
Algorithms for dynamic scheduling in manufacturing, towards digital factories
Flexible Job Shop Scheduling Problems (FJSPs) with generalized time-lags and no-wait constraints

Bogdan Luca Paramon

Supervisor(s): Mathijs de Weerdt, Leon Planken, Kim van den Houten

1EEMCS, Delft University of Technology, The Netherlands

A Thesis Submitted to EEMCS Faculty Delft University of Technology,
In Partial Fulfilment of the Requirements

For the Bachelor of Computer Science and Engineering
June 22, 2025

Name of the student: Bogdan Luca Paramon
Final project course: CSE3000 Research Project
Thesis committee: Mathijs de Weerdt, Leon Planken, Kim van den Houten, Jasmijn Baaijens

An electronic version of this thesis is available at http://repository.tudelft.nl/.



Abstract
This study investigates scheduling strategies for
the stochastic duration flexible job-shop problem
with no-wait and general time lags constraints
(FJSP/NW-GTL). Progress in Constraint Program-
ming (CP) and temporal-networks has renewed in-
terest in assessing the strengths and limitations
of different proactive and reactive scheduling ap-
proaches. This paper covers the application of a
CP-based fully proactive method, a reactive method
and STNU-based method on the FJSP/NW-GTL
problem comparing results in terms of predeter-
mined objectives and feasibility. In addition, the
paper aims to answer how different distributions
for task duration affect feasibility and performance.
Our results show that strictly proactive methods
are infeasible for no-wait constraints and very tight
schedules, which lead to adding an online step in
the proactive implementation to pursue the com-
parison between the approaches. With this change,
plotting the average makespan across methods by
distribution shows that there is not much fluctuation
between distribution types in terms of makespan.
Moreover, it appears that the proactive method per-
forms the best, followed closely by the reactive
method, while the STNU approach results in a no-
tably higher makespan for the same instances. No-
tably, in terms of feasibility, the proactive and reac-
tive approach have 100% rate of success compared
to the STNU approach which is infeasible on 35%
of the instances in the dataset.

1 Introduction
The rise of smart manufacturing systems is transforming in-
dustries through the integration of Industry 4.0 technologies
[14], where digitalization plays a pivotal role. At the core
of this transformation are advanced scheduling algorithms
that manage the complexities of real-time production envi-
ronments. Traditional job shop scheduling techniques, which
rely on deterministic task durations and fixed sequences, are
increasingly inadequate in the face of real-world challenges,
where processing times are uncertain and delays are common.

Disturbances such as variable processing times and ma-
chine breakdowns render purely deterministic schedules brit-
tle. This makes it necessary to use more advanced meth-
ods for reasoning about time. Temporal Constraint Networks
(TCNs), first formalised by Dechter, Meiri and Pearl, offer
a practical framework for managing and propagating con-
straints between time points [4]. Building on this, Sim-
ple Temporal Networks with Uncertainty (STNUs) extend
TCNs with contingent (uncontrollable) durations and offer
dynamic-controllability guarantees [11]. STNUs represent
temporal constraints between tasks, where some task dura-
tions are uncertain, and allow for flexible scheduling that
adapts as uncertainty is revealed.

Our research builds upon recent work by Van den Houten
et al. (2024) [15], who developed proactive and reactive

scheduling techniques using constraint programming applied
to stochastic project scheduling problems with maximal time-
lags (RCPSP/max). Their framework, based on temporal net-
works, is versatile and can in principle be applied to a variety
of scheduling problems beyond RCPSP/max.

We focus on the Flexible Job Shop Problem (FJSP) [2], a
variant of the Job Shop Problem, where each task can be as-
signed to multiple machines rather than a single one. The
Flexible Job-Shop Scheduling Problem (FJSP) is provably
NP-hard [7; 3], and recent surveys still underline its com-
putational intractability and practical relevance [1]. FJSPs
are critical in manufacturing environments due to the inherent
flexibility they offer. However, when combined with general-
ized time-lags (which impose minimum and maximum delays
between tasks) and no-wait constraints (which require imme-
diate continuation of certain tasks), FJSPs become even more
complex and remain largely unexplored in the context of con-
straint programming and STNUs. Generalized time-lags are
essential in modeling real-world dependencies between op-
erations, such as cooling or curing periods that must elapse
before subsequent processing can begin, or deadlines that im-
pose strict upper bounds on task sequencing. No-wait con-
straints are equally critical in continuous manufacturing pro-
cesses like metalworking or chemical production, where any
delay between consecutive operations (e.g., cutting and weld-
ing) can compromise product quality or cause defects. Those
constraints closely simulate real-life scenarios, which further
emphasizes the importance of their investigation.

While some research has addressed FJSPs with constraints
such as time-lags and no-wait in deterministic settings, these
models often fail to account for uncertainty in task durations.
For instance, Aissani et al. [1] extend the FJSP with gen-
eralised time-lags using mixed-integer programming, but do
not consider uncertainty or dynamic adaptation. Likewise,
Ebrahimnejad and Khalilzadeh [5] study a no-wait FJSP with
periodic maintenance via meta-heuristics, yet their approach
lacks proactive and reactive scheduling capabilities.

This research aims to bridge this gap by investigating
the use of proactive, reactive and hybrid scheduling strate-
gies based on STNUs for FJSPs with generalized time-lags
and no-wait constraints under uncertain task durations. By
extending the PyJobShop package [10], this work will ex-
plore how these strategies influence the feasibility, robust-
ness, and performance of scheduling systems in uncertain en-
vironments, providing insights into more adaptable schedul-
ing methods for smart manufacturing.

2 Methodology and Background
This section presents the methodology employed in this re-
search, outlines necessary background concepts, and formally
describes the problem studied.

2.1 Problem Description
My research addresses the challenges of scheduling flexible
job-shop problems (FJSPs) under uncertainty, incorporating
generalized time-lags and no-wait constraints in task dura-
tions. The FJSP extends the classical job-shop model by
allowing each operation to be carried out on any machine

1



within a specified subset of eligible machines. In its most
general form, the FJSP [3] can therefore be expressed as fol-
lows:

1. There is a set of n jobs to be processed on m machines.
2. The set of m machines is denoted by M =

{M1,M2, . . . ,Mm }.
3. Each job i consists of a sequence of ni operations

(Oi,1, Oi,2, . . . , Oi,ni
).

4. Every operation must be executed to complete its job.
Operation Oi,j requires exactly one machine chosen
from the candidate set Mi,j ⊆ M . When Oi,j is pro-
cessed on machine Mk ∈ Mi,j , its processing time is
pi,j,k.
Typically, the following assumptions are made for a gen-
eral FJSP:
(a) All machines are available at time t = 0.
(b) All jobs are available at time t = 0.
(c) Each operation can be processed by only one ma-

chine at a time.
(d) There are no precedence constraints among opera-

tions of different jobs; therefore jobs are indepen-
dent of each other.

(e) No pre-emption of operations is allowed, i.e. an op-
eration, once started, cannot be interrupted.

(f) Transportation time between machines and setup
time for an operation are included in its processing
time.

On top of this, generalized time-lags and no-wait con-
straints are enforced using already available methods found
in the API Documentation of PyJobShop. For any ordered
pair of operations (task1, task2) part of the same job we im-
pose

L ≤ st2 − end1 ≤ U,

where
• end1 is the finish time of task1,
• st2 is the start time of task2,
• L is the minimum allowable delay (which may be posi-

tive, zero, or even negative to allow overlap),
• U is the maximum allowable delay (and can be +∞ to

model only a lower bound).
• Setting L = U = 0 yields the familiar no-wait constraint

st2 = end1; larger intervals simply relax this equality
while keeping both bounds explicit.

The objective of the experimentation is to observe hybrid
scheduling strategies that efficiently manage these constraints
to optimize makespan while maintaining dynamic control-
lability, enabling real-time adaptability to observed duration
variations.

2.2 Scheduling Methods
Following the framework of Van den Houten et al. [15], three
algorithmic paradigms are benchmarked for the FJSP with
generalised time-lags and no-wait links under stochastic task
durations:

Proactive Schedule
The proactive approach aims to build a schedule offline and
strictly adhere to it during the online phase. The offline part
uses a CP solver to return a fixed start time for every opera-
tion, and no changes are allowed during the online phase. The
online phase consists of sampling the real durations based
on different strategies and during execution we check if con-
straints are met. We test several ways of obtaining the deter-
ministic durations (robust and percentile sampling with dif-
ferent quantiles).

1. Robust - every activity is fixed to its maximum sup-
port value, yielding a highly feasible but typically long
schedule.

2. Quantile - we test different quantiles 0.25, 0.5, 0.75, 0.9,
with the expectation of higher percentage quantiles bal-
ancing higher feasibility and shorter schedules in terms
of makespan and lower quantiles affecting feasibility
considerably aiming for even smaller makespans

Reactive Schedule
The reactive method also starts with a deterministic scenario,
following the same logic as described in the proactive ap-
proach. The differentiating factor of the reactive approach
lays in progressively altering the schedule as time passes and
tasks complete execution. It re-optimises the schedule when-
ever a job finishes later or earlier than predicted. At each
event the remaining sub-instance is rebuilt with updated re-
lease dates and the CP solver is invoked again. This policy
incurs extra solver calls yet greatly improves robustness in
practice [15].

STNU-Based Hybrid Schedule
The third approach encodes the provisional plan as a Simple
Temporal Network with Uncertainty (STNU) and extracts a
partial-order schedule (POS). Dynamic-controllability anal-
ysis of the STNU guarantees that the schedule can actually
adapt tasks and their real durations. Actual start times are de-
cided in real time as soon as durations are revealed, while all
temporal constraints (including time-lags and no-wait links)
remain satisfied [11]. The STNU approach uses RTE* [9], an
algorithm that is used to dynamically schedule tasks in pre-
sesnce of temporal constraints. RTE* extends standard RTE
by allowing more flexibility in execution while still ensur-
ing dynamic controllability, meaning that the schedule can
adapt to outcomes in real time without violating temporal
constraints. Empirical evidence in the SRCPSP/max domain
shows that this hybrid method often matches the robustness
of reactive rescheduling with far fewer online optimisation
steps [15].

2.3 Methodology
The experimentation pipeline consists of a uniform modeling
layer, a machine-selection policy, and a script used to collect
evaluation metrics under different duration distributions.

Modelling the FJSP instance
All benchmark instances are encoded with PYJOBSHOP [10]
framework allowing for an effortless implementation of the
temporal constraints. Extending on previous work, the

2



PYJOBSHOPSTNUS1extension is used to facilitate the hy-
brid approach (STNU). The RTE* algorithm, previously
mentioned in the hybrid approach, is used in the online phase
after an STNU is built from a FJSP instance. If the temporal
network is dynamically controllable, RTE* is used to execute
the schedule adaptively, handling uncertain durations while
preserving feasibility and minimizing rescheduling. Besides
the standard precedence links, two additional temporal con-
structs are imposed:

1. No-wait links. Consecutive operations that must start
back-to-back are modelled through a generalised time-
lag with bounds L = U = 0, thus enforcing stk+1 =
endk.

2. Generalised time-lags. Whenever a lag between two
operations (i, j) is required, the interval constraint L ≤
stj − endi ≤ U is added directly to the STNU, where L
and U are scenario-specific parameters.

To test robustness across different shop environments, each
stochastic processing time d is replaced by a random duration
drawn from an uniform distribution, with different noise lev-
els as parameter: α > 0:

Uniform: Unif
(
max(1, d− α

√
d), d+ α

√
d
)
,

The resulting temporal network is fed to the RTE* dis-
patcher of Van den Houten et al. [15], which checks dy-
namic controllability and, if successful, returns a partial-order
schedule ready for simulation.

Machine selection
Choosing a mode for every operation can be performed either
offline, before execution starts, or online, together with the
start-time decisions. Including modes in the online search,
however, increases the branching factor of both the reactive
and the STNU dispatcher. Hence we adopt a fully offline pol-
icy:

1. Each deterministic projection of the stochastic instance
(robust or different quantiles) is solved once with CP.

2. The mode chosen by the solver for that projection is
frozen and reused during all subsequent online decisions,
removing the mode variable from the real-time search
space.

This strategy keeps the comparison fair across proactive,
reactive and hybrid algorithms while maintaining tractable
online running times.

Performance metrics
Four performance indicators have been used in the evaluation
and analysis of the different approaches:

Feasibility ratio percentage of simulated scenarios that sat-
isfy all temporal (no-wait and general time lags) and re-
source constraints.

1Repository available at https://github.com/kimvandenhouten/
PyJobShopSTNUs/tree/main.

Offline time CPU time required to generate the initial sched-
ule (including mode selection).

Online time cumulative CPU time spent in real-time deci-
sions (rescheduling or STNU dispatching).

Makespan completion time of the last operation; objective
is to minimize makespan.

3 Experimental Setup
All tests are carried out on the Fattahi benchmark fam-
ily for the Flexible Job-Shop Scheduling Problem (FJSP).
The 20 instances were originally introduced by Fattahi,
Mehrabad and Jolai [6] and are now publicly available
in the SCHEDULINGLAB repository (https://github.com/
SchedulingLab/fjsp-instances)[13].2 These instances already
contain the routing alternatives required for FJSP. Instead
of enriching the data files themselves, we inject the addi-
tional no-wait links and generalised time-lags programmat-
ically during modeling. The general time lags follow the fol-
lowing strategy to become deterministic, thus reproducible:

1. First, we set the hyperparameters that define how wide
the generalized time windows between tasks can be.
(e.g. lower fraction = 0.25, width fraction = 0.50)

2. Second, we convert the filename into a deterministic ran-
dom seed using zlib.crc32. This ensures that the same
input file always results in the same time-lags LB and
UB making experiments reproducible.

3. Third, we compute the average (mean) duration for each
two consecutive operations. The two means are aver-
aged and buffered in a variable that will later scale LB
and UB meaningfuly.

4. Last step is to compute the LB and UB. The lower bound
is sampled using the seed from step two and the lower
fraction. An intermediate value follows the same for-
mula as LB, but using the width fraction instead. The up-
per bound is calculated by adding the intermediate value
to the LB. With the hyperparameters set to the values
metnioned in the first step, this would result in:

0 ≤ LB ≤ 0.25 · scale, LB ≤ UB ≤ 0.75 · scale

Keeping the raw benchmark intact preserves comparability
with earlier deterministic FJSP studies while satisfying best-
practice recommendations to separate immutable input data
from derived artefacts and to document every processing step
transparently [12; 8].

Uncertainty settings. For every nominal processing time
d we sample uncertain durations with two noise levels, α ∈
{1.0, 2.0} from an unifor distribution as described in the pre-
vious section. The filename of the instance is used as the
RNG seed so that every method sees exactly the same reali-
sation stream.

2The repository keeps the exact plain-text files from the authors
and is version-controlled, which simplifies future replication.

3

https://github.com/kimvandenhouten/PyJobShopSTNUs/tree/main
https://github.com/kimvandenhouten/PyJobShopSTNUs/tree/main
https://github.com/SchedulingLab/fjsp-instances
https://github.com/SchedulingLab/fjsp-instances


Deterministic reductions. All deterministic projections
(robust, and different percentiles) are modeled in PYJOB-
SHOP and solved with IBM CP Optimizer (via the library’s
cpoptimizer backend) to obtain both a baseline schedule
and a concrete mode assignment.

Evaluated algorithms. The three algorithms of Sec-
tion 2.2- proactive, reactive, and the STNU-based hybrid-
are run on each instance / noise combination. Different
amounts of independent duration samples have been used
for the experiments. For general comparison of average
makespan for different distribution modes 10 samples were
used per instance, giving a total of Instances(20)×Noise(2)×
Samples(10) simulation runs for every method. For feasibil-
ity experiments, 50 samples were used per instance, which
leads to a total of Instances(20) × Noise(2) × Samples(50)

Hardware platform. All experiments were conducted on a
MacBook Pro (Model Identifier: MacBookPro17,1) equipped
with an Apple M1 chip featuring 8 cores (4 performance and
4 efficiency) and 16GB of unified memory, running macOS
Sequoia version 15.3.1. The project was developed and exe-
cuted using Python 3.9 within a PyCharm IDE environment.
All solvers and scheduling pipelines ran natively on the Apple
Silicon architecture without virtualization

Reproducibility. All tests are carried out on the Fattahi
Flexible Job-Shop benchmark suite [6], which we leave un-
changed on disk. Experiments were executed within a con-
trolled Python virtual environment managed in PyCharm.
Solver versions (e.g., CP Optimizer, PyJobShop) and depen-
dencies were specified in a requirements.txt file. The re-
sults were logged with timestamped directories and labeled
by method type and noise configuration, with per-instance
feasibility, start times, makespan, and online/offline compu-
tation times recorded. Additionally, the parameters used are
transparently mentioned in the paper such that they can be
reused to reproduce the experiments in future work.

4 Results and Discussion

In this section we present and interpret the most significant
outcomes of our experiments, focusing on key performance
metrics across all scheduling approaches. We evaluate each
metric separately to gain a clearer understanding of the per-
formance trade-offs between approaches.

4.1 Feasibility Overview

In contrast to prior work where feasibility ratios vary, due to
our implementation particularities, our study shows that fea-
sibility is always achieved for the Proactive and Reactive ap-
proaches. However, a few infeasible instances were observed
under the STNU-based method, particularly for instance with
higher number of tasks. The correlation can be observed both
in the plots obtained from the no-wait and general time lags
constraints from (Figures 1a and 1b). A table showing the
data used in the plots can be found in Appendix A.

(a) Feasibility vs Task Count
(NW)

(b) Feasibility vs Task Count
(GTL with LB 0.25% and UB
0.75%)

Figure 1: Histogram of task counts by STNU feasibility under dif-
ferent temporal constraints.

Feasibility in the Flexible Job Shop Scheduling Problem
(FJSP) with no-wait (NW) and generalized time-lag (GTL)
constraints can fail under two main scenarios:

1. When time-lag bounds between operations are violated
due to real-time delays or sampling noise.

2. When no-wait constraints, which enforce strict chaining
between tasks, cannot be satisfied on shared resources
due to timing conflicts.

Each approach handles these constraints differently:

Proactive approach. Schedules are precomputed using a
constraint programming (CP) solver with a deterministic du-
ration vector, where both GTL and NW constraints are mod-
eled as hard constraints for a feasible baseline. The solver
is only allowed to return feasible solutions, thus the offline
schedules guarantees feasibility. In the online phase, theoret-
ically, there should be no rescheduling. The new finish times
should be calculated using the new durations derived for each
sample and then tested for feasibility. However, one of the
main conclusions of the paper shows that a fully proactive
method is infeasible for no-wait constraints. No-wait con-
straints are broken not only when tasks have longer durations,
but also when they have shorter durations and they do not
follow immediately one after the other. Thus, the proactive
method has been adapted in the study in the following man-
ner: real durations are sampled from a noise-perturbed dis-
tribution, the model is rebuilt using those new durations and
the instance is re-solved using the offline solution as a warm
start for the solver. The online feasibility guarantee is han-
dled by the CP solver, which finds a feasible solution if it
exists, given enough time. In essence, the proactive method
is not fully proactive anymore as tasks are shifted during ex-
ecution to respect the no-wait constraints. Moreover, calling
the solver only once during the online execution with all the
new durations as input simulates a ’look ahead’ behavior.

Reactive approach. This method shares similarities in the
offline phase with the proactive approach as it begins from a
precomputed feasible schedule and triggers re-optimization
only when real-time durations diverge from the expected
ones. At each re-optimization step, a full CP model with em-
bedded NW and GTL constraints is resolved. Throughout the
experiments, all reactive reschedulings succeeded, ensuring
full feasibility.

4



STNU-based approach. In this approach, constraints are
embedded into a Simple Temporal Network with Uncertainty
(STNU). Feasibility depends on whether the network is dy-
namically controllable, meaning it can guarantee all con-
straints regardless of how uncertain durations resolve. This
stricter requirement, coupled with tight no-wait constraints
and resource limitations, often leads to infeasibility, espe-
cially when task chains are long and overlapping as we see
in instances with a higher number of tasks. As previously
mentioned this is showed in (Figures 1a and 1b).

Figure 2: Feasibility under no-wait constraints across scheduling
methods. Proactive and Reactive always yield feasible solutions,
while STNU fails on 35-40% of instances on average due to dynamic
controllability limits.

For completeness, the same plot for general time lag con-
straints can be found in Appendix A.

4.2 Offline Execution Time
The offline execution time refers to the pre-processing cost
required to produce a ready-to-run schedule. As shown in
Figure 3, the STNU-based approach incurs the highest offline
overhead, a direct consequence of the temporal reasoning re-
quired to generate a partial order schedule that allows for task
flexibility.

Both the proactive and reactive methods incur lower offline
costs due to their reliance on simpler constraint programming
(CP) formulations. This result is consistent with expectations,
as the STNU must compute not only valid task sequences but
also temporal flexibility margins, which increase computa-
tional complexity.

4.3 Online Execution Time
The online execution time measures the runtime overhead in-
curred during schedule execution. In Figure 4, we can ob-
serve how our implementation choice affects the proactive
method, which still exhibits a low online time, but due to
the warm start re-solve during the online phase, it causes it
to take slightly more time than the STNU approach. The re-
active method, by contrast, triggers a full re-optimization at
runtime upon any deviation, leading to significantly higher
online costs.

The STNU-based method strikes as the lowest computa-
tionally intensive online approach. It makes online deci-

Figure 3: Average offline execution time across Proactive, Reactive,
and STNU-based scheduling approaches.

sions dynamically, but leverages the precomputed partial or-
der and the RTE* algorithm to determine feasible task acti-
vations. This allows it to remain more responsive than the
reactive method while still adapting to execution-time vari-
ability. This comes at a cost however, as it can be observed
later in the paper that in terms of makespan the STNU per-
forms considerably less optimal due to choosing robustness
over optimality in terms of makespan.

Figure 4: Average online execution time across all methods. Re-
sults averaged over all noise factors and modes for feasible sched-
ules only.

4.4 Objective Performance
The objective performance of each scheduling method was
evaluated in terms of average makespan across different du-
ration distribution modes, as illustrated in Figure 5. Overall,
the STNU-based approach consistently produces the highest
makespan values across all modes. This outcome is expected
given its strict requirement for dynamic controllability, which
enforces conservative timing decisions to remain robust un-
der all possible realizations of uncertainty. The STNU policy
avoids any risk of temporal constraint violations, thereby pro-
longing the overall schedule.

In contrast, the proactive and reactive methods demonstrate
significantly lower makespan values, with proactive schedul-
ing yielding the lowest average makespan across all tested

5



modes. This can be attributed to the constraint programming
(CP) solver’s ability to fully optimize task ordering and ma-
chine assignments upfront, with the ability to ’look ahead’
and know all the deterministic durations before they take
place due to the implementation strategy. Interestingly, the re-
active approach performs only slightly worse than proactive
in terms of makespan, primarily due to the overhead of re-
optimization during execution, not having the ability to ’look
ahead’. However, it still outperforms the STNU approach,
indicating that adaptivity with optimization offers a better
trade-off than robustness alone when makespan minimization
is a priority with such demanding constraints in terms of lags.

Figure 5: Average makespan across method types by duration dis-
tribution mode, based on shared feasible instances only from the
Fattahi dataset.

Notably, we can observe the flatness of the curves repre-
senting the average makespan of the methods influenced by
different modes for the duration distributions in Figure 5.
This was an unexpected result, but it shows that no-wait and
general time lag constraints strongly restrict the relative tim-
ing between tasks. For the no-wait constraints the difference
in makespan between modes appears to come mostly from
the difference in duration of the tasks since there is no lag in
between tasks and the samples follow the offline schedule.

Moreover, the two noise levels tested have been shown to
have identical impact on makespan, online time or offline
time. The data supporting this observation can be found in
Appendix A.

4.5 Makespan vs. Online Time (Trade-Off Curve)
Figure 6 presents a scatter plot of average makespan versus
average online time, highlighting how the better performing
methods balance schedule quality against runtime responsive-
ness. Each type of point represents a specific mode within a
method type.

Several patterns emerge:

• Proactive method occupies the left region of the plot,
offering low online cost with very similar performance
in terms of makespan. It appears however, that for in-
stances with a higher makespan due to complexity/task
count, the reactive approach performs slightly better in
terms of makespan

• Reactive methods dominate the upper-right area, incur-
ring high online execution time in exchange for modest
improvements in makespan.

• Modes converge to about the same result, thus modes
can be ignored in the analysis of this plot

This analysis reveals that the two methods produce very
similar schedules in terms of makespan, but the cost in online
responsiveness of the reactive approach may outweigh these
gains in real-time systems. It is important to note however,
that the proactive approach ’looks ahead’ and has access to
all of the durations at one time which is not applicable in real,
dynamic environments, but was kept as a viable method for
comparison purposes.

Figure 6: Trade-off between makespan and online execution time for
all feasible method-mode pairs. Lower-left points represent better
overall performance.

5 Responsible Research
Open artefacts. Every script or parameter file required to
reproduce the experiments is archived at https://github.com/
your-lab/fjsp-stnu-experiments . The repository also stores
the raw CSV outputs for all simulation runs plus a Docker-
file that pins solver and library versions. In addition, it con-
tains visual representations of the schedules, clearly labeled
for transparency and verifiability. Because the enrichment of
time-lags is driven by deterministic hash seeds (Section 3)
and the addition of constraints takes place in the modeling
phase, any user can regenerate identical augmented instances
from the original Fattahi data set.

Assumptions and scope. To keep the comparison tractable
we adopt (1) fixed routing alternatives selected offline,
(2) perfect knowledge of the processing-time distributions,
and (3) instantaneous rescheduling with no switch-over
losses. Resources are assumed to be reliable and identi-
cal copies of each machine type. These simplifications fol-
low common practice in FJSP studies but may under- state
the challenges of highly dynamic shops or of scenarios with
learning, breakdowns or heterogeneous workers. We there-
fore caution against direct industrial deployment without val-
idating the models under plant-specific conditions.

6

https://github.com/your-lab/fjsp-stnu-experiments
https://github.com/your-lab/fjsp-stnu-experiments


Ethical and societal aspects. The work investigates opti-
misation algorithms; it does not process personal data, nor
does it automate safety-critical decisions. Potential negative
impacts are limited to energy consumption, already quanti-
fied above, and to possible misuse for excessive production
targets. We encourage practitioners to weigh efficiency gains
against worker well-being and sustainability objectives, in
line with the ”ten simple rules” for reproducible and respon-
sible computational research [12; 8].

6 Conclusions and Future Work
This study aims to evaluate how different scheduling strate-
gies perform under uncertainty in the context of the Flexible
Job Shop Scheduling Problem (FJSP) with no-wait and gen-
eralized time-lag (GTL) constraints. We implemented and
compared three approaches: proactive, reactive, and STNU-
based and analyzed them across key metrics including feasi-
bility, offline and online execution time, and makespan.

Our results show both expected and unexpected insight due
to the novelty of the approaches in combination with the tight
temporal constraints. We found during the research that a
strictly proactive approach in combination with no-wait con-
straints is infeasible, due to the need of shifting tasks in the
online phase. We thus opted for a proactive method with
minimal computation during the execution of tasks, which
lead to an interesting problem that strays away from the cur-
rent research. The problem considers comparing a proactive
method with ’look ahead’ capabilities to a reactive method
that reschedules the tasks ’step by step’. This was touched
upon in the analysis of the results in the research paper, but
future work can consider investigating this further. Our re-
search demonstrates that the proactive and reactive methods
achieve full feasibility even under strict temporal constraints,
whereas STNU-based approaches fail approximately 35-40%
of times on the dataset used. We learn that this is primar-
ily due to the strong requirements of dynamic controllability,
which limit the flexibility of the STNU in combination with
tight schedules. In terms of makespan, we observe the same
pattern, the hybrid approach aims for robustness rather than
optimizing the makespan, thus the reactive and proactive out-
perform the STNU-based approach considerably in terms of
minimizing schedule length. Notably, we observed that the
choice of distribution mode (robust or different quantiles) had
surprisingly little impact on the overall makespan, especially
under no-wait constraints.

For future work, several options emerge. First, a better
approach for the proactive method can be studied and exper-
imented with in relation with no-wait and general time lag
constraints. Second, the comparison between the proactive
’look ahead’ approach and the ’step by step’ reactive strat-
egy might an interesting topic of research as we observed
that with more complex instances the reactive approach per-
formed slightly better in terms of makespan, but it took con-
siderably more time to create the schedule. As a last sug-
gestion, following research on the matter could consider ana-
lyzing the transition from no-wait constraints to tight general
time lags that transition into more relaxed lags and compare
feasibility during the transition.

Overall, the aim of this research was to expose how dif-
ferent methods of solving dynamic scheduling problems per-
form on a problem that was not studied before in combina-
tion with the no-wait and general time lag constraints. The
insights gained during the research show how proactive, re-
active and hybrid approaches based on Simple Temporal Net-
works with Uncertainty perform when used on Flexible Job
Shop Problems with the previously mentioned constraints.

References
[1] Nabil Aissani et al. The flexible job shop

scheduling problem: A review. European
Journal of Operational Research, 2023. DOI:
https://doi.org/10.1016/j.ejor.2023.05.045.

[2] Peter Brucker and Rainer Schlie. Job-shop scheduling
with multi-purpose machines. Computing, 45(4):369–
375, 1990. Published December 1990.

[3] Imran A. Chaudhry and Abdul A. Khan. A research
survey: Review of flexible job shop scheduling tech-
niques. International Transactions in Operational
Research, 23(3):551–591, 2016. Available at https:
//www.academia.edu/14895542/A research survey
review of flexible job shop scheduling techniques.

[4] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal
constraint networks. Artificial Intelligence, 49(1–3):61–
95, 1991.

[5] M. Ebrahimnejad and M. Khalilzadeh. Efficient
scheduling of a no-wait flexible job shop with periodic
maintenance activities. Journal of Quality Engineering
and Production Optimization, 7(2):73–84, 2021. Avail-
able at https://jqepo.shahed.ac.ir/article 4047.html.

[6] P. Fattahi, M. S. Mehrabad, and F. Jolai. Mathematical
modeling and heuristic approaches to flexible job shop
scheduling problems. Journal of Intelligent Manufac-
turing, 18(3):331–342, 2007.

[7] M. R. Garey and D. S. Johnson. Computers
and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[8] Verena Heise, Constance Holman, Hung Lo, et al. Ten
simple rules for implementing open and reproducible re-
search practices after attending a training course. PLoS
Computational Biology, 18(12):e1010750, 2022.

[9] Luke Hunsberger and Roberto Posenato. Foundations of
dispatchability for simple temporal networks with un-
certainty. In Proceedings of the 16th International Con-
ference on Agents and Artificial Intelligence (ICAART
2024), volume 2, pages 253–263, 2024.

[10] L. Lan and J. Berkhout. Pyjobshop: Solving scheduling
problems with constraint programming in python, 2025.
Available at https://arxiv.org/abs/2502.13483.

[11] Nicola Muscettola, Paul Morris, and Ioannis Tsamardi-
nos. Reformulating temporal plans for efficient execu-
tion. In Proc. 6th Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR ’98), 1998.

7

https://www.academia.edu/14895542/A_research_survey_review_of_flexible_job_shop_scheduling_techniques
https://www.academia.edu/14895542/A_research_survey_review_of_flexible_job_shop_scheduling_techniques
https://www.academia.edu/14895542/A_research_survey_review_of_flexible_job_shop_scheduling_techniques
https://jqepo.shahed.ac.ir/article_4047.html
https://arxiv.org/abs/2502.13483


[12] Geir Kjetil Sandve, Anton Nekrutenko, James Taylor,
and Eivind Hovig. Ten simple rules for reproducible
computational research. PLoS Computational Biology,
9(10):e1003285, 2013.

[13] SchedulingLab. Flexible job-shop instances repository.
https://github.com/SchedulingLab/fjsp-instances, 2025.
commit <hash> accessed 10 Jun 2025.

[14] TNO. Digitalising smarter production, 2024. Accessed:
2025-04-27.

[15] Kim van den Houten, Leon Planken, Esteban Freydell,
David M.J. Tax, and Mathijs de Weerdt. Proactive and
reactive constraint programming for stochastic project
scheduling with maximal time-lags, 2024. Available at
https://arxiv.org/abs/2409.00000.

8

https://github.com/SchedulingLab/fjsp-instances
https://arxiv.org/abs/2409.00000


A Results

Figure 7: STNU feasibility results for each benchmark instance,
showing task count and feasibility outcome under no-wait con-
straints.

Figure 8: STNU feasibility results for each benchmark instance,
showing task count and feasibility outcome under general time lag
constraints.

Figure 9: The feasibility ratios across methods for general time lag
constraints.

9



Figure 10: Experiment summary showing the similarity in results between the two different noise factors.

10


	Introduction
	Methodology and Background
	Problem Description
	Scheduling Methods
	Proactive Schedule
	Reactive Schedule
	STNU-Based Hybrid Schedule

	Methodology
	Modelling the FJSP instance
	Machine selection
	Performance metrics


	Experimental Setup
	Results and Discussion
	Feasibility Overview
	Offline Execution Time
	Online Execution Time
	Objective Performance
	Makespan vs. Online Time (Trade-Off Curve)

	Responsible Research
	Conclusions and Future Work
	Results
	Appendix A: Results

