

Delft University of Technology

The Impact of SRA-Programming on Computational Thinking in a Visual Oriented
Programming Environment

Fanchamps, Nardie L.J.A.; Slangen, Lou; Specht, Marcus; Hennissen, Paul

DOI
10.1007/s10639-021-10578-0
Publication date
2021
Document Version
Final published version
Published in
Education and Information Technologies

Citation (APA)
Fanchamps, N. L. J. A., Slangen, L., Specht, M., & Hennissen, P. (2021). The Impact of SRA-Programming
on Computational Thinking in a Visual Oriented Programming Environment. Education and Information
Technologies, 26(5), 6479-6498. https://doi.org/10.1007/s10639-021-10578-0

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/s10639-021-10578-0
https://doi.org/10.1007/s10639-021-10578-0

Vol.:(0123456789)

https://doi.org/10.1007/s10639-021-10578-0

1 3

The Impact of SRA‑Programming on Computational
Thinking in a Visual Oriented Programming Environment

Nardie L. J. A. Fanchamps1,2 · Lou Slangen1 · Marcus Specht3 · Paul Hennissen1,2

Received: 28 December 2020 / Accepted: 3 May 2021
© The Author(s) 2021

Abstract
Visual programming environments are popular instruments in teaching Computa-
tional Thinking (CT) in schools today. Applying Sense-Reason-Act (SRA) program-
ming can influence the development of computational thinking when forcing pupils
to anticipate the unforeseen in their computer programs. SRA-programming origi-
nates from the programming of tangible robots, but can also be of equal value in vis-
ual programming with on-screen output. The underlying rationale is that program-
ming in a visual programming environment using SRA leads to more understanding
of the computational concepts addressed, resulting in a higher level of computa-
tional skill compared to visual programming without the application of SRA. Fur-
thermore, it has been hypothesised that if pupils in a visual programming environ-
ment can anticipate unforeseen events and solve programming tasks by applying
SRA, they will be better able to solve complex computational thinking tasks. To
establish if characteristic differences in the development of computational thinking
can be measured when SRA-programming is applied in a visual programming envi-
ronment with an on-screen output, we assessed the applicability of SRA-program-
ming with visual output as the main component of the execution of developed code.
This research uses a pre-test post-test design that reveals significant differences in
the development of computational thinking in two treatment conditions. To assess
CT, the Computational Thinking Test (CTt) was used. Results show that when using
SRA-programming in a visual programming environment it leads to an increased
understanding of complex computational concepts, which results in a significant
increase in the development of computational thinking.

Keywords SRA-programming · Computational Thinking · Visual Programming ·
On-screen Output

 * Nardie L. J. A. Fanchamps
 nardie.fanchamps@fontys.nl

1 Fontys University of Applied Science, Mgr. Claessenstraat 4, 6131 AJ Sittard, Netherlands
2 Zuyd University of Applied Science, Nieuw Eyckholt 300, 6419 DJ Heerlen, Netherlands
3 Delft University of Technology, Mekelweg 4, 2628 CD Delft, Netherlands

/ Published online: 28 June 2021

Education and Information Technologies (2021) 26:6479–6498

http://crossmark.crossref.org/dialog/?doi=10.1007/s10639-021-10578-0&domain=pdf

1 3

1 Introduction

Computational thinking as an important component of Information Communica-
tion Technology (ICT) competences which can be developed by means of learn-
ing to program (Kennisnet, 2015). Programming works as a means to stimulate
the use of Computational Thinking (CT) skills (Edwards, 2005). To stimulate
the development of computational thinking, in addition to just learning the basic
principles of programming, it is necessary to provide appropriate and directional
tasks (Bers et al., 2014). Being able to respond to changes in a task design by
means of Sense-Reason-Act (SRA) programming can ensure that users develop
computational thinking skills of a higher level (Riedmiller & Gabel, 2007). How-
ever, it is still unclear what influence the type of programming environment and
the task design used have on this development. It is also unknown whether a vis-
ual on-screen programming environment can generate the same performance in
comparison with previous research in which SRA-programming was applied in a
visual programming environment with physically tangible output by using Lego
Mindstorms robots.

There are many different programming languages and environments that are
used to let pupils learn tenets of programming. Nowadays many of these are visu-
ally oriented environments which offer an easy accessible way to learn program-
ming (Price & Barnes, 2015). Mainly these approaches of visual programming
enable pupils to learn the semantics of programming while not having the bur-
den of learning the syntax at the same time, because this is already implemented
in drag and drop code blocks (Jost et al., 2014; Navarro-Prieto & Cañas, 2001).
Many visual programming environments also have the advantage that the output
and effects of code is directly represented as screen output (Chao, 2016).

Visual programming environments come in different appearances. Charac-
teristic for these kinds of environments (e.g. Lego NXT and EV-3, Robomind,
Ardublock, etc.) is that they enable novice programmers to gain a user-friendly
experience and easy access to the programming paradigm, because the program-
ming syntax is already implemented in visual code blocks (Jost et al., 2014). In
primary schools these environments are used to introduce children into program-
ming (Sáez-López et al., 2016; Weintrop & Wilensky, 2015). Their accessibility,
simple availability and uncomplicated application is often the reason for using
them in the classroom (Repenning, 2017). Visual programming environments are,
due to their high imaginative power, ideally suited to teach pupils the underlying
concepts of programming (Carlisle, 2009).

In previous research, several authors introduced the SRA-principle which has
been identified as an instrumental way of thinking for learning to program robots
(Fanchamps et al., 2019; Slangen, 2016; Wong, 2014). SRA can be seen as a
didactic instrument to ease the process of programming. When using an SRA-
approach whilst programming, there is an initial process in which sensing input
detects a state in the (virtual/real) environment (sense) and then compares this
external state with internal values of the program (reason) and finally uses the
program to make the necessary inferences on actuators (act). SRA-programming

6480 Education and Information Technologies (2021) 26:6479–6498

1 3

offers a way of conscious thinking in terms of sense-reason-act which supports
pupils in solving programming tasks. SRA-programming encourages the effec-
tive and efficient use of programming commands. It stimulates pupils to under-
stand the difference between just placing programming commands in one linear
sequence versus the programming of parallel structures which inevitably need the
use of iterations, conditionals and/or functions. As seen from previous work (Fan-
champs et al., 2020), learning to consciously apply SRA contributes to the devel-
opment of computational thinking. Understanding the principles of SRA does not
imply that pupils are always able to recognise and apply these in more complex
situations. Research conducted by Caci et al. (2013), Krugman (2004) and Slan-
gen (2016) shows that applying SRA-programming improves pupils’ program-
ming skills and abilities to solve tasks of higher complexity. It is also demon-
strated when physically tangible robots are programmed through the application
of SRA, it leads to a higher level of development of computational thinking skills
among primary school pupils, then when physical robots are programmed without
the application of SRA (Fanchamps et al., 2019).

Visual programming environments appear to offer excellent possibilities for SRA-
programming, making the connection between sensing (input), reasoning and acting
(output) visible and comprehensible (Fanchamps et al., 2019; Slangen, 2016; Wong,
2014). Appling SRA is an advanced way of programming that manifests itself in the
development of CT-skills (e.g. completion, debugging, sequencing), which has been
demonstrated in the programming of physical robots (Fanchamps et al., 2020). It is
questionable whether comparable results can be obtained when pupils are provided
with a visual programming environment with only on-screen output. Therefore, this
research intends to examine the effect of SRA-programming in a visual environment
and the impact on computational thinking. Second, the focus is on the influence of
applying SRA in a visual programming environment to solve more complex compu-
tational thinking tasks.

2 Theoretical framework

In this research we are specifically interested in the impact of applying SRA-pro-
gramming in visual programming environments on computational thinking. We also
want to distinguish if applying SRA results in a better capability to solve more com-
plex computational thinking tasks.

From our research we know that the application of SRA when programming tan-
gible robots affects the development of computational thinking skills (Fanchamps
et al., 2019). We also know that a dynamic environment in which unforeseen situ-
ations occur, in which pupils can no longer rely on linear, sequential program-
ming to successfully solve programming tasks, it requires the application of SRA-
thinking (Fanchamps et al. submitted). The construct of SRA-programming can be
described as a process in which external, sensor-based observations (sense) are fed
into a microprocessor so that these observations can be compared with internal, pre-
set conditions (reason) from which the execution of desired programming actions
(act) can be derived. The ability to anticipate changing conditions in the task design

6481Education and Information Technologies (2021) 26:6479–6498

1 3

through sensor-based observations requires a different programming approach com-
pared to linear solutions (Dragone et al., 2005). SRA-programming involves the
functional understanding and application of complex programming concepts such
as loops, conditionals and functions (Slangen, 2016). Sensor-based programming is
known as a smart way of programming (Johansson & Balkenius, 2006).

To understand the construct of SRA-programming and being able to apply it
effectively, more insight is needed into what underlying complex programming con-
cepts, such as iterations, functions and conditionals do. Programming making func-
tional use of loops, the use of sensors and being able to program based on cause/
effect relationships is fundamental for SRA-programming. It is precisely the appli-
cation of SRA that ensures that the user can discover in a functional and accessi-
ble manner, what advantages the application of complex programming concepts can
provide. This in a direct comparison with linear programming in which changes in
the task design cannot be anticipated ad hoc via the constructed program itself. In
that case, a manual adjustment in the program itself is always necessary and has to
be conducted by the user. In contrast, in SRA-programming a triggered adaptation
is provided for, where changing external conditions are constantly compared with
pre-set values. Based on these changing conditions, the program itself then decides
which alternative to follow. For example: if a programmed artefact only needs to
initiate an evasive command at a distance of 10 cm from an obstacle, or if a col-
our sensor always needs to initiate a specific action when a predetermined colour
is detected. In such cases, a specific repeat and "if–then-else" condition is used. In
these kind of situations SRA-programming comes into play.

Slangen (2016) and Fanchamps et al. (submitted) investigated the functional
application of the SRA-approach in programmable robotic environments. Both came
to the conclusion that pupils understood tenets of programming better when apply-
ing SRA. Despite the fact that complex programming concepts, such as the “repeat”,
“repeat until, “if”, “if–then”, “if–then-else”, “while” and “simple functions” were
understood, they were not applied as a matter of course in new programming assign-
ments. Román-González et al. (2017) addressed these concepts in their Computa-
tional Thinking Test (CTt) in order to make computational thinking measurable. In
this test computational thinking is operationalised by a number of concepts, namely
loops, conditionals, functions, nesting and the required computational thinking tasks
debugging, completion, sequencing.

Computational thinking is a way of tackling and solving problems making use
of computer science concepts and it primarily involves the ability to reason, plan
and solve problems (Wing, 2006). It refers to operationalised concepts such as
parallel thinking, pattern recognition, completion, debugging, sequencing, and
abstract reasoning needed to approach a problem systematically (Basawapatna
et al., 2011; Lee et al., 2011). Computational thinking involves the process in
which problem definition, solution expression, and implementation with eval-
uation occurs recurrently in the process of programming (Yadav et al., 2016),
and can contribute to understand and to solve complex programming problems
(Voskoglou & Buckley, 2012). Application of the SRA-approach can ensure
that conceptual understanding develops, allowing a higher level of computa-
tional thinking to be achieved (Basu et al., 2016). In our exploratory research

6482 Education and Information Technologies (2021) 26:6479–6498

1 3

we therefore investigate to what extent the application of SRA during visual pro-
gramming influences the development of computational thinking (i.e. comple-
tion, debugging, sequencing).

Visual programming environments with an on-screen output are very suit-
able for use in primary education. Such environments can be characterized by
the use of underlying syntax and semantics to support the act of programming
(Weintrop & Wilensky, 2015). Visual programming environments offer the pos-
sibility to learn how to program in an accessible way by dragging, dropping and
connecting manipulatable code blocks into a worksheet on screen to create a
program (Asad et al., 2016). These code blocks can contain iterations, condi-
tions, functions and routines using parameters, variables and operators (Price
& Barnes, 2015). Often visual programming environments are a first introduc-
tion to programming for pupils (Jost et al., 2014). Many of these environments
offer the possibility to vary the level of difficulty because they have a build-
up in complexity. This allows the application to connect to the starting level
of each individual user. Level differentiation can also be applied by enabling
or disabling options which makes it possible that a new challenge can be real-
ised for each user at their own level, resulting in maximum learning efficiency
(Sapounidis et al., 2015). When used in this way, an adapted environment can
be provided that meets the pre-experience, age level and current skill level of
pupils (Repenning, 2017). Despite the fact that a visual environment seems emi-
nently suitable for learning how to program, it is questionable whether pupils
can use such an environment to achieve programming skills of higher complex-
ity (Kaučič & Asič, 2011). Our previous research indicates that pupils, when
programming robots have difficulty applying the principles of SRA despite
understanding these principles (Fanchamps et al., 2019). However, when pupils
find themselves in a situation where the programming task only can be solved
through an SRA-approach, they tend to use complex programming concepts in a
way as operationalized in computational thinking.

Building on the theoretical exploration above, we assume a correlation
between the SRA-approach in a visual programming environment with an impact
on computational thinking. Therefore, our conceptual model in Fig. 1 provides
an overview of relationships and interconnections between the independent and
the dependent variables.

Computational
concepts

Visual programming
with SRA / without SRA

Impacts

Computational
Thinking skills

Impacts

Fig. 1 Schematic representation of the conceptual model

6483Education and Information Technologies (2021) 26:6479–6498

1 3

3 Research question, sub‑questions and hypothesis

Based on preliminary studies and the literature research, our main research ques-
tion is: “What is the effect of SRA-programming in a visual programming envi-
ronment on computational thinking and specifically on the computational con-
cepts addressed?”.

This main research question leads to the next sub-questions:

1. Can SRA-programming in a visual programming environment with an on-screen
output be of added value concerning the development of computational thinking?

2. What impact on computational thinking can be achieved by integrating SRA-
programming in a visual programming environment?

3. What is the influence of SRA-programming in a visual programming environment
on complex computational concepts?

These sub-questions result in the following hypotheses:

1. The actual application of SRA-programming in a visual programming environ-
ment leads to a more successful solution of computational thinking tasks.

2. Applying SRA-programming in a visual programming environment leads to a
higher level of development of computational thinking skills, compared to pro-
gramming in a visual environment without the use of SRA.

3. The actual application of SRA-programming in a visual programming environ-
ment with on-screen output enables a higher understanding of complex compu-
tational concepts.

4 Method

In this research an intervention study (Creswell 2008) is used to identify the
effect of SRA-programming on the development of computational thinking. To
determine whether using SRA in two programming conditions (visual program-
ming with or without the use of SRA) can make a difference in results, pupils
use Bomberbot© as a visual programming environment with on-screen output to
construct and to solve programming tasks.

As a pre- and post-measurement, the Computational Thinking Test (CTt) was
applied. Quantitative data has been collected in order to answer the research
question, sub-questions and hypotheses. In order to investigate the effect of the
intervention, we used a pre-test post-test design as illustrated in Fig. 2. This
includes (a) pre-measurement of computational thinking skills, (b) a basic
instruction on how Bomberbot works, (c) a programming intervention in two
variants and (d) post-measurement of computational thinking skills.

6484 Education and Information Technologies (2021) 26:6479–6498

1 3

4.1 Participants

This research was conducted among pupils from grade 51 of a primary school
(N = 30) in the Netherlands from which, at random, an experimental group (n = 15)
and a control group (n = 15) of equal size were composed. Apart from using appli-
cations such as Word, PowerPoint, Excel and working with games and apps, pupils
have no specific programming experience and have never used Bomberbot before.

4.2 Materials

To answer our research questions we used the visual programming environment
Bomberbot to let pupils learn the concepts of programming and from which, by
application, we want to deduce what the effect of SRA-programming is. It should
be noted that the term SRA comes from the physical world of robotics and refers to
the use of material sensors and actuators. In the visual environment applied sensors
and actuators are by proxy virtual sensors and actuators. Bomberbot is an on-screen,
game based and visually oriented platform that offers children the opportunity to
learn programming in a playful, user-friendly way. In Bomberbot a virtually pro-
grammable robot is required to perform tasks such as: collecting stars, smashing
gems or obstacles, opening treasure chests by means of a colour code that can be
deciphered, etc. To construct a program in Bomberbot, the necessary program-
ming commands can be dragged from the library on the left and dropped into the
main program. The available commands can be accessed using the scroll menu, as
displayed in Fig. 3. The library contains a selection of pictographical commands,
such as: forward, backward, turn left, turn right, hit with hammer, jump, repeat, if/
then, function (F1), etc. In the main program, the commands can be sequenced and
arranged in the desired order. For the application of functions, as displayed in Fig. 4,
an additional function worksheet is available below the main program. It can contain

Pre-measurement

Computational

Thinking Test (CTt)

Basic instruction

Bomberbot

Solving programming

tasks without the

possibility to apply

SRA

Post-measurement

Computational

Thinking Test (CTt)

Solving programming

tasks with the

possibility to apply

SRA

Fig. 2 Research design

1 In this publication we use the UK grade level system to indicate the research population.
 Grade 5 in the UK corresponds with the Dutch “group 7”.

6485Education and Information Technologies (2021) 26:6479–6498

1 3

the commands that are called upon when the function button is placed in the main
program. To apply the constructed program the play button is pressed. The repeat
function allows to run the task again from the start. The number display with the
three stars above it indicates how efficient the constructed program is designed and
can therefore be used as an incentive. The bin can be used to delete programming
commands.

By using Bomberbot, pupils learn to apply fundamental concepts and skills of
programming and can use this programming environment to get a grip on what itera-
tions, routines, functions and conditionals are and how they should be used. Because
Bomberbot is designed to provide direct feedback, pupils can judge for themselves
whether the constructed program is correct or not, allowing them to learn in a
self-correcting way. Within this environment there is an increase in difficulty and
complexity.

To determine the level of computational thinking skills in the pre- and
post-measurement, we used the validated Computational Thinking Test (CTt)
(Román-González et al., 2017). In this test computational thinking is opera-
tionalised through a number of concepts, namely loops, conditionals, func-
tions, nesting and the required computational thinking tasks debugging, com-
pletion, sequencing. Pupils completed this test individually. The test contains
28 items addressing the computational concepts of basic directions, loops
(repeat times, repeat until), conditionals (if-simple, if-else-complex, while)
and functions (simple functions, functions with parameters). The existence or
non-existence of nesting is determined. The computational task/skill required

Fig. 3 Basic display
 Bomberbot© with library and
main program

Fig. 4 Display Bomberbot©
with additional function work-
sheet F1

6486 Education and Information Technologies (2021) 26:6479–6498

1 3

(completion, debugging, sequencing) to provide the right solution for each
of the 28 test-items can also be derived. To determine the reliability of the
scale, we calculated Cronbach’s alpha. It should be noted that a value for
Cronbach’s alpha of 0.70 is considered an acceptable reliability factor (San-
tos, 1999). As a characteristic, the developers of this instrument indicate that
for grade 5 (N = 176) Cronbach’s alpha should be α = 0.721 (Román-González
et al., 2017). We measured for Cronbach’s alpha α = 0.67 whereby this value
almost complies the required level of internal consistency for our scale with
this particular sample. From this we can conclude that, despite the low value
for N, the internal reliability of the adapted instrument used is sufficient and
performs as reported by the original authors. The measurement results will
therefore be used as such.

As an intervention, we used Bomberbot© as a visual programming environ-
ment with an on-screen-based output. Bomberbot can be used without the appli-
cation of SRA. To make this possible, the application of loops, conditionals
and functions can be disabled. In this condition linear, sequential programming
must be used to solve programming tasks. Linear, sequential programming
means that the user of the programming environment does not use any program-
ming commands based on parallel processes such as iterations, conditionals and
functions to solve programming tasks. For the other condition, Bomberbot can
be used for solving programming tasks with or without the application of SRA.

Fig. 5 Linear solution
 Bomberbot©

Fig. 6 SRA-solution
 Bomberbot©

6487Education and Information Technologies (2021) 26:6479–6498

1 3

To solve SRA-programming tasks, all the options and applications of loops,
conditionals and functions within Bomberbot can be used, but the more simple
linear approach is still available. As an example, we include two screen shots
of Bomberbot in which a virtually programmable robot has to collect stars and
smash rubies. In order for the robot to perform these tasks, the users must drag
the appropriate programming commands into a workspace. They can use lin-
ear, sequential programming commands or by the SRA-approach the more com-
plex commands such as loops, conditionals and functions. The tasks contain
an incentive to stimulate to program as efficiently as possible within the given
conditions by earning points displayed as stars. Figure 5 shows that the assign-
ment is solved by linear programming. Figure 6 shows that the same assign-
ment is solved via the application of SRA by making use of functions.

4.3 Procedure

As displayed in the research design, we defined two subgroups who received the same
basic introduction on how to use Bomberbot operationally. The supervisor provided
the instruction on how to use Bomberbot. We have chosen to divide pupils into pairs,
because in this way we have an opportunity to follow reasoning processes by means
of the learning dialogue. Consecutively, pupils of both subgroups completed five one-
hour programming sessions to solve ten programming missions containing 15 program-
ming tasks each in order to demonstrate the solutions found. The supervisor only helped
when there were technical problems. Bomberbot offers the possibility to apply an SRA-
approach by means of using virtual sensors and specific programming concepts such
as iterations, conditionals and functions available or not available within programming
tasks of similar complexity. In Bomberbot the programming tasks consist of moving a
virtual robot from a starting point to an end point by selecting and combining relevant
commands and executing them. Along the way, the robot has to perform additional
tasks, such as jumping on the spot, hammering gems, making a half turn, opening a box,
removing objects, etc. The robot also encounters other/unforeseeable circumstances in
which a) the control group controls the robot through its standard, linear program and
b) the experimental group has the choice of controlling the robot using either the lin-
ear approach or the SRA-approach using virtual sensors and programming concepts to
anticipate these changing conditions.

5 Results and Data‑analysis

The main research question, “What is the effect of SRA-programming in a
visual programming environment on computational thinking and specific com-
putational concepts addressed?”, is answered by analysing the means of the

6488 Education and Information Technologies (2021) 26:6479–6498

1 3

dichotomous variables and T-test analysis is used to examine sub-questions and
to confirm or reject hypotheses. The results of the pre- and post-measurement
of the Computational Thinking Test (CTt) are entered into SPSS for quanti-
tative data analysis. Differences in values are determined by comparing the
means. Using cross tabs, a shift between pre- and post-measurement is made
visible. In all statistical analyses a significance level of 5% (p = ≤ . 05) is
assumed.

The nature of the data meets the conditions for the assumption of normality
and asserts that the distribution of sample means (across independent sam-
ples) is normal. It has been tested whether the assumptions of homogeneity
of variances have been violated (p ≤ 0.05). Degrees of freedom are calculated
and the bootstrapping procedure has been applied to re-estimate the standard
error of the mean difference. The confidence interval is studied to assess the
difference between means and to determine whether the value “0” is in the
confidence interval. The value for the extent of the effect (Pearson’s r) has
been calculated (indicating that the effect size is low if the value of r varies
around 0.1, medium if r varies around 0.3, and large if r varies more than
0.5). The substantial effect of a standard deviation difference between two
groups (Cohen’s d) was also determined (it should be noted that d = 0.2 can
be considered a ’small’ effect size, 0.5 stands for a ’medium’ effect size, 0.8
for a ’large’ effect size and where any value above 1.4 is considered a very
large effect) (Field, 2013).

5.1 Differences in the level of development of computational thinking skills

Table 1 shows the data for the level of development of computational thinking skills
comparing both groups.

Comparing the means between the pre-measurement and the post measurement
firstly show that pupils who applied SRA-programming in the visual program-
ming environment on the Computational Thinking Test (CTt) a) solved more com-
putational thinking items successfully, and b) indicated higher values regarding
sequencing, completion and debugging for the required task application. Secondly,
the influence of SRA-programming showed c) higher ratings on the understand-
ing of the working principles of loops, conditionals and functions, and d) pointed
out whether or not to apply nesting. This was deduced from the data whereby the
group that programmed with SRA in the post-measurement shows a higher aver-
age score (M), a lower standard deviation (SD) and less spread in the measured
values (range). Based on these measurements, it is reasonable to assume that pro-
gramming with SRA in the visual programming environment is the cause of this
increase.

6489Education and Information Technologies (2021) 26:6479–6498

1 3

5.2 Selection of SRA‑programming

An inventory on how often pupils in the group that had SRA at their disposal
actually applied SRA-programming is displayed in Table 2. Pupils could decide
for themselves whether or not to solve tasks using SRA. It can be deduced that in
approximately half of all programming missions an application of SRA has been
selected. Where the application of SRA-programming has not been selected, pupils
opted for solving programming tasks making use of linear, sequential programming
structures.

Table 1 Differences in level of development of Computational Thinking Skills (N = 30)

Variable = measurable value; Total = number of items correct CT−test; Computational concept
addressed = loops, conditionals, functions, nesting; completion = completed by CT; debugging = refor-
mulate problems; sequencing = sequence; M average; SD standard deviation; range = spread in measure-
ment, Mdn = median

Pre-test group without SRA
(n = 15)

Post-test group without SRA
(n = 15)

Variable M SD Range Mdn Variable M SD Range Mdn

Total (28) 0.44 0.10 0.39 – 0.50 0.43 Total (28) 0.45 0.13 0.38 – 0.55 0.43
Loops 0.40 0.12 0.24 – 0.64 0.40 Loops 0.40 0.13 0.20 – 0.68 0.40
Conditionals 0.35 0.15 0.11 – 0.58 0.36 Conditionals 0.34 0.12 0.08 – 0.50 0.33
Functions 0.43 0.27 0.00 – 1.00 0.25 Functions 0.47 0.27 0.00 – 0.75 0.50
Nesting 0.36 0.13 0.16 – 0.53 0.37 Nesting 0.36 0.12 0.16 – 0.58 0.37
CT-skill
Completion

0.51 0.23 0.11 – 0.78 0.56 CT-skill
Completion

0.50 0.13 0.33 – 0.67 0.56

CT-skill
Debugging

0.49 0.21 0.20 – 1.00 0.40 CT-skill
Debugging

0.40 0.24 0.00 – 0.80 0.40

CT-skill
Sequencing

0.44 0.14 0.21 – 0.64 0.50 CT-skill
Sequencing

0.43 0.19 0.14 – 0.86 0.50

Pre-test group with SRA
(n = 15)

Pre-test group with SRA
(n = 15)

Variable M SD Range Mdn Variable M SD Range Mdn
Total (28) 0.41 0.12 0.30 – 0.50 0.39 Total (28) 0.67 0.07 0.61 – 0.70 0.64
Loops 0.38 0.13 0.20 – 0.60 0.40 Loops 0.62 0.09 0.52 – 0.80 0.60
Conditionals 0.31 0.14 0.14 – 0.67 0.28 Conditionals 0.63 0.11 0.42 – 0.78 0.67
Functions 0.23 0.15 0.00 – 0.50 0.25 Functions 0.83 0.15 0.50 – 1.00 0.75
Nesting 0.29 0.12 0.11 – 0.58 0.32 Nesting 0.64 0.09 0.53 – 0.79 0.63
CT-skill
Completion

0.40 0.14 0.22 – 0.56 0.44 CT-skill
Completion

0.69 0.12 0.44 – 0.89 0.67

CT-skill
Debugging

0.45 0.29 0.00 – 0.80 0.40 CT-skill
Debugging

0.61 0.26 0.20 – 1.00 0.60

CT-skill
Sequencing

0.42 0.13 0.29 – 0.71 0.43 CT-skill
Sequencing

0.68 0.12 0.43 – 0.93 0.64

6490 Education and Information Technologies (2021) 26:6479–6498

1 3

5.3 Impact SRA on solving computational thinking tasks

Comparing the different t-tests carried out on all the variables concerned shows that,
in general, there are statistically significant differences regarding the correct number
of solved items from the Computational Thinking Test (CTt) and the computational
concept addressed and that the characteristics of computational thinking are increas-
ing as a result of SRA-programming (Table 3). Since the value "0" is not within
the confidence interval for each variable, this confirms the assumption that applying
SRA-programming in a visual programming environment provides a significantly
higher level of solving programming tasks, resulting in a higher level of compu-
tational thinking skill. Calculating the size of the effects on the independent t-test
(effect-size) also shows that there are large effects measurable.

Table 2 Selection SRA-programming

Pair = pupils divided in pairs; Mission 1 = application of the variable loops; Mission 2 = application of
the variable conditionals; Mission 3 = application of the variable functions; Total = SRA applied in rela-
tion to the total number of missions.

Pupils Mission 1 loops Mission 2 conditionals Mission 3 functions Total

Pair 1 10 out of 13 tasks 9 out of 10 tasks 6 out of 16 tasks 25 out of 39 tasks
Pair 2 12 out of 13 tasks 5 out of 10 tasks 2 out of 16 tasks 19 out of 39 tasks
Pair 3 11 out of 13 tasks 8 out of 10 tasks 3 out of 16 tasks 22 out of 39 tasks
Pair 4 13 out of 13 tasks 5 out of 10 tasks 0 out of 16 tasks 18 out of 39 tasks
Pair 5 10 out of 13 tasks 6 out of 10 tasks 5 out of 16 tasks 21 out of 39 tasks
Pair 6 10 out of 13 tasks 7 out of 10 tasks 2 out of 16 tasks 19 out of 39 tasks
Pair 7 12 out of 13 tasks 6 out of 10 tasks 4 out of 16 tasks 22 out of 39 tasks
Pair 8 11 out of 13 tasks 2 out of 10 tasks 1 out of 16 tasks 14 out of 39 tasks

Table 3 T-test analysis
comparing visual programming
based on SRA usage

Variable measurable value; Total = number of items correct CT−
test; Computational concept addressed = loops, conditionals, func-
tions, nesting; completion = completed by CT; debugging = refor-
mulate problems; sequencing = sequence; t = t−value; df = degrees
of freedom; p = p−value; CI = confidence interval; d = effect size

Variable t df p CI d

Total (28) 5.93 20.92 0.000 0.14 – 0.30 2.18
Loops 5.42 28.00 0.000 0.14 – 0.31 1.94
Conditionals 6.91 27.60 0.000 0.20 – 0.38 2.52
Functions 4.63 22.51 0.000 0.20 – 0.53 1.66
Nesting 7.17 28.00 0.000 0.20 – 0.36 2.64
CT-skill
Completion

4.02 28.00 0.000 0.09 – 0.28 1.51

CT-skill
debugging

2.36 28.00 0.013 0.03 – 0.40 0.85

CT-skill
Sequencing

4.18 28.00 0.000 0.12 – 0.36 1.57

6491Education and Information Technologies (2021) 26:6479–6498

1 3

6 Conclusion

An interpretation of the analysed data shows that there is a significant increase in
the level of computational thinking skills through the application of SRA-program-
ming, using a visual programming environment. Significant yields are measured on
all variables present in this research. The extent of the effect by applying SRA-pro-
gramming is large to very large. The findings in this research show a high impact on
computational thinking due to SRA-programming.

In order to find out whether SRA-programming has a significant increase in
pupils’ understanding of complex computational concepts, resulting in a higher
level of computational thinking skills, we used the results of the control group that
did not have SRA-programming at its disposal in a comparison with the group that
could use SRA-programming to solve programming tasks. From the results obtained
we hardly see any development in CT-skills when pupils program in a purely linear
environment. We can conclude from this that it cannot be stated straightforwardly
that programming automatically leads to more skills of programming. The group
which had SRA at its disposal, used SRA to solve programming tasks in about half
of all assignments. This choice was due to the fact that pupils could decide by them-
selves to solve the missions either with linear programming or SRA-programming.
Our research made visible that, when there was a motivational intent or a trigger to
look for a more thoughtful and efficient solution, SRA-programming was applied.
Where pupils actually opted for an application of SRA we see, in a comparison with
the linear approach, through a better understanding of complex computational con-
cepts, a significant increase in the development of computational thinking skills. The
extent of the effect by applying SRA-programming is large to very large. The find-
ings in this research indicate a high impact on computational thinking due to SRA-
programming. The hypotheses that the actual application of SRA-programming in
a visual programming environment leads to a more successful solution of compu-
tational thinking tasks can be confirmed. The sub-question whether SRA-program-
ming in a visual programming environment with on-screen output is of added value
related to a development in computational thinking can be positively endorsed.

It is often claimed that programming leads to the development of computational
thinking skills. It is questionable whether this can be stated in such a generic way.
The suspicion is that the nature of the task and the programming environment helps
to determine whether there is a development in CT-skills. If we look at the analysed
data of pupils who only had the linear environment as their task, we can say that
there is hardly any development measureable. However, in the environment where
pupils did have access to SRA, we see that only the pupils that actually choose
to apply SRA show a significant increase on computational thinking. From these
results, the hypothesis can be confirmed that applying SRA-programming in a visual
programming environment leads to a higher level of development of computational
thinking skills compared to programming in a visual environment without the use of
SRA.

The measurements in our research indicate that the application of SRA-program-
ming in a visual programming environment with on-screen output allows pupils a

6492 Education and Information Technologies (2021) 26:6479–6498

1 3

better grasp of the computational concepts addressed. The effect, when pupils are
allowed to choose whether they prefer a linear approach as the nature of the task
versus the effect evoked when pupils choose an SRA task solution, is remarkably
visible. In the latter case, pupils generally score significantly better on complex
computational concepts and CT-skills in the post-test. The choice to opt for SRA-
programming leads to a significant better solution of CT-tasks. This means that
when pupils opt for an SRA-approach, they are better able to get to grips with the
underlying concepts that lead to a higher level of CT-skills. The hypothesis that the
actual application of SRA-programming in a visual programming environment with
on-screen output enables a higher understanding of complex computational concepts
can be confirmed.

Overall concluding, we created an environment in which two conditions were
used in which one group of pupils programmed linearly and the other group could
choose to apply/not to apply SRA-programming. With the help of an independent
Computational Thinking Test (CTt) it appears that pupils who have programmed in
the SRA condition solve CT tasks better. From this we can deduce that the explicit
application of the SRA-approach also leads to acquire more understanding of com-
plex computational concepts. The absence of SRA leads to no gain in computational
thinking skills. If there is no explicit focus on the use of computational concepts,
one can solve simple programming problems, but this has no effect on the further
understanding of complex computational concepts. This becomes visible through
the results of the Computational Thinking Test (CTt). We suspect that pupils who
already have previous experience of programming with loops, conditionals and
functions are more likely to use them. In Bomberbot pupils are also invited by earn-
ing stars to find and use the most efficient way of programming. This can be seen as
a stimulus for pupils to apply SRA. By actually establishing the relationship between
applying SRA and constructing the most efficient program, pupils show that they
understand the underlying computational thinking concepts (e.g. loops, conditionals,
functions).

The freedom of choice, whether or not to apply SRA learning the underly-
ing insights of the concepts by carrying out the tasks, triggers the discovery of the
underpinning functionality. This leads to a self-learning understanding of the under-
lying concepts, which in turn leads to a further development of CT skills. What
makes this plausible is that pupils who had SRA at their disposal choose to opt for
the application of SRA in half of all programming tasks and not for the other half.
Decisive for the eventual choice to opt for SRA is that pupils are challenged to find
a qualitatively better solution to solve programming tasks. Pupils who choose the
qualitatively better solution score better on the CT test based on that.

7 Discussion

The aim of this research is to find answers to the question what effect SRA-program-
ming in a visual programming environment with on-screen output has on computa-
tional thinking and specific computational concepts addressed.

6493Education and Information Technologies (2021) 26:6479–6498

1 3

First of all, there are claims that programming improves children’s computational
thinking skills. We would like to take a more nuanced view of that statement. After
all, if pupils are offered a programming environment that is limited to linear pro-
gramming, this hardly leads to a growth in CT-skills (e.g. sequencing, debugging,
completion). The nature of the task can determine whether or not a development in
CT skills is shown. If pupils are given the opportunity to use SRA-programming,
we see that pupils are able to fathom the application of computational concepts
addressed which leads to a higher level of CT-skills.

The results obtained from our research demonstrate that a visual programming
environment with on-screen output can integrate SRA-programming concepts and
show foreseen effects of SRA-programming on computational thinking. This is in
line with claims made by Jost et al. (2014), Papadakis et al. (2016), Repenning (2017)
and Strawhacker and Bers (2015) who state that visual/on-screen oriented program-
ming environments provide an easy accessible way with a low-threshold, functional
use in primary school education whereby pupils acquire functional programming
skills of a higher level. Moreover, our research confirms that applying SRA in a vis-
ual programming environment can create a higher level of computational thinking.

The results show that by applying SRA-programming pupils demonstrate a sub-
sequent development of computational thinking skills. In addition, our results show
that, due to the impact of the SRA-approach, pupils can solve complex computa-
tional thinking tasks and can ensure that pupils get a better grip on complex con-
cepts of programming.

This research contributes to the theory building of computational thinking and
programming education in primary schools. Visual programming environments
make pupils use computer technology to examine and solve problems systemati-
cally and in a creative and interactive way with sufficient possibilities for differentia-
tion. It was claimed in a similar way by Asada et al. (1999) for a tangible robotics
programming environment with unforeseen events, pupils need to anticipate such
changing circumstances in a visual, on-screen programming environment through
their programming actions. SRA-programming is proving to be an added value in
this respect and can maybe be seen as an unidentified characteristic of computa-
tional thinking. As stated by Bocconi et al. (2016), we are interested in what other
cognitive effects can be made measurably transferring computational thinking skills
to other knowledge domains.

This research also contributes to the way in which programming in education
can be operationalised. Based on the significant results, it can be concluded that the
SRA-approach is a promising concept for obtaining computational thinking skills in
a more profound and meaningful way. For this it has to be made sure that pupils do
work with complex concepts otherwise there will be no growth.

7.1 Limitations and follow‑up research

With regards to the results of this research, several reservations can be made. Rea-
sons for this may be that pupils in their regular primary school curriculum have

6494 Education and Information Technologies (2021) 26:6479–6498

1 3

already continued to work with programming environments or that there is a regular
development of pupils over time due to their standard educational program.

This research was carried out by making use of the visual programming environ-
ment Bomberbot with an on-screen output. In order to be able to generalize more
from our research, this research should be replicated with other visual programming
environments with an on-screen output. It should also be examined whether the
nature of the programming task affects the outcome and the learning effects.

In subsequent research it is valuable to evaluate whether SRA-programming in a
visual programming environment with on-screen output shows the same yields on the
development of computational thinking skills as programming in a visual programming
environment with a physical perceptible and tangible output. It is also interesting to
investigate whether the yield of programming with a tangible output improves when
pupils firstly operate with programming environments with only an on-screen output.

It is important to consider that initiating, supporting and supervising programming
activities requires specific competences from the teacher. However, a teacher should be well
equipped to adequately facilitate and guide such activities. In this research, the researcher
acted also as the qualified, supporting supervisor. In a subsequent study, it is valuable to
investigate whether comparable returns can be found when a regular, competent teacher
takes on the role of supervisor and the researcher is present purely as an observer.

This research was conducted with a relatively small group of respondents from
which pairs were composed. The small amount of the research sample, as well pupils
working in pairs, could have been influential to our findings. In order to be able to gen-
eralize from our findings, it is recommended to repeat this research with a larger num-
ber of respondents.

Acknowledgements The authors would like to thank Bomberbot Netherlands for making the program-
ming environment available and for their cooperation.

Authors’ contributions All authors contributed to the study conception and design. Material preparation,
data collection and analysis were performed by Nardie Fanchamps. The first draft of the manuscript was
written by Nardie Fanchamps and all authors commented on previous versions of the manuscript. All
authors read and approved the final manuscript.

Data availability Can be requested from the first author.

Code availability Retrievable on request from Bomberbot© with personal login code.

Declarations

Ethics approval The Ethical research board (cETO) of the Open University of the Netherlands has assessed
the proposed research and concluded that this research is in line with the rules and regulations and the ethi-
cal codes for research in Human Subjects (reference: U2019/01324/SVW).

Consent to participate Written informed consent was obtained from the parents of the individual participants.

Consent to publish The parents of the individual participants consented the data obtained to be published.

Conflicts of interest/Competing interests The authors declare that they have no conflict of interest/no com-
peting interests.

6495Education and Information Technologies (2021) 26:6479–6498

1 3

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen
ses/ by/4. 0/.

References

Asad, K., Tibi, M., & Raiyn, J. (2016). Primary School Pupils’ Attitudes toward Learning Programming
through Visual Interactive Environments. World Journal of Education, 6(5), 20–26. https:// doi. org/
10. 5430/ wje. v6n5p 20

Asada, M., Kitano, H., Noda, I., & Veloso, M. (1999). RoboCup: Today and tomorrow—What we
have learned. Artificial Intelligence, 110(2), 193–214

Basawapatna, A., Koh, K. H., Repenning, A., Webb, D. C., & Marshall, K. S. (2011). Recognizing
computational thinking patterns. Paper presented at the Proceedings of the 42nd ACM technical
symposium on Computer science education.

Basu, S., Biswas, G., Sengupta, P., Dickes, A., Kinnebrew, J. S., & Clark, D. (2016). Identify-
ing middle school students’ challenges in computational thinking-based science learning.
Research and Practice in Technology Enhanced Learning, 11(1), 13. https:// doi. org/ 10. 1186/
s41039- 016- 0036-2

Bers, M. U., Flannery, L., Kazakoff, E. R., & Sullivan, A. (2014). Computational thinking and tinker-
ing: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145–
157. https:// doi. org/ 10. 1016/j. compe du. 2013. 10. 020

Bocconi, S., Chioccariello, A., Dettori, G., Ferrari, A., Engelhardt, K., Kampylis, P., et al. (2016).
Developing Computational Thinking in Compulsory Education. https:// doi. org/ 10. 2791/ 792158

Caci, B., Chiazzese, G., & D’Amico, A. (2013). Robotic and virtual world programming labs to
stimulate reasoning and visual-spatial abilities. Procedia-Social and Behavioral Sciences, 93,
1493–1497

Carlisle, M. C. (2009). Raptor: a visual programming environment for teaching object-oriented program-
ming. Journal of Computing Sciences in Colleges, 24(4), 275–281

Chao, P.-Y. (2016). Exploring students’ computational practice, design and performance of problem-solv-
ing through a visual programming environment. Computers & Education, 95, 202–215. https:// doi.
org/ 10. 1016/j. compe du. 2016. 01. 010

Dragone, M., O’Donoghue, R., Leonard, J. J., O’Hare, G., Duffy, B., Patrikalakis, A., et al. Robot soc-
cer anywhere: achieving persistent autonomous navigation, mapping, and object vision tracking in
dynamic environments. In Opto-Ireland 2005: Photonic Engineering, Dublin, Ireland, 2005 (Vol.
5827, pp. 255–265): International Society for Optics and Photonics.https:// doi. org/ 10. 1117/ 12.
608404.

Edwards, S. (2005). Identifying the factors that influence computer use in the early childhood classroom.
Australasian Journal of Educational Technology, 21(2), https:// doi. org/ 10. 14742/ ajet. 1334.

Fanchamps, N., Slangen, L., Hennissen, P., Specht, M. (2019). The Influence of SRA Program-
ming on Algorithmic Thinking and Self-Efficacy Using Lego Robotics in Two Types of Instruc-
tion. International Journal of Technology and Design Education, 1-20, https:// doi. org/ 10. 1007/
s10798- 019- 09559-9.

Fanchamps, N., Slangen, L., Specht, M., & Hennissen, P. (submitted). The effect on computational think-
ing using SRA programming when anticipating changes in a dynamic problem environment. IEEE
Transactions on Learning Technologies, 18.

Fanchamps, N., Specht, M., Hennissen, P., & Slangen, L. (2020). The effect of teacher interventions and
SRA robot programming on the development of computational thinking. In S.-C. Kong, & H. Abel-
son (Eds.), International conference on computational thinking education 2020, Hongkong, 2020
(Vol. CTE2020, pp. 5). Springer

6496 Education and Information Technologies (2021) 26:6479–6498

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.5430/wje.v6n5p20
https://doi.org/10.5430/wje.v6n5p20
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1186/s41039-016-0036-2
https://doi.org/10.1016/j.compedu.2013.10.020
https://doi.org/10.2791/792158
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1016/j.compedu.2016.01.010
https://doi.org/10.1117/12.608404
https://doi.org/10.1117/12.608404
https://doi.org/10.14742/ajet.1334
https://doi.org/10.1007/s10798-019-09559-9
https://doi.org/10.1007/s10798-019-09559-9

1 3

Field, A. (2013). Discovering statistics using IBM SPSS statistics: sage.
Johansson, B., & Balkenius, C. An experimental study of anticipation in simple robot navigation. In

Workshop on Anticipatory Behavior in Adaptive Learning Systems, 2006 (pp. 365–378): Springer.
https:// doi. org/ 10. 1007/ 978-3- 540- 74262-3_ 20.

Jost, B., Ketterl, M., Budde, R., & Leimbach, T. (2014). Graphical programming environments for edu-
cational robots: Open roberta-yet another one? Paper presented at the IEEE International Sympo-
sium on Multimedia.

Kaučič, B., & Asič, T. (2011). Improving introductory programming with Scratch? Paper presented at the
2011 Proceedings of the 34th International Convention MIPRO.

Kennisnet (2015). Computing-onderwijs in de praktijk - Wat kunnen we leren van de Britten? (pp. 81).
Kennisnet.

Krugman, M. (2004). Teaching behavior based robotics through advanced robocamps. Paper presented at
the 34th Annual Frontiers in Education, 2004. FIE 2004.

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., et al. (2011). Computational thinking
for youth in practice. acm Inroads, 2(1), 32–37, https:// doi. org/ 10. 1145/ 19298 87. 19299 02.

Navarro-Prieto, R., & Cañas, J. J. (2001). Are visual programming languages better? The role of imagery
in program comprehension. International Journal of Human-Computer Studies, 54(6), 799–829.
https:// doi. org/ 10. 1006/ ijhc. 2000. 0465

Papadakis, S., Kalogiannakis, M., & Zaranis, N. (2016). Developing fundamental programming concepts
and computational thinking with ScratchJr in preschool education: a case study. International Jour-
nal of Mobile Learning and Organisation, 10(3), 187–202

Price, T., & Barnes, T. (2015). Comparing textual and block interfaces in a novice programming environ-
ment. Paper presented at the Proceedings of the eleventh annual international conference on interna-
tional computing education research.

Repenning, A. (2017). Moving beyond syntax: Lessons from 20 years of blocks programing in Agent-
Sheets. Journal of Visual Languages and Sentient Systems, 3(1), 68–89. https:// doi. org/ 10. 18293/
VLSS2 017- 010

Riedmiller, M., & Gabel, T. On experiences in a complex and competitive gaming domain: Reinforce-
ment learning meets robocup. In 2007 IEEE Symposium on Computational Intelligence and Games,
2007 (pp. 17–23): IEEE.

Román-González, M., Pérez-González, J.-C., & Jiménez-Fernández, C. (2017). Which cognitive abilities
underlie computational thinking? Criterion validity of the Computational Thinking Test. Computers
in Human Behavior, 72, 678–691. https:// doi. org/ 10. 1016/j. chb. 2016. 08. 047

Sáez-López, J.-M., Román-González, M., & Vázquez-Cano, E. (2016). Visual programming languages
integrated across the curriculum in elementary school: A two year case study using “Scratch” in
five schools. Computers & Education, 97, 129–141. https:// doi. org/ 10. 1016/j. compe du. 2016. 03. 003

Santos, J. R. A. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of Exten-
sion, 37(2), 1–5

Sapounidis, T., Demetriadis, S., & Stamelos, I. (2015). Evaluating children performance with graphi-
cal and tangible robot programming tools. Personal and Ubiquitous Computing, 19(1), 225–237.
https:// doi. org/ 10. 1007/ s00779- 014- 0774-3

Slangen, L. (2016). Teaching Robotics in Primary School. Eindhoven University of Technology.
Strawhacker, A., & Bers, M. U. (2015). “I want my robot to look for food”: Comparing Kinder-

gartner’s programming comprehension using tangible, graphic, and hybrid user interfaces. Inter-
national Journal of Technology and Design Education, 25(3), 293–319. https:// doi. org/ 10. 1007/
s10798- 014- 9287-7

Voskoglou, M. G., & Buckley, S. (2012). Problem solving and computational thinking in a learning envi-
ronment. Egyptian Computer Science Journal, 36(4), 18

Weintrop, D., & Wilensky, U. (2015). To block or not to block, that is the question: students’ perceptions
of blocks-based programming. Paper presented at the Proceedings of the 14th International Confer-
ence on Interaction Design and Children, Medford, MA, USA.

Wing, J. M. (2006). Computational Thinking. Communications of the ACM, 49(3), 33–35. https:// doi. org/
10. 1145/ 11181 78. 11182 15

Wong, L. L. (2014). Rethinking the Sense-Plan-Act Abstraction: A Model Attention and Selection Frame-
work for Task-Relevant Estimation. Paper presented at the Workshops at the Twenty-Eighth AAAI
Conference on Artificial Intelligence, Quebec, Canada.

6497Education and Information Technologies (2021) 26:6479–6498

https://doi.org/10.1007/978-3-540-74262-3_20
https://doi.org/10.1145/1929887.1929902
https://doi.org/10.1006/ijhc.2000.0465
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.18293/VLSS2017-010
https://doi.org/10.1016/j.chb.2016.08.047
https://doi.org/10.1016/j.compedu.2016.03.003
https://doi.org/10.1007/s00779-014-0774-3
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1007/s10798-014-9287-7
https://doi.org/10.1145/1118178.1118215
https://doi.org/10.1145/1118178.1118215

1 3

Yadav, A., Hong, H., & Stephenson, C. (2016). Computational Thinking for All: Pedagogical Approaches
to Embedding 21st Century Problem Solving in K-12 Classrooms. TechTrends, 60, 565–568. https://
doi. org/ 10. 1007/ s11528- 016- 0087-7

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

6498 Education and Information Technologies (2021) 26:6479–6498

https://doi.org/10.1007/s11528-016-0087-7
https://doi.org/10.1007/s11528-016-0087-7

	The Impact of SRA-Programming on Computational Thinking in a Visual Oriented Programming Environment
	Abstract
	1 Introduction
	2 Theoretical framework
	3 Research question, sub-questions and hypothesis
	4 Method
	4.1 Participants
	4.2 Materials
	4.3 Procedure

	5 Results and Data-analysis
	5.1 Differences in the level of development of computational thinking skills
	5.2 Selection of SRA-programming
	5.3 Impact SRA on solving computational thinking tasks

	6 Conclusion
	7 Discussion
	7.1 Limitations and follow-up research

	Acknowledgements
	References

