py (1) in step 1 from Algorithm 1, we are able to significantly reduce
the estimation error on estimating A if we are able to also select the best estimated
covariance matrices to form this average. To see this, let us first look at the error on the
estimated covariance matrix APy (i). This error can be decomposed into:

APy (i) = A (P(i) — P (i)) A" —E (i), (6.18)

where the first part AP (i) = (P (i) —f’(i)) is indeed the estimation error between the
sampled covariance matrix and the true covariance matrix of sources, and the second
part E(i) is due to the late reverberation component and the microphone self noise
component, which can be assumed to be positive definite.

It is well known that the estimation error between a sampled covariance matrix and
the true covariance matrix can be reduced by increasing the number of samples. Hence,
to decrease AP (i), we can average covariance matrices for as many time frames as
possible in a time segment. However, the second error matrix E (i) might increase when
using more time frames. The question now is, which estimated Py (i)for i=1,--- N,
should we average to replace f’y (1) in step 1 from Algorithm 1 to reduce the estimation
error. Notice that the rank of the true covariance matrix Py (i) is R, the rank of the
estimated covariance matrix l'\’y (i) is M and we have assumed that M > R. Therefore the
R+ 1 largest eigenvalue Agyq (i) of Py (i) can be used to evaluate how large the error
matrix E (i) is.

Based on the analysis of the estimation error of covariance matrices, the next steps
of the robust joint diagonalization algorithm are as follows: Take the EVD for the N
estimated covariance matrices f’y (i) from a segment and reorder the time frame index
such that Agy; (i) is in an ascending order. Use the first estimated covariance matrix
(i.e., the one with the smallest error E) to do Algorithm 1 and obtain the first estimates
of the RTF matrix A; and PSDs of the R sources {Pj(i)}. Use these estimates to
calculate the following weighted cost function:

o
S A ()

where || - ||» denotes the matrix 2-norm. Next, average the first two estimated covariance
matrices from the ordered sequence and use this in combination with Algorithm 1 to
obtain the second estimates of the RTF matrix and PSDs of the R sources, and calculate
the cost function:

~

Py (i) — APy (i) AY|

M=

c(1)=

) (6.19)

1 ~ N A n
||y (i) — AsP, (i) A
l

N (6.20)
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In each next iteration, we include an additional covariance matrix from the ordered
sequence in the average and use the averaged covariance matrix in combination with
Algorithm 1 to estimate the RTF matrix and PSDs of R sources until all the N covariance
matrices are averaged and N cost function values are calculated. We then select the
minimum cost function value with respect to iteration g, and use the estimate of the RTF
matrix in the g, iteration as the final estimate of the RTF matrix.

The algorithm steps are given in algorithm two. Note that the computational cost of
the proposed algorithm is about N times higher than for Algorithm 1.

Algorithm 5: Robust Joint Diagonalization (PROP)
Input: Estimated Py (i) ,fori=1,--- N,
Output: A
1 Estimate Ag4; from EVD of Py (i) ,fori=1,--- ,N.
2 Reorder time frame index such that Az is ascending.
3forg=1:N do

q A ~ o~
4 | Estimate U and £ from EVD of }. 1Py (i) = A(A{
i=1

a4
Construct new matrices Py, (i) for i=2,--- |N.

Estimate V and P (i) for i =2,--- N using the Jacobi-like algorithm [20].
Estimate Aq by multiplying U, £ and V.

Estimate A, by normalizing Aq with its first row.

Estimate P (i) using the first row of Aq and P (i) fori=1,--- ,N.
10 Use the estimate to calculate the cost function Eq. (6.19)

o e & W

11 Find the minimum cost function value with respect to the ¢, estimate of A and
use it as the final estimate of the RTF matrix.

6.4. EXPERIMENTS

The performance of the proposed methods is evaluated in the context of noise reduction
with four microphones and three sources each with a duration of 25 s. The acoustic
setup is depicted in Fig. 6.2. Each speech signal is convolved with a room impulse
response in the time domain. The room impulse responses are generated using the image
method [21]. To simulate a nearly non-reverberant noisy signal, we set the reflection
coefficients of the six walls as [0.5,—0.25,0.1,—0.5,0.25,—0.1] in the first scenario
(the reverberation time is about 0.04 s). Besides, we also evaluate the performance of
our proposed methods in a second scenario where the reverberation time of the room
impulse response is 0.2 s. The sampling frequency is f; = 16 kHz. The microphone
self-noise is a zero-mean uncorrelated Gaussian process with variance 672, such that the
SNR due to the self-noise is equal to the values as specified in Fig. 6.3 per microphone.
The noisy speech signal is converted into the STFT domain using a square-root Hann
window with a length of 800 samples (i.e. 50 ms) and an overlap of 50%. The FFT
length is 1024. Note that the true RTF matrix is calculated using the 1024-length FFT
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coefficients of the first 800 samples of the room impulse responses. Each time segment
consists of N =8 time frames and each time frame consists of Ny =40 sub frames. For
comparison, we used the SCFA method from [18] and the original joint diagonalization
method from [1] as a reference as SCFA and JOINT, respectively. The proposed method
will be referred to as PROP.

The RTF estimation error is evaluated by the Hermitian angle [22].

R
L

r

B K/2+1 |al! (B A4, (B.k)
% L, acos (||aﬁ(ﬁ~k)||2||ﬁr(l3,k)llz)

RB(K/2+1)

1

(rad), (6.21)

where K and B are the number of frequency bins and time segments, respectively. In
Fig. 6.3(a), we show the estimation performance in the nearly no reverberation case
(with subscript ‘nr’), and Tg9 = 0.2s (with subscript ‘t’). For both scenarios, PROP and
SCFA have a similar and much better performance compared to JOINT. For the nearly
no reverberation case, SCFA has a somewhat better performance than PROP, because
SCFA can model microphone self-noise and can better reduce the model mismatch
error caused mainly by the diffuse noise. However, for the Tgy = 0.2s and high SNR
case, PROP has a slightly better estimation performance than SCFA, because the model
mismatch error now is mainly caused by the late reverberation component, which is
not considered in the referenced version of SCFA. For the Ty = 0.2s case, we also
evaluated the noise reduction performance in combination with three minimum variance
distortionless response (MVDR) beamformers [23], where we use each time one of the
three estimated RTFs as the target and the remaining two sources as interferers. We
then calculate the segmental-signal-to-noise-ratio (SSNR) and average this over the three
sources. Note that for the SSNR calculation, we omit the sub frames in which the
signal energy is zero. In addition to the methods PROP, JOINT and SCFA we also
show the performance when using the true RTF. As shown in Fig. 6.3(b), the SSNR for
each method increases as the SNR increases. PROP has an almost similar performance
compared to SCFA, while both PROP and SCFA improve over JOINT with slightly less
than 1 dB in terms of SSNR. In Table 6.1 we show the normalized computation time for

Table 6.1: Computation time comparison.
method SCFA | PROP | JOINT
Normalized run time 1 0.0163 | 0.0024

all methods after averaging the run time over all scenarios. As expected, the runtime
for PROP is about N = 8 times larger than for JOINT, but PROP is significantly less
complex than SCFA.

6.5. CONCLUSIONS

We considered the problem of estimating the RTF for multiple sources jointly. We
proposed a robust method which averages covariance matrices for as many time frames
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Figure 6.2: Acoustic scene. The three red circles denote the sources. The cross in
the center denotes the set of microphones. A zoom-in of that set of four
microphones is provided in the little square.
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Figure 6.3: RTF estimation error and SSNR vs SNR.

as possible without suffering too much from model mismatch errors caused by late
reverberation and microphone self noise. Experiments show that the RTF estimation
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performance of the proposed method is similar to the SCFA method, but at a significantly
lower complexity, and much better than the joint diagonalization method from [1].
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Late

Figure 7.1: Illustration of multi-source, reverberant and noisy scenario.

In this chapter, we consider the most complex scenario in this dissertation, which is
the multi-source reverberant and noisy scenario. As illustrated in Fig. 7.1, it can be seen
as an extension from the scenario in Chapter 6 to the reverberant and noisy case or from
the scenario in Chapters 4 and 5 to the multi-source case. We will propose a method
to answer research question 2.2 shown in Fig. 1.4 using the signal model presented in
Fig. 2.2 (d).

Estimation of acoustic parameters is of great interest but very challenging in the
multichannel microphone signal processing area. Existing methods either assume simple,
but less realistic scenarios, or suffer from very high computational costs. In this
work, we consider the more general scenario where multiple sources, late reverberation
and noise exist concurrently. The parameters of interest include the relative transfer
functions (RTFs) of the point sources (both target and interferers) and individual power
spectral densities (PSDs) of the sources and the late reverberation. We first propose a
robust late reverberation PSD estimator using an iterative compensation scheme. Then,
based on an analysis of the variance of the sample covariance matrices, we propose a
robust and joint estimator for the sources RTFs and PSDs using multiple time frames
that share the same RTFs. We compare the proposed method with the state-of-the-art
simultaneously confirmatory factor analysis (SCFA) method and the second order blind
identification (SOBI) method. Experiments show that our proposed method reaches the
estimation performance of SCFA, which significantly outperforms SOBI, but has much
less computational costs compared to SCFA.
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7.1. INTRODUCTION

Microphone arrays are widely used in various devices, such as mobile phones,
ear/headphones, hearing aids and all sorts of speech recognition applications. Typically,
signals recorded by the microphones include not only the direct sounds from one
or more point sources, but also reflections and ambient noise. In particular,
the late reflections, known as late reverberation, are, next to the direct sound of
interfering point sources, harmful to the speech quality and intelligibility [1], [2],
even if these late reflections originate from the target source. Therefore, to achieve
satisfying speech communication performance, microphone signals are processed by
multi-microphone or single-microphone noise reduction and dereverberation algorithms
[3], [4]. Multi-microphone noise reduction algorithms typically perform significantly
better than their single-microphone counterparts [5] and typically depend on the relative
transfer functions (RTFs) of the sources, the power spectral densities (PSDs) of the
sources, the late reverberation and the ambient noise. However, in practice these
parameters are unknown and their estimation is thus an essential problem for microphone
array signal processing.

Many methods have been proposed in recent years to estimate these acoustic
parameters [6]-[19]. However, when considering multiple sources and the coexistence
of late reverberation and ambient noise, the estimation of the aforementioned parameters
can be very challenging. Therefore, many of these works consider simplified signal
models [7]-[12], [14], [15], [17]-[19], where either simplifying assumptions are used, or
a subset of the parameters is assumed known. For instance, in [9], it is assumed that
there is only a single active source in each time-frequency bin. In [8]-[10], [17], [18],
either the late reverberation or the noise component is not considered in the model. Note
that these methods based on simplified signal models have been widely used in practice,
due to their simplicity and the properties of speech signals such as sparsity.

Some works considered a more general signal model, but have some other strict
assumptions. For example, in [15], only the direct sound is considered as the target
signal. The RTFs are assumed to only depend on the direction of arrival (DOA) of
the source position and the microphone array geometry. By further assuming the DOA
is known, the RTFs are considered known. However, the early reflections, which are
beneficial to speech intelligibility [20], are sometimes included in the target sound. The
number of unknown real parameters in each RTF vector is 2(M — 1) with M the number
of microphones. Some methods use prior knowledge (like hearing aids that assume a
target in front). When considering both the direct sound and the early reflections as the
target signal without prior knowledge of the scene, it is very challenging to estimate the
RTFs. In [21], [22], the sound sources are assumed to be active successively and in [23],
the interferers are assumed to be active earlier than the target sound source, which means
that these methods cannot be used if two or more sources become active simultaneously.

The joint estimation of all the parameters considering multiple sources, late
reverberation and ambient noise is achieved in [13] using the simultaneous confirmatory
factor analysis (SCFA) method. Although this method is very effective, it comes with a
very high computational cost. The goal of this chapter is therefore to develop a method
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that can estimate the signal parameters (RTFs and PSDs of multiple sources, as well as
the late reverberation PSD) at high accuracy and low complexity.

An important aspect of this problem formulation is the estimation of the late
reverberation PSD. In [24], a comparison between many state-of-the-art late reverberation
PSD estimators was published. All methods in this comparison considered only a single
source and the RTF was assumed to be known for the spatial coherence-based methods.
In this work, as part of the joint estimation of all unknown parameters, we propose a
late reverberation PSD estimator that does not require knowledge on the RTFs. This can
be seen as an extension of the method in [10] from a single-source to the multi-source
scenarios.

In [25], a low complexity blind source separation method was proposed based on a
joint diagonalization of a set of covariance matrices. In the previous chapter, we modified
this method to estimate the RTFs of multiple sources in a nearly non-reverberant and
noiseless environment. In the current work, we extend the methods from [25] and
Chapter 6 to jointly estimate not only the RTFs in a noise-free and non-reverberant
environment as in Chapter 6, but to estimate both the RTFs and the PSDs of the sources
in a reverberant and noisy environment. Note that eventually, the noise component
in this work refers to microphone self-noise. Although not strictly necessary for the
proposed method, this is often modelled as spatially white Gaussian noise. Given a
set of covariance matrices corresponding to a sequence of time-windows, [25] exploits
the covariance matrix of the first time-window and Chapter 6 exploits an average of
a subset of these covariance matrices to jointly diagonalize the complete set and then
estimate the RTFs. We show in this chapter that any proper linear combination (e.g.,
a random combination or their average) of these matrices can be used and propose
the optimal linear combination that minimizes the variances of the error matrix of the
sample covariance matrix.

This chapter is structured in the following way. Section 7.2 presents the signal model,
statistical assumptions and problem formulation of this work. In Section 7.3, we will
first propose our late reverberation PSD estimator. Then in Section 7.3.2, we modify the
second order blind identification (SOBI) method from [25] to our estimation problem.
After that, we will analyze the variance of the sample covariance matrices and propose
our minimum variance joint diagonalization (MVJID) method to estimate the RTFs and
the PSDs of the sources. In Section 7.4, experiments in different scenarios will be
presented to compare our proposed method to some state-of-the-art reference methods.
Finally, Section 7.5 concludes the chapter.

7.2. SIGNAL MODEL

We consider the presence of R acoustic point sources recorded by a microphone array
of M microphones in a reverberant and noisy environment. The number of sources R
is assumed known in this work. (In practice, it can be estimated using some existing
methods such as [26], [27].) The microphones can be placed compactly with various
geometric structures (e.g., linear, circular or spherical). Each microphone records the
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signals generated from sound sources via both a direct propagation path and (infinite)
reflections of surrounding objects (e.g. walls). These signals can be modeled as the
convolution between the sound sources and the room impulse response (RIR). In the
short-time Fourier transform (STFT) domain, the signal received at the m-th microphone
can then be modeled as

R R
Y (1K) =Y X (LK) + Y. dir (1K) 4V (1K) (7.1
r=1 =1

r=

X (k) dp (1K)

where [ is the time index of the STFT window, which we will refer to as a sub-time
frame, and k is the frequency-bin index. In addition to sub-time frames indexed by
I, we will later also define time frames and time segments. The source reflections
are typically labeled as direct component, early reflections (typically the first 50 ms),
and late reflections. When considering the target source, these early reflections are
actually beneficial for the speech intelligibility [20]. For a source r, we will therefore
consider the direct component and early reflections combined, denoted by x,, (I,k), and
differentiate these from the late reflections, denoted by d, (I,k). The additive noise
component is denoted by vy, (I,k). In addition to potential interfering sources, both the
late reverberation and additive noise are detrimental to speech intelligibility and quality.

As multiplication in the STFT domain can approximate the convolution in the time
domain [28], we can model the r-th source at the m-th microphone as

X (L k) = apy (1,k) s, (LK) , (7.2)

where s, (I,k) contains the direct sound and early reflections at the reference microphone
and a, (I,k) is the relative transfer function (RTF) [28] of the r-th source between the
m-th microphone and the reference microphone. Without any limitation, we use the first
microphone as our reference (i.e., a;, = 1). For the duration that the sources are static
relative to the microphone array, we can assume that the RTFs are constant. We refer to
this duration as a time segment (TS) indexed by . In vector form, the multi-microphone
signal model is then given by

a,(B,k)s, (I,k)+d (I,k)+v(l,k) e CM*1 | (7.3)

=

y(l,k) =

r=1

x(1 k)

where each column vector is stacked with M elements such as y(l,k) =
1 (k)= v (L))

Although speech-related signals s, (I,k) and d(,k) are realizations of non-stationary
processes, they can be assumed stationary for a short duration of a time frame (TF).
The duration of a TF is much longer than that of the STFT window, which we already
denoted as a sub-time frame (SF). Hence, we assume the ¢-th TF contains 7 consecutive
SFs indexed by ! from [ =14 (t—1)T to [ =¢T. In addition, we assume in this work
that all sources are static for N consecutive TFs (e.g. N =8 for approximately 2.5
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s in our experiments), which means that the $-th TS contains N TFs indexed by ¢
from t =14 (B —1)N to t = BN. The relation between TS, TF and SF is visualized in
Fig. 7.2. In the situation that sources are not static for the duration of a TS, we can use
an adaptive time-segmentation e.g. as proposed in [29].

Y

TS

A

Amplitude

Time

Figure 7.2: Visualisation of the definition of time segment (TS), time frames (TF) and
sub frames (SF).

Within the #-th TF, the STFT coefficients vector y(/,k), with sub-frame index
I=1+4(—1T,--- 1T, is assumed to follow a circularly-symmetric complex Gaussian
distribution with zero mean and cross power spectral density (CPSD) matrix
Py (t,k) € CM*M_Since x(I,k), d (I,k) and v (I,k) are commonly assumed to be mutually
uncorrelated (even though strictly speaking x and d are weakly correlated), we can

decompose Py (1,k) into

Py (t,k) =E [y (L,k)y" (1,k)] 74
=Py (t,k) + Py (t,k) + Py (1,k) € CM '

For the source component x (I k), containing the direct and early reflections for all
sources, the CPSD matrix Py (7,k) is given by
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R
;tb (1,k)a, (B, k)a)’ (B.k) 75
A(

B.k)P(1,k) A™ (B.k)

with A (B,k) = [a1 (B.k),--- ,ar (B, k)], P(r,k) = diag[¢1 (t,k) -, §r (¢,K)]
and ¢, (t,k)=E [|s, (l,k)ﬂ the power spectral density (PSD) of the r-th source at the

reference microphone with |-| denoting the absolute value. Note that in Eq. (7.5), we
used the assumption that all sources are mutually uncorrelated and made explicit that the
RTFs a, (f3,k) are constant over a time segment f3.

For the late reverberation component, Py (¢,k) is commonly assumed to be the product
of a time-invariant full rank spatial coherence matrix I'(k) and a time-varying PSD
Oy (¢,k) [71, [30], that is,

Py (1,k) = ¢y (1K) T (k) . (7.6)

Here, I" (k) is assumed to be measured or calculated a priori since it is time-invariant and
independent of the microphone array position [31]-[33]. For instance, if a spherically
isotropic noise field is assumed [34] and inter-microphone distances are assumed known,
I" (k) can be calculated to be

. 2nfsk d; j
T, (k) = SRS 7.7
,j (k) = sinc < X . (1.7)
with sinc (x) = —Si;”‘, ; j the inter-distance between microphones i and j, f; the sampling

frequency, ¢ the speed of sound and K the total frequency bin number. Also note
that when a room has ceilings and floors that are more absorbing than the walls, the
cylindrical isotropic noise field is a more realistic model. Note that with Eqs. (7.6)
and (7.7), Py could also model other isotropic noise sources, i.e., noise sources that are
not due to the late reverberation.

The noise component v is usually a summation of the microphone self-noise and other
non-point noise sources that are approximately spatially uncorrelated. For this kind of
noise, we assume that it has a time-invariant covariance matrix Py (k) for each frequency.
Therefore, we can also measure Py (k) a priori by assuming a noise-only segment is
available. In this work, we consider only the microphone self-noise to be present with
each microphone having the same spatially white Gaussian noise distribution, which
means Py (k) = ¢,I. However, notice that we can always introduce a whitening step to
guarantee Py (k) is spatially white.

With these assumptions, we can now write the covariance matrix of y (I) as

Py()=A(B)P(1)AT (B)+ ¢, () T+ .1, (7.8)

Note that we omitted the frequency indices for legibility in Eq. (7.8) and will do so for
all the following equations since the estimators proposed in this work are independent
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across frequency. Based on the previously discussed stationarity of the signal, we can
estimate Py () using the sample covariance matrix

B =g Y vy 7.9

Note that, to compute an STFT with a meaningful frequency resolution at 16kHz, the
subframe duration or STFT window length cannot be too small. Meanwhile, to estimate
the second-order statistics in practice, each time frame is composed of many subframes.
Therefore, the time frame here is longer than the commonly assumed duration for
stationarity. This will lead to an average of the PSDs but will maintain the RTF matrix
or the spatial coherence matrix of the signal components [32]. Within the 3-th TS, the
a priori known or estimated parameters from the signal model given in Eq. (7.8) now
BN

t=1+(B
segment ), the estimated spatial coherence matrix of the late reverberation I and the
estimated noise PSD ¢,. Note that as analyzing the errors of estimated I" is outside of
the scope of this work, we assume that ['=T in the next section. The main goal of this
chapter is to develop an algorithm that can estimate the RTF matrix A (f3), the diagonal

PSD matrices of the sources {P(t)}?:NH(ﬁ_UN

N
{0, (t)}?=1+(B_I)N for each segment .

include N sample covariance matrices {f’y (t)} “1N (i.e., for the N time frames in

and the PSDs of the late reverberation

7.3. PARAMETER ESTIMATION

In this section, we propose our joint estimator based on a joint diagonalization scheme.
We first introduce the estimator of the late reverberation PSDs in Section 7.3.1. Then,
we use the estimated late reverberation PSDs and the other a priori given parameters to
estimate the RTF matrix and the source PSDs in Section 7.3.2.

7.3.1. ESTIMATOR OF THE LATE REVERBERATION PSDS

We assume here that the late reverberation PSDs ¢y () across time frames are unrelated
and will estimate these per time frame ¢ using IA’y (t) for the ¢-th time frame only. Hence,
for legibility, we will omit the time frame index in this subsection. Subtracting the true
noise covariance matrix Py from Py, we get

P, =P, P, =APA” 1+ ¢,I". (7.10)

Taking the square-root decomposition such as the Cholesky decomposition of the full
rank matrix I, we have I' = LL¥. Using L, we can whiten matrix P, by calculating

P,=L 'P,L " = (L'A)PL'A) +41. (7.11)

Since the rank of (L_IA) P (L_IA)H is R, we can see that, after whitening, the M —R
smallest eigenvalues of Py should be equal to ¢,. To see this, we can take the eigenvalue
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decomposition (EVD) of (L7'A)P (L"A)H = UAU" with U unitary and A diagonal.
The M — R smallest diagonal elements of A are all zero. Taking the EVD of Py using U
we get

U'P,U=A+¢1, (7.12)

which shows that the M — R smallest eigenvalues of I_’y equal ¢,. Because Py is estimated
from limited data, the M — R smallest eigenvalues will have some distribution around ¢,.
Therefore, we take their mean value as our estimate of ¢,. That is,

by = f el (7.13)
7 i:R+1M_R' .

Note that, we assume all the eigenvalues in this work are ordered in descending order,
i.e., A is the largest eigenvalue. The error of the estimator in Eq. (7.13) is analyzed
for the special case with R=1 in [10]. Eq. (7.13) is indeed a biased estimate of
¢y (underestimation) due to using the subset of the ordered eigenvalues. Although
Eq. (7.13) is not the optimal estimate of the late reverberation PSD, we choose this
estimator since it does not need any RTF information.

Note that this method can be seen as an extension of the method proposed in [10]
where a single source scenario (i.e., R =1) was assumed. However, we work with
estimates of Py,I" and Py. Therefore, similar to other spatial coherence-based methods
as evaluated in [24], this method can have overestimation errors or underestimation
errors when the late reverberation PSD is relatively small compared to the noise PSD
(e.g. under low reverberant signal-to-noise ratios (RSNRs) in [24]). Even when the true
covariance matrix Py is used, we can only obtain an estimated noise PSD, implying a
residual noise PSD error will remain. Hence, we have

P, =Py — §,I=APA" + ¢, + (¢, — ¢,)I . (7.14)
residual noise

The whitened matrix is then given by
P,=L ' (Py— 1)L

u R (7.15)
= (L'A)P(L'A)" + o0+ (¢, —¢,)T " .
If (q)v—(ﬁv) > ¢y, the M — R smallest eigenvalues of lé’y can be much larger than ¢,
resulting in large overestimation errors of ¢y. If — (¢v — (ﬁv) > ¢y, the eigenvalues of
P, can be negative. A common way to deal with negative PSD estimates is to replace
the negative estimates with € as done in [12]. However, this will result in very large
underestimation errors. To avoid large overestimation errors and underestimation errors,
we propose the following estimation procedure for ¢, and ¢,.
First of all, notice that Py =Py — ¢, 1— ¢,I" = APAY is positive semi-definite with
rank R. In practice, we have the estimated matrix

Py=Py—$I-§,I", (7.16)
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which can have negative eigenvalues even when we know the actual values of the PSDs
¢, and ¢y, since we only have an estimated f’y. Therefore, instead of adjusting ¢, and (]3,,
to make Py positive semi-definite with a rank R, we only constrain the estimated matrix
P, to have no less than R positive eigenvalues to overcome adjustments that will lead to
overestimation of ¢y. We now consider three cases in which this constraint is violated
due to large overestimation errors of ¢, and (ﬁy.

1. If the given initial estimate @, (estimated from speech absence frames) is larger
than Ay, with Ayg the R-th largest eigenvalue of Py, for any non-negative ¢y, we
have

<Py — AgI—¢,I (7.17)

where the matrix inequality A < B means that B— A is positive semi-definite.
Since f’y — Ayl has at most R — 1 positive eigenvalues, P, has less than R positive
eigenvalues. Therefore, to make sure Py has no less than R positive eigenvalues,
we need ¢, < Ayr. In this work, we update , by

(ﬁvemin{q)v,M’ ’;zjll} (7.18)
such that ¢, < 1‘24’ ’Igivi < Ayr, where, for the second inequality, the equality holds
only when Ayg = Aypi1 =+ = Aym.

2. Next, ¢, can still be largely overestimated such that the eigenvalues of f’y in
. (7.15) are too small to get a positive (}37 using Eq. (7.13). Therefore, we
1terat1vely update @, by ¢, — ¢,¢, with 0 <c¢, <1 a constant value such as

¢y, =0.9 and estimate ¢y using Eq. (7.13) again until a positive ¢y is obtained.

Aom )—‘ + 1 iterations since after these

Note that this procedure has at most [10& (
iterations, we have

()

dycy < Oycy =X , (7.19)
and lc’y will be positive definite. This results in positive eigenvalues of lﬁ)y, and
hence, a positive ¢37.

3. Finally, @Y can be overestimated such that Py has less than R positive eigenvalues.
Therefore, we iteratively update (]37 by (]37 — cy(i;y with 0 < ¢y <1 a constant value
such as ¢y = 0.1 until Py has R positive eigenvalues. Since we have updated ¢,
by Eq. (7.18), we have ng < Ayg. Hence, in the worst case that we need many
iterations, (}37, approaches zero and Py ~ f’y — ¢, can have R positive eigenvalues.

The late reverberation PSD estimator is summarized in Algorithm 1.
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Algorithm 6: ¢, estimator

Input: Estimated Py, l",init.qsv, IterN
Output: ¢y,Px
1 for all k,I do

2 Calculate the EVD of Py and update ¢, using Eq. (7.18).

3 Use ¢, and I to do subtraction and whitening using Eq. (7.14) and Eq. (7.15).
4 Calculate the EVD of l%y.

5 Calculate gﬁy using Eq. (7.13).

6 while (ﬁy < Q do A A

7 Update ¢, by ¢, < ¢, 0,

8 Calculate the EVD of P,.

9 | Calculate (137, using Eq. (7.13).

10 Calculate Py using Eq. (7.16).

11 Calculate the R-th largest eigenvalue of Py, Avr. while A,z <0 do
12 Update éy — cngy. Calculate Py using Eq. (7.16).

13 B Calculate the R-th largest eigenvalue of f’x, AR

7.3.2. ESTIMATOR OF THE RTF MATRIX AND THE SOURCE PSDS

Without loss of generality, we consider the estimator of the RTF matrix and the source
PSDs for the first time segment (i.e., B =1) and neglect the index  for notational
convenience. Since all time frames in a time segment are assumed to share the same
RTFs, we can estimate the RTF matrix with improved accuracy using all time frames
]omtly, similar to the recently proposed methods in [13] and Chapter 6. Having estimated
¢y and (Pw we can subtract both the late reverberation and noise components from P y (1)
fort=1,--- /N, and we get

Py(t) =Py (1) — §1— (1) T = AP (1) AT | (7.20)

fort=1,---,N.

PARAMETER IDENTIfIABILITY

Before estimating the RTF matrix and the source PSDs, we need to analyze the
parameter identifiability to avoid biased estimates. In general, the parameters are said
to be identifiable meaning that if two matrices have the form as in Eq. (7.20) (i.e.,
Py (1) = APy (1) At and Py, (1) = AoP; (1) Axf!) for 1 =1,--- N, then Py =Py, is
equivalent to A; = A, and P; =P,. Note that for a given matrix Py = APAY, we
can find different solutions by simply permuting the columns of A and corresponding
diagonal elements of P. However, since this permutation ambiguity can be further solved
by methods such as post-processing [35], we consider the parameters to be equal to
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their permuted versions in this work. Note that the first row of A are all ones and P is
diagonal.

We now show that for multiple sources (i.e., R > 1) and a time-segment consisting of
one time-frame (i.e., N = 1), the parameters are not identifiable. That means, for any
matrix A; with its first row all ones and P (1) diagonal, we can find A, # A; and
P, # P; while AP AT = A P,ALY, where the first row of A, are all ones and P, is
diagonal.

For any unitary matrix Q € CR*R we can construct

—1

A, :AIP%Q(diag (e{’A&%Q)) (7.21)

H
P, = (diag (e{fAIP%Q» (diag (e{’A&fQ)) (7.22)

with e; = [1,0,---,0]" € C¥*! (where the subcript in e, indicates that the first

and

1
microphone is the reference). The diagonal matrix P = diag ( eff AP} Q) is used to

make the first row of A; all ones and P, diagonal. We then have
Py, = A, PrA"
1 . 1 A
= (A]PfQP ) (pP") <A1PfQP >

=APA T
:PXI )

(7.23)

but Ap # A and P, # P, for the non-diagonal unitary Q and R > 1 (Q is a scalar when
R =1). Hence, if no other prior information is used, the parameters for a single time
frame are not identifiable, and we need multiple time frames, i.e., N > 2, for each time
segment to estimate the RTF matrix and the PSDs uniquely. Note that N > 2 is only a
necessary condition for the identifiability of the parameters. For a sufficient condition,
We need further assumptions on the PSDs of the sources, which we will introduce in
Section 7.3.2.

SOBI

Although the SOBI method was proposed in [25] to estimate the mixing matrix and
separate the source signals directly, we slightly modify this method and use it to
estimate the RTF matrix and the PSDs. We therefore first introduce a modified SOBI as
the reference method for RTF estimation in this subsection. Subsequently, in the next
subsection, we propose a significantly improved method based on SOBI, referred to as
the minimum variance joint diagonalization method (MVID).

Given is a set of covariance matrices {Px (t)}ﬁvzl, with N >2. To find A and
P(¢), such that Py(t) = AP(¢t)A¥, for t =1,--- N, we can make use of a joint
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diagonalization of the set {Py(r)}"_,. That means, instead of estimating A and P(r)
directly, we first estimate A = AP(l)% and P(¢) = P(l)f%P(t)P(l)f% via solving a
joint diagonalization problem, as we will show later. Let us for now assume we know A
and P (7). In that case, we can estimate the RTF matrix and P (¢) by

A = Adiag (¢/A) ", (7.24)
P(1) = diag (e/’A) diag (e/'A)" | (7.25)
and 1 Y
P(t)=P(1)2P(1)P(1)2 , (7.26)
where e; = [1,0,---,0]".

Now, we show how to estimate A and P (¢). Consider estimating the SVD components
of A = UE2V¥. We can reformulate P, (1) = AP (t) A by

S ~
A P(r)
= AP (1) A" (7.27)
—UZ: VAP (1) VEIUH
Py (1)

For t = 1, we have Py (1) = UZU" as then P(1) =1 and V¥V =1. Therefore, both U
and X are known from the above EVD of Py (1). Then we can use U and X to calculate

P, (t) = £ 2UHP, (1)UL "2

7.28
=ViP(1)Vv. (728

Since V is unitary and P (¢) is diagonal with its r-th diagonal element 5:((?), Eq. (7.28) is

R
indeed the EVD of Py, (¢) with { 0r(1) } | the eigenvalues and V the joint eigenvector
r=

¢-(1)
matrix for all ¢ in the segment. To make sure we get a unique estimate of V, we need to

assume that for any r;-th and rp-th eigenvectors (i.e. the r-th and r,-th columns of V),
there exist one time frame #y such that the r|-th and r,-th eigenvalues are distinct [25],

i.e.,
(Prl (tO) (Prz (tO)
4 : (7.29)
or (1) © ¢r, (1)
The joint eigenvector matrix V diagonalizes {Py (¢)}_, simultaneously, i.e.,
VP, (1) VA =P(t) vt e {1,--- N} . (7.30)

However, such a joint diagonalization might not be achieved in practice since we only
have the estimated Py (¢). Therefore, an approximate joint diagonalization was pursued
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in [25] by minimizing the off-diagonal elements of VPy, (#) V¥, which is

mvin):gvz2 off (VPy (1) VH)

7.31
s.t. VAV =1, 73D

where off (C) = ¥y <izj<m |G, j‘z for a matrix C € CM*M_ Then, the algorithm proposed
in [36] is used to solve Eq. (7.31), which is numerically very efficient. With V estimated,
we use diag (VPy (1) VH) as the estimate of P (7).

The SOBI method is summarized in Algorithm 2.

Algorithm 7: SOBI
Input: Estimated Py (t),fort=1,---,N,
Output: A and P(¢) forr=1,--- N,
1 Estimate U and £ from EVD of Py (1).
2 Construct new matrices Py, (¢) for t =2,--- N using Eq. (7.28).
3 Estimate V and P (¢) for # =2,--- N using the Jacobi-like algorithm [36].
4 Estimate A with U, X and V.
5 Estimate A and P(¢) using Eqs. (7.24) to (7.26).

Note that, with this SOBI-based algorithm, the matrices U, £ and V in the SVD of

A= AP(l)% are first estimated before estimating the RTF matrix and the PSDs. The
estimation accuracy of U and ¥ depends fully on the estimation accuracy of the first
covariance matrix Py (1) = UXU”, which can be hugely erroneous. For instance, when
the late reverberation and noise have large energy during the first time frame. Instead of
using Py (1) to do the EVD at the first step, we can use any proper linear combination
of all the covariance matrices Zﬁ\’:] ¢Px (t) with ¢, > 0, such as the average of a subset
of the covariance matrices as we proposed in Chapter 6. The estimation accuracy of the
RTF matrix and the PSDs can be improved by using values for ¢, that minimize the
error between YV, ¢, Py (¢) and its estimated counterpart Y | ¢, Py (¢).

MVJD

In this subsection, we first show our generalization of the SOBI method. Then we
propose our minimum variance joint diagonalization method (MVIJD) based on the
analysis of the variance of the sample covariance matrices.

Instead of using the first covariance matrix Py (1) to do the EVD at the first step
of SOBI, we can use any proper linear combination of all the covariance matrices
Zﬁ\’: , &Py (t) = UZU# with ¢, > 0. Therefore, U and £ can be obtained from Z?’: LaPx (1)

for
1

N 2
A=A (Z ctP(t)> —uzzvH | (7.32)

t=1
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Then, using Eqs. (7.28) and (7.31), we can get V and P(r) with P(¢) =

_1 _H
(XN cP(1)) *P(t) (XN P (1)) 2. To get a unique estimate of V, we assume that
for any r;-th and r,-th columns of V, there exists one time frame #y such that

¢r1 (lo) ¢V2 (IO)

. 7.33
Y b (1) s i (1) 733

With U, £ and V estimated, we can estimate A using Eq. (7.32), which further
gives us the RTF matrix A = Adiag (eIfIA) " and YN ¢P(t) = diag (eIfIA) diag (eﬂqA)H .
Finally, from YV, ¢,P(¢) and P (¢), we can calculate the PSDs matrix for all time frames
by P(1) =P () XL, P (1).

Since the estimation errors for the estimated covariance matrices Py (r) are different

for different ¢, using different coefficients ¢; in step 1 will result in a different U and X,
and thus in different estimates of the RTF matrix and the PSDs.

We will now explain how we can optimally select the coefficients ¢; such that the
summation of the variances of the error matrix in the estimated Py (f) is minimized.
Suppose we have the true PSDs of the late reverberation and noise. The estimated
covariance matrix for Py (¢) is then given by

Py (1) =Py (1) — 01— ¢y (1) T
:,é])TW — 90— 9, (T
:zl: (X(l)—Fn(l))(])f(l)H_'_n(l)H)
! izl;zyl)(;) ' (7.34)
LT
+ZI:X(Z)HU)H —;n(l)x([)H

H
py MOROT e

l

where n(/) =d(I)+v(l). Since we assumed that x, 1 and v are uncorrelated, we omit
the cross correlation terms in Eq. (7.34) and get

Py (1) %;’“’);(”H
n(H)n()?

+;#_¢Y(t)r_¢vl'

(7.35)
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Applying this to the weighted sum of the estimated covariance matrices used at the first
step of our proposed method, we get

tT

N N Y x(Ox()?
ZC;f’x (1) ~ ZCz I=1+(t-1)T
t=1 t=1 T
T 7.36
L oaom) (730
+Y o= +(:->T Y (¢, ()T +¢,1) |
=1 t=1

w

where the first term is a weighted sum of the sample covariance matrices for the

target sources and the remaining terms are unwanted errors that we will denote

by matrix W. Since n(l), for [ =14 (¢ —1)T,---,¢T, is assumed to follow a

circularly-symmetric complex Gaussian distribution with zero mean and covariance
1T

matrix Py (f) = ¢y(1)T+ ¢, I, the random matrix W; = Y n(O)n0)" has a

I=1+@-1)T
complex Wishart distribution ~ WS (T, Py (¢)) with T degrees of freedom [37]. The
expectation of W, is TPy (¢) [38]. Hence the expectation of W is

N N
E{W} :t; ctE{;iV’} —l;c,Pn (1)
N N 7.37
=Y TPa (1) —t:ZiCan (t) 730

T

t=1

=0.

The variance of the {i, j}-th element of W, is VaI{W,’i,j} =P, ;iPyj,; [38]. Hence the
summation of the variances of all the elements of W; is

N C
Y 5Puiibu (7.38)
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where the equality holds when citr (Pp (1)) = cotr (P (2)) = - -- = entr (Py (N)).  Since
tr(Pn (1)) = M (¢, (t) + ¢), we can choose ¢; = m to minimize the variances of the

error matrix.

The MVJD method is summarized in Algorithm 3.

Algorithm 8: MVID

Input: Estimated Py (t) ¢y(r) and @y, fort=1,--- N,
Output: A and P(¢) forr=1,--- N,

1 Estimate U and £ from EVD of YV | mf’x (1).

2 Construct new matrices Py (¢) for t = 1,--- N using Eq. (7.28).

3 Estimate V and P(¢) for t = 1,--- ,N using the Jacobi-like algorithm [36].
4 Estimate A with U, £ and V using Eq. (7.32).

5 Estimate A and P (¢) using A and P (7).

7.4. EXPERIMENTS

In this section, we evaluate the estimation performance of our proposed method in
various simulated acoustic scenarios using multiple microphones. We compare our
method to both the SOBI based method introduced in Section 7.3.2 and the SCFA
method [13] that we will introduce in Section 7.4.1. In Section 7.4.2, we evaluate the
different methods using performance measures for the estimation accuracy, the predicted
speech quality and the predicted speech intelligibility. Finally, the performances
including the computational complexity of all methods are presented and discussed in
Sections 7.4.3 and 7.4.4.

7.4.1. REFERENCE METHODS

In addition to the SOBI method introduced in Section 7.3.2, we include another
state-of-the-art method for comparison, which is the simultaneous confirmatory factor
analysis (SCFA) method [13]. The SCFA method is based on the maximum likelihood
cost function:

min

N
t=

log [Py (1)| +tr (By (1) Py (1)) (7.39)
1
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Specifically, the following non-convex optimization problem is formalized in [13]

argmin % log [Py (1) +tr (Py (1) P! (1))

P(r),A""!
¢Y()¢v
s.t. Py () = AP(z)AH+¢Y()r‘+¢v1, (7.40)
P(t) = diag[¢1 (¢),---, ¢& (1)],
alr*1¢r(t)2 ¢()>Oa¢v20a
fort=1,--- ,N;r=1,--- ,R.

Note that the signal model assumed here is the same as our proposed model in Eq. (7.8).
According to [13], a local minimum for Eq. (7.40) can be found by iteratively reducing
the cost function value. At each iteration, a non-linear constrained optimization problem
needs to be solved to update the parameters. The number of required iterations is
very large (e.g. in the order of 500) due to the non-convexity of the problem and the
high dimension of the parameters. Therefore, the SCFA method has a relatively high
computational cost.

7.4.2. EVALUATION MEASURES
ESTIMATION ACCURACY

Since the main goal of this work is to find accurate estimates of the parameters of
interest, we first introduce the estimation accuracy measures for the different parameters.

For the RTF matrix, to evaluate the alignment of the estimated RTF with the
ground-truth RTF, we calculate the Hermitian angle by means of

B K/Z+1 R |- (B.6)" 8- (B.4)|
i s <ar(ﬁ-k)25r(ﬁ7k)||2>

E, = (7.41)

BR(K/2+1) ’
where the error has been averaged over different sources, frequency bins and the number
of time segments B. For the PSD of the r-th source ¢, and the PSD of the late
reverberation ¢y, we use the symmetric log-error distortion measure [39]
10 } ‘log (?i<t’k>)‘
E— tkeQ ¢i(t7k) (7 42)
o Q| ’ ’
for i =r or y, where the index set Q is used to discard zero PSDs, as used in [40] and
|Q| is the cardinality of Q. For the errors of the source PSDs, we use E; to denote the
average value of them, i.e., E; = ——. Note that the error in Eq. (7.42) can be seen as
the summation of the overestimation error and the underestimation error, which are
10 mln{O lo (¢’(lk)>}’
Lo &\ Gwh)

E% = s 7.43
’ Ie] (7.49)
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and

10 Y max{O,log(
t1keQ

204 )}
|Q| '

respectively. In a noise reduction method, under or overestimates of target source PSDs
or noise/interference PSDs have each its own effect. When the target source PSDs have
large underestimation errors or the noise or interference PSD has large overestimation
errors, the target source obtained by a noise reduction algorithm using these estimates
typically has large distortions. On the other hand, if the estimate of the noise or
interference PSD has a large underestimation error, the reconstructed signal often comes
with musical noise [41]. Therefore, we will also present in detail the underestimation
errors and overestimation errors in the experiments.

EM = (7.44)

PREDICTED QUALITY AND INTELLIGIBILITY

Since the estimated parameters are commonly used in noise reduction algorithms, we
use the estimates in the well-known multi-channel Wiener filter (MWF) [42] and use the
MWEF outputs to reconstruct each point source signal. For estimating the r-th signal, the
MWEF can be expressed as a combination of a minimum variance distortionless response
(MVDR) beamformer [43] and a single-channel Wiener filter, which is

\ 0

= —— W:MVDR > (7.45)
' or+ WEMVDRRr,nnWr,MVDR ’
where w,.mvpr is the MVDR beamformer
ﬁ;rtlnﬁr
WiMVDR = e > (7.46)
a; nndr
and
A R ANA A A A ~
Row= Y daal+I+ol1. (7.47)
i=1,i#r

Note that the permutation ambiguity exists after estimating the RTF matrix and the
sources PSDs (i.e., we cannot determine which column of A belongs to which source for
different frequency bins). This problem is beyond the scope of this work and methods
on this topic, to name a few, were investigated in [35], [44], [45]. In the experiments
of this work, we use the oracle RTF matrix as guidance to permute the columns of the
estimated RTF matrix per time-frequency tile.

The predicted speech quality of each reconstructed signal is evaluated by calculating
the segmental-signal-to-noise-ratio (SSNR) [46] and the perceptual evaluation of speech
quality (PESQ) measure [47]. The predicted speech intelligibility performance is
evaluated by the speech intelligibility in bits (SIIB) measure [48], [49]. Alternately, we
select one of the R sources as the target and the remaining R — 1 sources as interferers.
We than average all measures we used in the experiments over these R different setups.
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7.4.3. EXPERIMENTS WITH SIMULATED RIRS
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Figure 7.3: Top view of the acoustic scene with a zoom-in of microphones.

The acoustic scene of the first experiment is shown in Fig. 7.3, where four
microphones and three sources are placed in the room with a dimension of 7 x5 x 4m.
The speech signals are downloaded from the TIMIT database [50]. To simulate the
reverberant signal recorded by each microphone, we convolve the speech signals (with a
duration of 33 s) with the room impulse responses (RIRs) generated by the image source
method [51]. The microphones are omnidirectional and the RIRs have a duration of 1
s. Then, to synthesize the noisy microphone signals, we add independently generated
white Gaussian noise to each reverberant signal. The variance of the noise is fixed at a
value calculated from given signal-to-noise ratios (SNRs). The SNR value is the ratio
between the overall energy of the direct and early reflections of the first speech signal at
position (3.49,2.5) and the energy of the noise component at the first microphone.

The microphone signals are sampled at a frequency of f; = 16 kHz after which they
are transformed to the frequency domain by the STFT procedure, in which the 50 %
overlapping square-root Hann window with a length of 32 ms and the FFT length of
512 are used. Note that the window length is the same as the sub-time frame length
and also equals the early part of the RIRs. Each time frame has 7 = 20 overlapping
sub-time frames and thus a duration of 0.32 s. Note that this duration can be longer than
the actual speech source stationary period and the PSDs can be seen as the averages of
the PSDs over each time frame.

PERFORMANCE COMPARISON

In Fig. 7.4, we present the performance comparison among our proposed method and
the two reference methods, where we adjust the reverberation time from 0.2 s to 1 s.
The number of time frames per segment is 8 and the SNR is fixed at 30 dB. We first
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Figure 7.4: Performance vs the late reverberation time. In Figs. b and c, the top gray
bars indicate the underestimation errors, and the bottom colored bars indicate
overestimation errors.
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show the RTF estimation error calculated by Eq. (7.41) in Fig. 7.4a. The error for each
method increases as the room becomes more reverberant. Our proposed MVID method
has similar performance compared to SCFA, which both outperform the SOBI method.
In Figs. 7.4b and 7.4c, we show the PSDs estimation error calculated by Eq. (7.42). For
each bar (each overall error), we also show the overestimation error using the bottom
colored bar and the underestimation error using the top gray bar. In Fig. 7.4b, we
show the source PSD estimation errors, where the errors also become larger when the
reverberation time increases. Our proposed method has the smallest error compared
to SOBI and a slightly larger overestimation error compared to SCFA. In particular,
the underestimation error (gray bar) of our proposed method outperforms the other two
methods. In Fig. 7.4c, the late reverberation PSD errors are presented. For visibility,
parts of the bars over 20 dB are not shown. Note that we use our proposed late
reverberation estimator in both SOBI and our proposed MVID. The ‘EPS’ method in
Fig. 7.4c refers to replacing the negative estimates from Eq. (7.12) with &, the machine
precision, as used in [12]. Our proposed estimator has similar errors compared to SCFA,
both of which are much smaller than EPS. Note that the overestimation errors of our
method are smaller than SCFA. In Figs. 7.4d to 7.4f, it is shown that our proposed
method and SCFA outperform SOBI in general regarding to the predicted speech quality
and speech intelligibility evaluated by SSNR, PESQ and SIIB. Note that our proposed
method has better predicted intelligibility and predicted quality in terms of PESQ but a
worse SSNR than SCFA.

In Fig. 7.5, we compare all the methods while changing the noise level by increasing
the SNR from O dB to 40 dB. The number of time frames per segment is again eight
and the reverberation time is fixed at 0.4 s. The RTF estimation error is first shown in
Fig. 7.5a. For all the methods, the RTF error is relatively small for high SNR. Our
proposed MVID method has the best performance, which outperforms SCFA at low
SNR values and outperforms SOBI at high SNR values. In Fig. 7.5b, the source PSD
estimation errors also reduces when the SNR increases. Our proposed method has the
smallest underestimation errors, while the SCFA method has the smallest overestimation
errors. In Fig. 7.5c, the late reverberation PSD errors are compared, where our proposed
late reverberation estimator and SCFA have much smaller errors compared to using the €
procedure. For visibility, parts of the bars over 20 dB are again not shown. Note that the
overestimation errors of our method are smaller than SCFA, both which decreases when
the SNR increases. In Figs. 7.5d to 7.5f, it is also shown that our proposed method and
SCFA outperform SOBI in general regarding to the predicted speech quality and speech
intelligibility.

Fig. 7.6 shows the performance comparison for different time segment durations (i.e.,
different numbers of time frames per segment). For visibility, parts of the bars over
20 dB in Fig. 7.6c are not shown. Our proposed method and the SCFA method
still outperform the SOBI method in estimation errors, speech quality and speech
intelligibility.

To evaluate the impact of the three robustification steps we proposed for the late

reverberation estimator, we compared the estimation errors using different steps, where
we fixed reverberation time at 0.4 s, SNR at 30 dB and the number of time frames at 8.



7.4. EXPERIMENTS

139

1 ——SCFA
F ——MVJD
—~ —=—SOBI
% 0.8
Si
0.6 A
*
0.4
0 10 20 30 40
SNR (dB)
(a) RTF error.
20
15
g
~ 10
S
5 H
0
0 10 20 30 40
SNR (dB)
(c) Late reverb PSD error.
120
3
100 i
1]
é 80
[an)]
= 60
” —+-SCFA
40 —+—MVJD
i —-=SOBI
20
0 10 20 30 40
SNR (dB)

(e) SIIB performance.

Figure 7.5: Performance vs SNR. In Figs.
the underestimation errors, the bottom colored bars indicate overestimation

30

E; (dB)

Il SCFA
EEMVJD

0 10 20 30 40
SNR (dB)
(b) Source PSD error.
2.4
4
2.2
2 2
Z18
@ ——SCFA
1.6 ——MVJD
1.42 —-=-SOBI
0 10 20 30 40
SNR (dB)
(d) SSNR performance.
1.8
¥
1.6
3
n
&
Q-‘ »
1.4 ——SCFA
——MVJD
—-=—SOBI
1.2
0 10 20 30 40
SNR (dB)

(f) PESQ performance.

b and c, the top gray bars indicate

errors.
Table 7.1: Estimation errors using different steps.
E, E; Ey EM | EYY | EY | EY
Step 1 0.52 | 10.19 | 43.50 | 1.31 | 8.89 | 43.48 | 0.02
Step 1+2 | 0.52 | 10.62 | 7.01 | 1.99 | 8.62 | 6.87 | 0.14
Step 14243 | 0.52 | 10.32 | 7.40 | 1.60 | 8.72 | 7.33 | 0.07
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Figure 7.6: Performance vs the number of time frames per segment. In Figs. b and c,
the top gray bars indicate the underestimation errors, the bottom colored bars
indicate overestimation errors.
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We can see from the table that by adding step 2 after step 1, the late reverberation PSD
error is reduced a lot. Adding step 3 after step 2 shows slight reduction on the error
of the source PSDs. The reason is that without step 3, the covariance matrices for the
sources might not have R positive eigenvalues, which will likely lead to negative source
PSD estimates that will be replaced by small positive value like eps, resulting in a huge
underestimation error of the source PSDs for that frequency bin. However, the overall
improvement is not big as step 3 is only executed for some time-frequency bins. The
average iteration number of the frequency bins executing step 3 in this experiment is
0.05 (with the total number of frequency bins 257).

7.4.4. EXPERIMENTS WITH RECORDED RIRS

Phd \ | ! =
'y ' 1 /
PRGN \ | /
\ ~
450 - \ \ | / N
40", \ ) ! 7 N 45°
EN \ \ | ! / e
/N \ \ 1 / z
4 N \ \ ! / / 4 N
7 N \ I / .
, N \ / L \
, N \ \ | , ’ L, \
o N \ \ | , / P N
N N \ | / . 2
;s R \ \ A / / a PN
~ N \ / , -
/ S N \ \ | / / - P \
~ N 4 7 - \
/ ~ o N \ \ ! / / , -
! ~ N \ Vool ’ , -7
. RS N A -7
LT~ N S S A -7 -
| -~ ~ NN h / - -
| T-a N N / Phe -
-~ ~ NN A _ - |
I S me— NV, -
h > ~ N [ 90°
00 . 0O000000} - ‘

Figure 7.7: Geometric setup of the acoustic scene [52] with big red circles representing
the positions of sources. From left to right, as shown by the blue arrow, the
first M microphones are used with M changing from 4 to 8.

SETUP

In this section, we use RIRs recorded in a real room with dimension 6 X 6 x 2.4 m [52].
We consider two scenarios in this experiment. For the first scenario with three sources,
the geometric positions of the sources and the microphones are shown in Fig. 7.7. The
microphones form a uniform linear array with 8 cm interdistance. The data base in [52]
contains RIRs measured at a 2 m distance from the microphone array center at different
angles. We convolve the RIRs at 0°, 30° and 75° with different speech signals. We also
add white Gaussian noise to simulate the microphone self-noise. For the second scenario
with two sources, where one source is fixed at an angle of 15° and the other source is
placed at different angles ranging from 0° to 90° in steps of 15°. We use the same STFT
procedure as we used in the first experiment to transfer the time domain signals to the
frequency domain.
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PERFORMANCE COMPARISON
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Figure 7.8: Performance vs the number of microphones. In Figs. b and c, the top gray
bars indicate the underestimation errors, the bottom colored bars indicate
overestimation errors.

In Fig. 7.8, we show the performance comparison for three sources for all methods as
a function of the number of microphones. The SNR is 30 dB and the reverberation time
is 0.36 s. Note that when using a larger number of microphones, the theoretical spatial
coherence matrix calculated by Eq. (7.7) can be close to singular, particularly for low
frequency bins as observed in our experiments. To avoid numerical issues, we regularize
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such matrices by I' =T+ uI with . = 1073 in this experiment. In terms of RTF errors
in Fig. 7.8a, MVJID and SCFA show similar performance and both outperform SOBI.
In terms of the source PSD errors in Fig. 7.8b, SCFA has a lower underestimation
error than MVID, but MVJD has lower overestimation errors than SCFA. In terms
of the predicted speech quality and intelligibility performance as shown in Figs. 7.8d
to 7.8f, our proposed method has performances close to the SCFA method, while both
outperform the SOBI method.
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Figure 7.9: Performance vs source position. In Figs. b and c, the top gray bars
indicate the underestimation errors, and the bottom colored bars indicate
overestimation errors.
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In Fig. 7.9, we show the performance comparison for two sources for all methods for
different positions of the second source ranging from 0° to 90° by every 15°. It is
shown that the performances, on both estimation errors and predicted speech quality and
intelligibility, do not change much with different positions of the second source. MVJD
shows comparable performance with SCFA, which both greatly outperforms SOBI. We
also show the predicted speech quality and intelligibility performance when using oracle
parameters to calculate the MWEF, which is referred to as ’OR’ in Fig. 7.9.

In previous experiments, the maximum number R of sources per time segment and
frequency is assumed known. In practice, it needs to be estimated using methods such
as [26], [27]. The estimated R can be smaller, equal or larger than R. To evaluate
this problem, we show in Table 7.2 the predicted speech quality and intelligibility
performance of our proposed method for R — R being —1, 0 and 1. We considered two
sources placed at 0° and 60°. It is shown that our proposed method with overestimated
R =R+1 is similar to the case of R = R. However, the performance with underestimated
R =R—1 is much worse than the other cases.

Table 7.2: Predicted speech quality and intelligibility comparison.
R—R -1 0 1
SSNR | 0.92 393 3.80
SIIB 163.92 | 316.60 | 318.26
PESQ 1.00 2.04 2.01

Finally, we show the computation time using MATLAB for processing the microphone
signals with a duration of 33 s using different methods and different number of
microphones in Table 7.3. We can see that the SCFA method needs the longest run time,

Table 7.3: Computation time (in s) comparison.

M 4 5 6 7 8
SCFA | 3523 | 3708 | 4362 | 5169 | 5768
MVID 9 10 11 8 8
SOBI 8 11 10 9 9

which increases as the number of microphones increases. Our proposed method and the
SOBI method have a similar run time, which is in the order of 700 times faster than
SCFA. For our proposed method, The computation time of the late reverberation PSD
estimator mainly comes from iterative steps with EVD. The average iteration number for
each frequency bin is less than 1 as observed in our experiments. In practice, it depends
on the accuracy of given noise PSDs. The computation cost of the RTF matrix and
source PSDs estimator mainly comes from the joint diagonalization algorithm, which
is in the order of R3. Based on the analysis, if the overall iteration number for the
late reverberation PSD estimator is /, the computational complexity of the proposed
algorithm is in the order of IM> + R.
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7.4.5. EXPERIMENTS WITH REAL RECORDINGS
SETUP

In this section, we used signals recorded by four microphones mounted on a dummy
head in the BRUDEX Database [53], i.e., including natural reverberation. We considered
two sources, speaker 1 at 0 © and speaker 2 at 60 ° with medium reverberant condition
in [53]. The sampling frequency is 48000 Hz in this experiment and the FFT length
is 2048. The other settings for the STFT procedure are the same as the previous two
experiments. Note that besides the real recordings, the RIRs were also measured in [53],
with which we can simulate source components such as the late reverberation. For the
spatial coherence matrix of the late reverberation, we calculate it using the simulated
late reverberation component by

Ld (L,k)d;(1, k)"

(7.48)

\/Z|d ()P [E]d;0.8)

For the noise component, we assume a spatially white (spectrally non-white) model and
use the first second recordings (speech absent duration) to measure the noise PSD for
each frequency bin. Note that in this experiment, we added another reference method,
ARMA-FastMNMF [54] as a comparison to a state-of-the-art speech enhancement
method. For ARMA-FastMNMF, we used the following parameters: number of speech:
2, speech model: NMF, number of noise: 0, tap length of the MA model Ly4 = 8, tap
length of the AR model Lsr =4, delay of the late reverberation A =1 and the Iterative
Source Steering (ISS) algorithm was used. Note that all methods were run in a device
with Intel(R) Core(TM) i7-10610U CPU @ 1.80GHz 2.30 GHz without using GPU.
Notice that ARMA-FastMNMF does not estimate the underlying parametric model (as
the proposed method and SCFA), but directly performs the source separation.

PERFORMANCE COMPARISON

In Fig. 7.10, we evaluate the predicted speech quality and intelligibility performance of
all methods. As shown in the figures, our proposed method outperforms SOBI in all
measures and outperforms ARMA-FastMNMF in PESQ and SIIB. We also show the
computation time normalized by the time it takes for MVJD in Table 7.4. We can see
that although SCFA has the best performance in this experiment, its computation time
is again very high compared to MVID. Also, MVJD is about 150 times faster than the
ARMA-FastMNMF method.

Table 7.4: Computation time comparison.
Methods SCFA | MVJID | SOBI | ARMA-FastMNMF
Normalized run time | 843.56 1 0.89 154.41
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Figure 7.10: Predicted speech quality and intelligibility performance comparison.

7.5. CONCLUDING REMARKS

In this chapter we considered the complex scenario where multiple sources, late
reverberation and noise exist concurrently. For this scenario, we proposed a joint
estimator of the parameters include the RTFs of the sources and the PSDs of the sources
and the late reverberation. We first proposed a late reverberation PSD estimator that
does not require the knowledge of the RTFs. Then we proposed the minimum variance
joint diagonalization (MVJD) method to estimate the RTFs and the PSDs of the sources.
The proposed MVJD method is more robust than the existing joint-diagonalization SOBI
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method, since we considered an optimal linear combination of a set of covariance
matrices instead of only the first one as done with SOBI. The optimality is obtained
by minimizing the variances of the error matrix of the linearly combined sample
covariance matrices. Experiments demonstrated that our proposed method outperforms
the SOBI method in terms of estimation errors, the predicted speech quality and the
speech intelligibility. The results also show that our proposed method achieves similar
performance compared to the state-of-the-art SCFA method but has a significantly lower
computational complexity.







(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

REFERENCES

K. L. Payton, R. M. Uchanski, and L. D. Braida, “Intelligibility of conversational
and clear speech in noise and reverberation for listeners with normal and impaired
hearing”, J. Acoust. Soc. Amer., vol. 95, no. 3, pp. 1581-1592, Mar. 1994.

J. Xia, B. Xu, S. Pentony, J. Xu, and J. Swaminathan, “Effects of reverberation
and noise on speech intelligibility in normal-hearing and aided hearing-impaired
listeners”, J. Acoust. Soc. Amer., vol. 143, no. 3, pp. 1523—-1533, Mar. 2018.

J. Benesty, J. Chen, and Y. Huang, Microphone array signal processing. Springer
Science & Business Media, 2008, vol. 1.

R. C. Hendriks, T. Gerkmann, and J. Jensen, DF T-domain based single-microphone
noise reduction for speech enhancement. Springer Nature, 2022.

E. Vincent, R. Gribonval, and M. D. Plumbley, “Oracle estimators for the
benchmarking of source separation algorithms”, Signal Process., vol. 87, no. 8§,
pp. 1933-1950, 2007.

L. Parra and C. Spence, “Convolutive blind separation of non-stationary sources”,
IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320-327, 2000.

A. Kuklasinski, S. Doclo, S. H. Jensen, and J. Jensen, “Maximum likelihood PSD
estimation for speech enhancement in reverberation and noise”, IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 24, no. 9, pp. 1599-1612, 2016.

S. Markovich-Golan and S. Gannot, “Performance analysis of the covariance
subtraction method for relative transfer function estimation and comparison to the
covariance whitening method”, in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2015, pp. 544-548.

B. Schwartz, S. Gannot, and E. A. Habets, “Two model-based EM algorithms for
blind source separation in noisy environments”, IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 25, no. 11, pp. 2209-2222, 2017.

I. Kodrasi and S. Doclo, “Analysis of eigenvalue decomposition-based late
reverberation power spectral density estimation”, IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 26, no. 6, pp. 1106-1118, 2018.

I. Kodrasi and S. Doclo, “Joint Late Reverberation and Noise Power Spectral
Density Estimation in a Spatially Homogeneous Noise Field”, in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2018, pp. 441-445.

149



150

REFERENCES

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

M. Tammen, S. Doclo, and 1. Kodrasi, “Joint Estimation of RETF Vector and
Power Spectral Densities for Speech Enhancement Based on Alternating Least
Squares”, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process., 2019,
pp- 795-799.

A. L. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, “Robust joint
estimation of multimicrophone signal model parameters”, IEEE/ACM Trans.
Audio, Speech, Language Process., vol. 27, no. 7, pp. 1136-1150, 2019.

J. Zhang, R. Heusdens, and R. C. Hendriks, “Relative acoustic transfer function
estimation in wireless acoustic sensor networks”, IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 27, no. 10, pp. 1507-1519, 2019.

Y. Laufer and S. Gannot, “Scoring-Based ML Estimation and CRBs for
Reverberation, Speech, and Noise PSDs in a Spatially Homogeneous Noise Field”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 28, pp. 61-76, 2020.

T. Dietzen, S. Doclo, M. Moonen, and T. van Waterschoot, “Square Root-Based
Multi-Source Early PSD Estimation and Recursive RETF Update in Reverberant
Environments by Means of the Orthogonal Procrustes Problem”, IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 28, pp. 755-769, 2020.

P. Hoang, Z.-H. Tan, J. M. de Haan, and J. Jensen, “Joint Maximum Likelihood
Estimation of Power Spectral Densities and Relative Acoustic Transfer Functions
for Acoustic Beamforming”, in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., 2021, pp. 6119-6123.

C. Li, J. Martinez, and R. C. Hendriks, “Joint Maximum Likelihood Estimation
of Microphone Array Parameters for a Reverberant Single Source Scenario”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 31, pp. 695-705, 2023.

C. Li and R. C. Hendriks, “Alternating least-squares-based microphone array
parameter estimation for a single-source reverberant and noisy acoustic scenario”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 31, pp. 3922-3934,
2023.

J. S. Bradley, H. Sato, and M. Picard, “On the importance of early reflections for
speech in rooms”, J. Acoust. Soc. Amer., vol. 113, no. 6, pp. 3233-3244, 2003.

D. Cherkassky and S. Gannot, “Successive Relative Transfer Function Identification
Using Blind Oblique Projection”, IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 28, pp. 474-486, 2020.

H. Gode and S. Doclo, “Covariance Blocking and Whitening Method for
Successive Relative Transfer Function Vector Estimation in Multi-Speaker
Scenarios”, in Proc. IEEE Workshop Appl. Signal Process. Audio, Acoust., 2023,
pp- 1-5.

Y. Laufer, B. Laufer-Goldshtein, and S. Gannot, “ML Estimation and CRBs
for Reverberation, Speech, and Noise PSDs in Rank-Deficient Noise Field”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 28, pp. 619-634, 2020.



REFERENCES 151

(24]

[25]

(26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]
[34]

(35]

(36]

(37]

S. Braun, A. Kuklasifiski, O. Schwartz, O. Thiergart, E. A. Habets, S. Gannot,
S. Doclo, and J. Jensen, “Evaluation and comparison of late reverberation power
spectral density estimators”, IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 26, no. 6, pp. 1056-1071, 2018.

A. Belouchrani, K. Abed-Meraim, J.-F. Cardoso, and E. Moulines, “A blind source
separation technique using second-order statistics”, IEEE Trans. Signal Process.,
vol. 45, no. 2, pp. 434-444, 1997.

B. Laufer-Goldshtein, R. Talmon, and S. Gannot, “Source counting and separation
based on simplex analysis”, IEEE Trans. Signal Process., vol. 66, no. 24,
pp- 6458-6473, 2018.

H. Sun, P. Samarasinghe, and T. Abhayapala, “Blind source counting and
separation with relative harmonic coefficients”, in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2023, pp. 1-5.

S. Gannot, D. Burshtein, and E. Weinstein, “Signal enhancement using
beamforming and nonstationarity with applications to speech”, IEEE Trans. Signal
Process., vol. 49, no. 8, pp. 1614-1626, 2001.

C. Li and R. C. Hendriks, “Adaptive time segmentation for improved signal model
parameter estimation for a single-source scenario”, in Proc. IEEE Asilomar Conf.
Signals, Syst., Comput., 2023, pp. 1106-1111.

S. Braun and E. A. Habets, “Dereverberation in noisy environments using
reference signals and a maximum likelihood estimator”, in Proc. EURASIP Eur.
Signal Process. Conf., 2013, pp. 1-5.

E. A. P. Habets and S. Gannot, “Generating sensor signals in isotropic noise
fields”, J. Acoust. Soc. Amer., vol. 122, no. 6, pp. 3464-3470, Dec. 2007.

S. Gannot, E. Vincent, S. Markovich-Golan, and A. Ozerov, “A consolidated
perspective on multimicrophone speech enhancement and source separation”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 25, no. 4, pp. 692-730,
2017.

H. Kuttruff, Room acoustics. Crc Press, 2016.

B. F. Cron and C. H. Sherman, “Spatial-correlation functions for various noise
models”, J. Acoust. Soc. Amer., vol. 34, no. 11, pp. 1732-1736, 1962.

H. Sawada, S. Araki, R. Mukai, and S. Makino, “Grouping Separated Frequency
Components by Estimating Propagation Model Parameters in Frequency-Domain
Blind Source Separation”, IEEE/ACM Trans. Audio, Speech, Language Process.,
vol. 15, no. 5, pp. 1592-1604, 2007.

J.-F. Cardoso and A. Souloumiac, “Jacobi angles for simultaneous diagonalization”,
SIAM J. Mat. Anal. Appl., vol. 17, no. 1, pp. 161-164, Jan. 1996.

N. R. Goodman, “Statistical Analysis Based on a Certain Multivariate Complex
Gaussian Distribution (An Introduction)”, Ann. Math. Stat., vol. 34, no. 1,
pp. 152-177, 1963, 1SSN: 00034851.




152

REFERENCES

[38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]

[46]
[47]

(48]

[49]

[50]

[51]

[52]

D. Maiwald and D. Kraus, “On moments of complex Wishart and complex inverse
Wishart distributed matrices”, in Proc. IEEE Int. Conf. Acoust., Speech Signal
Process., vol. 5, 1997, 3817-3820 vol.5.

R. C. Hendriks, J. Jensen, and R. Heusdens, “DFT domain subspace based noise
tracking for speech enhancement”, in Proc. Interspeech, 2007, pp. 830-833.

J. S. Erkelens, R. C. Hendriks, R. Heusdens, and J. Jensen, “Minimum
Mean-Square Error Estimation of Discrete Fourier Coefficients With Generalized
Gamma Priors”, IEEE/ACM Trans. Audio, Speech, Language Process., vol. 15,
no. 6, pp. 1741-1752, 2007.

T. Gerkmann and R. C. Hendriks, “Unbiased MMSE-based noise power estimation
with low complexity and low tracking delay”, IEEE Trans. Audio, Speech,
Language Process., vol. 20, no. 4, pp. 1383-1393, 2011.

H. L. V. Trees, Optimum Array Processing. John Wiley & Sons, Inc., Mar. 2002.

M. Brandstein and D. Ward, Microphone Arrays: Signal Processing Techniques
and Applications. Springer Science & Business Media, 2013.

R. Mukai, H. Sawada, S. Araki, and S. Makino, “Frequency-domain blind source
separation of many speech signals using near-field and far-field models”, EURASIP
J. Adv. Signal. Process., vol. 2006, pp. 1-13, 2006.

D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos, “Batch and
adaptive  PARAFAC-based blind separation of convolutive speech mixtures”,
IEEE/ACM Trans. Audio, Speech, Language Process., vol. 18, no. 6, pp. 1193—
1207, 2009.

P. C. Loizou, Speech enhancement: theory and practice. CRC press, 2007.

[.-T. Recommendation, ‘“Perceptual evaluation of speech quality (PESQ): An
objective method for end-to-end speech quality assessment of narrow-band
telephone networks and speech codecs”, Rec. ITU-T P. 862, 2001.

S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An instrumental intelligibility
metric based on information theory”, IEEE Signal Process. Lett., vol. 25, no. 1,
pp. 115-119, 2017.

S. Van Kuyk, W. B. Kleijn, and R. C. Hendriks, “An evaluation of intrusive
instrumental intelligibility metrics”, IEEE/ACM Trans. Audio, Speech, Language
Process., vol. 26, no. 11, pp. 2153-2166, 2018.

J. S. Garofolo, L. F. Lamel, W. M. Fisher, D. S. Pallett, N. L. Dahlgren, V. Zue,
and J. G. Fiscus, TIMIT Acoustic-Phonetic Continuous Speech Corpus, 1993.

J. B. Allen and D. A. Berkley, “Image method for efficiently simulating
small-room acoustics”, J. Acoust. Soc. Amer., vol. 65, no. 4, pp. 943-950, 1979.

E. Hadad, F. Heese, P. Vary, and S. Gannot, “Multichannel audio database in
various acoustic environments”, in Proc. IEEE Int. Workshop Acoust. Signal
Enhanc., Sep. 2014.



REFERENCES 153

(53]

[54]

D. Fejgin, W. Middelberg, and S. Doclo, “BRUDEX Database: Binaural Room
Impulse Responses with Uniformly Distributed External Microphones”, in Speech
Commun.; 15th ITG Conference, 2023, pp. 126-130.

K. Sekiguchi, Y. Bando, A. A. Nugraha, M. Fontaine, K. Yoshii, and T. Kawahara,
“Autoregressive moving average jointly-diagonalizable spatial covariance analysis
for joint source separation and dereverberation”, IEEE/ACM Trans. Audio, Speech,
Language Process., vol. 30, pp. 2368-2382, 2022.







8

ADAPTIVE TIME
SEGMENTATION FORIMPROVED
SIGNAL MODEL PARAMETER
ESTIMATION FORA
SINGLE-SOURCE SCENARIO

This chapter is based on the article published as: C. Li and R. C. Hendriks. “ADaptive Time
Segmentation for Improved Signal Model Parameter Estimation for a Single-Source Scenario”. In: Proc.
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Late

Figure 8.1: Illustration of a single source, reverberant scenario.

In this chapter, we will answer the research question 3 presented in Fig. 1.4 by
proposing an adaptive time segmentation method. This method can be combined with
estimators such as JMLE from Chapter 3 or JALS from Chapter 5. We will consider
the combination with JMLE under the single source reverberant scenario, as shown in
Fig. 8.1, although the combination with other estimators can be developed similarly.

Estimating the parameters that describe the acoustic scene is very important for many
microphone array applications. For example, consider the power spectral densities
(PSDs) or relative acoustic transfer functions (RTFs) that are required when estimating
a particular sound source using multi-microphone noise reduction. State-of-the-art
algorithms estimate the parameters per segment, where each segment consists of a fixed
number of time frames. These algorithms exploit the assumption that PSDs are constant
per time frame, and RTFs are constant per segment. However, in practice, sound sources
will move relative to the microphone array. Improved performance is therefore expected
when the actual time frames that are used to form the segments are adapted such that
time frames all share the same (unknown) RTF. In this chapter, we therefore present an
algorithm to obtain an optimal adaptive time segmentation and combine this with our
previously published joint maximum likelihood estimator (JMLE) for jointly estimating
the RTF, source PSD and late reverberation PSD of a single source in a reverberant
environment.
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8.1. INTRODUCTION

In hand-free speech communication applications such as hearing aids and mobile phones,
microphone arrays are commonly used to enhance the quality and intelligibility of the
target signal as the microphone signals are typically corrupted by late reverberation and
ambient noise. Typically, this is done using spatial filtering techniques. However, these
techniques depend on acoustic scene-related parameters such as the relative transfer
function (RTF) of the target signal and the power spectral densities (PSDs) of the target
signal, the late reverberation and the ambient noise, which are typically unknown in
practice. Therefore, it is essential to estimate these parameters.

Speech signals are non-stationary in nature, but can be assumed stationary for a very
short duration of about 10~30 ms. This results in the fact that the PSD of each acoustic
component is constant for only a short duration. However, the RTF can be assumed
constant as long as the sound source does not move relative to the microphone array.
Typically, the duration that the source is static (defined here as a time segment) is longer
than the duration that the speech source is stationary (defined here as a time frame).
Hence, each time segment might contain multiple time frames that share the same RTF.

Recently, several estimation methods have been proposed to estimate the RTF and the
PSDs using multiple time frames [1], [2] instead of a single time frame [3]-[10]. The
methods using multiple time frames always outperform the methods using a single time
frame as long as the sound source is indeed static during the time segment. However, if
the source or array changes position or the room acoustics change, the methods using
time segments during which the RTF is time-varying have worse estimation performance
than when the time segment would be selected such that the underlying RTF is
time-invariant. Therefore, in this chapter, we present an algorithm to obtain an adaptive
time segmentation and combine this with our previously published joint maximum
likelihood estimator (JMLE) [2] for jointly estimating the RTF, source PSD and late
reverberation PSD of a single source in a reverberant environment. Notice that the use
of an adaptive time segmentation in the speech enhancement context has been proposed
before, e.g., [11], for improved estimation of the PSDs used in single-microphone noise
reduction algorithm. In the current work, we present a different segmentation algorithm
for the multi-microphone context based on the inner product of a sequence of initial
RTF estimates. In combination with the recently proposed JMLE algorithm, this leads to
improved estimates of the RTF and PSDs.

8.2. PRELIMINARIES

We consider a single acoustic point source observed by a microphone array in a
reverberant environment. The source changes to new positions at unknown moments,
which means it is spatially fixed for unknown time durations. The time duration that the
source does not move will be referred to as a time segment indexed by . The f3-th
time segment consists of one or multiple time frames from 7g to ([B +Tp — 1), where
Tg is the number of time frames for the fB-th time segment. Within a time frame, the
speech source is assumed to be stationary. The time frame will be indexed by ¢. Each
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time frame 7 contains multiple overlapping sub-time frames. See Fig. 8.2 for a visual
interpretation. We use the short-time Fourier transform (STFT) to transfer the signal

A
\J

TS

) |

time

Figure 8.2: Visualisation of the definition of time segment (TS), time frames (TF) and
sub frames (SF).

received at the m-th microphone into the frequency domain, leading to
Y (1, k) = xm (1,k) + 1 (LK), (8.1)

with [ the sub-time frame index, k the frequency bin index, and m the microphone
index. In Eq. (8.1), x,,, denotes the direct and early reflections of the source. Variable r,,
denotes the late reverberation, which is the sum of all the late reflections of the source.
Using the relative transfer function (RTF) between the microphones, we can model x,, as

Xm (Lk) = aw (1,k) s (1,k), 8.2)

with s (/,k) the direct component and early reflections at the reference microphone (the
1% microphone in this work) and a, (I,k) the RTF of the source from the reference
microphone to the m-th microphone. In vector form, all M microphone signals in the
STFT domain can be expressed as

y(L,k) =a(l,k)s(l,k)+r(l,k) e C¥*1. (8.3)

Assuming that the early reflections and the late reverberation that fall in one sub-time
frame are uncorrelated and zero-mean, we can write the covariance matrix of y (/,k) as

Py (1,k) 2 Py (1,k) + Pr (1,K), (8.4)

where Py AE {yyH } with E {-} the expectation operator. Matrices Px and P, are defined
in the same way as Py. For Py (/,k), we have

Py (1,k) = ¢ (1,k)a(l,k)a (1,k), (8.5)
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where ¢ (1,k) 2E {|s(l,k)\2} is the PSD of the source at the reference microphone.

For the late reverberation, we assume a spatially homogeneous sound field model
P, (1,k) = ¢y (1,k)T (k), (8.6)

where ¢y ([,k) is the unknown time-varying PSD of the late reverberation and I'(k) is
the known time-invariant spatial coherence matrix, which can be calculated using the
microphone array geometry [12].

8.2.1. PROBLEM FORMULATION
By using Eqgs. (8.5) and (8.6), we formulate the noisy covariance matrix as

Py (1,k) = ¢s(t, k) a(B, k) a" (B, k) + ¢y (t,k)T(k), (8.7)

where we assumed the microphone signals are stationary over a time frame ¢ consisting
of the L sub-time frames indexed by [ = 1+ (r— 1)L, till ] =¢L; and the RTF stays
constant over a time segment 3 consisting of the time frames indexed by t =15 till
t =tg+1Tg — 1. Based on the stationarity assumption, we can estimate Py (z,k) using the

R 1L

sample covariance matrix Py (1,k) =1/Ly Y y(l,k)y" (I;,k). Assuming that the
I=1+(r—1)Ly

RTF is constant for all time frames in a time segment (i.e., t € [tﬁ,tlg +1p— 1} ), we can

use the set {Py(t7k)}§£+TB_l jointly to estimate a (f3,k).

The aim of this work is to estimate the time segment indices {t[;, Tﬁ} using the fact
that the true but unknown RTFs are the same in the time frames from a single segment.
Note that r; =1 and the last time frame of the (8 — 1)-th time segment should be
followed by the first time frame of the §-th time segment (i.e.,tg = t5_; + Tg_;). Since
we determine the time segments sequentially, we know {tﬁ,l,Tﬁ,l} when determining
the B-th time segment. Therefore, 75 is known as well and we only need to estimate 7.

8.3. JMLE

We first present the algorithm for joint MLE of the parameters a and { ¢, () , ¢y (1) }[ﬁ gl

t=tﬁ

for a given time segment [tﬁ,tﬁ +Tp — 1}. Note that this is based on our work recently
published in [2]. In the next section, we will then propose the algorithm to determine
{T[; } Note that only in this section, we omit the frequency indexes for the simplicity of
notation.

With the assumption that all the time frames are independent and the STFT coefficients
are complex Gaussian distributed, we can write the negative log-likelihood function of
the STFT coefficients (up to a constant and scale) as

t5+Tﬁ71 R
L=— Y [log[Py(r)|+tr(Py(r)Py" (1))]. (8.8)

I:IB
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Then, using the reparameterization 4 = —~—=2_ and ¢, (1) = ¢ (r)a"T 'a, we

reformulate the covariance matrix in Eq. (8.7) as
Py (t) =L (¢, (r)aa" + ¢, (1) I) L, (8.9)

where L is the Cholesky factor of ' (i.e. I' =LLf). The MLE cost function then
becomes [2]

tﬁ+Tﬁ71

s "5 a0 607

i (9, ()P (1) (8.10)

where Py, = L~ 'PyL 1.

To solve the above optimization, we first find initial estimates of the parameters
by considering each time frame independently (as explained in Section 8.3.1). This
initialisation step does thus not require a segmentation algorithm as it works on the
individual time frames. After the initialisation, alternating estimation between a and

{0, (t),(by(t)}ii;TVI is performed (see Section 8.3.2), which thus can benefit from a

correct segmentati on.

8.3.1. INITIALISATION

When considering a single time frame, the cost function reduces to

remin 1og (50,0 (0()" )]

1 (9 ()P 1)) 8.11)

_ ¢Y (t)_z(ﬁs (t) ﬁHf,w ([)ﬁ
L+ 6y ()76 (1) ’

where only the last term depends on a with a negative coefficient. Hence, the
MLE-optimal a based on a single time frame is the solution to

argmax a’’Py, (1), (8.12)

a

which is the principal eigenvector of Py (¢). Note that the initialization step does not use
the prior information that all time frames in a time segment share the same RTF. Let T
denote the maximum size of a segment. For the T time frames that could potentially
form the B-th time segment, we will have T different estimates of a at this step. These
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X 1g+T—1
are denoted by {ﬁ(t)} b . These estimates will be used for the time segmentation
t=tﬁ

algorithm to find the actual length 7 of the B-th time segment in Section 8.4.

With the estimated RTF & (¢), we can find the optimal estimates of ¢ () and @, (¢) by
substituting ﬁ(t) into Eq. (8.11) [2], that is,

s M (1) —tr (Py (1))

s (1) 1 , (8.13)
qu/(t) _ tr(Pw (t)) _A'max (t) (8.14)

M—1 ’

where Amax (f) is the principal eigenvalue of Py ().

8.3.2. ALTERNATING ESTIMATION

N . tg+Tg—1
The initial estimates of the PSDs {(])s (1),0y (t)} P7P can be substituted into the cost
t=tﬁ

function in Eq. (8.10) to estimate the RTF using all time frames in the time segment

jointly
lﬁ%»Tﬁ*l 2
argmax Y ( o) 1 ﬁHf’w(t)ﬁ>, (8.15)
a = \ Py () + 05 (t) Py (1)

which is the principal eigenvector of

tﬁ+7'ﬁfl

————Pw(t). (8.16)

Then, with the estimated RTF &, we can estimate the PSDs using [2]

2H & 2 A
b (1) = M2 Bw (24 a:ltf (Py (1)) 8.17)
and . e .
b, (1) = " (Pw (%—_"1 Pwt)a (8.18)

Note that @, (1) is positive but qi (t) can be negative [2], while @;(¢) is positive. We
therefore replace the negative estimates ¢ (¢) with the initial estimates from Eq. (8.13).

- tp+T—1 ) .
tﬁ: . B~" untile a certain number of

We alternatingly estimate @ and {¢, (), ¢, (1)}
iterations are executed. Finally, the RTF vector and the PSD of the target source have to
be compensated for the reparameterization, and are given by 4 = X2 and ¢, = 0s

Lie, aHr-la’
where e; = [1,0,--- 7O]T.
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8.4. TIME SEGMENTATION

In this section, we present the proposed algorithm for an adaptive time segmentation,
where the number of time frames in a segment depends on how time-varying the RTF
is. Due to the latency consideration, we consider that a maximum of 7 time frames can
form a time segment. Hence, the maximum length of a segment is 7. The minimum

size is a single time frame. After the initialization step in the JMLE (Section 8.3.1), we
ﬁ+T—

R 1 1
have estimated reparameterized RTF vectors {ﬁ (t,k)} for the T time frames that
t

=t
could potentially be part of segment 3, which will startﬁat time frame 75 (i.e., the first
time frame after the previous time segment 8 — 1). By analyzing the distance between
these roughly estimated RTF vectors, we can find all time frames that should fall into
the B-th time segment.

As the RTF estimation error is often expressed using the Hermitian angle, it would
be natural to use this as a metric to determine the distance between two RTF vectors

A

{ﬁ(i,k),a(j,k)}. We consider the i-th TF and j-th TF to belong to the same time
segment if the Hermitian angle satisfies

]ﬁ(i,k)Ha( j,k)‘

#6030,

arccos < cp, (8.19)

where ¢y, is a given constant threshold.

Alternatively, we could also construct a M x 2 matrix A (i, j,k) = |a(i,k),a( j,k)} and

analyze its second largest singular value o (i, j,k). In the ideal case that a(i,k) and
ﬁ( J,k) are estimates of the same RTF vector without any errors, A (i, j,k) has rank 1
and o3 (i, j,k) =0. Hence, we consider the i-th TF and the j-th TF to belong to the
same time segment if

o, (i, j,k) < cj, (8.20)

where c¢; is 1:1 related to ¢, as we will show below.

We now show that these two methods are equivalent. Since arccos (-) is a monotonous
decreasing function, Eq. (8.19) (i.e., the Hermitian angles) is equivalent to

a6i,k)"4 (j,k)’ > (8.21)

éAi(t,k)H2 =1 for all ¢ and k. For the

singular value method, the second largest singular value of A (i, j,k) is the square root
of the second largest eigenvalue of

where arccos (¢) = ¢, and we used the fact that ’

AGi,j. k)" A G, j.k)
a("a()) ] (8.22)
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which is given by o, = \/1 — |&(i,k)"4(j,k)|. Hence, Eq. (8.20) is also equivalent to

Eq. (8.21) with v/1 —c =c;.
Note that if the i-th TF and the j-th TF belong to the same time segment, the inner

products ‘ﬁ(i,k)H al j,k)’ are close to one for all frequencies. Therefore, we average the

inner products for all frequency bins to express the similarities between the i-th and the
Jj-th time frames with a single quality, that is,

S X [AGKTA(K)
B(lz]) = % . (8.23)

Furthermore, by assuming the source does not change to other positions in between the
i-th TF and the j-th TF when B(i,j) is sufficiently large, the time frames in between
them should also belong to the same time segment.

We assume the time segments before the [-the time segment have been determined
(i.e., {ti,Ti}iﬁ:_ll is known). Since 15 =15_; +Tg_;, fg is known. We only need to
estimate the length 7 of the B-th time segment. We first calculate B (tﬁ,tB +j— 1) for
Jj=1,---,T. Then, we find T by

max {j|B (13,13 +j—1) >¢,j=1,---,T}. (8.24)

We then execute the JMLE algorithm using time frames from 7g to t3 + 7 — 1 jointly to
estimate the RTF vector for the B-th time segment and the PSDs for time frames from
tg to g +Tﬁ —1.

The JMLE method combined with the adaptive time segmentation method is
summarized in Algorithm 1.

8.5. EXPERIMENTS

To evaluate the performance of the proposed method, we simulate the microphone
signals by convolving the speech signal from the TIMIT data base [13] with the recorded
room impulse responses (RIRs) from [14]. The setup for recording the RIRs is shown
in Fig. 8.3, where 8 microphones are placed in a line with inter distance of 8 cm. The
sound source is placed at a distance of 2 m from the center of the microphone array
at different angles. We also add white Gaussian noise to the reverberant signals to
simulate the microphone self noise even though the used JMLE method assumes the
signals are noise free. The target signal-to-self noise ratio (SNR) is set to 50 dB, which
is calculated over the whole time duration since the target signal is non-stationary. The
noisy microphone signals are sampled at a rate of 16 kHz and processed by the STFT
procedure. That is, we use the square-root Hann window with 50% overlap between
adjacent sub-time frames and an FFT, both with a length of 512 samples (32 ms). Note
that each time frame consists of Ly = 40 overlapping sub-time frames and thus has a
duration of 0.64 s. The speed of sound is set to 344 m/s. The reverberation time is 0.61s.
The threshold c is set to 0.6 in the experiments based on some initial experiments.
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Algorithm 9: TS-JMLE

Input: {f’y (t)}ii;;ﬁl, I.c,lterN

Output: Tﬁ,ﬁ(ﬁ,k) and {(ﬁs (t,k),(ﬁ;,(t,k)}
1 for all k, r=1g :tﬁ+T—1 do
2 L Estimate a (¢, k), (53 (t) and ¢y (r) using Eqs. (8.12) to (8.14).
3 Calculate B (tg, j) for j=1g :15+T — 1 using Eq. (8.23);
4 Estimate Tg by Eq. (8.24).

5 for all k do
6 for iter=1:IterN do

tﬁ-FTB—l
l‘:tﬁ

l‘BJrTﬁfl

Calculate P(B) = EGEN WP
’ Aeulaie P(B) =" L Soram e )
8 Estimate a (B) using the principal eigenvector of P ().
9 Estimate ¢ () and ¢y (¢) for ¢ = tg,-+tg +Tg —1 using Eqgs. (8.17)

and (8.18).

10 | Estimate 4(B) and ¢ (r) by 4= Li and 0y = a¢7‘a
1

Figure 8.3: Geometric setup for the real RIRs.

To compute the performance between the proposed and reference methods, we use the
averaged Hermitian angle error (in rad) [15]

N K/2i1 |a¥ (1 J)a(1.4)|
. P ac"s(4ua"<z,k>uzua(nk>uz) .
a N(K/2+1) ’ (8:25)

with N the total number of time frames across all segments. Note that we average
the errors over time frames instead of over time segments because the estimated time
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segments might have different duration. For the PSDs estimates, we use the symmetric
log-error distortion measure [16]

N K/2+1
9i(t.k)
lotgl kgl ‘log (&i(ﬁ@)’
E;, = (8.26)
N(K/2+1) ’

with i € {s,7}.

~#*ADP
——FIX1
-©-FIX8
* 2 2
35 12 7 5 35 12 7 5 35 12 7 5
Static Duration (s) Static Duration (s) Static Duration (s)

(a) RTF estimation error vs (b) Target source PSD estima- (c) Late reverberation PSD es-
static duration at each posi- tion error vs static duration timation error vs static du-
tion. at each position. ration at each position.

Figure 8.4: Performance comparison of the JMLE method combined with adaptive time
segmentation and fix time segmentation.

In Fig. 8.4, we show the estimation performance comparison of the JMLE method
combined with different time segmentation strategies. 'ADP’ denotes our proposed
adaptive time segmentation method. The maximum size T of a time segment is set to
8. "FIX1’ denotes considering a single time frame (TF) as a time segment (TS), and
"FIX8’ denotes considering every 8 TFs as a TS. The speech signal has a duration of
35 s. In the experiment, we simulate the time varying RTF by changing the source
position from 0° to (k—1) x 15° by 15° every % seconds. As k increases from 1 to
7, the duration with which the source stays at the same position thus decreases from
35 s to % =35 s along the x-axis in the graphs in Fig. 8.4. For the RTF estimation
error, the proposed ADP has the smallest error, which is about 0.1 rad smaller than
FIX1 for different static time durations. The error for FIX8 fluctuates, but is always
larger than ADP except for a static duration of 35 s and 5 s when ADP and FIXS8 are
approximately equal. For the source being static at 0° for 35s, all TFs share the same
RTF. Therefore, ADP gives us the maximum size of the time segment, which is equal to
FIX8 (considering 8 TFs as a TS) and much better than FIX1 (considering 1 TF as a
TS). For the source staying at each position for 5 s, since the duration of a TF is 0.64 s,
each TS contains about ﬁ ~ 8 TFs. therefore, the error of FIX8 is also close to ADP
in this case. For the errors of the target PSD and the late reverberation PSD, ADP also
has the best performance.
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8.6. CONCLUSIONS

We presented an algorithm to obtain an optimal adaptive time segmentation and
combined this with our previously published joint maximum likelihood estimator (JMLE)
for jointly estimating the RTF, source PSD and late reverberation PSD of a single source
in a reverberant environment. We proved that comparing the Hermitian angle of two RTF
estimates to a threshold is equivalent to comparing the second largest singular value of
the matrix combining these two RTF estimates or their inner product. We thus provided
a thresholding method based on averaged inner products over all frequency bins. The
JMLE combined with our adaptive time segmentation outperforms the JMLE combined
with fixed time segmentation.
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DISCUSSION, CONCLUSION AND
FUTURE WORK

In this chapter, we first draw the conclusions of the dissertation, which summarize the main
results and contributions, after which we draw the conclusions by reflecting on the research
questions from Chapter 1. After that, we will also discuss some possible future research
problems and suggestions on how to approach these.

9.1. CONCLUSION

An essential problem of microphone array signal processing, is to estimate the parameters
that describe the scene. These parameters include, for example, ATFs from the (point)
source to the microphones, source PSDs, the late reverberation PSDs, etc. With these pa-
rameters estimated, further processing such as noise reduction, source separation and dere-
verberation can be achieved. As in practice the parametric model describing the scenario
can come in different levels of complexity, we addressed in this work different acoustic sce-
narios, from a single-source reverberant scenario, to a multi-source reverberant and noisy
scenario. For each assumed scenario, at least one novel estimator has been proposed. The
estimation performance of each proposed method is evaluated. The computational cost,
which is an important factor for any application, is also investigated by providing the theo-
retical computational complexity or real run time. In addition, given estimated parameters,
we apply linear filters such as the multichannel Wiener filter, to extract the target signal and
show the performance on noise reduction, predicted speech quality and predicted speech
intelligibility.

The first main contribution of this dissertation is to use multiple time frames that share
the same RTFs for parameter estimation. In most previous existing works on parameter
estimation, these methods use each time frame independently, even when the source is

assumed static and the RTF is constant for consecutive time frames. In [1], it was also
proposed to use multiple time frames in the SCFA method. It was shown that the more
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time frames are used, the better estimation performance is obtained. Therefore, for most
methods proposed in this dissertation, which use a single time frame, we always provide
their extensions of using multiple time frames.

In the following, we provide the specific results and contributions of this dissertation for
each scenario assumed below

* A single reverberant source (Chapter 3)

For the simplest scenario in this dissertation, the parameters we aimed to estimate
include the RTF and the PSD of the source, and the PSD of the late reverberation.
For this, we considered the maximum likelihood estimator when using a single time
frame, although the solution was already given in [2], we provide an alternative proof.
With this proof, we could easily extend the estimator to using multiple time frames.
In experiments, we showed that the proposed estimator, JMLE, has similar perfor-
mance compared to SCFA when the SNR is relatively high. The proposed algorithm
outperforms the other reference methods that consist of a combination of several
existing state-of-the-art methods. With respected to the computational cost, JMLE
shows much lower computational complexity then SCFA.

A single reverberant and noisy source (Chapter 4, 5)
The proposed method in Chapter 3 does not work well when the SNR is low. There-
fore, an estimator for a single reverberant and noisy source is in need. In Chapter 4
we first focus on the RTF estimator. We proposed here an estimator that uses only
off-diagonal elements of the simplified covariance matrix. This estimator is not af-
fected by the late reverberation and the noise PSD that only appear on the diagonal
elements.

In Chapter 5, we then consider the joint estimator of the RTFs, the PSDs of the source,
the PSDs of the late reverberation, and the PSDs of the ambient noise. We first
improved an existing alternating least square (ALS) based method that uses a single
time frame and then extend it to use multiple time frames. Furthermore, we found out
that the ALS based methods might have negative estimates during the iteration steps
while the PSDs are by definition non-negative. To solve this issue, unlike replacing
the negative estimates with a machine precision small number, we used estimated
PSDs of previous time frames to constrain the PSDs of current time frames. We also
proposed robust upper bounds of the estimates to avoid large overestimation errors.

The experiments demonstrate that the estimation performance of both proposed meth-
ods is similar to SCFA, which outperforms the other reference methods. The compu-
tational cost of our proposed methods is significantly lower than SCFA.

* Multiple reverberant and noisy sources (Chapter 6, 7)
For scenarios with multiple sources, we showed in Chapter 7 that we need multiple
time frames to get unique estimates of the RTFs. In Chapter 6, we assume that the
environment is close to non-reverberant and noiseless. We modified the well-known
SOBI method to estimate the RTFs. We proposed to average covariance matrices of
different number of time frames that have been sorted based on rough model mis-
match errors at the first step of SOBI. Therefore, we eventually get several estimates
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for each RTF. We then select the estimates related to the optimal cost function as the
final estimates. This method has satisfying performance for low reverberation time
and high SNR. However, for high reverberation time or low SNR, we need a more
robust estimator.

In Chapter 7, we therefore address the multi-source reverberant and noisy scenario
and proposed an estimator for the RTFs of the sources and the PSDs of the sources
and the late reverberation. We first proposed a late reverberation PSD estimator with-
out the knowledge of RTFs. Then, we estimate the RTFs and PSDs of the sources
with the estimated late reverberation PSD. Similar to Chapter 6, we modify the first
step of SOBI. Unlike using the first covariance matrix in SOBI or averaging some of
the covariance matrices as in Chapter 6, we analyzed the variances of the error matrix
of possible linear combinations of these covariance matrices and found the optimal
one by minimizing the variance. The robustness and effectiveness of our proposed
method has been demonstrated in the experiments. The computational cost of the
proposed method is about 850 time faster than SCFA, with both methods achieving
similar estimation performance.

The last contribution of this dissertation is the adaptive time segmentation method we
proposed in Chapter 8. The prior information on which time frames share the same RTF
in the estimators that use multiple time frames is unknown in practice for a single non-
static source. We proposed an algorithm to obtain an optimal adaptive time segmentation
and combine this method with our proposed JMLE method from Chapter 3 for a single
reverberant non-static source. We proposed a thresholding method after proving that com-
paring the Hermitian angle or their inner product of two RTFs to a threshold is equivalent
to comparing the second largest singular value of the matrix combining these two RTFs. In
the experiments, it has been shown that using the adaptive time segmentation outperforms
using a fixed time segmentation.

In summary, we answered all the research questions presented in Fig. 1.4. For RQ 1.1,
we proposed the JMLE method in Chapter 3 to estimate the RTF and the PSD of the source
and the PSD of the late reverberation using multiple time frames. For RQ 1.2, we proposed
a RTF estimator which is insensitive to noise PSD errors in Chapter 4. For RQ 1.3, we
proposed the JALS method in Chapter 5 to estimate the RTF of the source and the PSDs of
the source, the late reverberation and the noise using multiple time frames. For RQ 2.1, we
proposed an RTF estimator which works in a low reverberant and high-SNR environment
in Chapter 6. For RQ 2.2, in Chapter 7, we proposed a robust late reverberation PSD
estimator and a joint estimator of the RTFs and the PSDs of the sources (called MVJD)
which is robust to reverberant and noisy environment. Finally, for RQ 3, we proposed an
adaptive time segmentation method in Chapter 8.

9.2. FUTURE RESEARCH

In this section, we share some research directions that are worth for further investigation.
For some of them, we give our suggestions on possible solutions.
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SOURCE NUMBER ESTIMATION

One essential problem we did not address in this dissertation, is the estimation of the number
of sources. Although we assumed the number of sources is known, in practice this is usually
unknown. The estimation of the number of sources is therefore an important problem. This
problem is challenging compared to the traditional array signal processing problem. The
reason is the approximations we made in the signal model. For ease of analysing, we have
made several approximations for the STFT domain signal model. For the direct and early
component, we used the MTF approximation such that the signal is a multiplication of the
sound source and the acoustic transfer function (ATF) vector. The covariance matrix of this
component is of rank 1. However, the actual signal model is an inter-frame and inter-band
convolution, of which the covariance matrix is not necessarily rank 1. Also, for the late
reverberation component, an ideal diffuse noise field is assumed, which might be violated
in practice. These model inaccuracies hinders the way to estimate the number of sources.

LESS MICROPHONES THAN SOURCES

In this dissertation, we assumed that the number of sources is less than the number of mi-
crophones. In practice, it is also possible that the number of sources exceeds the number of
microphones. In such cases, when using a sufficient number of time frames, the covariance
matrix is of full rank, with the rank being less than the number of RTFs. Some of the es-
timators proposed in this dissertation will no longer work. For instance, in Chapter 7, we
estimated the late reverberation PSD based on the M — R smallest eigenvalues of the covari-
ance matrix, with M the number of microphones and R the number of sources. If M < R,
M — R is negative, and the proposed estimator in Chapter 7 will not work. For this problem,
we suggest to use methods based on tensor decomposition, where the original covariance
matrix can be extended to a tensor by considering the time index.

PERMUTATION ALIGNMENT

For multiple sources, we have to deal with the permutation ambiguity after estimating the
RTF matrix and the source PSDs, i.e., for one specific source, it is unknown which column
of the RTF matrix belongs to which source, neither does the PSD. Some solutions to this
problem were investigated in [3], [4]. In the experiments of this work, we used the oracle
RTF matrix as guidance to permute the columns of the estimated RTF matrix per time-
frequency tile. In practice, we need to select an existing method or develop an algorithm to
solve this problem.

ADAPTIVE TIME SEGMENTATION FOR MULTIPLE NON-STATIC SOURCES

We proposed an adaptive time segmentation method for a single source. The next problem
we would naturally consider is how to obtain an optimal time segmentation for multiple
non-static sources such that each time segment contains as many time frames that share the
same RTF matrix as possible. In this problem, it is also of interest to know, at the changing
point, which source changes position.



(1]

(2]

(3]

(4]

REFERENCES

A. 1. Koutrouvelis, R. C. Hendriks, R. Heusdens, and J. Jensen, ‘“Robust joint es-
timation of multimicrophone signal model parameters”, IEEE/ACM Trans. Audio,
Speech, Language Process., vol. 27, no. 7, pp. 1136-1150, 2019.

P. Hoang, Z.-H. Tan, J. M. de Haan, and J. Jensen, “Joint Maximum Likelihood
Estimation of Power Spectral Densities and Relative Acoustic Transfer Functions for

Acoustic Beamforming”, in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.,
2021, pp. 6119-6123.

R. Mukai, H. Sawada, S. Araki, and S. Makino, “Frequency-domain blind source
separation of many speech signals using near-field and far-field models”, EURASIP
J. Adv. Signal. Process., vol. 2006, pp. 1-13, 2006.

D. Nion, K. N. Mokios, N. D. Sidiropoulos, and A. Potamianos, “Batch and adap-
tive PARAFAC-based blind separation of convolutive speech mixtures”, IEEE/ACM
Trans. Audio, Speech, Language Process., vol. 18, no. 6, pp. 1193-1207, 2009.

173






ACKNOWLEDGEMENTS

In my previous opinion, the way to get a PhD should be unpleasant and full of suffering.
Luckily, I enjoyed a lot during the past years, owing to the persons who helped me and
the work-life balance culture in this green land. Expressing my gratitude to all of them is
challenging with this short page and my poor memory, but I will try my best.

First, I would like to thank my promoters, Prof. Richard Hendriks and Prof. Alle-Jan
van der Veen. Richard, every meeting with you gave me motivation and energy to continue
my research works. Thank you for listening to me with patience and giving me valuable
suggestions whenever I felt a bit lost. You guided me in the right direction. You gave me
valuable and very timely feedback. Thank you for being my supervisor and friend! Alle-
Jan, thank you for all the suggestions, criticism and guidance. Thank you for being such a
wonderful group leader! Our group will not have this inclusive environment without you.

I owe many thanks to Dr. Jorge Martinez Castaneda. Jorge, I am lucky to have you as
my daily supervisor for the early period of my PhD. I am more than lucky to have you as
my friend. Thank you for supporting me in my research and life. The discussions with you
are very valuable to me. I will always remember the sunny days when we had all kinds of
discussions in your office, from which I learned a lot!

Thank you my colleagues in the CAS/SPS group, for being so nice to me. Thank you
to all the experienced researchers in the group. Prof. Geert Leus. Thank you for all the
inspiring discussions! Thank you, Dr. Jie Zhang. Thank you for telling me how great
it is to do a PhD in the CAS group and for helping me in all aspects! Thank you Prof.
Richard Heusdens and Dr. Qiongxiu Li, for the unforgettable memories during the two
ICASSPs I attended. Thank you, my office mates in EWI, Miao, Giovanni, Jordi, Yujie and
Silverio, for making 17.240 an enjoyable working space! Thank you, my office mates in
the two offices of building 28. Thank you my first office mates, Anu, Alberto and Costas,
for all the laughing moments! My English was not good enough to understand some of the
jokes you made, but I enjoyed those laughing moments with you. Thank you, my second
office mates, Didem, Aybuke, Hanie, and Metin, for being so nice to me that I felt it’s safe
to share everything with you. Thank you, Shuoyan, Sinian, and Chen, for taking care of
Mickey whenever we asked for your help, and those happy mahjong games. Also, thank
you, the young fellows, Sofia, Seline, Yanbin, Ellen, Ids, Ruben, Zhonggang, Peiyuan... for
making SPS such a wonderful group! Last but not least, thank you, Laura, for supporting
the whole group professionally and warmly!

Yanbo, thank you for all the support and trust. You have many admirable qualities from
which I can continuously learn. Thank you and your wife, Yansu, for treating us like your
family. I also want to say thank you to Matthieuw, Liming, Sen, and Yadan, for those joint

175



176

memories in Delft.

Finally, I would like to express my deepest gratitude to my parents, Chuanxin Li and
Shiling Song. Thank you for supporting me with all you have for my whole life. Thank
you for your endless and unconditional love. I also would like to thank my brother, Peiheng
Li, and my sister-in-law, Jieshu He, for taking care of everything at home. At last, I want
to express my sincere gratitude to my wife Li (Karlie) Liu. Thank you for accompanying
me in this place so far from home, with your courage and full trust in me. Thank you for
enlightening my life with your cheerful personality and the cute cat Mickey. Thank you for
all the support and love.



CURRICULUM VITae

Changheng Li

Changheng Li was born in Henan, China, in 1996. He received the B.Sc. degree in Ap-
plied Mathematics (the School of the Gifted Young) and the M.Sc. degree in Electrical En-
gineering from the University of Science and Technology of China (USTC), Hefei, China,
in 2017 and 2020, respectively. He is currently a PhD candidate with the Signal Process-
ing Systems (SPS) Group, Faculty of Electrical Engineering, Mathematics and Computer
Science, Delft University of Technology (TUD). His current research interest focuses on
microphone array signal processing and speech enhancement.

177






	Contents
	Summary
	Samenvatting
	Introduction
	Microphone Array
	Acoustic Distortions
	Reverberation
	Noise and interferers

	Spatial Filtering
	Research Questions
	Dissertation Contributions and Outline
	List of Publications

	Background
	Time Domain Signal Model
	STFT Domain Signal Model
	Detailed Problem Formulation
	Filtering
	MWF
	MVDR
	MPDR

	Time Segmentation

	Joint Maximum Likelihood Estimation of Microphone Array Parameters for A Reverberant Single Source Scenario
	Introduction
	Preliminaries
	Notation
	Signal model
	Cross power spectral density matrices
	Problem formulation

	Joint MLE
	Joint MLE for a single time frame
	Joint MLE for multiple time frames
	Robust parameter estimation

	Experiments
	Reference methods
	Evaluation metrics
	Experiments with simulated RIRs
	Experiments with recorded RIRs

	Concluding remarks

	Noise PSD Insensitive RTF Estimation in A Reverberant and Noisy Environment
	Introduction
	Preliminaries
	Signal model
	Problem formulation

	State of the art and motivation
	Proposed method
	Parameter identifiability
	Simplification
	covariance matrix reconstruction
	RTF estimation

	Experiments
	Conclusions

	Alternating Least-Squares-Based Microphone Array Parameter Estimation for A Single-Source Reverberant and Noisy Acoustic Scenario
	Introduction
	Preliminaries
	Notation
	Signal model
	Cross power spectral density matrices
	Problem formulation

	ALS-based Joint Estimation
	ALS for a single time frame
	Modified-ALS for a single time frame
	ALS for multiple time frames
	Robust PSD constraints

	Experiments
	Reference methods
	Evaluation metrics
	Experiments with simulated noise
	Experiments with recorded noise

	Concluding remarks

	Low Complex Accurate Multi-Source RTF Estimation
	Introduction
	Preliminaries
	Signal model
	Covariance matrix estimation

	RTF Estimation
	Joint diagonalization method
	Robust joint diagonalization

	Experiments
	Conclusions

	Multi-Microphone Signal Parameter Estimation in A Multi-Source Noisy Reverberant Scenario
	Introduction
	Signal Model
	Parameter Estimation
	Estimator of the late reverberation PSDs
	Estimator of the RTF matrix and the source PSDs

	Experiments
	Reference methods
	Evaluation measures
	Experiments with simulated RIRs
	Experiments with recorded RIRs
	Experiments with real recordings

	Concluding Remarks

	Adaptive Time Segmentation for Improved Signal Model Parameter Estimation for A Single-Source Scenario
	Introduction
	Preliminaries
	Problem formulation

	JMLE
	Initialisation
	Alternating estimation

	Time Segmentation
	Experiments
	Conclusions

	Discussion, Conclusion and Future Work
	Conclusion
	Future Research

	Acknowledgements
	Curriculum Vitæ



