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P A P E R

Opioid-Induced Respiratory Depression,
a Comprehensive Data Analysis

Abstract
IntroductionOpioids are vital for pain management but are highly addictive and may lead to opioid-

induced respiratory depression (OIRD), which is the primary cause of death related to both prescription
and illicit opioid use. This study employed unsupervised machine learning (ML) to examine potential
changes in cluster patterns post-opioid administration and their relationship with respiratory depression
levels. Additionally, comprehensive data analysis was conducted based on questions that resulted from
observations of cluster behaviour.

Methods Following preprocessing, a preliminary study evaluated three different models, each
trained on the baseline and post-opioid epochs, aiming to identify the most efficient distance metrics
and feature space combinations. These models included principal component analysis with Euclidean
distance, computed feature space with Euclidean distance, and time series with dynamic time warping.
Next, the preferred approach, determined by testing different hypotheses regarding the desired cluster
behaviour, underwent further refinement, and predictions were generated for post-antagonist epochs.
Finally, feature influence was determined and questions were identified for the data-analysis.

Results In total, 34 subjects were included, resulting in a total of 6630 epochs for model development.
Based on the preliminary study, it was decided to opt for a fuzzy clustering approach using calculated
features as input, resulting in membership values indicating the probability of an epoch belonging
to a certain cluster. A change in membership values was observed post-opioid as well as a recovery
to baseline values post-antagonist in the majority of subjects when clustering was obtained for each
subject individually. However, it was expressed as a sudden switch followed by a prolonged plateau
phase rather than a gradual transition which was expected. Conversely, when trained collectively over
all subjects, the majority of subjects showed no difference, probably due to the presence of inter-subject
variability. Nevertheless, SHAP value analysis identified the same feature behaviour among subjects,
despite variations in orientation and positioning, hinting at the potential for adjustment using static
features. Yet, no significant correlations were found between static features and feature behaviour within
this study.

Conclusion In this study, a fuzzy clustering model was implemented, incorporating SHAP value
analysis to enhance the interpretability of the clustering results. Although the model successfully
identified changes in respiratory flow patterns associated with OIRD and subsequent recovery after
naloxone administration, it requires further refinement.
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1 Introduction

1 | Introduction
In the field of anaesthesia, analgesics (i.e.
painkillers) play a crucial role in managing postop-
erative and chronic pain. Opioids, a specific kind
of analgesic, have long been recognised for their
efficacy in pain relief. However, as they are highly
addictive, they may lead to opioid use disorder
(OUD), which involves the misuse or abuse of
prescribed opioids, diversion of medications, and
illicit opioid use [1]. The resulting persistent
occurrence of overdose cases and opioid toxicity
remains a global concern and is recognised by
the World Health Organisation (WHO) as an
international health issue, also referred to as the
opioid epidemic.

The epidemic is characterised by three waves,
with the latest and current wave beginning in 2013,
marked by the rise of synthetic opioids and an
alarming increase in overdose deaths (Figure 1).
As of 2021, more than 75% of all overdoses in the
United States (U.S.) were related to opioid use,
nearly 88% of which were synthetic opioids. Daily,
opioid overdoses claimed the lives of 220 individu-
als in the U.S., with prescription opioids responsi-
ble for 45 of these deaths [2].

Figure 1: Raise in opioid related deaths over time in the
United States [2].

Besides analgesia and sedation, the use of opi-
oids has various effects on the respiratory system.
These include decreased diaphragm activity due to
decreased activity of phrenic motor neurons, re-
duction of hypercapnic and hypoxic ventilatory re-
flexes due to reduction of central and peripheral
chemo receptors, inhibition of upper airway pa-
tency by inhibiting the activity of hypoglossal mo-
tor neurons and rigidity of respiratory skeletal mus-
cles [3]. These effects results in slow, shallow, irreg-

ular breaths and in severe cases to respiratory ar-
rest. This effect of opioid use on breathing is called
opioid-induced respiratory depression (OIRD) and
is the leading cause of death related to both pre-
scription and illicit opioid use [4, 5].

Although not all cases of OIRD result in mortal-
ity, its impact can still be significant. According to
a study conducted by Khanna et al. [6], patients in
the U.S. who had experienced one or more episodes
of OIRD had significantly longer average hospital
stays of 1.4 days and incurred higher average total
hospital costs of $4426. These results highlight the
significant burden that OIRD places on the health
care system and the potential social economic im-
pact associated with it.

As roughly 84% of patients experience pain af-
ter surgery, of which approximately 88% are pre-
scribed analgesic medication, predominantly opi-
oids, the ongoing challenge in opioid research is
to find a pain therapy that effectively relieves pain
without causing respiratory depression [7, 8]. Un-
til such painkillers are developed, opioids will con-
tinue to be the most commonly utilised option, and
efforts to limit respiratory side effects will remain
a key focus. In a study of Lee et al. [5], 97% of
incidents identified in medical malpractice claims
were considered probably or possibly preventable
if better monitoring was used.

Since OIRD is a multi-factorial event, monitor-
ing a single criterion may not be reliable or ade-
quate. Readings of oxygen saturation, for example,
can be confounded by administration of supplemen-
tal oxygen [9]. However, at present, multi parame-
ters are interpreted intermittently by medical staff,
leaving patients monitored insufficiently for more
than 95% of the time [10]. Researchers have con-
cluded that, to prevent possible respiratory arrest,
continuous monitoring of respiration is necessary.
Therefore, ‘smart’ algorithms, which combine mul-
tiple parameters, are being developed [11, 12, 13,
14, 15]. Although the studies report high perfor-
mance metrics, none of the studies mention exter-
nal testing or implementation strategies. This sug-
gests that, as of now, none of the algorithms are
currently used or tested outside the research con-
text.

The high outcome measures of these studies
suggest the potential utility of machine learning
(ML) in this domain. Nevertheless, all studies used
a different definition for OIRD. Although this is
not a limitation on its own, it is known from pre-
vious research that the lack of standardised defi-
nitions and assessment methods makes OIRD re-
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2 Background

search and management difficult [9]. In addition,
the majority of definitions used are binary. As the
magnitude of respiratory depression correlates with
the level of sedation and analgesia and thus is dose-
dependent, it would be preferred if a model used
a discrete or even continuous definition for OIRD
[16]. However, a continuous definition for OIRD
has not yet been used in literature. Also, except for
two studies [13, 14], which could predict an OIRD
event 10 minutes and 1 minute in advance, all mod-
els were descriptive and alerted medical personnel
when OIRD was already occurring.

The study by Sunshine and Fuller [11] stands
out as the sole study employing unsupervised ML.
Since unsupervised ML is independent of prede-
fined labels, it is ideal for studying OIRD, for which
there is no uniform definition. It allows for the
discovery of new insights and relationships within
the data that could lead to a more nuanced un-
derstanding of OIRD. The study of Sunshine and
Fuller showed promising results with an increase
in certain clusters after opioid use. However, they
did not research the possibility of clusters increas-
ing after an increased amount of opioids was used,
thus their outcome was also binary. In addition,
this study was obtained using rat data, and is not
yet tried with human data.

At the Leiden University Medical Center
(LUMC), within the anaesthesiology research
department, research is conducted on preventing
and recovering from OIRD. Inspired by the study
of Sunshine and Fuller [11], the data collected
at LUMC has been utilised in this pilot-study to
develop an unsupervised machine learning model.
The primary aim was to identify any noticeable
changes in cluster formations following opioid ad-
ministration and to investigate how these clusters
vary with the intensity of respiratory depression.
Initially, a preliminary study was conducted to
determine the most effective distance metric and
feature space for the ML model. Subsequently, the
definitive model was developed. Finally, during
the final part of the study, a comprehensive data-
analysis was obtained based on questions that
resulted from the observed cluster behaviour.

2 | Background
2.1. Opioid-induced Respiratory Depres-

sion
2.1.1. Normal respiratory drive
The respiration drive originates from the pons and
medulla located in the brain stem. These are in

turn influenced by the cerebral cortex to control
conscious and unconscious respiration, including
activities like breath holding and speech modula-
tion. The medulla, divided in the dorsal and ven-
tral side, is responsible for the inhalation and air-
way defence (dorsal), and exhalation (ventral). Lo-
cated within the medulla, the pre-Bötzinger com-
plex is thought to be the pacemaker for respira-
tory rhythm and facilitates seamless transitions be-
tween different respiratory phases, while simultane-
ously inhibiting the activation of opposing muscle
groups. The pontine grouping in the pons, controls
breathing patterns and allows a smooth transition
between in- and expiration by modulation of the
frequency and intensity of the signals of medullary
signals [17, 18]. Figure 2 provides an overview of
the locations of these structures within the brain
stem.

The rate and depth of respiration are influ-
enced by the sensory input systems, consisting
of the mechanoreceptors, metaboreceptors, and
peripheral and central chemoreceptors. The
central chemoreceptors, located within the ventral
medulla and retrotrapezoid, are believed to have
primary control over respiration by triggering
the respiratory center in response to heightened
levels of carbon dioxide (CO2), leading to an
acidic environment in the brain due to increased
hydrogen ions. Information regarding the me-
chanical status of the lung and chest, including
the breathing rate, lung space, and irritation
triggers is provided by the mechanoreceptors
in the airways, trachea, lungs, and pulmonary
vessels. During exercise, the metaboreceptors in
the skeletal muscles are activated to stimulate
breathing. The partial pressure of arterial oxygen
(O2) in the blood is monitored by the peripheral
chemoreceptors, located at the bifurcation of the
common carotid arteries and near the arch of
the aorta, called the carotid and aortic bodies,
respectively. These chemoreceptors are responsive
to hypercapnia (high levels of carbon dioxide) or
acidosis (increased acidity), ensuring appropriate
respiratory responses [17, 18].

2.1.2. Respiration after opioid administration
Opioids act mainly on the µ-opioids receptors in
various regions of the central nervous system. Nor-
mally these receptors are activated by endorphins,
which are hormones that are naturally released by
your body when feeling pain or stress. When stim-
ulated, the receptor activates inhibitory intracellu-
lar pathways, leading to reduced neuronal excitabil-
ity and therefore inhibiting the activation of neu-
rons that transmit pain signals to the brain. This
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2 Background

Figure 2: Overview of brainstem structures involved in central neural control of respiration [17].

pain-relieving system is part of the so-called en-
dogenous opioid system [17, 18].

Besides pain, the endogenous opioid system
also effects the respiratory control. Having differ-
ent neuronal sites of action, including the medulla,
pons, pre-Bötzinger complex and chemoreceptors,
the activation of these receptors impacts the
respiratory rhythm [17, 18]. Additionally, opioids
suppress peripheral and central chemoreceptors,
and neural signals to the upper airway dilator
muscles, suppressing the normal response to
hypoxemia (low levels of oxygen) and hyper-
capnia and lowering the upper airway patency,
respectively. Clinically, OIRD manifests as a
slow, shallow, and irregular breathing pattern.
Apnea, the temporary cessation of breathing, is a
characteristic of OIRD, which in its most severe
form can escalate to respiratory arrest [3].

One reason why OIRD is harmful, is due to
CO2 stacking in the body, leading to respiratory
acidosis [19]. This raise in CO2 is often used as in-
dicator for OIRD, determined using the end-tidal
carbon dioxide (EtCO2). When hyperventilating,
more CO2 is produced than the body is capable
of eliminating, resulting in an arterial partial pres-
sure of carbon dioxide (pCO2) above the normal
range of 38-42 mmHg. This causes an elevation
in hydrogen ions (H+) and bicarbonate (HCO3

– ),
as evidenced by the equilibrium reaction of carbon

dioxide shifting to the right:

CO2 +H2O −−⇀↽−− H2CO3 −−⇀↽−− HCO3
– +H+

The pH level of the blood is mainly determined
by the concentration of H+. During acute respira-
tory acidosis, the body is able to slightly compen-
sate the sudden elevation of pCO2. In case of an
elevated H+ concentration, HCO3

– act as a buffer
to minimise the drop in pH. In addition, to com-
pensate for the disturbance in balance, the kidneys
begin to excrete more acid in the forms of hydro-
gen and ammonium and reabsorb more base in the
form of bicarbonate. However, the buffer system
and the continues production of H+ both have their
limits. In the end, if CO2 accumulation continues,
the system cannot keep up, resulting in a net in-
crease in H+ concentration and a decrease in pH.

2.1.3. Reversal of the opioid effect
Reversing the effects of opioids relies on the ad-
ministration of antagonists, with naloxone being
the first choice since it is widely available and ef-
fective. As an antagonist, naloxone binds to opi-
oid receptors in the brain, displacing opioids and
reversing their effects [20]. However, it is impor-
tant to note that due to the short half-life of nalox-
one (30̃ min), the effects are relatively short com-
pared to those of many opioids. Thus, the effect
of naloxone may wear off prematurely, resulting in
the possible return of respiratory depression [21,
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22]. Therefore, people with opioid overdoses may
need multiple doses of naloxone to fully reverse the
effects of the opioids and restore normal breathing
and consciousness.

2.2. Time Series
In mathematical terms, a time series (TS) can be
described as a sequence of data points xi, with each
point observed at a specific time ti. For a time
series with n time steps, it is typically represented
as follows:

TS = {(x1, t1), (x2, t2), ..., (xn, tn)} (1)

If all time intervals are equal, then TS can be sim-
plified as {x1, x2, ..., xn}.

When working with TS data, especially in the
context of resampling or filtering, understanding
two fundamental concepts in signal processing is
crucial: the Fourier theorem and the Nyquist fre-
quency.

2.2.1. The Fourier transform
The Fourier theorem, a broadly used technique in
signal processing, states that any periodic function
can be expressed as a sum of sine functions as visu-
alised in Figure 3. By using the (inverse) Fourier
transform, one can switch between the representa-
tion in the time domain and the frequency domain.
Insight into the different frequencies that make up
the signal, is mainly invaluable for filtering and re-
sampling. As noise is usually caused by certain
frequencies, manipulating these frequency compo-
nents results in noise reduction. In addition, when
sampling a signal, one must be aware of the present
frequencies to avoid aliasing, as described by the
Nyquist theorem.

Figure 3: An illustration depicting the Fourier transform.
The Fourier transform allows for the conversion between
time domain and frequency domain representations, as
every time-series can be expressed as a sum of sine
functions.

2.2.2. The Nyquist frequency
When sampling a signal, the chosen sample rate
determines the highest frequency that can be ac-
curately captured and reconstructed from a digi-
tal signal. This limit, known as the Nyquist fre-
quency, equals half the sampling rate. For accu-
rate representation of a signal, it must be sampled
at least at twice the rate of its highest frequency
component. A lower sampling rate results in distor-
tion during signal reconstruction, where higher fre-
quency components are incorrect reconstructed as
lower frequencies, as illustrated in Figure 4. This
phenomenon is called aliasing.

Figure 4: Example of aliasing as a result of
undersampling (upper) and an example of proper sampling
according to the Nyquist frequency theorem (lower).

2.3. Unsupervised Machine Learning
With supervised ML, the most common ML ap-
proach, the algorithm is provided with a desired
outcome measure (e.q. labels). It seeks to iden-
tify the links between the given features and the
desired outcome measure, resulting in a classifica-
tion or regression model for discrete or continuous
data, respectively. The model can then be used
to make predictions about new, ’unlabelled’ data.
In contrast, unsupervised ML is not depending on
predefined labels and involves discovering patterns
or structures within data without guidance, seek-
ing to uncover inherent relationships or groupings.
This approach is particularly beneficial when deal-
ing with large datasets where labelling is too costly
and time-consuming or when a standardised label
does not exist. Unsupervised methods excel at
finding hidden correlations or clustering within the
data. In medicine, unsupervised ML can, for exam-
ple, identify distinct subgroups of patients based
on similarities in their medical profiles, symptoms,
or response to treatments.

As unsupervised ML does not have an explicit
outcome measure, one challenge is to evaluate the
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performance of the model. Typically, the useful-
ness of patterns discovered by unsupervised ma-
chine learning must be validated by human assess-
ment. Nevertheless, certain metrics, such as the
silhouette score, provide an indication of how well
the clustering was performed. The metric measures
how similar an object is to its own cluster (cohe-
sion) compared to other clusters (separation), with
a higher score indicating more optimal clustering.

3 | Methods
3.1. Data acquisition
This study utilised retrospective data gathered
from two different studies (ROAR & ORNAC) ob-
tained in the LUMC, of which the characteristics
and methods are listed in Appendix A. All studies
used the same high frequency proximal flow sensor
(Sensirion, Stäfa, Switzerland) in combination
with an Oro-Nasal Mask to measure breath signals
before and after opioid administration (Figure 5).

The flow sensor measures bidirectional flow in
standard liters per minute (slm), with inspiration
recorded as negative values and expiration as pos-
itive values. By using a controllable heating el-
ement located in the middle of a pressure-stable
membrane, temperature sensors mounted symmet-
rically upstream and downstream measure the re-
sulting thermal transfer of heat caused by the pass-
ing flow [23]. In combination with the Oro-Nasal
Mask, which has a tight seal with almost negligi-
ble leakage, the setup results in a precise signal and
has a high sensitivity to low flow rates and pressure
differences.

After baseline data was collected, a bolus fol-
lowed by a low-dose infusion of either fentanyl or
sufentanil was administered until ventilation had
decreased by a study dependent predetermined
amount. After this threshold was reached, an
antagonist, to reverse the effects of respiratory
depression, or a placebo was administered. For
the development of the model, only the data until
antagonist administration was used. An example
of the setup and resulting flow curve is visualised
in Figure 5. In addition to flow data, EtCO2,
inspired oxygen fraction, minute volume (MV),
tidal volume, and saturation were also recorded.
All studies consisted of two study days, where the
used opioid or antagonist was alternated between
the two days.

3.2. Data preprocessing
3.2.1. Re-sampling
The obtained flow data had a non-uniform sam-
ple frequency ranging from 1000Hz to 2300Hz. Ini-
tially, to establish a uniform sample rate, the signal
was interpolated to a higher sample frequency of
2500Hz, in accordance with the Nyquist’s theorem.
A 10th order low-pass filter was applied based on
the observation that most interesting frequencies
were below the 10Hz domain as shown in Figure
6. In addition, the lower frequency range allowed
down-sampling the data to achieve faster computa-
tion times during subsequent data analysis. While
the Nyquist’s theorem prescribes a minimum sam-
pling frequency of 20Hz for signals below 10Hz, a
slightly higher frequency of 40Hz was chosen to
minimise the chance of aliasing.

3.2.2. Artefact detection
Artefacts in the data were mainly caused by mov-
ing or talking of the participant, both resulting in
fast alternating high peaks in the signal. To detect
these artefacts, the moving median of the signal
was used. Peaks in the absolute differences be-
tween the moving median and the original signal
were flagged as artefacts when lying outside the
upper fence of the Interquartile Range (IQR).

In addition, detachment of the device resulted
in a flat line in the signal, as no flow passed the
sensor. In contrast with apnea, which is also char-
acterised by a period of ’no flow’, the detachment
leads to a completely flat line, while during apnea
small flow alternations persists due to air move-
ment caused by the beating of the heart. Therefore,
using the moving maximum, values below 0.2 were
indicated as the detachment of the device. Both
detection methods are illustrated in Figure 5.

Both detected artefacts were initially not
deleted from the signal, as this would leave gaps
in the signal and interfere with the separation of
breaths epochs later on. Instead, detected data
points were solely marked during this stage.

3.2.3. Separate breath epochs
After preprocessing, breath epochs were segmented
from the signal. Therefore, the peaks correspond-
ing to the highest points of inspiration and expi-
ration efforts were detected. A breath epoch was
defined as the occurrence of an inspiration peak fol-
lowed by an expiration peak. As the signal cross-
ing the y-axis indicates the transition between in-
spiration and expiration, the crossing before the

7



3 Methods

Figure 5: Method for data acquisition and pre-processing. (A) Measurement setup. The inspiration and expiration results in
negative and positive flow, respectively. (B) Example of the difference in the flow of breathing during baseline (upper) and after
opioid administration (lower). (C) Breath epochs were identified by detecting peaks in inspiration and expiration. A breath
epoch was defined as the sequence of an inspiration peak followed by an expiration peak. The start and end of each breath
epoch were determined by the zero-crossing before inspiration and after expiration (solid window). To encompass apneas in the
epoch, all data until the subsequent breath was incorporated for data analysis (dashed window). (D) Example of artefact
detection. (I) Noise was identified by comparing the signal variance between the moving median (black line) and the original
signal (grey line). Subsequently, peaks found in the absolute variances were marked as artefacts if they were greater than the
upper fence of the Interquartile Range (IQR), represented by the dotted line. (II) To differentiate between device attachment
and apneas, the moving maximum was employed. If the moving maximum (black line) of the original signal (grey line) fell
below the threshold of 0.2 (dotted line), it was classified as device detachment.

inspiration peak, and the crossing after the expira-
tion peak were marked as the start and end of a
breath, respectively. However, to include apneas,
the entire epoch from the start of one breath until
the crossing before the next inspiration peak was
segmented. In Figure 5 the solid box indicate the
initial detected epoch from start of inspiration till
the end of expiration. The final included epoch is
indicated with the extended dashed box.

In instances where a detected inspiration peak
was directly succeeded by another inspiration peak,
only the latter was employed to identify breaths.
Nevertheless, the crossing before the first inspira-
tion peak served as an indicator for the end of the

preceding epoch. Finally, epochs containing data
points marked as artefacts were excluded from sub-
sequent analysis.

3.2.4. Selecting breath epochs
To avoid the probability that poor data quality
would be the reason this pilot study would obtain
unsuccessfully results, breath epochs that would be
used for model development were checked by the
researcher. Epochs that included multiple breaths
or contained a lot of noise were manually excluded.
The amount of epochs to select were later deter-
mined based on the amount of detected breaths by
the algorithm. Subsequently, time series of the in-
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Figure 6: Frequency spectrum of the flow signal.

cluded breath epochs were stored in a matrix as
followed:

Xts =


TS1 = {x1, x2, ..., xn}
TS2 = {x1, x2, ..., xn}

...
TSn = {x1, x2, ..., xn}

 . (2)

3.2.5. Scaling breath epochs
To eliminate the influence of variable maximum
flow, which may be subject specific, z-score nor-
malisation was applied to each breath epoch. This
normalisation process adjusts the data so that the
resulting distribution has a mean of zero and a stan-
dard deviation of one and is performed as followed:

z =
x− µ

σ
. (3)

where:

µ = Mean
σ = Standard Deviation.

3.2.6. Feature / data exploration
Initially, prior to conducting the preliminary data
analysis, the data underwent exploration by assess-
ing correlations among specific features of the sig-
nal. These features were chosen based on literature
and a visual interpretation of the signals and in-
cluded: the minute volume based on one breath;
the length, volume and maximum flow of inspi-
ration, expiration & the ratio between both; the
length of apnea and total breath & the ratio be-
tween both; and the tangent of the flow between
inspiration and expiration.

Furthermore, we examined correlations be-
tween these features and the changes in EtCO2

and MV relative to baseline, both individually for
each subject and collectively. To assess differences
in feature variation, the features were normalised
using z-score normalisation (Equation 3). Sub-
sequently, the variation in these features was
visualised by plotting their values in a boxplot,
distinguishing between feature values at baseline
and post-opioid administration.

3.3. Preliminary data-analysis
During the preliminary data-analysis the objective
was to find the best feature-space and distance met-
ric to cluster the breath epochs. Therefore, three
different approaches were applied. The first ap-
proach was based on the rat study of Sunshine and
Fuller [11], were they observed a difference in the
appearance of clusters in baseline and after opioid
administration using unsupervised clustering with
flow data of rats obtained with full-body plethys-
mography. The latter two approaches are exten-
sions of this first approach.

3.3.1. Model development
While the different approaches varied in feature-
space and distance metric, all used the same clus-
tering method: hierarchical clustering. Hierarchi-
cal clustering, as implied by its name, aims to or-
ganise clusters into a hierarchical structure. This
can be achieved through either a top-down (divi-
sive) or bottom-up (agglomerative) strategy, with
the latter being utilised in this study. Therefore,
the process begins with each data point considered
as an independent cluster, which are then progres-
sively merged based on their similarity until all ob-
jects are encompassed within a single, comprehen-
sive cluster. This process yields a linkage matrix,
typically represented as a dendrogram where the
height of each link shows the distance (or dissim-
ilarity) at which the linked clusters were merged
(Figure 7).

Figure 7: Example of a dendrogram used during
hierarchical clustering.
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This process requires determining two crucial
components: the linkage method and the distance
metric. The linkage method determines how clus-
ters are merged at each step of the hierarchical
process, whether it be through measuring the dis-
tance between the closest points (single linkage),
farthest points (complete linkage), or minimising
variance (Ward’s linkage). In this study, the latter
technique was adopted. Additionally, the distance
between points required for the linkage method is
determined by the distance metric, which varies
among the different approaches within this study.

One of the advantages of hierarchical clustering
is that it does not require to specify the number
of clusters in advance. A variety of methods are
known to determine the amount of clusters. For
this study the dendrogram, as well as the silhouette
score were used.

In the following paragraphs the different ap-
proaches will be explained. All approaches used
the matrix as described in Equation 2. In contrast
to approaches 1 and 3, which both employed the
z-score normalised matrix, approach 2 used the ma-
trix without z-score normalisation.

Approach 1: Principal component analysis + Eu-
clidean distance

As this approach required the time-series to be
of the same length, zeros were padded to the end
of the time-series when needed. Initially, Principal
Component Analysis (PCA) was employed to re-
duce the dimensionality of the dataset. PCA trans-
forms the original features of a dataset into a new
set of uncorrelated variables called Principal Com-
ponents (PCs), each explaining a portion of the
overall variance within the data.

PCs were selected from highest explaining
variance to lowest until a cumulative variance of
at least 90% was reached, creating a new feature
space:

X1 =


PC11, PC21, ..., PCn1,
PC12, PC22, ..., PCn1

...
PC1n, PC2n, ..., PCnn

 . (4)

Then, the linkage matrix was obtained using
the Euclidean (point-to-point) distance metric.

Approach 2: Calculated feature space + Euclidean
distance

Instead of using each time stamp as an individ-
ual feature, a feature-space was created containing
calculated features that described the waveform.
These features were chosen based on the results of
the feature / data exploration phase, excluding fea-
tures that showed a strong correlation with other
features to allow a smaller feature space.

In total, for all time series, all the normalised
features (Equation 3) were stored in a new matrix:

X2 =


F11, F21, ..., Fn1,
F12, F22, ..., Fn1

...
F1n, F2n, ..., Fnn

 . (5)

Features deemed more significant based on data
exploration were assigned a weight of 2, while oth-
ers were assigned a weight of 1. Finally, this ap-
proach also utilised the Euclidean distance metric
to obtain the linkage matrix.

Approach 3: Time series + dynamic time warping

Instead of using the Euclidean distance metric
utilised in the other two approaches, dynamic time
warping (DTW) was chosen. By allowing local de-
formations in the alignment, DTW is less depen-
dent on time shifts compared to the Euclidean dis-
tance, which computes the straight-line distance
between corresponding points in time series.

The linkage metric was obtained using the time
series matrix described in Equation 2, without any
alterations. Since DTW allows the comparison of
time series with varying lengths, substituting zeros
at the end is not necessary.

3.3.2. Preferred approach
To identify the most effective method, various
hypotheses were formulated regarding the desired
clustering behaviour for it to be considered an ad-
equate model. Then, the selection of the preferred
approach was based on a series of visualisations
and tests designed to either support or refute
these hypotheses.

Initially, it was expected that clusters would
show a significant difference in EtCO2 relative to
baseline, indicating that certain clusters are related
to a more severe respiratory depression, resulting in
an elevated EtCO2. The choice of statistical tests
was determined based on the distribution of the
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data. First, the variance in EtCO2 values relative
to baseline were examined among the four clusters.
If found to be significant, the differences between
adjacent clusters were assessed, which were visu-
alised together with a boxplot.

In addition, it was also examined whether the
clustering was independent of subjects. When a
clustering approach is subject-dependent, clusters
tend to predominantly appear in specific subjects
instead of being uniformly distributed between all
subjects. This suggests that the clustering is influ-
enced more by individual subjects breathing pat-
terns rather than the contrast between baseline
and post-opioid characteristics.

Lastly, to determine the cluster stability and
prevent serendipitous findings, ‘bootstrapping’ was
employed. This involved conducting iterative clus-
tering, with a single subject excluded during each
iteration. To allow comparison between iterations,
the resulting clusters were ordered based on their
median EtCO2 relative to baseline. Then, the vari-
ation in clustering for each epoch was measured
against the median assigned cluster of that epoch
over all iterations.

3.4. Main data-analysis
The preferred method that was identified from
the preliminary study was used for the final data
analysis, with adjustment where needed. After
the model was trained, predictions were made for
epochs after antagonist administration. For this,
only data from the ROAR study was used, as for
the ORNAC study it was not known whether an
antagonist or placebo was administered.

The results of the final clustering, as well as
the additional antagonist results, were interpreted
by the researcher. It was investigated which
features, as described by the feature exploration
phase, had the greatest influence on the clustering
results. Furthermore, based on the observations
of the researcher, additional questions regarding
the clustering results were identified for the
comprehensive data-analysis.

4 | Results
4.1. Data characteristics
On January 17 2024, the day of final data extrac-
tion, 42 participants (31 ROAR; 11 ORNAC) were
included in the LUMC dataset, of which 39 com-
pleted both the study days at that time.

4.1.1. In- / exclusion breath epochs
When creating the databases used for data-analysis
8 measurements, all from different subjects, were
excluded based on: Sensirion not used (n=2), other
measurement settings used (n=4), and additional
errors (n=2). Nevertheless, since all measurements
were from subjects who completed both study days,
no subjects were excluded during this part.

After breath detection by the algorithm an ad-
ditional of 4 subjects were excluded, since they had
less than 50 breaths detected in baseline (n=1) or
less than 70 after opioid administration (n=3).

After the manual assessment of breath epochs,
subjects were included if they had more than 70
breaths in baseline and 125 breaths after opioid
administration. When this applied on both study
days of a subject, the first one was included. Dur-
ing this process, four additional subjects were ex-
cluded due to not meeting the inclusion criteria of
either 70 breaths at baseline (n=1) or 125 breaths
post-opioid (n=3). In total, 34 subjects were in-
cluded for training, resulting in a total of 6630
breath epochs for model development. In Table
1 an overview of the characteristics of the included
subjects is given.

4.1.2. Data exploration
Figure 8 illustrates the correlation between the fea-
tures as well as the variation. As expected, a posi-
tive correlation of 1 is observed between the inspi-
ration volume and expiration volume. The maxi-
mum flow ratio and volume ratio both showing only
low correlations, indicating that these ratios are
not solely dependent on the inspiration or expira-
tion. The length ratio and the total epoch length are
mainly influenced by the expiration, characterised
by moderate to strong correlations.

From the variation plot, it can be concluded
that the variation within the features are quite sim-
ilar, with volume ratio showing the least variation.
Minute volume has a high variation and shows a
noticeable shift in medians between baseline and
post-opioid. Regarding the apnea length, the varia-
tion is more pronounced when considering the ratio
compared to the total epoch length.

The collectively analyses between the features
and both EtCO2 and MV change relative to base-
line, indicated that only the features of total epoch
length, and apnea length showed a noticeable cor-
relation with the EtCO2 level. Specifically, when
analysing solely all healthy subjects, the correla-
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Table 1: Characteristics of patients included in the data-analysis

ROAR (n = 23) ORNAC (n = 11)
Gender, male (n, %) 11 (48%) 3 (27%)
State, non-opioid users (n, %) 10 (43%) 11 (100%)
Age, years (mean ± SD) 39.7 ± 15.1 23.5 ± 1.8
Length, cm (mean ± SD) 177.1 ± 8.7 181.7 ± 6.0
Weight, kg (mean ± SD) 78.4 ± 12.9 75.0 ± 11.0
BMI, kg/m2 (mean ± SD) 25.1 ± 4.0 22.6 ± 2.4
Baseline EtCO2, mmHg (mean ± SD) 4.9 ± 0.5 4.8 ± 0.2
Baseline MV, L (mean ± SD) 8.2 ± 2.4 8.6 ± 3.4

tion of features associated with the duration of
breath epoch (inspiration, expiration, total, and
apnea) showed a higher correlation. In contrast,
MV did not display any notable correlation among
the features. It was notable that some subjects had
low correlation across all features, whereas others
showed mainly high correlations, which could not
be explained as a difference between the healthy
subjects and opioid users. Additionally, some fea-
tures showed high correlation in some subjects but
were reversed correlated in others, resulting in a
negligible overall correlation. A heatmap illustrat-
ing the correlations can be found in Appendix C.

4.2. Preliminary data-analysis
4.2.1. Model specifications
For both the first and second approach specifica-
tions emerged from steps during model develop-
ment or were determined based on results of the
data exploration, respectively.

For approach 1, this included identifying the
number of PCs required to achieve a cumulative
variance of 90%. The PCA results indicated that
five principal components were required, leading to
a cumulative variance of 91%. The eigenvalues of
these PCs were all greater than 1.

For approach 2, features with high correlations
to other features (Figure 8 A) were excluded (n=3),
leaving the following 11 features included for the
model development:

1. Minute volume based on one breath
2. Length of inspiration
3. Maximum flow of inspiration
4. Volume of inspiration
5. Length of expiration
6. Length of total epoch

7. Ratio of volume between ex- and inspiration
8. Ratio of maximum flow between ex- and in-

spiration
9. Ratio of length between ex- and inspiration

10. Ratio of length between apnea and total
epoch

11. The tangent of the flow between inspiration
and expiration.

In addition, based on the variation within a fea-
ture and the difference between baseline and post-
opioid (Figure 8 B), it was decided to assign the
features minute volume based on one breath and
ratio of length between apnea and total a weight of
two.

4.2.2. Clustering result
The silhouette scores and dendrograms that re-
sulted from the model development are visualised
in Figure 9 and Appendix D, respectively. In
contrast to these results, which conclude that two
clusters would be ideal for each approach, a cluster
amount of four was chosen. This was decided since
one of the aims of this research was to determine
whether different clusters would appear more after
more opioid was administered. Using only two
clusters, it would not be possible to test this.

The results of the clustering, are visualised in
Figure 10 were each cluster is represented as the
same color across all three plots. For statistical
analysis, non-parametric tests were used, since
the EtCO2 relative to baseline was not normally
distributed within the clusters. First, the differ-
ence within the approach was evaluated using the
Kruskal-Wallis test, which yielded a p-value of less
than 0.001 for all approaches. Furthermore, the
Mann-Whitney U test was applied to assess the
differences between adjacent clusters, which are vi-
sualised in the boxplot. Except for the comparison
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(A)

(B)

Figure 8: Visualisations of data exploration. (A) The
correlation between different features. (B) The distribution
of different features broken down into baseline and after
opioid administration.

between 3 and 4 in the first approach, significant
differences were observed for all adjacent cluster
pairs (p < 0.0001). Despite these statistical

findings, all boxplots show a large overlap, with
the PCA approach showing the smallest trend.

The bar plots reveal that clusters with higher
overall EtCO2 levels relative to baseline tend to
occur less frequently during baseline and more
frequently post-opioid. Although the second and
third approach show similar results in terms of
the percentage occurrence of the clusters, this
phenomenon is less obvious in the PCA approach.
Nevertheless, it’s important to note that none of
the approaches had a cluster that was exclusively
present post-opioid.

None of the approaches showed a subject-
dependent clustering. However, the third cluster
in the PCA approach and the fourth cluster in
the DTW approach were absent in the majority
of subjects, which can be explained by the overall
lower incidence of these cluster in comparison to
the other clusters (n=434 & n=124). An overview
of the cluster incidence per subject can be found
in Appendix D.

The bottom graph in Figure 10 shows the
temporal distribution of clusters, with each row
representing an individual subject and the black
line marking the onset of opioid administration.
The absence of color indicates periods were no
breaths were included. This chart was evaluated
visually, revealing a shift in cluster occurrence
post-opioid administration when subjects are
examined individually. However, when analysing
the data collectively across all subjects, it becomes
evident that a cluster predominant in the post-
opioid phase for one subject might correspond to
a prevalent baseline cluster for another. Conse-
quently, while within-subject cluster patterns may
indicate the post-opioid phase, these patterns are
not consistent across different subjects and thus
not reliable for inter-subject comparisons.

From the temporal distribution, it can also be
observed that the cluster assignment differences be-
tween the approaches. Of the 6630 epochs, only
1356 were consistently assigned the same cluster
across all approaches. In 2564 epochs, two ap-
proaches assigned the same cluster, while the third
approach assigned the epoch to an adjacent clus-
ter. Of these, the first approach (PCA) deviated
in 846 epochs, the second (FS) in 756 epochs, and
the third (DTW) in 962 epochs.

The training duration’s varied across the clus-
tering method, with the DTW method being the
most time-consuming, requiring approximately 20
minutes to complete. In contract, both PCA and
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PCA FS DTW

Figure 9: Silhouette score for each approach.

FS were notably faster, completing training in 40
seconds and 20 seconds, respectively.

4.2.3. Cluster stability
To evaluate the cluster stability, bootstrapping
techniques were utilised. A plot showing the
temporal distribution of clusters for each iteration
is attached in Appendix C. The findings of the
variation in clustering are illustrated in Figure
11. Generally, epochs either showed no change in
assigned cluster or were assigned to an adjacent
cluster. Notably, in the PCA and FS approaches,
shifts to the adjacent cluster were more observed
than remaining the same cluster, suggesting these
approaches was the least stable. Therefore, the
DTW approach being slightly more stable due to
its reduced incidence of two-cluster shifts.

4.3. Main data-analysis
It is noteworthy that during bootstrapping in the
preliminary study, the clustering deviated by only
one cluster for the majority of epochs. Further-
more, the clusters were observed to align sequen-
tially in a matrix kernel density estimate plot (Ap-
pendix E). These observations could argue for opt-
ing for regression over fixed clustering. Therefore,
it was chosen to implement fuzzy clustering for the
main data-analysis, which quantifies the probabil-
ity of a breath epoch belonging to a cluster, re-
ferred to as the membership value, yielding a con-
tinuous result in terms of clustering.

In the preliminary data analysis, both the FS
and DTW approaches yielded similar results, out-
performing PCA. Nevertheless, as there were no
Python package available to allow DTW as a dis-
tance metric for fuzzy clustering, the choice was
made to utilise the FS approach.

Based on the observed inter-subject variability
in the results of the preliminary study, it was de-
cided to train the final model also individually for
each subject in addition to solely collectively. This
approach allows the cluster behaviour within each
individual subject to be examined independently,
without being influenced by other subjects.

4.3.1. Model development
For the development of the model, the cmeans func-
tion from the skfuzzy library was applied. The
corresponding function cmeans_predict allows new
data to be fitted to the trained model and will be
used to analyse the data of the period after antag-
onist administration.

The probability that a breath epoch is part of
a specific cluster is indicated by its membership
value, of which the sum for an epoch across all
clusters always equals 1. The value is determined
using a membership function:

uij =

(
C∑

k=1

(
∥xi − vj∥
∥xi − vk∥

) 2
m−1

)−1

. (6)

where:

uij = the membership of the ith data point in
the jth cluster.

xi = the ith data point
vj = the center of the jth cluster
vk = the center of the kth cluster
C = the total number of clusters
m = the fuzziness parameter, controlling the

level of cluster fuzziness

The membership function is non-linear, mean-
ing that the decrease in distance causes a more sig-
nificant increase in membership as points get closer
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Figure 10: Clustering results per approach. Each plot represents every cluster using the same color.
Upper: boxplots showing the change in EtCO2 relative to the baseline (ns : p > 0.05 ; ****: p < 0.0001); Mid: bar plots
indicating the prevalence of the clusters; Lower: temporal plots visualising the change in cluster prevalence over time. Each row
represents an individual subject. The vertical black line indicates the time of opioid administration.

to the cluster center. The fuzzy parameters m,
which typically has a value of 2, defining the level
of ‘fuzziness’ in the clustering. As m approaches 1,
the algorithm becomes more like hard clustering,
while a higher value of m results in memberships
values that are more evenly distributed across clus-
ters. For this study, it was chosen to use the stan-
dard value of 2.

The process of recalculating membership values
and corresponding cluster centers continues itera-
tive until the change in membership between con-
secutive iterations falls below a specified threshold.
Next, these cluster centers were used to calculate
the membership values of the data points after an-
tagonist administration using cmeans_predict.
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PCA FS DTW

Figure 11: Clustering stability based on bootstrapping.

4.3.2. Model analysis
Another advantage of using the FS approach, is
the possibility to use SHAP (SHapley Additive ex-
Planations) value analysis, which is a method used
in machine learning to interpret model predictions
[24]. The SHAP values of each feature describe
the contribution of that feature in the difference
between the predicted value of the model for the
given epoch (f(x)) and the mean of all predictions
(E[F (X)]). Thus, the sum of all SHAP values will
be equal to E[f(x)]—f(x). A visual example of
how the SHAP values describe the model outcome
is shown in Figure 12.

To allow integration between the Python pack-
ages skfuzzy and SHAP, modifications were made
to the cmeans and cmeans_predict functions of sk-
fuzzy, transforming them into a Python class struc-
ture with defined fit and predict methods. In addi-
tion, whereas the SHAP value analysis is designed
for a single outcome value, the fuzzy cluster model
produces two outcome values (e.g., membership
values for each cluster). Therefore, the predict
method was designed to return only the member-
ship values of one cluster, making it a single out-
come value. It was chosen to let f(x) correspond
to the membership values assigned to the cluster
most predominant post-opioid, where higher f(x)
values indicate a more severe respiratory depres-
sion. Since the sum of the membership scores is
equal to 1, analysing the other cluster separately
is unnecessary as its outcome would be the exact
opposite.

4.3.3. Model results
Since the model was trained collectively across all
subject as well as for each subject individually,
the clustering results were divided into collective-

Figure 12: Illustration of SHAP Analysis: the x-axis
represents the membership values. E[f(x)] is the expected
outcome, equal to the mean of all predictions, and f(x) the
predicted value of the model for the given input epoch x.
The rows depict the impact of each feature on the
prediction outcome, with positive contributions in red and
negative in blue, transitioning from the expected output to
the specific prediction output.

and individual-clustering results, respectively. For
both, temporal plots were established per subject,
showing the change in membership values over
time. Based on the observed behaviour of these
plots, subjects were divided into four subgroups as
followed:

1. Complete switch: distinction between clus-
ter memberships in baseline as well as post-
opioid, showing a change in the dominating
cluster.

2. Observed change: distinction between clus-
ter memberships in baseline in combination
with a notable difference (moving towards a
change in dominating cluster or continue al-
ternating) post-opioid.
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3. Reversed change: alternating dominant
cluster in baseline in combination with a
distinction between cluster membership
post-opioid.

4. No difference: no difference in the dominat-
ing cluster or an alternating dominating clus-
ter in baseline as well as post-opioid.

In addition, the same was performed for the
observed behaviour after naloxone administration,
classifying subjects into: complete recovery, incom-
plete/temporary recovery and no recovery. Exam-
ples for both subgroup classifications are visualised
in Figure 13. All temporal plots together with the
corresponding EtCO2 and MV can be found in Ap-
pendix E. The collective- and individual-clustering
results are described separately in the following two
paragraphs.

Collective-clustering

The temporal plots showed a change post-
opioid in 21 (62%) subjects, of which 6 (18%)
showed a complete switch, 12 (35%) an observed
change and 3 (9%) a reversed change. The
remaining 13 (38%) subject were classified as
no difference. Regarding the baseline, the same
cluster was dominant for 27 (79%) subjects. In
contrast, in one healthy subject, the other cluster
was dominant in baseline, however showing no
difference post-opioid. The remaining five (15%)
subjects showed an alternating dominant cluster
in baseline, of which three were classified as no
difference and two a reversed change post-opioid.

Apnea/length showed to be the most important
feature, with minute volume being second, accord-
ing to their mean absolute SHAP values of 0.12
and 0.08, respectively. The other features all had
mean absolute SHAP values around the 0.01. At
the level of individual subjects, three subjects had,
in contract to the overall result, minute volume
as their most important feature, positioning
apnea/length as second. The order of importance
of the features other than apnea/length and
minute volume alternated among subjects. There
was no variation in feature importance among
male/female, user/healthy, fentanyl/sufentanil or
ORNAC/ROAR differences.

To determine clustering stability, bootstrap-
ping was applied by leaving one subject out every
iteration. Then, the differences among the itera-
tions were determined for the membership values
as well as the SHAP values, showing a stable
clustering. Regarding the membership values, the
overall difference in membership values was 0.007,

with the maximum observed difference between
two epochs being 0.14. Minute volume showed the
most alternation between iterations, having an
overall difference of 0.011, with a maximum of 0.06
between two epochs. For the other features, the
overall difference in SHAP values among epochs
was <0.0025.

Individual-subject clustering

A complete switch and observed change was
observed in 16 (47%) and 14 (41%) subjects, re-
spectively. In contrast to the collective-clustering
results, no subjects were classified as reversed
change. However, there were still four (12%)
subjects in whom no difference was observed.
These four subjects all showed alternation between
the prominent cluster in both baseline and post-
opioid and were classified as no difference during
collective-clustering as well.

For 20 (59%) subjects, apnea/length was iden-
tified to be the most import feature, consistently
followed by minute volume as the second most
significant. For the remaining 14 (41%) subjects,
minute volume was the most important feature.
However, among these, only two subjects had
apnea/length as their succeeding feature. For the
rest, the second most important feature differed
among subjects with some showing an equal
significance across multiple subsequent features.

As bootstrapping by ’leaving one subject out’
was not possible, as the model was developed on
solely one subject, bootstrapping was applied by
randomly excluding different epochs each iteration.
The membership values showed a mean difference
of 0.002 and a maximum difference of 0.015. Re-
garding the features, the minute volume SHAP val-
ues showed the most alternation, having a mean
and maximum difference of 0.013 and 0.053, re-
spectively, similar to the collective-clustering re-
sults. In addition, the remaining features also had
an overall difference in SHAP values of <0.0025.

For subjects of the ROAR study, membership
values of epochs within one hour after naloxone
administration were predicted. Six subjects were
excluded from prediction because they showed no
difference between baseline epochs and epochs af-
ter opioid administration (n=3) or no data was
available post-naloxone administration (n=3). Fi-
nally, six subjects were identified as having a com-
plete recovery, whereas nine showed only an in-
complete/temporary recovery. The remaining two
subjects showed no recovery in the temporary plot.
However, they did showed a recovery in EtCO2.
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Baseline & post-opioid
1. Complete switch 3. Reversed change

2. Observed change 4. No difference

Administration of naloxone

1. Complete recovery

2. Incomplete/temporary recovery

2. No recovery

Figure 13: Examples of the temporal membership plots for each classification. The thicker lines represent the median over 7
epochs, while the background lines depicts the original membership values. The solid and dotted black vertical lines annotate
the time of opioid administration, including the given dose (total dose | dose/kg), and the time of antagonist administration,
respectively.

4.3.4. Data analysis
Based on the observations of the clustering results
both collective and individual, questions were for-
mulated. These questions guided the execution of
various data analyses aimed at providing answers.
The questions included:

- Can the discrepancy between collective- and
individual-clustering be explained?

- What happens at the moment a switch oc-
curs post-opioid in the individual-clustering
results?

- What is the reason there is a difference in
clustering behaviour, indicated by the differ-
ent classifications, among subjects?

Discrepancy collective- and individual-clustering

To test if there was similarity between the
collective- and individual-clustering results, the
differences between membership values as well as
the feature behaviour were investigated.

Regarding the four classification, the temporal
plots of 20 (59%) subjects were classified the same
for both the collective- and individual-clustering
method. For each epoch, the difference between
the assigned membership value resulting from
the collective- and individual- clustering were
computed, yielding an average difference of 0.026.
When the average difference among epochs was
calculated for each subject separately, it ranged
from 0.012 to 0.049. Including solely the subjects
that were classified the same for both collective-
as individual-clustering the mean difference
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decreased to 0.020 (range: 0.012 – 0.035).

The overall feature importance, as well as the
range observed among subjects, are listed in Table
2. In both the collective- and individual-clustering,
minute volume and apnea/length are the most im-
portant features. Nevertheless, when clustering
individually, the range of the feature importance
among subjects is wider. In collective-clustering,
minute volume and apnea/length consistently show
relatively high importance in every subject, with a
minimum observed importance of 0.05 compared to
a maximum of 0.05 for other features. Conversely,
in individual clustering, these features show low
significance in at least one subject. Moreover, in
individual clustering, there is an increase in the
maximum observed significance of the less impor-
tant features when compared to their importance
in collective clustering.

Table 2: Feature importance (mean(|SHAP value|))

Feature Importance
mean (range: min - max)
Collective Individual

Minute volume 0.08 (.05 - .12) 0.10 (.02 - .16)
apnea/length 0.12 (.07 - .20) 0.09 (.00 - .17)
insp length 0.01 (.01 - .05) 0.02 (.00 - .04)
expi length 0.01 (.00 - .02) 0.02 (.01 - .05)
length ratio 0.01 (.00 - .01) 0.02 (.00 - .04)
total length 0.01 (.01 - .02) 0.02 (.01 - .05)
insp volume 0.01 (.00 - .01) 0.01 (.00 - .04)
volume ratio 0.01 (.01 - .02) 0.01 (.00 - .03)
max insp flow 0.01 (.01 - .01) 0.02 (.00 - .04)
max flow ratio 0.01 (.00 - .02) 0.01 (.00 - .02)
tangent 0.01 (.01 - .02) 0.01 (.00 - .04)

In addition, partial dependence plots were ob-
tained for each feature. These plots illustrate how
the predicted outcome varies with changes in fea-
ture values by plotting the feature values against
the associated SHAP values. Figure 14 shows the
partial dependence plots for the two most impor-
tant features: minute volume and apnea/length.
Here, the grey area represents the distribution of
observations from the collective-clustering results,
while the mean of each individual-clustering results
is depicted as a black line.

The plots reveal that, despite variations in
orientation and positioning, most subjects showed
similar shapes and behaviour of the feature

Figure 14: (A) Partial dependence plot showing the
collective-clustering results (grey area) as well as the
individual-clustering results for every subject (black lines
indicating the mean trend). Included are the corresponding
correlations between various aspects of the
individual-clustering result and static features of the
subjects.
*: 0.01 < p <= 0.05.

importance. To explore whether these variations
across subjects could be attributed to static
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characteristics, including height, weight, BMI, and
age, correlation analyses were conducted. These
analyses assessed the relationships between the
static features and various aspects of the partial
dependence plot, including: the middle feature
value, middle SHAP value, SHAP value slope in
the middle, and the range of SHAP values. Specifi-
cally, for minute volume, height was found to have
moderate correlations of 0.53 (p-value = 0.013),
respectively, indicating that taller individuals tend
to have higher minute volumes. Nevertheless, after
adjusting for multiple testing using Bonferroni, the
correlation is no longer found to be statistically
significant (0.05/16 = 0.003). For apnea/length
no significant correlations were found. The partial
dependence plots for the remaining features can
be found in Appendix E. Solely max flow ratio
showed a significant correlation of 0.65 following
Bonferroni correction, indicating the relationship
between the slope of the partial dependence plot
and the age of the subject (p = 0.001).

Regarding minute volume, three subjects
showed the exact opposite behaviour, having a
decreasing instead of increasing SHAP value when
the feature value becomes less. When excluding
these aberrant subjects from the collective-
clustering, the mean difference between the
membership values resulting from the collective-
and individual-clustering remained unchanged.
Specifically, it was 0.026 (range: min 0.012 – max
0.049) before exclusion and 0.026 (range: min
0.012 – max 0.045) after exclusion.

What occurs at the time of the complete switch?

For this analysis, solely the individual-
clustering results were utilised. The majority of
these temporal plots showed a difference post-
opioid, characterised by a sudden switch followed
by a prolonged plateau phase. In Figure 15.A
a detailed visualisation is shown, depicting the
change between the epochs before and after the
switch. The corresponding effect of the most
significant feature of that subject, minute volume,
was addressed by including the minute volume
effect plot (Figure 15.B). It can be observed that
the minute volume of the subject was 10.29 before
the switch and 8.07 after, bypassing the values
where a gradual change in membership value
might be expected based on the effect plot. In the
effect plot (Figure 15.B), the effect of the feature
value on the resulting membership value appears
to stagnates before 8.07 and after 10.29.

In certain subjects, a scatterplot visualisation

of the epochs, with a different feature on each axis
and EtCO2 levels indicated through color hues, re-
vealed a notable pattern as depicted in Figure 16.
In these subjects two groups could be distinguished,
of which one was associated with the lower values
of EtCO2 and the other with the higher values of
EtCO2. However, within the groups, no pattern
was observed of a gradual change in EtCO2 for
both features. Although the clarity of this observa-
tion differed among subject, it could not be related
to why some subjects showed a complete switch and
others did not.

Differences among classification

To identify the factors influencing the varia-
tions in subject behaviour observed in the tempo-
ral plots, various test were obtained regarding the
classification. Initially, it was tested whether there
were class-associated factors. Therefore, the opi-
oid involved, opioid usage status, gender, and the
type of study from which the data originated were
evaluated using the Chi-Squared Test, resulting in
no significant differences for both collective- and
individual-clustering (p-value > 0.05).

In addition, it was explored whether there
was a difference in received opioid dose and
the maximum reached change in EtCO2 and
MV relative to baseline for the collective- and
individual-clustering. The results were visualised
as boxplots in Figure 17. Significant difference
following the Kruskal–Wallis test was found in the
maximum decrease in MV among the classifica-
tions when collective clustering was obtained (p
= 0.009). While for collective-clustering there was
also a trend observed in the maximum raise of
EtCO2, it was not significant (p = 0.8). When the
clustering was obtained individually, the difference
observed between classification 1 and 2 during
collective-clustering disappeared. All remaining
tests resulted in p-values > 0.05.

For the individual clustering results, the differ-
ence in feature behaviour and importance was also
considered. No difference was found in the fea-
ture important among the classifications, referring
to the alternation of the most significant feature
among subjects. Conversely, a variation in feature
behaviour was detected. Subjects who were clas-
sified as showing no difference exhibited periods
of typical post-opioid feature behaviour in base-
line, including apneas and extended expiration du-
ration’s. On the other hand, subjects who were
classified as observed change demonstrated post-
opioid periods with feature behaviours that were
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Figure 15: Example of feature behaviour of a subject identified as complete switch. (A) Detailed visualisation (SHAP value
force plot) showing how feature contributions vary in the epochs before (nr 86) and after (nr 93) the switch, including specific
values for key features. The arrangement of these features relative to other epochs is depicted using an additive force layout
(showing the SHAP value force plot simpler for each individual epoch) organised temporally, with the black line indicating the
resulting membership value. (B) Plot showing the positive (red) and negative (blue) effects of the minute volume on the
resulting membership value relative to base value (0.5081). The values of the epochs before and after the switch are indicated
using their corresponding numbers.
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Figure 16: Scattersplot showing the relationship between
two features and the corresponding EtCO2 of one subject.

similar to their baseline epochs.

5 | Discussion
In this pilot study, an unsupervised fuzzy cluster-
ing model was introduced, which demonstrated
consistent stability across different bootstrapping
iterations. In contrast to the expected gradual
transition in cluster membership, the temporal
plots showed a sudden switch in membership
values followed by a prolonged plateau phase. The
temporal plots were divided in the following four
classifications of clustering behaviour: complete
switch, observed change, reversed change and no
difference.

In addition, a discrepancy was observed
between the collective- and individual-clustering
results. Although the partial dependence plots
showed the same behaviour among most subjects,
there were noticeable variations in orientation and
positioning. Based on the clustering results, an in-
depth data-analysis was conducted by generating
and answering corresponding questions. Although
no direct answers to the questions were found, the
following section will propose hypotheses derived
from the results.

5.1. Interpretation of results
While the research was inspired by the study con-
ducted by Sunshine and Fuller [11], their method
using PCA appeared to be the least promising dur-
ing the preliminary phase. Instead, FS and DTW
demonstrated more promising results. While DTW
showed slightly better results in the distinction re-
garding the change in EtCO2 relative to baseline,

Collective-clustering

Individual-clustering

Figure 17: Boxplots visualising the difference among
classifications in received opioid dose and the maximum
reached change in EtCO2 and MV relative to baseline for
the collective- (upper) and individual-clustering (lower).
ns: p > 0.05.
* : 0.01 < p <= 0.05.
** : 0.001 < p <= 0.01.

FS had much faster computation times. The sim-
ilar performance of FS and DTW indicates that
high-frequency time series data used during this
research may not be essential to detect OIRD, as
the FS method does not rely on the high-frequency
data attributes.

Fuzzy clustering was utilised as the preliminary
results suggested a possible regression. The expec-
tation was to observe a gradual transition in clus-
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ter membership, indicating a progressive decline in
respiratory function. However, instead an abrupt
switch in membership was observed, followed by a
prolonged plateau phase which remained until an
antagonist was administered (complete switch) or
alternated with abrupt switches between different
prolonged plateau phases (observed change).

The findings of this study suggest two possible
interpretations. One hypothesis is that the immedi-
ate stabilisation after the bolus administration was
primarily due to the bolus itself, with the continu-
ous opioid dosage having minimal influence. There-
fore, bypassing the feature values that are associ-
ated with a gradual change in membership values,
as indicated by Figure 15. Considering existing
research which suggests that the respiratory de-
pressant effects of opioids are dose-dependent, one
would anticipate the possibility of observing a more
gradual change under different conditions [16].

Alternatively, it is possible that there might
be a threshold beyond were the breathing pattern
becomes irregular and no longer exhibits a linear
or gradual degradation in features. As EtCO2

indicates the time and severeness of OIRD, the
observed difference in Figure 16 among the groups
in EtCO2 but the lack of pattern within, suggests
that the irregularity in respiration does not
increase gradually, but rather reaches a critical
point where normal patterns are disrupted. It is
also possible to consider that these hypotheses are
not mutually exclusive but rather complementary,
where low opioid doses might cause a gradual
decline in respiratory function, while high doses
lead to abrupt pattern disruptions.

Observed differences among subjects in the
temporal plots were divided into four different
classifications. However, the question why the
subjects showed different behaviours still remains.
For the collective-clustering the boxplots seemed
to have a slight trend regarding the maximum
reached EtCO2 difference relative to the baseline,
suggestion that the severity of depression may
have an influence on the observed differences in
classification, however it was not significant and
needs further investigation. Nevertheless, the
significant differences found in the MV, especially
between complete switch and observed differences,
would also suggest the possible association of clas-
sification in relation to the severity of depression
since a greater decline in MV is associated with
more respiratory depression.

On the individual-clustering level, the differ-
ences in temporal behaviour of cluster membership

were also observed. SHAP value analysis showed
that subjects who were classified as observed
change had periods of breaths similar to baseline
breathing during the post-opioid period. Whether
these subjects had these periods because the respi-
ratory depression was less severe or the periods of
good breaths within the post-opioid period were
responsible for the lower EtCO2 change could not
be determined, however the latter would not be
an explanation for the difference in observed MV
change.

The observed instances of normal breathing
during the post-opioid administration phase could
also be influenced by certain external experi-
mental conditions. For example, subjects were
occasionally instructed to breathe more deeply
or frequently if their oxygen saturation dropped
too low or if they experienced extended periods of
apnea, leading to transient periods of conscious
breathing. Additionally, some subjects might have
fallen asleep during the experiment, potentially
altering their breathing patterns.

External variables might have also affected the
breathing patterns observed at baseline and im-
mediately after opioid administration. Notably,
some subjects exhibited signs of nervousness, possi-
bly leading to a less stable baseline breathing pat-
tern. This could explain the unusual baseline res-
piratory patterns observed in some healthy partic-
ipants. Awareness of opioid administration among
subjects might have prompted them to consciously
alter their breathing, potentially skewing the data
towards an unnatural representation of their nor-
mal respiratory activity. Unfortunately, these ex-
ternal factors were not systematically documented
during the study, limiting our ability to quantify
their impact on the observed breathing patterns.

What could be determined was that the sub-
jects who showed opposite behaviour in the SHAP
values for minute volume were also experiencing
nausea post-opioid administration. The increase
in minute volume could be a physiological response
to nausea, possibly indicating that these subjects
were experiencing agitation as a side effect of the
opioids.

Inter-individual differences were noted in both
the preliminary and final studies. However, Sun-
shine and Fuller’s research with Sprague-Dawley
rats did not report similar inter-subject variabil-
ity [11]. This lack of reported variability in the
rat studies could be attributed to several factors
that differentiate human and rat research contexts.
Unlike humans, rats are not cognisant of receiv-
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ing opioids, eliminating any potential anxiety or
emotional responses that might affect the study’s
outcomes. They are also unaware of the timing of
opioid administration, which means that any antic-
ipatory psychological effects influencing breathing
patterns, as likely observed in the subjects, do not
apply to rats.

Moreover, Sprague-Dawley rats are known for
their genetic consistency, contributing to reduced
variability among subjects in experimental settings
[25]. This genetic uniformity may be a factor in
why lesser inter-subject differences were observed
in their animal study compared to our study that
used human data, where genetic and individual
variability is broader.

The inter-subject variability resulted in dis-
crepancy between the collective-clustering and
individual-clustering results. As can be observed
from the partial dependence plot (Figure 14),
some subject fall outside the distribution resulted
from the collective-clustering. However, removing
the aberrant subjects did not alter the observed
difference in assigned membership values between
collective-clustering and individual-clustering.

The partial dependence plot showed significant
correlation between the height of the subject and
the SHAP value behaviour of minute ventilation,
suggesting that the minute ventilation is higher if
a subject is taller. The male subjects in this study
were also significantly larger than the women. Ac-
cording to literature, men and women have dif-
ferent tidal volumes of 0.5 and 0.4 liter, respec-
tively. As both breath approximately 12 breaths
per minute, the minute volume in male subjects
appear to be slightly larger [26].

5.2. Strengths and limitations of the study
The data obtained from the LUMC for this study
is particularly distinctive. With information col-
lected from healthy individuals using solely opi-
oids under controlled conditions, it provides a valu-
able opportunity to examine the effects of opioids.
While EtCO2 and saturation are secondary param-
eters of the breathing quality, which may be influ-
enced by other factors, the obtained flow data en-
ables direct evaluation of respiratory performance.
In combination with the high frequency time series
and the negligible amount of leakage, in detail as-
sessment of the breathing pattern has been made
possible.

However, the use of this dataset also presents
challenges. For example, such methods of data

collection are not common in clinical settings and
are not always feasible. Nevertheless, while the ne-
glectful leakage deemed to be important as minute
volume appeared to be the first or second most im-
portant feature in each subject, this study suggests
that extensive data collection at high frequencies
may not be essential, as the features used doesn’t
depend on the high frequency aspect of data.

Furthermore, due to the unique nature of
the data, the dataset was relatively limited in
size. Nonetheless bootstrapping showed stable
clustering results when the clustering was obtained
collectively, suggesting that the results were not
heavily influenced by one subject. However, the
sample size was likely insufficient to observe
significant differences between the different clas-
sifications. While some test yielded significant
p-values after considering the per-test family-wise
error rate, corrections were not applied across all
tests and should be interpreted with precaution.

Another disadvantage of the dataset was the
discrepancy between the healthy subjects and the
opioid users. While the healthy user were mainly
young students, the opioid users were older adults.
This can also be observed in the age difference be-
tween the two studies ORNAC (23.5 ± 1.8) and
ROAR (39.7 ± 15.1), as only the ROAR included
opioid users. However, it seemed that these differ-
ences did not influenced the study results.

A common problem in signal analysis and also
recurring in this study is data quality. While the
data contained less noise than clinic data, as it was
ensured in a controlled setting and subjects were
instructed to lay still, noise was not uncommon.
Noise was mainly induced by talking and moving
of the subject, as well as detachment of the device.
The detecting algorithm used for artefact detection
was not perfect. However, as for this pilot study
optimising noise detection and filtering was not the
priority due to time limitations, the choice was
made to manually check and the remaining epochs
and exclude the ones that showed to much noise
for the data used for model development. While
this ensured that the pilot study would not be un-
successful due to insufficient data quality, it should
be kept in mind that this manually checking was
obtained by one researcher only and the absence of
human error can therefore not be guaranteed.

In addition to noise, external factors also re-
duced the data authenticity. Additionally to the
instructions given by the researcher and the phe-
nomenon of the subject falling asleep mentioned be-
fore, another aspect was that some subject received
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additional oxygen while others did not. While the
saturation is an important feature of the respira-
tory depression in a majority of studies, it could
not be used in this study to relate clustering results
to the expected real-world situation. Therefore, it
was decided to solely use EtCO2 and MV.

5.3. Future recommendations
The first finding of this research that would require
more research is the observation of the stagnation
after the complete switch. It would be interesting
to investigate whether the switch would be more
transitional with lower doses of opioids. Therefore,
a study should be obtained were no or lower boluses
are given.

In addition, while the individual clustering
method showed good results, it cannot be applied
in practise and is solely for post-analysis as data
of the subject is necessary to develop the model.
Nonetheless, the collective clustering model of this
study showed no difference in a large amount of
the subjects, probably due to the inter-subject
variability. However, the observation that the
feature importance showed the same behaviour
between subjects when clustering was obtained
individually, however shifted in place and ori-
entation, suggests there may be a possibility to
allow correction by static features. Therefore,
resulting a more generalisable model that is
developed collectively and can by applied on new
patients for live-analysis during clinical practise,
potentially enabling the model to help prevent
medical incidents.

Therefore, an expected follow-up to this study
would be to test the method with more subjects.
However, getting this kind of data in larger num-
bers would be difficult. Yet, as this study suggest
that the high frequency data is not necessary,
it would be interesting to test this approach
with other datasets, such as capnography, which
directly monitors the concentration or partial
pressure of CO2 inhaled and exhaled, serving as
an indirect indicator of CO2 partial pressure in ar-
terial blood. The downside is that not all features
used during this study can be retrieved from the
capnography waveform. However, as obtaining
capnography waveforms is more common practice
there are already datasets available to test this
approach. This way, a larger dataset would be
available and the resulted model would be more
applicable in current practise.

Although the FS approach showed promising
results, the preliminary research showed slightly

more preference towards the DTW approach.
Nonetheless, while an effort has been made during
this research to implement DTW, it was unsuccess-
fully and showed solely membership values of 0.5
regarding both clusters. However, it is known that
using Fuzzy C-means with high dimensionality
datasets, the majority of cluster centers may be
pulled into the overall center of gravity. With an
average breath having a length around 5 seconds
and the dataset having a frequency of 40Hz, the
dimension of the used time-series was quite high
[27].

While the study did not delve into the predic-
tions for the periods following naloxone administra-
tion, since it was not the primary focus, it would
be interesting to investigate these results further.
Given that the temporal plots exhibited different
behaviours, it would be valuable to understand
why these differences occur. As naloxone has a
short half-life, the temporary recovery may indi-
cate the return of respiratory depression and the
need for repeating administration [21, 22]. More-
over, it is noteworthy that two subjects exhibited
no recovery in the temporal plots yet demonstrated
improvement in the EtCO2 levels. This raises ques-
tions about what these observations signify.

6 | Conclusion
In this study, a comprehensive analysis of OIRD
was performed using unsupervised machine-
learning techniques. A fuzzy clustering model
was implemented, incorporating SHAP value
analysis to enhance the interpretability of the
clustering results. Although the model successfully
identified changes in respiratory flow patterns
associated with OIRD and subsequent recovery
after naloxone administration, it requires further
refinement.

Moreover, while the questions regarding the
cluster behaviour could not be directly addressed,
the results introduced potential directions for
future research, which included: exploring the
possibility for dose-dependent effects, correcting
for inter-subject variability using static features
and trying to use an alternative data-set. These
steps may contribute to a model which would be
more generalisable among subjects and applicable
in current practise.
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A Characteristics of the studies used.

A | Characteristics of the studies used.
A.1. ROAR

REVERSAL OF OPiOiD-iNDUCED RESPiRATORY DEPRESSiON WiTH OPiOiD ANTAGONiSTS

Opioids used Fentanyl & sufentanil
Opioid administration Bolus and continuous intravenous

Target decrease in respiration 40-60%
Intervention Naloxone

Characteristics subjects Opioid naïve individuals and chronic opioid users

Infusion of fentanyl and sufentanil whilst measuring minute ventilation and pupil diameter. In-
tranasal naloxone (IN, 4 mg) will be administered when ventilation has dropped by 40-60% (Saturation
> 85%) and repeated after 180 minutes. At the end of each experiment, 240min after first dose of
naloxone, 0.4 mg naloxone will be administered intravenously to determine its effect on ventilation and
to allow calculation of naloxone intranasal bioavailability.

A.2. ORNAC

L-NAC FOR REVERSAL OF OPiOiD-iNDUCED RESPiRATORY DEPRESSiON

Opioids used Fentanyl
Opioid administration continuous intravenous

Target decrease in respiration 40%
Intervention L-NAC (fluimicil) & placebo

Characteristics subjects Healthy volunteers, aged 18-65 years of either sex and with a
body mass index of 19-30 kg/m2

Individualized intravenous fentanyl infusion will be initiated aimed at 40% respiratory depression
compared to baseline. After 40% respiratory depression is attained, the L-NAC or placebo infusion will
start over 1 h with dose 75 mg/kg. A second administration of L-NAC or placebo will be administered
over hour the next hour with dose 150 mg/kg. The L-NAC dose may be adapted based on the results
observed in previous subjects (max. increase with a factor of 2). Three hours after the first infusion
of L-NAC or placebo, the experiment will end, and all infusions will be terminated. Measurements
made are: minute ventilation on a breath-to-breath basis through a facemask for 3 hours, end-tidal
carbon dioxide partial pressure, respiratory frequency, tidal volume, oxygen saturation (all obtained on
a breath-to-breath basis), arterial blood gas analysis: pH, pO2, pCO2, oxygen saturation (obtained at
15 min intervals), blood pressure by cuff (at 30 min interval) and plasma concentrations of fentanyl and
L-NAC (at regular intervals). Total volume of blood drawn is 125 mL.
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B Breath selection

B | Breath selection
B.1. Detected breaths

Table 3: Breath count detected by the algorithm per subject, divided in epochs detected during baseline, post-opioid and
post-antagonist.Subjects reported twice have done both measurement days. The subjects highlighted in grey were excluded for

further analysis, since they had too few epochs detected in baseline or post-opioid.

Baseline Post-opioid Post-antagonist
Subject Duration Breaths Duration Breaths Duration Breaths
R_S05 00:07:29 46 00:40:00 294 00:44:17 449
R_S06 01:25:42 556 00:07:00 0 00:00:00 0
R_S07 00:16:10 244 01:18:00 680 00:58:08 762
R_S08 00:04:43 76 00:42:00 400 02:09:44 1640
R_S09 00:50:23 614 00:50:00 356 00:00:00 0
R_S10 00:17:12 256 00:37:00 286 03:09:10 2108
R_S11 00:18:47 359 01:15:00 184 00:00:00 0
R_S12 00:18:32 298 00:41:00 322 04:34:48 2916
R_S13 00:31:19 399 00:20:00 200 04:51:44 3851
R_S14 00:32:26 416 00:22:00 190 04:46:18 3992
R_S15 00:25:47 309 00:22:00 164 04:38:35 3209
R_S15 00:14:11 185 00:25:00 152 01:06:43 648
R_S16 00:13:56 187 00:11:00 67 04:33:50 1895
R_S18 00:17:36 321 00:20:00 286 04:30:27 4549
R_S18 00:14:29 260 00:23:00 198 01:16:23 1200
R_S19 00:58:20 596 00:29:00 116 01:03:59 366
R_S20 00:38:16 265 00:33:00 270 02:55:36 1496
R_S20 00:19:43 112 00:38:00 274 04:35:51 3213
R_S21 00:06:44 45 00:30:00 223 02:10:18 1375
R_S21 00:17:55 234 00:30:00 203 00:37:06 525
R_S22 00:17:05 263 00:30:00 325 04:35:02 3385
R_S22 00:21:44 431 00:36:00 274 04:49:54 2827
R_S23 00:47:47 312 00:28:00 128 04:31:02 2715
R_S23 00:17:33 181 00:24:00 151 04:30:49 2780
R_S24 00:13:58 151 00:30:00 191 00:35:09 216
R_S25 00:22:50 166 00:39:00 277 01:13:57 716
R_S26 00:21:00 161 00:53:00 322 01:16:34 635
R_S27 00:36:30 283 00:54:00 366 03:01:20 1687
R_S27 00:14:58 101 00:31:00 188 04:32:31 2371
R_S28 01:01:26 334 00:05:00 3 00:54:40 342
R_S29 00:11:13 115 00:31:00 179 04:29:54 3034
R_S30 00:18:11 191 00:30:00 158 00:41:21 143
R_S31 00:15:40 164 00:33:00 221 04:29:43 3260
R_S32 00:15:55 165 00:30:00 317 03:39:31 2542
R_S32 00:23:52 292 00:30:00 221 00:38:04 179
R_S33 00:19:59 166 00:41:00 207 02:35:59 139
R_S34 00:11:10 130 00:35:00 318 00:37:48 23
R_S35 00:05:33 57 00:33:00 177 00:48:35 311
R_S36 00:08:50 39 00:30:00 110 04:45:49 2917
R_S36 00:13:19 107 00:31:00 196 05:02:40 3340
O_S01 00:18:30 327 00:33:00 408 02:27:29 1180
O_S01 00:07:18 118 00:30:00 306 02:30:52 1198
O_S02 00:27:12 414 00:30:00 198 02:30:57 705
O_S02 00:16:11 255 00:30:00 176 03:13:39 949
O_S03 00:15:32 205 00:30:00 277 02:45:51 1357
O_S04 00:06:36 70 00:30:00 377 03:20:37 1374
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B Breath selection

O_S04 00:19:58 299 00:30:00 329 03:44:55 1889
O_S05 00:14:42 247 00:30:00 421 03:00:59 2256
O_S05 01:14:56 1068 00:19:00 221 02:38:42 1875
O_S06 00:17:11 161 00:30:00 254 02:38:50 1338
O_S06 00:07:48 109 00:30:00 303 03:01:29 1213
O_S07 00:10:00 122 00:30:00 252 02:13:14 1288
O_S07 00:15:02 217 00:30:00 236 03:00:15 1584
O_S08 00:12:47 195 00:30:00 292 02:35:09 1275
O_S08 00:26:47 394 00:30:00 352 02:39:41 1474
O_S09 00:10:55 198 00:30:00 298 02:50:03 1892
O_S10 00:09:49 173 00:30:00 372 02:59:48 2640
O_S10 00:07:57 136 00:20:00 308 03:12:45 2874
O_S11 00:09:01 93 00:30:00 317 01:40:59 1006
O_S11 00:08:50 110 00:30:00 314 02:34:09 1746
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B Breath selection

B.2. Included breaths

Table 4: Overview of the included epochs after manual selection was obtained. The subjects highlighted in grey were excluded
for further analysis, since they had too few epochs detected in baseline or post-opioid.

Subject Baseline Opioid

R_S07 100 300
R_S08 70 277
R_S09 100 300
R_S10 100 222
R_S11 100 172
R_S12 100 287
R_S13 100 144
R_S14 100 139
R_S15 100 116
R_S15 100 116
R_S18 100 251
R_S18 100 160
R_S19 100 93
R_S20 100 217
R_S20 76 186
R_S21 100 153
R_S22 100 283
R_S22 100 195
R_S23 100 87
R_S23 100 115
R_S24 100 153
R_S25 100 230
R_S26 100 179
R_S27 100 162
R_S27 63 87
R_S29 100 150
R_S30 100 134
R_S31 100 161
R_S32 100 219
R_S32 100 121
R_S33 100 131
R_S34 100 234
R_S35 30 88
R_S36 83 147

Subject Baseline Opioid

O_S01 100 300
O_S01 100 265
O_S02 100 118
O_S02 100 126
O_S03 100 211
O_S04 63 300
O_S04 100 300
O_S05 100 300
O_S05 100 172
O_S06 100 237
O_S06 84 279
O_S07 100 237
O_S07 100 219
O_S08 100 242
O_S08 100 295
O_S09 100 270
O_S10 100 300
O_S10 100 284
O_S11 79 264
O_S11 88 238
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C Data exploration

C | Data exploration

Figure 18: Correlation between features and EtCO2 (left) and Minute Volume (right) change relative to baseline for every
individual subject, as well as collectively all subjects, all healthy subjects and all opioid users.
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D Preliminary data-analysis

D | Preliminary data-analysis
D.1. Dendrograms

Figure 19: Dendrogram depicting the resulted linkage matrix of the hierarchical clustering for each approach.

36



D Preliminary data-analysis

D.2. Overview clustering

Table 5: Overview of the cluster count for each subject as well as each approach.

PCA FS DTW
Cluster Cluster Cluster

Subject 1 2 3 4 1 2 3 4 1 2 3 4
R_S07 103 29 16 47 37 77 23 58 98 62 32 3
R_S08 122 25 6 42 94 70 16 15 147 37 11 0
R_S09 81 72 4 38 79 38 46 32 106 69 20 0
R_S10 121 37 17 20 24 68 6 97 87 28 78 2
R_S11 111 69 1 14 177 8 8 2 192 2 1 0
R_S12 137 41 0 17 101 7 45 42 88 43 53 11
R_S13 48 51 24 72 34 147 4 10 97 97 1 0
R_S14 67 90 3 35 105 5 71 14 95 85 15 0
R_S18 131 57 0 7 101 63 9 22 176 18 1 0
R_S20 24 23 85 63 26 153 4 12 156 28 10 1
R_S21 16 90 33 56 3 140 10 42 135 41 17 2
R_S22 125 38 7 25 102 54 32 7 154 40 1 0
R_S24 40 100 6 49 50 52 49 44 24 114 49 8
R_S25 15 51 9 120 25 103 6 61 35 131 28 1
R_S26 42 56 14 83 43 77 19 56 56 98 37 4
R_S27 42 34 44 75 16 29 75 75 29 105 58 3
R_S29 43 62 19 71 14 71 28 82 77 64 46 8
R_S30 125 52 5 13 29 146 0 20 8 93 59 35
R_S31 21 41 54 79 32 79 29 55 117 62 15 1
R_S32 179 12 0 4 167 28 0 0 31 146 16 2
R_S33 40 106 1 48 106 18 25 46 41 92 33 29
R_S34 117 52 1 25 117 18 55 5 137 44 13 1
R_S36 70 82 4 39 55 57 38 45 53 113 27 2
O_S01 180 15 0 0 105 25 33 32 134 29 32 0
O_S02 61 97 2 35 90 36 9 60 113 23 49 10
O_S03 81 51 4 59 5 167 1 22 36 140 19 0
O_S04 115 69 0 11 103 16 44 32 138 32 25 0
O_S05 103 64 0 28 138 36 18 3 190 5 0 0
O_S06 15 27 70 83 49 63 65 18 129 63 3 0
O_S07 113 68 2 12 18 13 55 109 68 69 57 1
O_S08 95 42 1 57 118 75 2 0 34 161 0 0
O_S09 116 74 0 5 25 141 2 27 145 47 3 0
O_S10 125 47 0 23 99 94 1 1 119 76 0 0
O_S11 32 126 2 35 66 114 10 5 187 7 1 0
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D Preliminary data-analysis

D.3. Clustering stability

Figure 20: Bootstrapping results for each approach. Every row depicts an iteration and each row an epoch. Each color
indicates a different color, which correspond to the colors used in Figure 10. The blacked-out eras are those of the excluded
subject.
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E Main analysis

E | Main analysis
E.1. Matrix Kernel Density Estimate plot

Figure 21: Example demonstrating a matrix Kernel Density Estimate plot among all utilised features. The epochs are
coloured according to their assigned cluster, as determined by the FS approach.
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E Main analysis

E.2. Clustering results - temporal plots
E.2.1. Collective-clustering
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E Main analysis
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E Main analysis

Figure 22: Temporal plots of the assigned membership-values for two clusters, where thicker lines represent the median over 7
epochs and the background lines depicts the original membership values. Moments of opioid administration are indicated by a
solid line, including the given dose and dose per kilogram. Below the temporal plots, corresponding EtCO2 and MV graphs are
included.

E.2.2. Individual-clustering
Without antagonist administration
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E Main analysis

Figure 23: Temporal plots of the assigned membership-values for two clusters, where thicker lines represent the median over 7
epochs and the background lines depicts the original membership values. Moments of opioid administration are indicated by a
solid line, including the given dose and dose per kilogram. Below the temporal plots, corresponding EtCO2 and MV graphs are
included.

With antagonist administration
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E Main analysis
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E Main analysis
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E Main analysis

Figure 24: Temporal plots of the assigned membership-values for two clusters, where thicker lines represent the median over 7
epochs and the background lines depicts the original membership values. Moments of opioid administration are indicated by a
solid line, including the given dose and dose per kilogram. The moment of antagonist administration is depicted by a dashed
line. Below the temporal plots, corresponding EtCO2 and MV graphs are included.
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E Main analysis

E.3. Partial dependence plots
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E Main analysis
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E Main analysis

Figure 25: Partial dependence plot showing the collective-clustering results (grey area) as well as the individual-clustering
results for every subject (black lines indicating the mean trend). Included are the corresponding correlations between various
aspects of the individual-clustering result and static features of the subjects.
* : 0.01 < p <= 0.05.
** : 0.001 < p <= 0.01.
*** : p <= 0.001.
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