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Abstract
The possibility to improve an existing method by
making (part of) it learnable is explored in this
research. The work that this research extends
added prior knowledge to a Convolutional Neural
Network (CNN) to improve its performance when
dealing with an illumination shift. The method
used for the preprocessing, is the color invariant.
The method was used in a zero-domain adapta-
tion setting, where the network is trained with-
out having access to the target domain. The re-
search demonstrated improved performance, moti-
vating further improvements.
The Color Invariant Convolution (CIConv) layer
implements the color invariant edge detectors. The
layer converts the RGB input of each pixel to spec-
tral differential quotients, which are used to de-
termine the color invariant representation. This is
done through two fixed linear transformations that
only approximate these values. This indicates that
an even better approximation can be obtained by
making this transition learnable.
Two methods are used to make this transition learn-
able; a linear learning method and a non-linear
learning method. The linear learning method uses
the original transformation but allows for change
and the non-linear method replaces the linear trans-
form with a neural network. Both methods show
potential for achieving better results than the fixed
transformation, but only the linear learning method
actually does perform better in a classification ex-
periment. All experiments are done following the
zero-shot day to night domain adaptation on a syn-
thetic dataset.

1 Introduction
Driving is a complex task performed under ever changing
conditions and subsequently many factors contribute to a col-
lision. A large percentage of road injuries is attributed to hu-
man perceptual error. There is sound evidence that the abil-
ity to avoid collisions is impeded under night time lighting
[16]. The decreased visibility on the road makes it harder

to identify objects. Clearly, night time driving is an issue
for humans, but how about self-driving cars? Well, it hap-
pens to be that the deep image recognition methods used in
self-driving cars are also sensitive to illumination shifts [12].
In such safety-critical applications, robustness is essential so
scientists continue to try and find methods to improve existing
methods.

The first generation of methods in the computer vision field
are now categorized as classical or traditional computer vi-
sion. In classical computer vision, the methods are based on a
descriptive analysis. A descriptive analysis entails specifying
a comprehensible mathematical model that describes the phe-
nomenon that we wish to observe [15]. Eventually, classical
computer vision was succeeded by machine learning where
the descriptive analysis was replaced by a predictive analy-
sis. In machine learning, the goal is the discovery of under-
lying rules and forming predictive models, while minimising
the error between the actual and predicted outcome [15]. To
pursue this, machine learning utilises a training framework,
consisting of Artificial Neural Networks, that is fed with a
large training set for which the outputs are known. First the
networks expanded (Deep Learning1) and then evolved into
Convolutional Neural Networks (CNNs)2. The development
of CNNs has had an exceptional impact in the computer vi-
sion field, especially in the ability to recognize objects and
feature learning [21].

To further improve the performance of CNNs the input
data can modified. Several methods of preprocessing the
input images have already been explored [13; 20]. The re-
search which this paper extends also uses the method of
adding prior knowledge as a visual inductive bias [12]. The
preprocessing method used in the research is an approach
used in classical computer vision called color invariance [5;
6]. Rather than just using the intensity, the color invari-
ance has the ability to apply segmentation based on color,
providing a broader class of discrimination between mate-
rial boundaries. While this is a widely researched topic [8;
4; 18], the method has never been used in this fashion. The
positive results in using color invariants gave the incentive to

1A subset of machine learning where the neural network consists
of more than 3-4 layers

2CNNs distinguish themselves by combining different types of
neural layers in the architecture. Convolutional layers, pooling lay-
ers and fully connected layers [21]
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Figure 1: The classification accuracy of the best performing methods on the synthetic ShapeNet dataset. The half linear experiment is
clamped in the range [-2.5, 2.5], the full linear is clamped in the range [-1.5, 1.5] and both best performing Sigmoid options use the defined
short network. The tables with the results for the options are Table 1 and Table 3.

delve deeper in utilizing the physics-based reflection model
as prior knowledge in a CNN. The color invariance reduces
some of the complexity intrinsic to color images, with respect
to known parameters of invariance, such as scene geometry,
color, the intensity of the light source and the Fresnel reflec-
tion [5].

The work that has researched the color invariant as in-
ductive basis uses a zero-shot domain adaptation [12]. This
means that the network is trained without having access to
the target domain. In this case is the network trained with
day time data and tested against night time data to investi-
gate the effectiveness of using the color invariant as part of
a CNN. The experiments done in the prior research show an
improved performance in this setting when using the color
invariant contrary to using the non-preprocessed data in the
same network [12]. This research will also use the same zero-
shot domain adaptation in the experiments using the best per-
forming color invariant W as baseline.

This research has focused on improving the layer in the net-
work that applies the color invariant, the Color Invariant Con-
volution (CIConv) layer. Specifically, this paper will focus
on improving the earlier fixed transformation to the Gaussian
color model (GCM) [6] by making this part trainable. The
Gaussian color model as described in the original setting is
estimated by two linear transformations on the RGB camera
responses. The first to estimate the XYZ basis and the second
to estimate the spectral differential quotients used in deter-
mining the color invariant. Especially the linear transform to
the XYZ basis is an approximate based on the camera sensi-
tivities [2] and can vary based on the equipment used when
recording the visuals [6]. The fact that the transition to the
Gaussian color model is based on estimates indicates poten-
tial for improving the transformation and motivates to study
the following research question:

Can the performance of the CIConv layer be improved by
making the transition to the Gaussian color model learn-
able?

To explore this research question, the fixed linear transfor-
mation to the GCM will be made into a learnable component
using two techniques; a linear learning approach and a non-
linear learning approach. The linear learning approach uses

the original transformation but allows for changes according
to the specified learning rate. The non-linear approach re-
places the linear transform with a neural network, accepting
three inputs and three outputs to match the initial conversion.
Both methods are applied and tested to the whole transfor-
mation or the first part when changing to the XYZ basis.
The results in Fig. 1 describe the best performing experi-
ments for both methods under different lighting conditions. It
shows that linear learning achieves the highest performance,
outperforming the baseline. The half linear learning method
performs better with the darkest intensity and the full linear
learning method slightly better under dark conditions. This
while the best performing non-linear experiments do not per-
form very well on the darker intensities.

The following contributions are part of this paper: (I) two
general methods of making the GCM learnable are added to
the CIConv layer, (II) different configurations of each method
tested against a synthetic classification dataset and (III) a
quantified evaluation of the experiments, determining which
configurations are usable as a replacement of the fixed trans-
formation.

2 Related Work
(Physics-Guided) Neural Networks
Nowadays, neural networks are a much used tool for find-
ing underlying relations in a set of data. Although it has
been proven a good method, in computer vision applications
it was replaced by a better performing CNN, where LeNet
started the era of CNNs [11]. CNNs typically have a stan-
dard structure where in contrast to traditional neural net-
works where all layers are fully connected layers, it com-
bines 3 different kind of layers and only the last layer is
fully connected [21]. Multiple works have suggested for
CNNs to substitute networks with only fully connected lay-
ers with a view to attaining faster learning times (e.g. [14;
19]). The next development for the networks was adding
prior knowledge from physical models to CNNs. The perfor-
mance of these networks can significantly improve without
adding more trainings data by adding the bias. For instance,
adding translation equivariance through a convolutional prior.
This has proven useful in applications such as line detection



[13] and spectral leakage [20]. Another way of adding prior
knowledge is the usage of image formation models. This is
the process of transforming the input image before putting it
through a CNN. An examples is intrinsic image decomposi-
tion [1], that separates an image into its formation compo-
nents such as reflectance and shading. The CIConv layer [12]
also uses this technique and transforms the input to a color
invariant representation. This work focuses on further devel-
oping the CIConv by making a fixed part of the color invariant
learnable.

Color Invariant
The research on improving the invariance to illumination
changes is a well-documented topic in the classical computer
vision [8; 4; 18]. Early reflection models are derived from
the Kubelka-Munk (KM) theory [10; 5]. This KM model
uses four parameters of known invariance. The Scene ge-
ometry, that concerns the formation of shadows and shading,
the color and illumination intensity and Fresnel reflections,
that occurs on shiny objects that reflect light directly from the
surface without interacting with the material color. Five rel-
evant combinations derived from the model are determined
[5] and tested when implemented in the first layer of a CNN
[5]. The Color Invariant Convolution (CIConv) layer uses the
edge detectors from [7] and shows the most promising test
results when using the invariant that only has invariance to
illumination intensity. This work focuses on the most suc-
cessful invariant in the CIConv layer, leaving the other four
invariant combinations of the KM model out of consideration.
The CIConv layer of [12] is used while solely modifying the
process of calculating Gaussian color model.

3 Method
The CIConv layer
The CIConv layer uses the edge detectors from [7]. These
edge detectors are derived from the Kubelka-Munk theory
[10], which is considered as a general model for color image
formation. This photometric reflectance model describing the
spectrum of light E reflected from an object is given by

E(λ, #»x ) = e(λ, #»x )((1− ρf (
#»x ))2R∞(λ, #»x ) + ρf (

#»x )), (1)

in which the #»x denotes the position in the image plane,
and λ the wavelength. The e(λ, x) stands for the illumination
spectrum and ρf (x) the Fresnel reflection at #»x . While dif-
ferent combinations of invariance are possible derived from
this model, in this use-case the W invariant proved to be the
best performing invariant [12]. This invariant is only invari-
ant to the illumination intensity. It assumes spectrally and
spatially uniform illumination, so the e(λ, #»x ) can be repre-
sented by a constant i. It also assumes only matte surfaces
making ρf (

#»x )) = 0 reducing (1) to

E(λ, #»x ) = iR∞(λ, #»x ).(2)
The definition of the W invariant is given by

W =
√

W 2
x +W 2

λx +W 2
λλx +W 2

y +W 2
λy +W 2

λλy, (3)

with the component defined as Wx = Ex

E , Wλx = Eλx

E

and Wλλx = Eλλx

E . To estimate the spectral differential quo-
tients E, Eλ and Eλλ, the Gaussian color model (GCM) [6]
is used. The GCM converts the RGB responses with two lin-
ear transformations to the spectral differential quotients. A
RGB-camera approximates the CIE 1931 XYZ basis for col-
orimetry by the linear transform [2][

X
Y
Z

]
=

(
0.62 0.11 0.19
0.3 0.56 0.05

−0.01 0.03 1.11

)[
R
G
B

]
.(4)

In [6] an approximate solution is also obtained to go from
the XYZ basis to the Gaussian basis, defined by

[
E
Eλ

Eλλ

]
=

(−0.48 1.2 0.28
0.48 0 −0.4
1.18 −1.3 0

)[
X
Y
Z

]
.(5)

The product of Eq.(4) and Eq.(5) gives the desired conver-
sion, specifying the GCM in RGB terms,

[
E
Eλ

Eλλ

]
=

(
0.06 0.63 0.27
0.3 0.04 −0.035
0.34 −0.6 0.17

)[
R
G
B

]
.(6)

To determine subsequently the spatial differential quotients
Ex, Eλx and Eλλx the spectral differential quotients are con-
volved with Gaussian derivative kernels g with standard de-
viation σ, e.g.

Ex(x, y, σ) =
∑
t∈Z

E(t, y)
∂g(x− t, σ)

∂x
.(7)

The parameter σ in Eq.(7) is the trainable parameter in the
CIConv layer and defines the scale at which the image is con-
volved. This bigger σ is, the less details are preserved. By
making this parameter trainable, it is possible to find a good
trade-off between omitting noise and preserving details.

Gaussian color model
This research focuses on the one part of the CIConv layer,
namely the transition to the Gaussian color model, used in
determining the color invariant in the layer. As explained
earlier, the original CIConv layer deals with this transfor-
mation with two fixed matrix multiplications, (4) and (5),
which are approximations [6]. To try and optimize this pro-
cess, the linear transforms will be turned into a trainable ele-
ment. The first distinction in is between making the only (4)
learnable and making the whole transform, identified as (6),
learnable. The reason why making (5) on itself learnable is
not researched, is because this transform from the XYZ basis
to the spectral differential quotients is based on a reasoning
equally applicable to all occurring circumstances, regardless
of the recording conditions of the images. Whereas (4) is de-
pendent on the camera sensitivities and can differ for each in-
dividual type of camera. Different approaches for the switch
are explored and tested as part of the CIConv layer described
in [12].



Method Clamped? Clamp range Val acc(%) Darkest acc(%) Dark acc(%) Normal acc(%)
Baseline N/A N/A 88.7 76.8 84.5 85.4

Half
linear

False N/A 88.7 77.6 84.3 85.3
True [-1.5, 1.5] 87.5 77.9 84.3 85.3
True [-2.5, 2.5] 89.0 78.2 84.3 85.7

Full
linear

False N/A 88.7 75.4 84.5 85.4
True [-1.5, 1.5] 88.9 76.0 85.1 85.4
True [-2.5, 2.5] 88.5 74.9 84.6 85.4

Table 1: ShapeNet classification accuracy of a ResNet-18 architecture with the linear learning method applied. Each experiment is performed
three times with the best performing results displayed here.

For the generation of the learnable element, two methods
are explored. The first is using the values of the existing linear
transforms of (4) and (6) but allowing the learning rate of the
network to alter the matrix. This is the same approach used
for training the scale in the CIConv layer and uses the same
learning rate. The second approach is replacing the matrix
by a neural network that accepts three inputs and produces
three outputs, representing the RGB and spectral differential
quotients or XYZ basis respectively. In the neural network,
different variations of the size of the network and the activa-
tion functions used, are experimented with.

4 Experiments
Can the performance of the CIConv layer be improved by
making the transition to the Gaussian color model learn-
able?

To answer this question, various classification experiments
have been carried out with various settings applying the linear
learning method or a non-linear method in the form of a neu-
ral network. These methods are compared to the performance
of the initial fixed linear transformations used in the CIConv
layer defined in [12], specified as baseline in the experiments.
Both learning methods are applied to only the transformation
described in (4) or the whole transformation of (6). From now
on, these experiments are described as half or full learning
respectively. To evaluate the performance of the methods not
only the classification accuracy, but also the behavior of the
learnable scale parameter and stability in training are taken
into account.

Overall settings & dataset
The experiments on the datasets use a zero-shot domain adap-
tation approach [17; 12], which means that the network is
trained without having access to the target domain, where in
this case day and night time represent the training and target
domain respectively.

All the experiments will be performed on images rendered
from a subset of the ShapeNet [3] dataset. ShapeNet is a syn-
thetic image dataset composed of images that are rendered
in different illumination conditions. With accurate control
of light intensity, the scene is point light modeled with tem-
peratures ranging between [19000,20000]K and an ambient
light source. The training set contains 1,000 samples for each
of the 10 object classes recorded under ”normal” conditions
(T=6500K). The test sets consist of 300 samples per class
with a variety of light intensity and colors.

A baseline ResNet-18 [9] is trained in combination with the
W color invariant in the CIConv layer. The training settings
are the same as in [12]; training is done for 175 epochs with a
batch size of 64 using SGD with momentum 0.9, weight de-
cay 1e-4 and an initial learning rate of 0.05 with stepwise re-
duction by factor 0.1, step size 50. The experiment uses data
augmentation in the form of random horizontal flips, random
cropping and random rotation.

4.1 Linear learning
Can the performance of the CIConv layer be improved by
applying a linear learning method to the values in the ma-
trices used in the linear transform to the Gaussian color
model?

The linear learning method uses the the matrix transfor-
mations of (4) and (6) as basis but allows for modifications
according to the learning rate of the network. The scale is
trained using the same method in the initial CIConv layer.
The options for this experiment contain an unclamped option
and clamped options containing the values of the matrices
within the absolute values of 1.5 and 2.5. The restraining
of the values in the half and full learning methods is applied
to the matrices of the linear transforms of (4) and (6) because
they already contain good approximations for the process and
makes sure that the values do not explode. Thus, the options
for the clamping are chosen in such a way to keep the values
reasonably close to the initial values of the matrices.

The results in Table 1 show that both half and full have a
better performing option than the baseline. For half learning
is the best result achieved when clamped with the absolute
value of 2.5 at an accuracy of 89.0% and for full learning
is it achieved when clamped with the absolute value of 1.5
at 88.9%. The unclamped experiments even show a drop in
performance, demonstrating that the clamping is vital for pro-
ducing optimal results with this method.

The experiments show that the overall performance of
the network can be increased by applying linear learn-
ing method to the matrices used in the transition to the
Gaussian color model. In both the half and the full learn-
ing option, making (4) and (6) learnable respectively, do the
experiments in Table ?? show increased accuracy compared
to the baseline experiment. However, the learned matrices in
Table 2 of these experiments do not resemble initial matrices
anymore, suggesting that the new produced color invariant
representations also do not resemble the initial invariant rep-
resentation anymore. However, this research does not contain



Method Clamp range Initial matrix learned matrix

Half learning [-2.5, 2.5]

(
0.62 0.11 0.19
0.3 0.56 0.05

−0.01 0.03 1.11

) (−1.86 −1.86 −2.43
2.49 2.09 2.19
2.50 2.42 2.35

)

Full learning [-1.5, 1.5]

(
0.06 0.63 0.27
0.3 0.04 −0.035
0.34 −0.6 0.17

) (
1.06 0.32 0.26
1.45 −0.40 −1.47
1.17 −1.24 0.10

)

Table 2: The learned matrices of the best performing experiments displayed in Table 1. The initial matrices are the matrices of (4) and (6)
described in the Method

.

the invariant representations of the experiments and only con-
tains the quantifiable data of the experiments such as accuracy
and scale, so no definite conclusions about the produced color
invariant representation can be made.

4.2 Non-linear learning
Can the performance of the CIConv layer be improved
by replacing the linear transform to the Gaussian color
model by using a non-linear learning method?

The non-linear learning method uses a neural network to
estimate the transformation to the GCM. The neural network
that replaces the transformation accepts three inputs and has
three outputs. The input will always correspond to the RGB,
but the output can correspond to the XYZ basis or the spectral
differential quotients depending on if half or full learning is
applied. Two properties of the neural networks are explored
in the experiments. The first is the activation function applied
when the layer transitions to a layer with three perceptrons
and the second is the size of the neural network. The second
property is the size of the network where the following two
sizes are used:

1. The short option that has three hidden layer of 10 per-
ceptrons, described as 3− 10− 10− 10− 3 and

2. the long option that has 7 hidden layer and applies the
short option two times in succession described as 3 −
10− 10− 10− 3− 10− 10− 10− 3.

The standard activation function used in the layers in both
structures is the Rectified Linear Unit (ReLU). It is used in
every transition, except when the transition is made to a layer
with three perceptrons. This means that the option for the
activation function is either used once in the short option, or
twice in the long option. The three most used activation func-
tions are the options in the two specified network sizes. These
three activation functions are the following:

1. The Sigmoid activation function, with formula

f(x) =
1

1 + e−x

and range [0, 1],
2. the Tanh activation function, with formula

f(x) =
ex–e−x

ex + e−x

and range [−1, 1] and

Method Size Activation function Accuracy
Baseline N/A N/A 88.7

Half
linear

Short
Sigmoid 88.1

Tanh 10.0
ReLU 86.7

Long
Sigmoid 10.0

Tanh 10.0
ReLU 10.0

Full
linear

Short
Sigmoid 87.7

Tanh 87.8
ReLU 10.0

Long
Sigmoid 10.0

Tanh 10.0
ReLU 10.0

Table 3: ShapeNet classification accuracy of a ResNet-18 architec-
ture with the W invariant applied in the CIConv layer. All experi-
ments are each performed three times with the best performing re-
sults displayed here.

3. the ReLU activation function, with formula

f(x) =

{
0, if x < 0

x, otherwise

, and range [0, >.

The results in Table 3 show performances of the short and
long options in combination with the three activation func-
tions in the neural network. A first observation shows that
the long network is not capable of learning the transition ir-
respective of which activation function is used. The short op-
tion does have successful experiments together with all three
activation functions, with accuracies that come near the one
of the baseline. So the composition of the layers is a key fac-
tor when using a neural network to determine the Gaussian
color model. The network loses the capability to learn the
transition when it has too many hidden layers.

Table 4 shows the stability of only the short network. Be-
cause of the unstable performances, the amount of successful
experiments for each option is an important factor to consider.
The TanH option was only successful 1 out of 6 experiments,
the ReLU 2 out of 6, while the Sigmoid was successful in all
experiments. This makes the Sigmoid the only stable activa-
tion function always giving proper results that get close to the
performance of the baseline.



Method Activation function Successful experiments
Baseline N/A 3/3

Half
linear

Sigmoid 3/3
Tanh 0/3
ReLU 2/3

Full
linear

Sigmoid 3/3
Tanh 1/3
ReLU 0/3

Table 4: Describing the amount of successful experiments to evalu-
ate the stability of the activation functions in the short network. The
only stable performing activation function is the Sigmoid function.

In the non-linear learning method, using a neural net-
work no improved performances with respect to the base-
line experiment can be observed. Nonetheless, no definite
conclusions saying that this method can not improve the per-
formance, can be made. The reason for the inconclusiveness
is the instability when using a neural network. Although the
Sigmoid activation function works very stable in the short
network as described in Table 4, the failing of the long net-
work indicates that the performance is rather sensitive to the
explored properties of the size of the networks and activation
function used. There is one tested configuration providing
stable and decent results for both half and full learning. It is
not performing better than the baseline, but because only one
configuration in this method was stable, we can not conclude
that this is the only and best working one. This means that
this method still has the potential to do better considering
there exists another unexplored composition of the network
that optimizes the performance for this specific problem.

5 Discussion
The experiments for several options in both linear and non-
linear methods show promising results.

The linear learning method shows improved perfor-
mances with respect to the baseline experiments in half learn-
ing and full learning. These results imply that this method is
readily usable in the CIConv layer for either option. How-
ever, the learned matrices in figure 2 do not resemble the ini-
tial matrices anymore. This suggests that applying the matrix
multiplication of (5) to the learned matrix in half learning has
become an unneeded calculation in this method. The goal of
(5) is going from the XYZ basis to the Gaussian color model
but the result of the learned linear transform does not approx-
imate the transition to the XYZ basis anymore. So in future
work, solely the full learning approach should be further ex-
plored. The produced color invariant representation can be
evaluated to see how it differs from the initial one. Also more
experiments with the clamping value can be carried out, with-
out considering the initial values in the matrix.

The non-linear learning method does not show improved
performance with respect to the baseline experiments in half
and full learning. Still, the performance when applying the
Sigmoid activation function shows potential to rise above the
baseline experiment. Only when using this activation func-
tion, the performance of the network is stable and close to the
accuracy of the baseline. No conclusions about the size of the

network can be made based on the results of this experiment,
because there was only one size that has produced decent re-
sults. Also, the only variation in the size is in the amount
of hidden layers, keeping the amount of perceptrons in each
hidden layer the same. So in future work the performance of
more network compositions can be explored in term of the
number of layers and perceptrons per layer.

An alternative non-linear learning method can also be
considered in further experiments. Instead of letting a neural
network consider the transformation per pixel, the setting can
be changed to an approach more similar to a convolutional
one. This means that not only the target pixel is considered
in the transformation, but that the surrounding pixels are also
taken into account in the determination of the Gaussian color
model.

6 Responsible Research
The ultimate goal of the neural networks trained in this ap-
plication, is to be applied in the recognition systems of self-
driving cars. As this is a safety-critical application, the cur-
rent experiments are not enough to validate the performance
of these networks in real-life. The performance of the classi-
fication experiments described in the paper only demonstrate
the potential for improving an already existing method that is
also still in a development stage. The current implementation
does not ensure a stable performance in the real world.

Reproducibility
The ShapeNet dataset used in the experiments is an open
source dataset that is available for anyone to use. In com-
bination with the available source code of this experiment, all
experiments done when the instructions in the repository are
followed. Not all configurations of the experiments are read-
ily applicable, but following the instructions in 4.1 and 4.2
the parameters and implementation can be altered in such a
way that all experiments can be reproduced.
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