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RESTAD: RECONSTRUCTION AND SIMILARITY BASED TRANSFORMER FOR TIME
SERIES ANOMALY DETECTION

Ramin Ghorbani, Marcel J.T. Reinders, David M.J. Tax

Delft University of Technology, Delft, Netherlands

patterns and automatically learning hierarchical and non-linear
features from time series data [7, 8].

Building on these advancements, several effective anomaly
detection methods have been developed, largely focusing on
the reconstruction error as a primary anomaly criterion [9, 10,
11]. These methods typically assess the deviations between a
given input and its reconstruction to identify anomalies. The
underlying assumption is that typical data will have lower
reconstruction errors, whereas anomalous data will exhibit
higher errors due to the unfamiliarity of the model with these
patterns [10, 12].

A major issue of using the reconstruction error for anomaly
detection is over-generalization [13]. Models fitted to capture
the predominant patterns in the training data, generalize these
patterns to include subtle variations as well. Therefore subtle
anomalies can also be reconstructed well by these models. As
a result, these anomalies are less distinguishable from typi-
cal patterns, reducing the model’s detection sensitivity [14].
This effect is depicted in Figure 1.a, where the original signal
includes a subtle anomaly at time point t0 and a significant
anomaly at t1. The reconstructed signal is a slightly smoothed
version of the original signal, and by using the reconstruction
error alone, the subtle anomaly is missed as the reconstruc-
tion error remains below the detection threshold, as shown in
Figure 1.b.

Efforts have been made to improve unsupervised anomaly
detection by adding other types of scores to the conventional re-
construction error-based anomaly scores. For instance, Anom-
alyTrans [15] utilizes the concept of association discrepancy,
which considers the similarity of a time point with its adja-
cent time points. It then reweights the reconstruction error
accordingly to formulate the final composite anomaly score.
However, in this method a normalization is performed, which
can exaggerate the discrepancy scores for normal time points
when no anomalies are present, potentially leading to false
positives. This can misleadingly highlight normal data points
as anomalies. Although this approach is effective for identi-
fying clear outliers, it can inadvertently misrepresent subtle
normal fluctuations as anomalies.

To overcome the challenges of scoring based on reconstruc-
tion error and the limitations of the association discrepancy
method, we propose combining the reconstruction error with

ABSTRACT

Anomaly detection in time series data is crucial across various 
domains. The scarcity of labeled data for such tasks has in-
creased the attention towards unsupervised learning methods. 
These approaches, often relying solely on reconstruction error, 
typically fail to detect subtle anomalies in complex datasets. 
To address this, we introduce RESTAD, an adaptation of the 
Transformer model by incorporating a layer of Radial Basis 
Function (RBF) neurons within its architecture. This layer 
fits a non-parametric density in the latent representation, such 
that a high RBF output indicates similarity with predominantly 
normal training data. RESTAD integrates the RBF similarity 
scores with the reconstruction errors to increase sensitivity 
to anomalies. Our empirical evaluations demonstrate that 
RESTAD outperforms various established baselines across 
multiple benchmark datasets.

Index Terms— Time Series, Anomaly Detection, Radial 
Basis Function (RBF) kernel, Transformer

1. INTRODUCTION

Anomalies in time series data, i.e., unexpected patterns or devi-
ations from normal behavior, can signify critical issues across 
various domains, from financial fraud to life-threatening health 
conditions. Hence, accurate anomaly detection is important. 
Given the rarity of anomalies and, thus, the lack of sufficient 
labeled data, fully supervised methods are less suited. Conse-
quently, unsupervised learning methods have gained increasing 
attention [1]. These methods do not explicitly require labeled 
anomaly examples, making them ideal for the detection of 
unknown or unexpected anomalies [2].

Various classic unsupervised techniques like distance-
based One-Class SVM (OC-SVM) [3] or density-based Local 
Outlier Factor (LOF) [4], have been widely used. However, 
they struggle with the temporal dependencies, high dimen-
sionality, and complex generalization demands of time series 
data [5]. Recent developments in deep learning offer promis-
ing solutions for handling these challenges [6]. Architectures 
like Transformers and LSTMs excel at capturing temporal
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2024 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 22–25, 2024, LONDON, UK

20
24

 IE
EE

 3
4t

h 
In

te
rn

at
io

na
l W

or
ks

ho
p 

on
 M

ac
hi

ne
 L

ea
rn

in
g 

fo
r S

ig
na

l P
ro

ce
ss

in
g 

(M
LS

P)
 |

 9
79

-8
-3

50
3-

72
25

-0
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
O

I: 
10

.1
10

9/
M

LS
P5

89
20

.2
02

4.
10

73
47

55

Authorized licensed use limited to: TU Delft Library. Downloaded on November 08,2024 at 09:01:42 UTC from IEEE Xplore.  Restrictions apply. 



Original Signal
Reconstructed  Signal

Re
co

ns
tr

uc
ti
on

 E
rr

or

Time

Si
gn

al
 V

al
ue Subtle

Anomaly

Significant
Anomaly

Missed
Anomaly

Threshold 

Detected
Anomaly

Normal Data Point
Anomaly Data Point Significant

Anomaly

Subtle
Anomaly

RBFCenter

RBF Layer

t1t0

Combined Score
Reconstruction Score
Dis-Similarity Score

(a) (b)

t1t0 Time

Transformer Layer Transformer Layer

Threshold 

(d)
t1t0 Time

A
no

m
al
y 

Sc
or

e

(c)

Em
be

dd
in
g 

D
im

en
si
on

 1
 

Embedding Dimension 2 

Input  
Signal

Reconstructed
Signal

Fig. 1: Comparison of traditional reconstruction and RBF-enhanced anomaly detection: a) Original signal with subtle and
significant anomalies compared to its reconstruction. b) Reconstruction errors for the signals in (a), highlighting challenges in
detecting subtle anomalies. c) Visualization of a model integrated with an RBF, shown via a 2D scatter plot that includes typical
data, subtle and significant anomalies, and the RBF center with its influence radius, showing the RBF’s ability to differentiate
typical points from anomalies. d) Enhanced anomaly score using the RBF, which shows improved detection of subtle anomalies.

a specialized non-linear transformation like the Radial Ba-
sis Function (RBF) kernel [16]. The RBF kernel generates a
similarity score that measures how close a data point is to a ref-
erence point or center, making it highly effective for anomaly
detection. Anomalies, data points that deviate (are far away)
from typical patterns, yield lower similarity scores with the
RBF kernel, thus directly measuring how anomalous a point is.
This score can effectively complement the reconstruction error
and improve the sensitivity to subtle anomalies that might be
overlooked by the reconstruction error. The effectiveness of
combining RBF scores with reconstruction error is illustrated
in Figure 1.c, where an RBF kernel is applied to typical data
in the latent representation of a Transformer. By combining
reconstruction error with RBF similarity scores, we create a
comprehensive composite anomaly score that not only cap-
tures deviations from expected patterns but also ensures that
subtle anomalies are still flagged. This composite anomaly
score is shown in Figure 1.d, where the anomaly scores for
both anomaly types are now above the detection threshold.

This paper presents an adaptation of the Transformer
model, chosen for its ability to capture temporal dependencies
in sequential data. By integrating the RBF neurons into the
Transformer architecture, we develop a model that syner-
gistically utilizes both similarity scores and reconstruction
error to compute a distinctive anomaly score. Through an
extensive evaluation, we show that this new REconstruction
and Similarity based Transformer for time series Anomaly
Detection, RESTAD, outperforms existing baselines across a
range of benchmark datasets.

2. METHODOLOGY

Assume that the observed time series dataset consists of N
sequences with length T . Each sequence in this dataset is de-
noted by Xi = {xi,t}Tt=1 where xi,t represents the observed
time point for i-th sequence at time t, having d dimensions,
i.e., xi,t ∈ Rd. Our task is to determine if a given xi,t shows
any anomalous behavior or not.

2.1. RESTAD Framework

In our study, we incorporate the anomaly detection mechanism
into the vanilla Transformer [7] through a specific layer of
RBF neurons, see Figure1.c. This RBF layer operates on the
latent representations from the preceding layer, denoted by
Hi = {hi,t}Tt=1, where hi,t ∈ Rdh . This layer computes the
similarity of each data point hi,t to a set of learnable reference
points (centers), denoted by C = {cm}Mm=1, where cm ∈ Rdh .
This computation results in the RBF output, Zi = {zi,t}Tt=1,
where zi,t ∈ RM , which then serves as the input to subsequent
layer of the model. Specifically, the RBF similarity output for
each data point relative to each center is defined by:

zmi,t(hi,t, cm) = exp

(
−1

2
eγ∥hi,t − cm∥2

)
(1)

Here, the parameter γ controls the width of the RBF, influ-
encing how it considers data points at varying distances from
the center. This parameter is initialized and adjusted during
training. Using the exponential of γ ensures the positivity
of the scale parameter, simplifying the optimization process
without enforcing a positivity constraint.

Anomaly Score: RESTAD is trained by minimizing the
Mean Squared Error (MSE) to achieve accurate reconstruc-
tion. For anomaly detection, a composite anomaly score,
RESTADscore, is introduced by combining the normalized
RBF similarity scores and reconstruction errors. The normal-
ization is based on MinMax to ensure comparability. The RBF
similarity score measures how closely xi,t aligns with the
learned centers. A higher similarity suggests normal behavior,
whereas a lower similarity (or greater distance to the RBF
centers) signals anomalies. This score is derived from averag-
ing the RBF output zi,t across all centers. The reconstruction
error is the squared difference between the actual data xi,t and
its reconstruction x̂i,t. The RESTADscore is formulated as:

RESTADscore(xi,t) = ϵr × ϵs (2)
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Fig. 2: Overview of the proposed RESTAD model. Here, the RBF layer is added after the second encoder layer.

where ϵr = ||xi,t − x̂i,t||2 represents the reconstruction

error, and ϵs =
(
1− 1

M

∑M
m=1 z

m
i,t

)
measures dissimilarity.

This combination highlights subtle anomalies characterized
by both low reconstruction errors and RBF scores, as well as
significant anomalies with high reconstruction errors or low
RBF scores.

Initialization of RBF Layer Parameters: Proper initializa-
tion of the RBF parameters, including the centers c and scale
parameter γ, is crucial for our methodology. We explore two
initialization strategies: Random and K-means, to assess their
impact on model performance. For Random initialization, pa-
rameters c and γ are drawn from a normal distribution with
zero mean and unit standard deviation. Although it is simple,
it may lead to slower convergence, risk of local minima, and
may not effectively represent the data distribution initially,
possibly resulting in instability. In contrast, K-means initializa-
tion uses the inherent data structure for a more representative
starting point. In this approach, initially, a base model (without
the integrated RBF layer) is trained to minimize the MSE of
reconstruction:

MSE =
1

N

N∑
i=1

∥∥∥Xi − X̂i

∥∥∥2
F

(3)

After achieving satisfactory reconstruction accuracy from
the base model, the latent representation is extracted from the
specific layer where the RBF layer is intended to subsequently
be integrated. This representation is then used to initialize c
via the K-means clustering algorithm. The scale parameter γ
is initialized using σ̃2, the mean squared distance from each
data point to its nearest cluster center:

σ̃2 =
1

NT

N∑
i=1

T∑
t=1

min
m

∥hi,t − cm∥2 , ∀m ∈ [1,M ] (4)

Here, hi,t denotes the latent representation vector of the
i-th sample at the t-th time step, and cm is the m-th cluster
center obtained from the K-means algorithm. This value, σ̃2, is
used to initialize γ as γ = 1

σ̃2 , ensuring that the RBF function
has a spread informed by the average dispersion of the data
points around their respective centers.

3. EXPERIMENTAL SETUP

3.1. Datasets and Preprocessing

We use three public widely used benchmark datasets for our
experiments: 1) Server Machine Dataset (SMD) [10], 2) Mars
Science Laboratory (MSL) Rover [8], and 3) Pooled Server
Metrics (PSM) [17]. Further information on each dataset is
available in our code repository1.

Data preprocessing involves normalizing each feature
to zero mean and unit variance across the time dimen-
sion. Subsequently, the normalized signal is segmented
into non-overlapped sliding windows with a fixed length of
100 data points, a common setting based on previous related
works [15, 9].

3.2. Implementation

RESTAD Model: The RESTAD model is an adaptation of
a vanilla Transformer, incorporating an RBF kernel layer as
detailed in Figure 2. It includes a DataEmbedding module
that combines both token and positional embeddings, followed
by an encoder with three layers. Each layer includes a multi-
head self-attention mechanism and feed-forward networks.
The model has a latent dimension of 32, an intermediate feed-
forward network layer with a dimension of 128, and 8 attention
heads. The RBF layer is placed after the second encoder layer
(other placements are also possible, see section 4.1). Optimiza-
tion is performed using the ADAM optimizer, and hyperpa-
rameters are determined through systematic search to optimize
reconstruction task performance. Additional hyperparameter
details are available in our code repository1.

Evaluation: Anomaly scores (Eq. 2) exceeding a threshold
δ are identified as anomalies. Performance is evaluated us-
ing the F1-score for threshold-dependent evaluation. Here,
we follow [15] by setting δ to label a predefined proportion
of data points as anomalies (0.5% for SMD, 1% for others).
For threshold-independent analysis, we use AUC-ROC, AUC-
PR, VUS-ROC, and VUS-PR metrics [18]. We exclude the
point-adjustment method [19] due to its overestimation [20].
Our model is compared against baselines and state-of-the-arts
models: LSTM [8], vanilla Transformer [15], USAD [12],
PatchAD [11], AnomalyTrans [15], and DCdetector [9].

1https://github.com/Raminghorbanii/RESTAD
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Table 1: Performance metrics of baselines and RESTAD on test sets. Initialization methods are denoted as (R) for Random and
(K) for K-means. For all measures, a higher value indicates better anomaly detection performance.
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Models F1
-S

co
re

A
U

C
-R

O
C

A
U

C
-P

R

V
U

S-
R

O
C

V
U

S-
PR

F1
-S

co
re

A
U

C
-R

O
C

A
U

C
-P

R

V
U

S-
R

O
C

V
U

S-
PR

F1
-S

co
re

A
U

C
-R

O
C

A
U

C
-P

R

V
U

S-
R

O
C

V
U

S-
PR

LSTM 0.12 0.74 0.17 0.79 0.20 0.06 0.56 0.14 0.63 0.19 0.11 0.73 0.50 0.72 0.51
USAD 0.13 0.63 0.11 0.72 0.14 0.06 0.53 0.14 0.59 0.18 0.07 0.60 0.41 0.61 0.43

PatchAD 0.01 0.50 0.04 0.61 0.08 0.03 0.50 0.10 0.57 0.15 0.02 0.50 0.28 0.55 0.33
Transformer 0.11 0.75 0.19 0.80 0.22 0.06 0.56 0.14 0.63 0.19 0.13 0.71 0.49 0.70 0.50

AnomalyTrans 0.03 0.49 0.04 0.50 0.07 0.02 0.49 0.10 0.52 0.14 0.02 0.51 0.30 0.53 0.34
DCDetector 0.01 0.50 0.04 0.51 0.08 0.02 0.50 0.11 0.58 0.15 0.02 0.50 0.28 0.52 0.32

RESTAD (R) 0.23 0.78 0.23 0.82 0.24 0.07 0.68 0.18 0.72 0.23 0.15 0.79 0.59 0.76 0.57
RESTAD (K) 0.20 0.79 0.24 0.83 0.25 0.07 0.66 0.18 0.71 0.23 0.14 0.79 0.57 0.76 0.56

4. RESULTS

Our empirical results, as detailed in Table 1, highlight the ef-
fectiveness of the RESTAD for anomaly detection. RESTAD
outperforms all baseline models across the benchmark datasets
and evaluation metrics, regardless of the RBF initialization
strategy. While there are slight performance differences be-
tween initialization methods, these variations are not signifi-
cant enough to establish the superiority of one method over
another.

To visually show detection differences, Figure 3 displays
anomaly scores for a short segment of the SMD dataset.
PatchAD, DCdetector, and AnomalyTrans models reveal
many false detections, with DCdetector showing a pattern
of repeated false positives and PatchAD resembling ran-
dom scoring. LSTM, USAD, and Transformer models miss
some anomalies or detect them weakly; for example, the
first anomaly area is undetected by USAD, and only weakly
detected by LSTM and Transformer. In contrast, the RESTAD
model demonstrates robust detection, effectively identifying
all anomaly sections.
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Fig. 3: Anomaly scores of different models for a segment of
SMD dataset. The highlighted regions in red indicate the true
anomaly periods (labeled by an expert).

4.1. Ablation Analysis
The ablation experiments are based on the RBF layer with ran-
dom initialization. This decision is based on our findings that
random initialization is as effective as the K-means strategy
(see Table 1), while offering greater simplicity and computa-
tional efficiency.

Anomaly Score Criterion: Table 2 highlights the impact of
integrating the RBF score into anomaly detection. Multiplying
the RBF layer’s dissimilarity score (ϵs) with the reconstruction
error (ϵr) to form the composite anomaly score (ϵs × ϵr) is
found to be the most effective, consistently enhancing detec-
tion across all benchmarks and metrics. Adding the RBF layer
to the vanilla Transformer with only reconstruction error ϵr
as the anomaly score offers marginal improvements on some
datasets. In contrast, using only the dissimilarity score (ϵs) or
adding it directly to the reconstruction error (ϵs + ϵr) shows
no significant benefits.

Figure 4 visually illustrates the superiority of our com-
posite anomaly score over the traditional reconstruction score
(ϵr) by showing subsets from all three datasets and the cor-
responding anomaly scores. Our anomaly score effectively
identifies anomalies that are overlooked by the model relying
solely on reconstruction error, with detections notably stronger
and typically exceeding the threshold. Note that the thresholds
depicted in the figures are the best optimized ones based on
the entire dataset. Altering this threshold for the subset of data
presented in the figures could diminish the overall performance
and is therefore not possible.

RBF Layer Placement:We explored the flexibility of RBF
layer placement within the vanilla Transformer by integrating
it after each of the three encoder layers. Figure 5 demonstrates
that performance remains robust across all datasets, irrespec-
tive of the RBF layer’s location. Note that placing the RBF
layer after the second encoder layer results in marginally better
performance across all datasets. This slight advantage influ-
enced our decision to position the RBF layer after the second
layer in the final model architecture (see Figure 2).
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Table 2: Effect of integrating RBF layer and the choice of anomaly score. For all measures, a higher value indicates better
anomaly detection performance.

Architecture Anomaly Criterion
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Transformer ϵr 0.11 0.75 0.19 0.80 0.22 0.06 0.56 0.14 0.63 0.19 0.13 0.71 0.49 0.70 0.50
RESTAD ϵr 0.11 0.77 0.18 0.81 0.21 0.07 0.63 0.16 0.69 0.21 0.13 0.75 0.56 0.74 0.55
RESTAD ϵs 0.01 0.44 0.03 0.52 0.07 0.01 0.43 0.08 0.48 0.12 0.01 0.32 0.20 0.37 0.25
RESTAD ϵr + ϵs 0.04 0.57 0.06 0.60 0.10 0.07 0.61 0.16 0.65 0.20 0.01 0.68 0.49 0.59 0.45

RESTAD ϵr× ϵs 0.23 0.78 0.23 0.82 0.24 0.07 0.68 0.18 0.72 0.23 0.15 0.79 0.59 0.76 0.57
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Fig. 4: Effect of our composite anomaly score (ϵr × ϵs) compared to reconstruction error (ϵr) across segments of all datasets.
The highlighted regions in red indicate the true anomaly periods (labeled by an expert).
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Number of RBF Centers: Figure 6 represents the impact
of the number of centers, ranging from 8 to 512, in the RBF
layer of RESTAD. Results indicate that the optimal number of
RBF centers is data-dependent. Additionally, beyond a certain
threshold, increasing the number of centers does not enhance
performance and may even reduce it.

5. DISCUSSION AND CONCLUSION

We introduced RESTAD, an adaptation of Transformers for un-
supervised anomaly detection that improves on the limitations
of using only reconstruction error as the anomaly score. By
integrating an RBF layer into the Transformer, we combined
RBF similarity scores with reconstruction error, enhancing
the sensitivity to subtle anomalies. RESTAD consistently out-

0 100 200 300 400 500
Number of RBF centers

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

M
ea

n 
AU

C

MSL
SMD
PSM

Fig. 6: RESTAD mean performance across varying numbers
of RBF centers. Shaded areas indicate ± standard deviation,
illustrating variability across multiple runs.

performs established baselines across various datasets and
evaluation metrics.

Our findings reveal that RESTAD’s performance is rela-
tively invariant to RBF layer initialization methods, indicating
robustness against initialization variability. The significant per-
formance gains are primarily due to the multiplicative fusion
of RBF similarity scores with reconstruction error, markedly
improving anomaly detection capabilities. The RBF layer’s
placement within the architecture did not significantly affect
performance, demonstrating architectural flexibility in inte-
grating the RBF layer. However, the optimal number of RBF
centers is data-dependent. These findings motivate future stud-
ies for the exploration of integrating RBF layers into other
deep learning architectures for anomaly detection tasks.
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