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Abstract
Visual programming environments are popular instruments in teaching Computa-
tional Thinking (CT) in schools today. Applying Sense-Reason-Act (SRA) program-
ming can influence the development of computational thinking when forcing pupils 
to anticipate the unforeseen in their computer programs. SRA-programming origi-
nates from the programming of tangible robots, but can also be of equal value in vis-
ual programming with on-screen output. The underlying rationale is that program-
ming in a visual programming environment using SRA leads to more understanding 
of the computational concepts addressed, resulting in a higher level of computa-
tional skill compared to visual programming without the application of SRA. Fur-
thermore, it has been hypothesised that if pupils in a visual programming environ-
ment can anticipate unforeseen events and solve programming tasks by applying 
SRA, they will be better able to solve complex computational thinking tasks. To 
establish if characteristic differences in the development of computational thinking 
can be measured when SRA-programming is applied in a visual programming envi-
ronment with an on-screen output, we assessed the applicability of SRA-program-
ming with visual output as the main component of the execution of developed code. 
This research uses a pre-test post-test design that reveals significant differences in 
the development of computational thinking in two treatment conditions. To assess 
CT, the Computational Thinking Test (CTt) was used. Results show that when using 
SRA-programming in a visual programming environment it leads to an increased 
understanding of complex computational concepts, which results in a significant 
increase in the development of computational thinking.
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1 Introduction

Computational thinking as an important component of Information Communica-
tion Technology (ICT) competences which can be developed by means of learn-
ing to program (Kennisnet, 2015). Programming works as a means to stimulate 
the use of Computational Thinking (CT) skills (Edwards, 2005). To stimulate 
the development of computational thinking, in addition to just learning the basic 
principles of programming, it is necessary to provide appropriate and directional 
tasks (Bers et  al., 2014). Being able to respond to changes in a task design by 
means of Sense-Reason-Act (SRA) programming can ensure that users develop 
computational thinking skills of a higher level (Riedmiller & Gabel, 2007). How-
ever, it is still unclear what influence the type of programming environment and 
the task design used have on this development. It is also unknown whether a vis-
ual on-screen programming environment can generate the same performance in 
comparison with previous research in which SRA-programming was applied in a 
visual programming environment with physically tangible output by using Lego 
Mindstorms robots.

There are many different programming languages and environments that are 
used to let pupils learn tenets of programming. Nowadays many of these are visu-
ally oriented environments which offer an easy accessible way to learn program-
ming (Price & Barnes, 2015). Mainly these approaches of visual programming 
enable pupils to learn the semantics of programming while not having the bur-
den of learning the syntax at the same time, because this is already implemented 
in drag and drop code blocks (Jost et al., 2014; Navarro-Prieto & Cañas, 2001). 
Many visual programming environments also have the advantage that the output 
and effects of code is directly represented as screen output (Chao, 2016).

Visual programming environments come in different appearances. Charac-
teristic for these kinds of environments (e.g. Lego NXT and EV-3, Robomind, 
Ardublock, etc.) is that they enable novice programmers to gain a user-friendly 
experience and easy access to the programming paradigm, because the program-
ming syntax is already implemented in visual code blocks (Jost et al., 2014). In 
primary schools these environments are used to introduce children into program-
ming (Sáez-López et al., 2016; Weintrop & Wilensky, 2015). Their accessibility, 
simple availability and uncomplicated application is often the reason for using 
them in the classroom (Repenning, 2017). Visual programming environments are, 
due to their high imaginative power, ideally suited to teach pupils the underlying 
concepts of programming (Carlisle, 2009).

In previous research, several authors introduced the SRA-principle which has 
been identified as an instrumental way of thinking for learning to program robots 
(Fanchamps et  al., 2019; Slangen, 2016; Wong, 2014). SRA can be seen as a 
didactic instrument to ease the process of programming. When using an SRA-
approach whilst programming, there is an initial process in which sensing input 
detects a state in the (virtual/real) environment (sense) and then compares this 
external state with internal values of the program (reason) and finally uses the 
program to make the necessary inferences on actuators (act). SRA-programming 
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offers a way of conscious thinking in terms of sense-reason-act which supports 
pupils in solving programming tasks. SRA-programming encourages the effec-
tive and efficient use of programming commands. It stimulates pupils to under-
stand the difference between just placing programming commands in one linear 
sequence versus the programming of parallel structures which inevitably need the 
use of iterations, conditionals and/or functions. As seen from previous work (Fan-
champs et al., 2020), learning to consciously apply SRA contributes to the devel-
opment of computational thinking. Understanding the principles of SRA does not 
imply that pupils are always able to recognise and apply these in more complex 
situations. Research conducted by Caci et al. (2013), Krugman (2004) and Slan-
gen (2016) shows that applying SRA-programming improves pupils’ program-
ming skills and abilities to solve tasks of higher complexity. It is also demon-
strated when physically tangible robots are programmed through the application 
of SRA, it leads to a higher level of development of computational thinking skills 
among primary school pupils, then when physical robots are programmed without 
the application of SRA (Fanchamps et al., 2019).

Visual programming environments appear to offer excellent possibilities for SRA-
programming, making the connection between sensing (input), reasoning and acting 
(output) visible and comprehensible (Fanchamps et al., 2019; Slangen, 2016; Wong, 
2014). Appling SRA is an advanced way of programming that manifests itself in the 
development of CT-skills (e.g. completion, debugging, sequencing), which has been 
demonstrated in the programming of physical robots (Fanchamps et al., 2020). It is 
questionable whether comparable results can be obtained when pupils are provided 
with a visual programming environment with only on-screen output. Therefore, this 
research intends to examine the effect of SRA-programming in a visual environment 
and the impact on computational thinking. Second, the focus is on the influence of 
applying SRA in a visual programming environment to solve more complex compu-
tational thinking tasks.

2  Theoretical framework

In this research we are specifically interested in the impact of applying SRA-pro-
gramming in visual programming environments on computational thinking. We also 
want to distinguish if applying SRA results in a better capability to solve more com-
plex computational thinking tasks.

From our research we know that the application of SRA when programming tan-
gible robots affects the development of computational thinking skills (Fanchamps 
et al., 2019). We also know that a dynamic environment in which unforeseen situ-
ations occur, in which pupils can no longer rely on linear, sequential program-
ming to successfully solve programming tasks, it requires the application of SRA-
thinking (Fanchamps et al. submitted). The construct of SRA-programming can be 
described as a process in which external, sensor-based observations (sense) are fed 
into a microprocessor so that these observations can be compared with internal, pre-
set conditions (reason) from which the execution of desired programming actions 
(act) can be derived. The ability to anticipate changing conditions in the task design 
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through sensor-based observations requires a different programming approach com-
pared to linear solutions (Dragone et  al., 2005). SRA-programming involves the 
functional understanding and application of complex programming concepts such 
as loops, conditionals and functions (Slangen, 2016). Sensor-based programming is 
known as a smart way of programming (Johansson & Balkenius, 2006).

To understand the construct of SRA-programming and being able to apply it 
effectively, more insight is needed into what underlying complex programming con-
cepts, such as iterations, functions and conditionals do. Programming making func-
tional use of loops, the use of sensors and being able to program based on cause/
effect relationships is fundamental for SRA-programming. It is precisely the appli-
cation of SRA that ensures that the user can discover in a functional and accessi-
ble manner, what advantages the application of complex programming concepts can 
provide. This in a direct comparison with linear programming in which changes in 
the task design cannot be anticipated ad hoc via the constructed program itself. In 
that case, a manual adjustment in the program itself is always necessary and has to 
be conducted by the user. In contrast, in SRA-programming a triggered adaptation 
is provided for, where changing external conditions are constantly compared with 
pre-set values. Based on these changing conditions, the program itself then decides 
which alternative to follow. For example: if a programmed artefact only needs to 
initiate an evasive command at a distance of 10 cm from an obstacle, or if a col-
our sensor always needs to initiate a specific action when a predetermined colour 
is detected. In such cases, a specific repeat and "if–then-else" condition is used. In 
these kind of situations SRA-programming comes into play.

Slangen (2016) and Fanchamps et  al. (submitted) investigated the functional 
application of the SRA-approach in programmable robotic environments. Both came 
to the conclusion that pupils understood tenets of programming better when apply-
ing SRA. Despite the fact that complex programming concepts, such as the “repeat”, 
“repeat until, “if”, “if–then”, “if–then-else”, “while” and “simple functions” were 
understood, they were not applied as a matter of course in new programming assign-
ments. Román-González et  al. (2017) addressed these concepts in their Computa-
tional Thinking Test (CTt) in order to make computational thinking measurable. In 
this test computational thinking is operationalised by a number of concepts, namely 
loops, conditionals, functions, nesting and the required computational thinking tasks 
debugging, completion, sequencing.

Computational thinking is a way of tackling and solving problems making use 
of computer science concepts and it primarily involves the ability to reason, plan 
and solve problems (Wing, 2006). It refers to operationalised concepts such as 
parallel thinking, pattern recognition, completion, debugging, sequencing, and 
abstract reasoning needed to approach a problem systematically (Basawapatna 
et  al., 2011; Lee et  al., 2011). Computational thinking involves the process in 
which problem definition, solution expression, and implementation with eval-
uation occurs recurrently in the process of programming (Yadav et  al., 2016), 
and can contribute to understand and to solve complex programming problems 
(Voskoglou & Buckley, 2012). Application of the SRA-approach can ensure 
that conceptual understanding develops, allowing a higher level of computa-
tional thinking to be achieved (Basu et  al., 2016). In our exploratory research 
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we therefore investigate to what extent the application of SRA during visual pro-
gramming influences the development of computational thinking (i.e. comple-
tion, debugging, sequencing).

Visual programming environments with an on-screen output are very suit-
able for use in primary education. Such environments can be characterized by 
the use of underlying syntax and semantics to support the act of programming 
(Weintrop & Wilensky, 2015). Visual programming environments offer the pos-
sibility to learn how to program in an accessible way by dragging, dropping and 
connecting manipulatable code blocks into a worksheet on screen to create a 
program (Asad et  al., 2016). These code blocks can contain iterations, condi-
tions, functions and routines using parameters, variables and operators (Price 
& Barnes, 2015). Often visual programming environments are a first introduc-
tion to programming for pupils (Jost et al., 2014). Many of these environments 
offer the possibility to vary the level of difficulty because they have a build-
up in complexity. This allows the application to connect to the starting level 
of each individual user. Level differentiation can also be applied by enabling 
or disabling options which makes it possible that a new challenge can be real-
ised for each user at their own level, resulting in maximum learning efficiency 
(Sapounidis et  al., 2015). When used in this way, an adapted environment can 
be provided that meets the pre-experience, age level and current skill level of 
pupils (Repenning, 2017). Despite the fact that a visual environment seems emi-
nently suitable for learning how to program, it is questionable whether pupils 
can use such an environment to achieve programming skills of higher complex-
ity (Kaučič & Asič, 2011). Our previous research indicates that pupils, when 
programming robots have difficulty applying the principles of SRA despite 
understanding these principles (Fanchamps et al., 2019). However, when pupils 
find themselves in a situation where the programming task only can be solved 
through an SRA-approach, they tend to use complex programming concepts in a 
way as operationalized in computational thinking.

Building on the theoretical exploration above, we assume a correlation 
between the SRA-approach in a visual programming environment with an impact 
on computational thinking. Therefore, our conceptual model in Fig. 1 provides 
an overview of relationships and interconnections between the independent and 
the dependent variables.

Computational
concepts

Visual programming
with SRA / without SRA

Impacts

Computational
Thinking skills

Impacts

Fig. 1  Schematic representation of the conceptual model
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3  Research question, sub‑questions and hypothesis

Based on preliminary studies and the literature research, our main research ques-
tion is: “What is the effect of SRA-programming in a visual programming envi-
ronment on computational thinking and specifically on the computational con-
cepts addressed?”.

This main research question leads to the next sub-questions:

1. Can SRA-programming in a visual programming environment with an on-screen 
output be of added value concerning the development of computational thinking?

2. What impact on computational thinking can be achieved by integrating SRA-
programming in a visual programming environment?

3. What is the influence of SRA-programming in a visual programming environment 
on complex computational concepts?

These sub-questions result in the following hypotheses:

1. The actual application of SRA-programming in a visual programming environ-
ment leads to a more successful solution of computational thinking tasks.

2. Applying SRA-programming in a visual programming environment leads to a 
higher level of development of computational thinking skills, compared to pro-
gramming in a visual environment without the use of SRA.

3. The actual application of SRA-programming in a visual programming environ-
ment with on-screen output enables a higher understanding of complex compu-
tational concepts.

4  Method

In this research an intervention study (Creswell 2008) is used to identify the 
effect of SRA-programming on the development of computational thinking. To 
determine whether using SRA in two programming conditions (visual program-
ming with or without the use of SRA) can make a difference in results, pupils 
use  Bomberbot© as a visual programming environment with on-screen output to 
construct and to solve programming tasks.

As a pre- and post-measurement, the Computational Thinking Test (CTt) was 
applied. Quantitative data has been collected in order to answer the research 
question, sub-questions and hypotheses. In order to investigate the effect of the 
intervention, we used a pre-test post-test design as illustrated in Fig.  2. This 
includes (a) pre-measurement of computational thinking skills, (b) a basic 
instruction on how Bomberbot works, (c) a programming intervention in two 
variants and (d) post-measurement of computational thinking skills.
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4.1  Participants

This research was conducted among pupils from grade 51 of a primary school 
(N = 30) in the Netherlands from which, at random, an experimental group (n = 15) 
and a control group (n = 15) of equal size were composed. Apart from using appli-
cations such as Word, PowerPoint, Excel and working with games and apps, pupils 
have no specific programming experience and have never used Bomberbot before.

4.2  Materials

To answer our research questions we used the visual programming environment 
Bomberbot to let pupils learn the concepts of programming and from which, by 
application, we want to deduce what the effect of SRA-programming is. It should 
be noted that the term SRA comes from the physical world of robotics and refers to 
the use of material sensors and actuators. In the visual environment applied sensors 
and actuators are by proxy virtual sensors and actuators. Bomberbot is an on-screen, 
game based and visually oriented platform that offers children the opportunity to 
learn programming in a playful, user-friendly way. In Bomberbot a virtually pro-
grammable robot is required to perform tasks such as: collecting stars, smashing 
gems or obstacles, opening treasure chests by means of a colour code that can be 
deciphered, etc. To construct a program in Bomberbot, the necessary program-
ming commands can be dragged from the library on the left and dropped into the 
main program. The available commands can be accessed using the scroll menu, as 
displayed in Fig.  3. The library contains a selection of pictographical commands, 
such as: forward, backward, turn left, turn right, hit with hammer, jump, repeat, if/
then, function (F1), etc. In the main program, the commands can be sequenced and 
arranged in the desired order. For the application of functions, as displayed in Fig. 4, 
an additional function worksheet is available below the main program. It can contain 

Pre-measurement

Computational 

Thinking Test (CTt)

Basic instruction

Bomberbot

Solving programming 

tasks without the 

possibility to apply 

SRA

Post-measurement

Computational 

Thinking Test (CTt)

Solving programming 

tasks with the 

possibility to apply 

SRA

Fig. 2  Research design

1 In this publication we use the UK grade level system to indicate the research population.
 Grade 5 in the UK corresponds with the Dutch “group 7”.
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the commands that are called upon when the function button is placed in the main 
program. To apply the constructed program the play button is pressed. The repeat 
function allows to run the task again from the start. The number display with the 
three stars above it indicates how efficient the constructed program is designed and 
can therefore be used as an incentive. The bin can be used to delete programming 
commands.

By using Bomberbot, pupils learn to apply fundamental concepts and skills of 
programming and can use this programming environment to get a grip on what itera-
tions, routines, functions and conditionals are and how they should be used. Because 
Bomberbot is designed to provide direct feedback, pupils can judge for themselves 
whether the constructed program is correct or not, allowing them to learn in a 
self-correcting way. Within this environment there is an increase in difficulty and 
complexity.

To determine the level of computational thinking skills in the pre- and 
post-measurement, we used the validated Computational Thinking Test (CTt) 
(Román-González et  al., 2017). In this test computational thinking is opera-
tionalised through a number of concepts, namely loops, conditionals, func-
tions, nesting and the required computational thinking tasks debugging, com-
pletion, sequencing. Pupils completed this test individually. The test contains 
28 items addressing the computational concepts of basic directions, loops 
(repeat times, repeat until), conditionals (if-simple, if-else-complex, while) 
and functions (simple functions, functions with parameters). The existence or 
non-existence of nesting is determined. The computational task/skill required 

Fig. 3  Basic display 
 Bomberbot© with library and 
main program

Fig. 4  Display  Bomberbot© 
with additional function work-
sheet F1
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(completion, debugging, sequencing) to provide the right solution for each 
of the 28 test-items can also be derived. To determine the reliability of the 
scale, we calculated Cronbach’s alpha. It should be noted that a value for 
Cronbach’s alpha of 0.70 is considered an acceptable reliability factor (San-
tos, 1999). As a characteristic, the developers of this instrument indicate that 
for grade 5 (N = 176) Cronbach’s alpha should be α = 0.721 (Román-González 
et al., 2017). We measured for Cronbach’s alpha α = 0.67 whereby this value 
almost complies the required level of internal consistency for our scale with 
this particular sample. From this we can conclude that, despite the low value 
for N, the internal reliability of the adapted instrument used is sufficient and 
performs as reported by the original authors. The measurement results will 
therefore be used as such.

As an intervention, we used  Bomberbot© as a visual programming environ-
ment with an on-screen-based output. Bomberbot can be used without the appli-
cation of SRA. To make this possible, the application of loops, conditionals 
and functions can be disabled. In this condition linear, sequential programming 
must be used to solve programming tasks. Linear, sequential programming 
means that the user of the programming environment does not use any program-
ming commands based on parallel processes such as iterations, conditionals and 
functions to solve programming tasks. For the other condition, Bomberbot can 
be used for solving programming tasks with or without the application of SRA. 

Fig. 5  Linear solution 
 Bomberbot©

Fig. 6  SRA-solution 
 Bomberbot©
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To solve SRA-programming tasks, all the options and applications of loops, 
conditionals and functions within Bomberbot can be used, but the more simple 
linear approach is still available. As an example, we include two screen shots 
of Bomberbot in which a virtually programmable robot has to collect stars and 
smash rubies. In order for the robot to perform these tasks, the users must drag 
the appropriate programming commands into a workspace. They can use lin-
ear, sequential programming commands or by the SRA-approach the more com-
plex commands such as loops, conditionals and functions. The tasks contain 
an incentive to stimulate to program as efficiently as possible within the given 
conditions by earning points displayed as stars. Figure 5 shows that the assign-
ment is solved by linear programming. Figure  6 shows that the same assign-
ment is solved via the application of SRA by making use of functions.

4.3  Procedure

As displayed in the research design, we defined two subgroups who received the same 
basic introduction on how to use Bomberbot operationally. The supervisor provided 
the instruction on how to use Bomberbot. We have chosen to divide pupils into pairs, 
because in this way we have an opportunity to follow reasoning processes by means 
of the learning dialogue. Consecutively, pupils of both subgroups completed five one-
hour programming sessions to solve ten programming missions containing 15 program-
ming tasks each in order to demonstrate the solutions found. The supervisor only helped 
when there were technical problems. Bomberbot offers the possibility to apply an SRA-
approach by means of using virtual sensors and specific programming concepts such 
as iterations, conditionals and functions available or not available within programming 
tasks of similar complexity. In Bomberbot the programming tasks consist of moving a 
virtual robot from a starting point to an end point by selecting and combining relevant 
commands and executing them. Along the way, the robot has to perform additional 
tasks, such as jumping on the spot, hammering gems, making a half turn, opening a box, 
removing objects, etc. The robot also encounters other/unforeseeable circumstances in 
which a) the control group controls the robot through its standard, linear program and 
b) the experimental group has the choice of controlling the robot using either the lin-
ear approach or the SRA-approach using virtual sensors and programming concepts to 
anticipate these changing conditions.

5  Results and Data‑analysis

The main research question, “What is the effect of SRA-programming in a 
visual programming environment on computational thinking and specific com-
putational concepts addressed?”, is answered by analysing the means of the 
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dichotomous variables and T-test analysis is used to examine sub-questions and 
to confirm or reject hypotheses. The results of the pre- and post-measurement 
of the Computational Thinking Test (CTt) are entered into SPSS for quanti-
tative data analysis. Differences in values are determined by comparing the 
means. Using cross tabs, a shift between pre- and post-measurement is made 
visible. In all statistical analyses a significance level of 5% (p =  ≤ . 05) is 
assumed.

The nature of the data meets the conditions for the assumption of normality 
and asserts that the distribution of sample means (across independent sam-
ples) is normal. It has been tested whether the assumptions of homogeneity 
of variances have been violated (p ≤ 0.05). Degrees of freedom are calculated 
and the bootstrapping procedure has been applied to re-estimate the standard 
error of the mean difference. The confidence interval is studied to assess the 
difference between means and to determine whether the value “0” is in the 
confidence interval. The value for the extent of the effect (Pearson’s r) has 
been calculated (indicating that the effect size is low if the value of r varies 
around 0.1, medium if r varies around 0.3, and large if r varies more than 
0.5). The substantial effect of a standard deviation difference between two 
groups (Cohen’s d) was also determined (it should be noted that d = 0.2 can 
be considered a ’small’ effect size, 0.5 stands for a ’medium’ effect size, 0.8 
for a ’large’ effect size and where any value above 1.4 is considered a very 
large effect) (Field, 2013).

5.1  Differences in the level of development of computational thinking skills

Table 1 shows the data for the level of development of computational thinking skills 
comparing both groups.

Comparing the means between the pre-measurement and the post measurement 
firstly show that pupils who applied SRA-programming in the visual program-
ming environment on the Computational Thinking Test (CTt) a) solved more com-
putational thinking items successfully, and b) indicated higher values regarding 
sequencing, completion and debugging for the required task application. Secondly, 
the influence of SRA-programming showed c) higher ratings on the understand-
ing of the working principles of loops, conditionals and functions, and d) pointed 
out whether or not to apply nesting. This was deduced from the data whereby the 
group that programmed with SRA in the post-measurement shows a higher aver-
age score (M), a lower standard deviation (SD) and less spread in the measured 
values (range). Based on these measurements, it is reasonable to assume that pro-
gramming with SRA in the visual programming environment is the cause of this 
increase.
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5.2  Selection of SRA‑programming

An inventory on how often pupils in the group that had SRA at their disposal 
actually applied SRA-programming is displayed in Table  2. Pupils could decide 
for themselves whether or not to solve tasks using SRA. It can be deduced that in 
approximately half of all programming missions an application of SRA has been 
selected. Where the application of SRA-programming has not been selected, pupils 
opted for solving programming tasks making use of linear, sequential programming 
structures.

Table 1  Differences in level of development of Computational Thinking Skills (N = 30)

Variable = measurable value; Total = number of items correct CT−test; Computational concept 
addressed = loops, conditionals, functions, nesting; completion = completed by CT; debugging = refor-
mulate problems; sequencing = sequence; M average; SD standard deviation; range = spread in measure-
ment, Mdn = median

Pre-test group without SRA
(n = 15)

Post-test group without SRA
(n = 15)

Variable M SD Range Mdn Variable M SD Range Mdn

Total (28) 0.44 0.10 0.39 – 0.50 0.43 Total (28) 0.45 0.13 0.38 – 0.55 0.43
Loops 0.40 0.12 0.24 – 0.64 0.40 Loops 0.40 0.13 0.20 – 0.68 0.40
Conditionals 0.35 0.15 0.11 – 0.58 0.36 Conditionals 0.34 0.12 0.08 – 0.50 0.33
Functions 0.43 0.27 0.00 – 1.00 0.25 Functions 0.47 0.27 0.00 – 0.75 0.50
Nesting 0.36 0.13 0.16 – 0.53 0.37 Nesting 0.36 0.12 0.16 – 0.58 0.37
CT-skill
Completion

0.51 0.23 0.11 – 0.78 0.56 CT-skill
Completion

0.50 0.13 0.33 – 0.67 0.56

CT-skill
Debugging

0.49 0.21 0.20 – 1.00 0.40 CT-skill
Debugging

0.40 0.24 0.00 – 0.80 0.40

CT-skill
Sequencing

0.44 0.14 0.21 – 0.64 0.50 CT-skill
Sequencing

0.43 0.19 0.14 – 0.86 0.50

Pre-test group with SRA
(n = 15)

Pre-test group with SRA
(n = 15)

Variable M SD Range Mdn Variable M SD Range Mdn
Total (28) 0.41 0.12 0.30 – 0.50 0.39 Total (28) 0.67 0.07 0.61 – 0.70 0.64
Loops 0.38 0.13 0.20 – 0.60 0.40 Loops 0.62 0.09 0.52 – 0.80 0.60
Conditionals 0.31 0.14 0.14 – 0.67 0.28 Conditionals 0.63 0.11 0.42 – 0.78 0.67
Functions 0.23 0.15 0.00 – 0.50 0.25 Functions 0.83 0.15 0.50 – 1.00 0.75
Nesting 0.29 0.12 0.11 – 0.58 0.32 Nesting 0.64 0.09 0.53 – 0.79 0.63
CT-skill
Completion

0.40 0.14 0.22 – 0.56 0.44 CT-skill
Completion

0.69 0.12 0.44 – 0.89 0.67

CT-skill
Debugging

0.45 0.29 0.00 – 0.80 0.40 CT-skill
Debugging

0.61 0.26 0.20 – 1.00 0.60

CT-skill
Sequencing

0.42 0.13 0.29 – 0.71 0.43 CT-skill
Sequencing

0.68 0.12 0.43 – 0.93 0.64
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5.3  Impact SRA on solving computational thinking tasks

Comparing the different t-tests carried out on all the variables concerned shows that, 
in general, there are statistically significant differences regarding the correct number 
of solved items from the Computational Thinking Test (CTt) and the computational 
concept addressed and that the characteristics of computational thinking are increas-
ing as a result of SRA-programming (Table  3). Since the value "0" is not within 
the confidence interval for each variable, this confirms the assumption that applying 
SRA-programming in a visual programming environment provides a significantly 
higher level of solving programming tasks, resulting in a higher level of compu-
tational thinking skill. Calculating the size of the effects on the independent t-test 
(effect-size) also shows that there are large effects measurable.

Table 2  Selection SRA-programming

Pair = pupils divided in pairs; Mission 1 = application of the variable loops; Mission 2 = application of 
the variable conditionals; Mission 3 = application of the variable functions; Total = SRA applied in rela-
tion to the total number of missions.

Pupils Mission 1 loops Mission 2 conditionals Mission 3 functions Total

Pair 1 10 out of 13 tasks 9 out of 10 tasks 6 out of 16 tasks 25 out of 39 tasks
Pair 2 12 out of 13 tasks 5 out of 10 tasks 2 out of 16 tasks 19 out of 39 tasks
Pair 3 11 out of 13 tasks 8 out of 10 tasks 3 out of 16 tasks 22 out of 39 tasks
Pair 4 13 out of 13 tasks 5 out of 10 tasks 0 out of 16 tasks 18 out of 39 tasks
Pair 5 10 out of 13 tasks 6 out of 10 tasks 5 out of 16 tasks 21 out of 39 tasks
Pair 6 10 out of 13 tasks 7 out of 10 tasks 2 out of 16 tasks 19 out of 39 tasks
Pair 7 12 out of 13 tasks 6 out of 10 tasks 4 out of 16 tasks 22 out of 39 tasks
Pair 8 11 out of 13 tasks 2 out of 10 tasks 1 out of 16 tasks 14 out of 39 tasks

Table 3  T-test analysis 
comparing visual programming 
based on SRA usage

Variable measurable value; Total = number of items correct CT−
test; Computational concept addressed = loops, conditionals, func-
tions, nesting; completion = completed by CT; debugging = refor-
mulate problems; sequencing = sequence; t = t−value; df = degrees 
of freedom; p = p−value; CI = confidence interval; d = effect size

Variable t df p CI d

Total (28) 5.93 20.92 0.000 0.14 – 0.30 2.18
Loops 5.42 28.00 0.000 0.14 – 0.31 1.94
Conditionals 6.91 27.60 0.000 0.20 – 0.38 2.52
Functions 4.63 22.51 0.000 0.20 – 0.53 1.66
Nesting 7.17 28.00 0.000 0.20 – 0.36 2.64
CT-skill
Completion

4.02 28.00 0.000 0.09 – 0.28 1.51

CT-skill
debugging

2.36 28.00 0.013 0.03 – 0.40 0.85

CT-skill
Sequencing

4.18 28.00 0.000 0.12 – 0.36 1.57
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6  Conclusion

An interpretation of the analysed data shows that there is a significant increase in 
the level of computational thinking skills through the application of SRA-program-
ming, using a visual programming environment. Significant yields are measured on 
all variables present in this research. The extent of the effect by applying SRA-pro-
gramming is large to very large. The findings in this research show a high impact on 
computational thinking due to SRA-programming.

In order to find out whether SRA-programming has a significant increase in 
pupils’ understanding of complex computational concepts, resulting in a higher 
level of computational thinking skills, we used the results of the control group that 
did not have SRA-programming at its disposal in a comparison with the group that 
could use SRA-programming to solve programming tasks. From the results obtained 
we hardly see any development in CT-skills when pupils program in a purely linear 
environment. We can conclude from this that it cannot be stated straightforwardly 
that programming automatically leads to more skills of programming. The group 
which had SRA at its disposal, used SRA to solve programming tasks in about half 
of all assignments. This choice was due to the fact that pupils could decide by them-
selves to solve the missions either with linear programming or SRA-programming. 
Our research made visible that, when there was a motivational intent or a trigger to 
look for a more thoughtful and efficient solution, SRA-programming was applied. 
Where pupils actually opted for an application of SRA we see, in a comparison with 
the linear approach, through a better understanding of complex computational con-
cepts, a significant increase in the development of computational thinking skills. The 
extent of the effect by applying SRA-programming is large to very large. The find-
ings in this research indicate a high impact on computational thinking due to SRA-
programming. The hypotheses that the actual application of SRA-programming in 
a visual programming environment leads to a more successful solution of compu-
tational thinking tasks can be confirmed. The sub-question whether SRA-program-
ming in a visual programming environment with on-screen output is of added value 
related to a development in computational thinking can be positively endorsed.

It is often claimed that programming leads to the development of computational 
thinking skills. It is questionable whether this can be stated in such a generic way. 
The suspicion is that the nature of the task and the programming environment helps 
to determine whether there is a development in CT-skills. If we look at the analysed 
data of pupils who only had the linear environment as their task, we can say that 
there is hardly any development measureable. However, in the environment where 
pupils did have access to SRA, we see that only the pupils that actually choose 
to apply SRA show a significant increase on computational thinking. From these 
results, the hypothesis can be confirmed that applying SRA-programming in a visual 
programming environment leads to a higher level of development of computational 
thinking skills compared to programming in a visual environment without the use of 
SRA.

The measurements in our research indicate that the application of SRA-program-
ming in a visual programming environment with on-screen output allows pupils a 
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better grasp of the computational concepts addressed. The effect, when pupils are 
allowed to choose whether they prefer a linear approach as the nature of the task 
versus the effect evoked when pupils choose an SRA task solution, is remarkably 
visible. In the latter case, pupils generally score significantly better on complex 
computational concepts and CT-skills in the post-test. The choice to opt for SRA-
programming leads to a significant better solution of CT-tasks. This means that 
when pupils opt for an SRA-approach, they are better able to get to grips with the 
underlying concepts that lead to a higher level of CT-skills. The hypothesis that the 
actual application of SRA-programming in a visual programming environment with 
on-screen output enables a higher understanding of complex computational concepts 
can be confirmed.

Overall concluding, we created an environment in which two conditions were 
used in which one group of pupils programmed linearly and the other group could 
choose to apply/not to apply SRA-programming. With the help of an independent 
Computational Thinking Test (CTt) it appears that pupils who have programmed in 
the SRA condition solve CT tasks better. From this we can deduce that the explicit 
application of the SRA-approach also leads to acquire more understanding of com-
plex computational concepts. The absence of SRA leads to no gain in computational 
thinking skills. If there is no explicit focus on the use of computational concepts, 
one can solve simple programming problems, but this has no effect on the further 
understanding of complex computational concepts. This becomes visible through 
the results of the Computational Thinking Test (CTt). We suspect that pupils who 
already have previous experience of programming with loops, conditionals and 
functions are more likely to use them. In Bomberbot pupils are also invited by earn-
ing stars to find and use the most efficient way of programming. This can be seen as 
a stimulus for pupils to apply SRA. By actually establishing the relationship between 
applying SRA and constructing the most efficient program, pupils show that they 
understand the underlying computational thinking concepts (e.g. loops, conditionals, 
functions).

The freedom of choice, whether or not to apply SRA learning the underly-
ing insights of the concepts by carrying out the tasks, triggers the discovery of the 
underpinning functionality. This leads to a self-learning understanding of the under-
lying concepts, which in turn leads to a further development of CT skills. What 
makes this plausible is that pupils who had SRA at their disposal choose to opt for 
the application of SRA in half of all programming tasks and not for the other half. 
Decisive for the eventual choice to opt for SRA is that pupils are challenged to find 
a qualitatively better solution to solve programming tasks. Pupils who choose the 
qualitatively better solution score better on the CT test based on that.

7  Discussion

The aim of this research is to find answers to the question what effect SRA-program-
ming in a visual programming environment with on-screen output has on computa-
tional thinking and specific computational concepts addressed.
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First of all, there are claims that programming improves children’s computational 
thinking skills. We would like to take a more nuanced view of that statement. After 
all, if pupils are offered a programming environment that is limited to linear pro-
gramming, this hardly leads to a growth in CT-skills (e.g. sequencing, debugging, 
completion). The nature of the task can determine whether or not a development in 
CT skills is shown. If pupils are given the opportunity to use SRA-programming, 
we see that pupils are able to fathom the application of computational concepts 
addressed which leads to a higher level of CT-skills.

The results obtained from our research demonstrate that a visual programming 
environment with on-screen output can integrate SRA-programming concepts and 
show foreseen effects of SRA-programming on computational thinking. This is in 
line with claims made by Jost et al. (2014), Papadakis et al. (2016), Repenning (2017) 
and Strawhacker and Bers (2015) who state that visual/on-screen oriented program-
ming environments provide an easy accessible way with a low-threshold, functional 
use in primary school education whereby pupils acquire functional programming 
skills of a higher level. Moreover, our research confirms that applying SRA in a vis-
ual programming environment can create a higher level of computational thinking.

The results show that by applying SRA-programming pupils demonstrate a sub-
sequent development of computational thinking skills. In addition, our results show 
that, due to the impact of the SRA-approach, pupils can solve complex computa-
tional thinking tasks and can ensure that pupils get a better grip on complex con-
cepts of programming.

This research contributes to the theory building of computational thinking and 
programming education in primary schools. Visual programming environments 
make pupils use computer technology to examine and solve problems systemati-
cally and in a creative and interactive way with sufficient possibilities for differentia-
tion. It was claimed in a similar way by Asada et al. (1999) for a tangible robotics 
programming environment with unforeseen events, pupils need to anticipate such 
changing circumstances in a visual, on-screen programming environment through 
their programming actions. SRA-programming is proving to be an added value in 
this respect and can maybe be seen as an unidentified characteristic of computa-
tional thinking. As stated by Bocconi et al. (2016), we are interested in what other 
cognitive effects can be made measurably transferring computational thinking skills 
to other knowledge domains.

This research also contributes to the way in which programming in education 
can be operationalised. Based on the significant results, it can be concluded that the 
SRA-approach is a promising concept for obtaining computational thinking skills in 
a more profound and meaningful way. For this it has to be made sure that pupils do 
work with complex concepts otherwise there will be no growth.

7.1  Limitations and follow‑up research

With regards to the results of this research, several reservations can be made. Rea-
sons for this may be that pupils in their regular primary school curriculum have 
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already continued to work with programming environments or that there is a regular 
development of pupils over time due to their standard educational program.

This research was carried out by making use of the visual programming environ-
ment Bomberbot with an on-screen output. In order to be able to generalize more 
from our research, this research should be replicated with other visual programming 
environments with an on-screen output. It should also be examined whether the 
nature of the programming task affects the outcome and the learning effects.

In subsequent research it is valuable to evaluate whether SRA-programming in a 
visual programming environment with on-screen output shows the same yields on the 
development of computational thinking skills as programming in a visual programming 
environment with a physical perceptible and tangible output. It is also interesting to 
investigate whether the yield of programming with a tangible output improves when 
pupils firstly operate with programming environments with only an on-screen output.

It is important to consider that initiating, supporting and supervising programming 
activities requires specific competences from the teacher. However, a teacher should be well 
equipped to adequately facilitate and guide such activities. In this research, the researcher 
acted also as the qualified, supporting supervisor. In a subsequent study, it is valuable to 
investigate whether comparable returns can be found when a regular, competent teacher 
takes on the role of supervisor and the researcher is present purely as an observer.

This research was conducted with a relatively small group of respondents from 
which pairs were composed. The small amount of the research sample, as well pupils 
working in pairs, could have been influential to our findings. In order to be able to gen-
eralize from our findings, it is recommended to repeat this research with a larger num-
ber of respondents.
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