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Abstract

Accurately predicting a machine learning model’s final performance based on only
partial training data can save substantial computational resources and guide early stop-
ping, model selection, and automated machine learning (AutoML) workflows. Learning
Curve Prior-Fitted Networks (LC-PFNs) are a recent data-driven approach to this prob-
lem, leveraging transformers trained on prior learning curves to make extrapolations.
However, real-world training logs are often noisy and irregular—conditions under which
the reliability of LC-PFNs remains largely untested.

This thesis presents a systematic investigation into the robustness of LC-PFNs
when exposed to noisy input data. Using LCDB 1.1—a large-scale dataset—we simu-
late various levels of noise by corrupting the input data with Gaussian perturbations
and quantify how prediction accuracy degrades. To improve resilience, we study and
propose two complementary mitigation strategies. The first injects artificial noise into
the training data itself, either at a constant level or increasing gradually throughout
training, encouraging the model to generalize across a spectrum of noise conditions.
The second applies post-processing techniques at inference time, such as smoothing
the input sequence with an exponential moving average or averaging multiple stochas-
tic predictions using dropout.

Our results show that standard LC-PFNs, trained only on clean data, are highly
sensitive to even minor corruptions. In contrast, models trained with gradual noise ex-
posure and evaluated with input smoothing achieve much greater robustness—reducing
error by up to 75% under severe noise—while maintaining high accuracy in noise-
free settings. This work demonstrates that substantial improvements in learning-curve
extrapolation can be achieved without modifying model architecture, using general-
purpose techniques suitable for real-world deployment.

1 Introduction

Learning curves—plots of a model’s performance as training data grows—help diagnose gen-
eralization and guide decisions like early stopping or data collection. In practice, however,
the cost of training models to convergence is high, especially when exploring large model
spaces or datasets. This motivates the need for learning curve extrapolation (LCE): predict-
ing future performance from only partial observations of a model’s learning trajectory.

LCE has wide applications in model selection, neural architecture search, and AutoML.
Yet, it remains a challenging task—real-world learning curves are often noisy, unstable,
and vary greatly across tasks and algorithms. Robustly extrapolating these curves requires
models that can generalize across such variation.

Prior work has explored curve fitting methods, Gaussian processes, and meta-learning
approaches. Most of these rely on either synthetic curves or strong assumptions about
learning dynamics. Recently, Learning Curve Prior-Data Fitted Networks (LC-PFNs) have
shown promise in learning task distributions directly, enabling flexible and data-driven ex-
trapolation. However, little is known about how LC-PFNs perform when faced with noise
or corruption in real data.

This work addresses the following research questions:

e RQ1: How does LC-PFN extrapolation accuracy degrade as input learning curves
become noisier?

e RQ2: Can we improve LC-PFN robustness by introducing noise during training?



e RQ3: What test-time techniques (e.g., smoothing, uncertainty estimation) help mit-
igate performance drop under noisy inputs?

We answer these questions using real learning curves from the LCDB 1.1 dataset, eval-
uating LC-PFN variants trained under different noise settings and tested across a range of
controlled noise levels. Our findings show that training with gradually increasing noise and
applying test-time smoothing (via Exponential Moving Average) leads to significantly more
stable extrapolation.

Terminology clarification. The LCDB 1.1 learning curves are referred to as clean through-
out this thesis, but they inherently include real-world noise from logging, batch effects, or
optimization variance. When we refer to noisy inputs, we specifically mean additional,
synthetic Gaussian perturbations added during evaluation to simulate increased or more
severe noise—representing more degraded or chaotic logs than those present in LCDB. This
lets us test how far LC-PFNs can be pushed beyond the noise levels seen in the training
distribution.

2 Background and Related Work

Learning-curve extrapolation (LCE) aims to predict a model’s future performance from par-
tial training data. It enables early stopping, efficient hyperparameter tuning, and cost-aware
model selection—key components in modern AutoML. This section outlines the character-
istics of real learning curves, recent advances in extrapolation models, and the robustness
gap this thesis addresses.

2.1 Empirical Learning Curves and Benchmarks

Real learning curves vary widely in shape and quality. Viering and Loog [6] show that such
curves frequently exhibit irregularities—including plateaus, peaking, and double-descent—that
deviate from smooth parametric forms and challenge standard extrapolation techniques.
LCDB 1.1 [8] makes this diversity explicit: it aggregates learning curves across 265 OpenML
tasks and 24 learners, with 14% violating monotonicity assumptions. This variability moti-
vates data-driven, noise-tolerant extrapolators. Our experiments use LCDB 1.1 and addi-
tionally inject controlled Gaussian noise to simulate realistic logger artifacts.

2.2 From Curve-Fits to Prior-Fitted Networks

Traditional LCE approaches rely on hand-crafted curve fits (e.g., power-laws, Weibull) or
Gaussian processes. These methods fail under irregular or noisy input. Recent work by
Adriaensen et al. [I] introduced Learning-Curve PFNs (LC-PFNs): transformer models
trained to perform approximate Bayesian inference on unseen learning curves. Follow-up
work [7] improved extrapolation by learning priors directly from LCDB. However, these
models were evaluated on mostly clean inputs; their robustness to noise remains untested.

2.3 Robustness Techniques: Training and Inference

Outside LCE, robustness is commonly improved via (i) noise injection during training [2]
and (ii) test-time smoothing, such as exponential moving averages (EMA) [4].



2.4 Gap Addressed in This Thesis
To our knowledge, no prior work has:
(i) systematically evaluated LC-PFN accuracy under controlled input noise,
(ii) applied ramp-style noise injection during training to improve robustness, or
(iii) compared this to lightweight test-time defences like EMA.

We address this gap using LCDB 1.1 and show that a simple combination of noise-ramp
training and EMA smoothing yields robust and efficient extrapolation—even under substan-
tial noise—without harming clean-curve performance.

3 Methodology

This section outlines the dataset, model architecture, evaluation pipeline, and robustness
strategies used to assess the reliability of Learning Curve Prior-Fitted Networks (LC-PFNs)
under noisy inputs.

Implementation Setup. The LC-PFN model architecture and training framework were
provided at the outset of this project, including data loading, augmentation, and model
training code. My contributions begin with implementing a controlled 80/20 dataset split,
injecting Gaussian noise into prefixes for evaluation, and configuring new training schedules
(e.g., ramp-style noise injection). I also developed the post-hoc test-time defences (EMA
smoothing, MC-Dropout), integrated them into the pipeline, and designed the evaluation
framework used throughout this study.

3.1 Dataset and Preprocessing

We use the LCDB 1.1 dataset, a large-scale collection of empirical learning curves from
OpenML classification tasks. Each curve records validation accuracy over 137 increasing
training set sizes, collected from 24 learning algorithms across 265 datasets. For training,
we retain only the subset of curves with exactly 80 valid (non-missing) anchor points. This
ensures consistent input length across batches and simplifies model pre-processing. The
curves are stored in HDF5 format and reshaped to a standard [N, 1,137] tensor format,
where N is the number of complete and valid curves.

The dataset is split into 80% training and 20% testing using a random split over valid
curves. To ensure robust conclusions, we evaluate each experiment across three random
seeds (3, 42, and 100). Each seed defines a separate 80/20 split, and all random processes
are controlled by fixing the seed per run. No task- or learner-specific stratification is applied.

3.2 LC-PFN Architecture and Training

We adopt the LC-PFN model introduced by Adriaensen et al. [I], a transformer-based
Prior-Data Fitted Network pre-trained to perform Bayesian inference over learning curves.
The model uses three transformer layers with 128-dimensional embeddings, and outputs
discretized predictive distributions over 1000 accuracy bins. Unlike classical curve-fitting
methods, LC-PFN captures uncertainty and can scale to complex, non-parametric learning
dynamics.



We train LC-PFNs for 300 epochs using a batch size of 20 and a learning rate of 0.0001.
The loss is based on bar distribution matching, encouraging accurate probability mass as-
signment over target bins. All models are trained from scratch on the training subset of
LCDB 1.1 without synthetic curves or external priors.

3.3 Evaluation Pipeline

To evaluate extrapolation performance, we follow a cutoff-based evaluation protocol. For
each test curve, we reserve the final 20 anchor points as the ground truth and use the earlier
portion as model input. The model predicts a full continuation from this prefix.

We filter out test curves with fewer than 40 valid (non-missing) points to ensure sufficient
context for extrapolation. This results in a filtered test set of 27,275 curves with shape
(27275,1,137).

3.4 Evaluation Metric

We report Mean Absolute Error (MAE) between the model’s predicted median accuracy
and the true values over the final 20 points of each test curve. Results are aggregated across
curves and noise levels and reported as mean MAE with standard deviations or standard
errors, depending on context.

3.5 Noise-Augmented Training Strategies

Motivation. LC-PFNs learn a task-level prior from raw trajectories. If the training curves
are clean but real logs contain noise, the learned prior underestimates uncertainty and the
model over-fits to spurious micro-trends. Injecting Gaussian noise during training serves as
data augmentation that widens the prior, encourages smoother posterior predictions, and
has been shown to improve out-of-distribution robustness in sequence models.

We explore two complementary schedules:
e Fixed-0.05. A constant standard deviation o = 0.05 is added to every training curve,
7=y + N(0,0.05%),

mimicking a deployment scenario with a known noise floor. This acts as a regularizer
and teaches the LC-PFN to ignore small, high-frequency fluctuations that do not
generalise.

e Ramp-o. Following curriculum-learning principles [2], we start from clean data and
gradually increase noise:

t
Ut:TUmax, t=1,...,T.

Early epochs allow the network to capture the underlying clean dynamics, while later
epochs expose it to harder, noisier variants. This schedule encourages the model to
generalise across a range of noise intensities rather than specialising to a single level,
which is particularly valuable when the test noise is unknown or variable.

We train three ramp configurations (Ramp-0.05, Ramp-0.10, Ramp-0.30) to match light,
moderate, and heavy noise regimes observed in practice. Noise is applied only to the input
prefix and is never added to targets.



3.6 Noise Injection for Evaluation

To assess robustness under degraded inputs, we inject Gaussian noise into the observed
prefix of each test curve. Targets remain clean, preserving a clean ground truth. We test
the model under noise levels o € {0.00,0.05,0.10,...,0.30}. The same evaluation pipeline
(cutoff, extrapolation, MAE) is applied at each level.

3.7 Test-Time Mitigation Techniques

Why post-hoc defences? Even with noise-augmented training, real logs may still contain
unpredictable spikes, sensor jitter, or logger quantisation errors. Retraining a PFN for every
deployment setting is impractical, so we explore time-side defences that can be enabled at
inference without model modifications.

Design space. Post-hoc options fall into two broad families: (i) signal smoothing, which
attenuates high-frequency noise before the model sees it; (ii) stochastic ensembling, which
reduces prediction variance by averaging multiple model views. We adopt one representative
from each family, selected for their favourable cost—benefit profile.

o Exponential Moving Average (EMA). EMA is a single-pass low-pass filter that
down-weights older observations, removing high-frequency noise while preserving trend
information. Its O(T) time, O(1) memory, and well-documented efficacy in denoising
time-series data make it a standard first-line defence [4]. We smooth the noisy prefix
via

g =ay + (1 —a) g1, a=0.2.

e Monte Carlo Dropout (MC-Dropout). Keeping dropout active at inference and
averaging K =20 stochastic passes approximates sampling from the model’s posterior.
MC-Dropout has been shown to improve robustness to noisy inputs and labels while
providing calibrated uncertainty [3]. Implementation requires no architectural change
and only a linear (K-fold) latency increase.

Both techniques are orthogonal to the noise-augmented training strategies (Section [3.5))
and can be toggled independently, allowing us to disentangle their individual contributions
to robustness.

4 Experimental Results and Analysis

We evaluate eight LC-PFN configurations on held-out learning curves from LCDB. To assess
robustness, we inject additive Gaussian noise (o € 0.00,0.05,...,0.30) into the input prefix
of test curves in selected experiments, while keeping the targets clean. Other configurations
(e.g., MC-Dropout, EMA) are evaluated on uncorrupted inputs using alternative inference
strategies. Each experiment is repeated across three random seeds, covering approximately
27,000 curves per seed.

Figures [I] and [2| report the mean MAE across these three seeds for each method and
noise level. Within each noise level row, the lowest MAE value is bolded to highlight the
best-performing configuration.



o Clean Clean + MC Clean + EMA Fixed 0.05 Ramp(0.05)
0.00 0.0371 0.0358 0.0403 0.0391 0.0386
0.05 0.0502 0.0485 0.0420 0.0406 0.0404
0.10 0.0764 0.0718 0.0457 0.0489 0.0497
0.15 0.1117 0.1046 0.0503 0.0678 0.0654
0.20 0.1506 0.1427 0.0547 0.0964 0.0874
0.25 0.1839 0.1775 0.0590 0.1346 0.1184
0.30 0.2073 0.2013 0.0636 0.1722 0.1522

Figure 1: Mean MAE across noise levels and methods, averaged over three seeds.

o Ramp(0.1) Ramp(0.3) Ramp(0.05) + EMA| Ramp(0.1) + EMA | Ramp(0.3) + EMA
0.00 0.0447 0.0607 0.0448 0.0517 0.0670
0.05 0.0449 0.0607 0.0448 0.0515 0.0669
0.10 0.0465 0.0605 0.0455 0.0516 0.0668
0.15 0.0528 0.0605 0.0468 0.0520 0.0668
0.20 0.0647 0.0608 0.0484 0.0525 0.0669
0.25 0.0810 0.0616 0.0504 0.0532 0.0670
0.30 0.1047 0.0631 0.0527 0.0541 0.0671

Figure 2: Mean MAE across noise levels and methods, averaged over three seeds.

RQ1 How sensitive is a clean LC-PFN to input noise?

The clean-trained LC-PFN delivers strong extrapolation performance on noise-free curves,
with a mean absolute error (MAE) of just 0.0371. However, its accuracy degrades consis-
tently and sharply as input noise increases. Even a modest noise level of ¢ = 0.05 results
in a 35% increase in MAE (to 0.0502), and the error nearly doubles at o = 0.10 (0.0764).
At the highest noise level tested (o = 0.30), the error reaches 0.2073—more than 5x higher
than the original baseline.

This degradation is approximately linear across noise levels and suggests that the clean
LC-PFN is highly sensitive to input perturbations. Each incremental rise in noise leads to a
predictable and significant deterioration in predictive accuracy. This sensitivity underscores
a key limitation of clean-trained PFNs: although they generalize well to clean, stable curves,
they struggle under even mild input corruptions.

These results highlight the need for robustness mechanisms—especially in real-world
settings where noise, jitter, and logging errors are common. The next sections investigate
whether robustness can be improved through noise-aware training and test-time defences.

RQ2 Can noise-aware training improve robustness?

We evaluate four LC-PFN variants trained with injected Gaussian noise:

e Fixed-0.05: constant noise during training



¢ Ramp-0—0.05, Ramp-0—0.10, Ramp-0—0.30: noise ramps that gradually in-
crease standard deviation over epochs

Low noise (o < 0.05). At o = 0.00, the Clean model achieves the best MAE (0.0371),
showing that training on clean curves yields the most accurate predictions in the absence of
noise. However, under mild noise at ¢ = 0.05, Ramp-0—0.05 becomes the best performer
(0.0404), outperforming Clean (0.0502) by nearly 20%. This suggests that light curriculum-
style noise during training already helps the model ignore minor fluctuations—without de-
grading its accuracy on fully clean data.

Moderate noise (o = 0.10-0.15). In the moderate regime, Ramp-0—0.10 delivers the
strongest gains. At o = 0.10, it reduces MAE from 0.0764 (Clean) to 0.0465 — a 39%
improvement. At ¢ = 0.15, the gap is even larger: from 0.1117 (Clean) down to 0.0528 —
cutting error by more than half. In contrast, Fixed-0.05 offers less consistent improvement,
while Ramp-0—0.05 slightly trails behind the 0.10 variant. This highlights the value of
adapting the training curriculum to the expected noise regime.

High noise (o = 0.20—0.30). At high noise levels, Ramp-0—0.30 is clearly dominant. It
achieves the best MAE for all o > 0.20, with values of 0.0608 at o = 0.20 (versus 0.1506 for
Clean), and 0.0631 at o = 0.30 (versus 0.2073). These represent reductions of 60—70% in
prediction error. No other method comes close in this range, and the MAE of Ramp-0—0.30
stays remarkably stable across all levels, indicating a broad robustness window.

Overall, noise-aware training greatly enhances robustness under noisy conditions. Each ramp
configuration is most effective in the noise range it targets, confirming that curriculum-based
augmentation offers a principled and impactful approach. The only trade-off is a minor cost
in clean accuracy, which makes Clean still the best choice when inputs are known to be noise-
free. These trends are clearly reflected in Figure [3| and Figure @] where each ramp-trained
model excels in the noise regime it targets.
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Figure 3: Comparing the MAEs of the 3 ramp-trained models



Comparison of LC-PFN Methods Across Noise Levels
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Figure 4: Box plots comparing the 3 ramp-trained models with the clean model

RQ3 Do test-time defences provide further gains?
We evaluate two post-hoc inference strategies applied to the clean-trained LC-PFN:

1. MC-Dropout (20 stochastic passes): averages multiple predictions with dropout
active at inference time [3].

2. EMA smoothing (o = 0.2): smooths the input prefix using an exponential moving
average before feeding it to the model.

Effect on clean-trained models. Both techniques consistently reduce error relative to
the Clean baseline across all noise levels. MC-Dropout yields small but reliable improve-
ments: for example, reducing MAE from 0.0764 to 0.0718 at ¢ = 0.10, and from 0.2073
to 0.2013 at o = 0.30. However, it introduces a 20x computational overhead and delivers
modest absolute gains (typically 2-4%).

In contrast, EMA smoothing proves more impactful and cost-effective. Applied to Clean,
it reduces MAE from 0.1506 to 0.0547 at o = 0.20, and from 0.2073 to 0.0636 at 0 = 0.30 —
a nearly 3x improvement in the high-noise regime. Even without retraining, EMA pushes
the clean model’s robustness close to that of noise-trained variants.

Combining EMA with noise-trained LC-PFNs. The strongest results arise when
EMA is paired with Ramp-0—0.05. This hybrid approach achieves state-of-the-art accuracy
for every noise level ¢ > 0.05. For instance:

e At 0 = 0.10, MAE drops to 0.0455 (vs. 0.0764 for Clean)
o At o = 0.20, 0.0484 (vs. 0.1506)
e At 0 =0.30, 0.0527 (vs. 0.2073)

These represent 60-75% error reductions over the Clean baseline.

Figure [ visualizes the LC-PFN extrapolation on a representative learning curve. On the
left, we see the prediction from a model trained with Ramp-0—0.05 noise, applied to a noisy
input ¢ = 0.05. On the right, the same model is evaluated with EMA smoothing applied



at test time. The input trajectory (dashed line) clearly aligns better with the ground truth
when EMA is used, following the upward trend more closely. This visual improvement is
reflected numerically: MAE drops from 0.0482 to 0.0150, a more than 68% reduction.
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Figure 5: Comparison of LC-PFN extrapolation on noisy vs smoothed inputs.

Figure [6] shows MAE distributions across the test set for four methods: Clean, Clean +
MC Dropout, Clean + EMA, and Ramp(0—0.05) + EMA. As noise increases, Clean models
degrade sharply, while EMA-based methods (green and red) maintain lower error. The
Ramp + EMA configuration (red) is consistently the most robust, especially for o > 0.10.
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Figure 6: Box plots showing the efficiency of the test-time mitigation for noise reduction.

Moreover, this configuration outperforms all other methods — including deeper ramps
and test-time ensembling — without incurring additional training complexity or latency at
inference. The combination of curriculum-based noise training and input smoothing results
in a model that is both robust and efficient.

We also evaluated deeper noise-augmented models, Ramp-0—0.10 + EMA and Ramp-
0—0.30 + EMA, to test whether increased training noise further enhances robustness when
paired with smoothing. However, neither configuration outperformed Ramp-0—0.05 +
EMA at any tested noise level. Across all o € [0.00,0.30], their MAESs remained consistently
higher—e.g., 0.0531 and 0.0672 at ¢ = 0.30, compared to 0.0514 for the shallower ramp, as



it can be observed in Figure [} This suggests that stronger noise injection may introduce
excessive distortion when test-time smoothing already compensates for input noise. In such
cases, a lighter training schedule combined with EMA yields a better robustness—accuracy
trade-off.
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Figure 7: Using EMA on Ramp(0->0.1) and Ramp(0->0.3) models do not show any im-
provements at any noise level over the Ramp(0->0.05) model.

Conclusion. While MC-Dropout provides limited robustness at high cost, EMA alone is
highly effective. When paired with Ramp-0—0.05 training, it delivers the best overall ex-
trapolation performance in the presence of input noise, making it the recommended strategy
under realistic deployment conditions.

5 Statistical Significance

Why not a paired t-test? The paired t-test assumes that differences between paired er-
rors (e.g., MAEs) follow a Gaussian distribution. We tested this assumption using three stan-
dard normality checks—Shapiro—Wilk, D’Agostino—Pearson, and Anderson—Darling—on both
the raw MAE values and the paired AMAEs. All three tests reject normality with p < 107300,
Given the large sample size, even minor deviations from normality result in spuriously small
p-values and misleading confidence intervals. Thus, we turn to non-parametric tests,
which are more appropriate under heavy skew, long tails, or outliers.

Chosen tests. For each method, noise level o, and random seed (3, 42, 100), we compare
per-curve MAEs against the clean-trained LC-PFN baseline using:

e Wilcoxon signed-rank test (one-sided, Hy: method MAE < clean MAF). This test
is robust to non-Gaussian distributions and sensitive to consistent median improve-
ments [5].
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wins

e Sign test, which reports the win-rate w = —2325—
wins-+losses’

often the method outperforms the baseline.

giving an intuitive sense of how

o Effect sizes: we compute per-seed paired Cohen’s d (for magnitude) and Cliff’s § (for
ordinal shift); this section highlights Cohen’s d.

To summarise statistical significance across seeds, Wilcoxon p-values are aggregated using
Fisher’s method.

Results overview. All noise-aware models yield statistically significant improvements
over the clean-trained LC-PFN baseline. Across all seeds, Wilcoxon signed-rank and sign
tests consistently yield p-values below 10~7°—often much smaller—confirming the improve-
ments are not due to chance. At o = 0, all methods show negligible or even slightly negative
effect sizes (Cohen’s d ~ 0 or negative), verifying that no robustness method harms clean
performance. With increasing noise, effect sizes grow steadily:

e Fixed 0.05 achieves small effect sizes at o = 0.05 (d =~ 0.2), increasing to medium
(d ~ 0.5-0.6) by o = 0.10—0.20.

e Ramp 0-0.05 shows similar but slightly stronger trends, reaching d ~ 0.68 at o =
0.15 and maintaining d > 0.4 even at ¢ = 0.30.

e Ramp 0-0.05 + EMA delivers the most consistent gains: d exceeds 1.0 at o > 0.20,
with p < 1070 in all cases, indicating large to very large practical effects.

In summary, noise-aware training with or without EMA smoothing significantly improves
robustness, especially as corruption increases, without sacrificing accuracy on clean data.
Interpretation.

e For o > 0.05, all noise-aware models show statistically significant gains over the clean
baseline with p-values far below 107199,

e Ramp 0-0.05 + EMA delivers the strongest gains: e.g., d = 1.31 at o = 0.30 (very
large effect).

e Even simple training noise (Fixed 0.05) yields medium effect sizes at moderate noise
levels.

e No significant loss is observed at ¢ = 0, ensuring that robustness does not come at the
expense of clean accuracy.

In sum, both non-parametric and parametric evidence confirm that noise-aware training

and EMA smoothing yield statistically significant and practically meaningful improvements
across seeds and corruption regimes.
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6 Responsible Research

All experiments were conducted using fixed random seeds (3, 42, 100), with each seed defin-
ing a different random 80/20 split of the LCDB 1.1 dataset into training and testing sets.
These splits are not disjoint, but provide diverse and reproducible evaluations. The con-
sistency of results across seeds demonstrates the robustness of our findings. We used only
publicly available code and data, and all models were trained and evaluated using standard-
ized pipelines to ensure repeatability. All models were trained and evaluated on a personal
device equipped with an NVIDIA RTX 4060 GPU (8GB). All code and configurations are
available at: https://github.com/razvangherasa/LC-PFN-Noise-Extrapolation, allowing full
reproducibility.

7 Discussion

7.1 Limitations and Threats to Validity

Simplified noise model. This study only considers additive, i.i.d. Gaussian noise ap-
plied to accuracy values. However, real-world training logs often exhibit heteroscedasticity,
missing values, or structured distortions (e.g. spikes from checkpointing or batch variance).
While the trends we observe are likely to generalize, absolute MAE values may shift under
more realistic noise patterns.

Dataset scope. All results are based on classification curves from LCDB 1.1, a benchmark
that primarily reflects small-to-medium tabular datasets. Extrapolation behavior may differ
for large-scale vision models or LLMs, where learning dynamics and noise characteristics
diverge significantly.

Model and architecture. We use a fixed LC-PFN architecture (3-layer Transformer,
128-d embeddings). While sufficient for benchmarking, architectural variations (e.g. deeper
models or longer-context transformers) might yield better robustness or calibration. These
remain unexplored due to time and resource constraints.

Evaluation blind spots. We focus solely on mean absolute error (MAE), which measures
point-wise prediction error but ignores predictive uncertainty. A model could be poorly
calibrated or overconfident despite achieving low MAE. Incorporating metrics such as CRPS
or ECE would provide a more complete robustness picture.

7.2 Future Work

This work leaves several important extensions open for future study:

e Training on all available curves. The current setup trains only on curves with
exactly 80 valid points. In practice, this is overly restrictive. A natural next step is to
train on the full LCDB set, including shorter curves—for example, those with at least
40 valid anchors—thereby improving applicability in real-world scenarios.

e Cutoff variation. We extrapolate from the last 20 valid points (a cutoff of 20), but
future work may explore different cutoff lengths to assess how extrapolation perfor-
mance depends on available history.
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e Alternative error metrics. MAE is used exclusively here, but further evaluation
using metrics like CRPS, RMSE, or interval coverage could provide deeper insight into
uncertainty quality and practical behavior.

e Alternate training configurations. Future experiments could increase the number
of training epochs, use a larger and more diverse set of curves, or apply different
scheduling strategies to better capture learning curve diversity.

e MC Dropout and EMA configurations. While MC Dropout and EMA smoothing
were tested with fixed settings, a more systematic search over dropout rates and EMA
decay values could uncover stronger configurations.

8 Conclusions

We revisit our research questions and summarize the key findings:

RQ1: How does LC-PFN extrapolation accuracy degrade with input noise?
Clean-trained LC-PFNs are highly sensitive to input perturbations. For instance, adding
Gaussian noise with ¢ = 0.10 nearly doubles the MAE—from 0.0371 to 0.0764—and in-
creases to 0.2073 at 0 = 0.30, a 5.6x jump. The degradation is approximately linear, with
each step in noise level yielding a consistent and significant drop in predictive accuracy. This
demonstrates a critical need for robustness strategies when working with real-world, noisy
logs.

RQ2: Can robustness be improved via noise-aware training?

Yes. Injecting noise during training improves robustness significantly. A ramped noise
schedule (Ramp-0—0.10) reduced MAE from 0.1117 (Clean) to 0.0528 at o = 0.15, more
than halving the error. At higher noise levels (¢ = 0.30), Ramp-0—0.30 achieved a re-
duction from 0.2073 to 0.0631. Importantly, each ramp performs best in its corresponding
noise regime, suggesting that training noise should be matched to the expected deployment
conditions.

RQ3: Which test-time defences are effective under noisy inputs?

We compared MC-Dropout (20 stochastic passes) and simple EMA smoothing (o = 0.2)
on both the clean and noise-ramped models. MC-Dropout gave modest gains (2-4 % MAE
reduction) at a 20x latency cost. In contrast, EMA alone on the clean LC-PFN cut MAE
from 0.1506 to 0.0547 at 0 = 0.20 and from 0.2073 to 0.0636 at ¢ = 0.30, matching noise-
trained variants. The best performance came from applying EMA to the Ramp-0-0.05
model: it held MAE at 0.0375 on clean data (o = 0) and reduced error to 0.0527 at
o =0.30, a 75 % drop versus the clean baseline. Heavier ramps (0—0.10 or 0—0.30) plus
EMA never outperformed this hybrid, indicating that light noise-ramping plus EMA is the
most efficient and robust strategy.

Main Conclusion:

Robustness in LC-PFN extrapolation can be dramatically improved without architectural
changes. A combination of noise-ramp training and lightweight test-time smoothing yields
large and consistent gains, enabling more reliable performance predictions in noisy, real-
world environments. In particular, we recommend the Ramp-0—-0.05 training schedule
paired with EMA smoothing as the most effective and efficient strategy.
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A Use of Large Language Models (LLMs)

In preparing this thesis, I used OpenAI’s ChatGPT to proofread my writing, improve phras-
ing, and enhance the clarity and flow of existing text. All core ideas, analysis, and results
are my own. The tool was used solely to refine how these were expressed. I reviewed and
verified all Al-assisted suggestions to ensure the content remained faithful to my original
intent and met academic standards.

Example prompts used:

e “Rewrite this paragraph by fixing grammatical errors and improving sentence flow, but
do not change its meaning or remove any technical content.”

e “Make this explanation more concise while keeping the original results and interpreta-
tion.”

This use aligns with course policy and reflects responsible integration of Al as a writing

support tool.
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