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When a boundary layer starts to develop spatially over a flat plate, only disturbances of sufficiently

large amplitude survive and trigger turbulence subcritically. Direct numerical simulation of the Blasius

boundary-layer flow is carried out to track the dynamics in the region of phase space separating

transitional from relaminarizing trajectories. In this intermediate regime, the corresponding disturbance

is fully localized and spreads slowly in space. This structure is dominated by a robust pair of low-speed

streaks, whose convective instabilities spawn hairpin vortices evolving downstream into transient

disturbances. A quasicyclic mechanism for the generation of offspring is unfolded using dynamical

rescaling with the local boundary-layer thickness.
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Subcritical bifurcations occur in physical systems as
diverse as pattern-forming reacting systems [1], fluid flows
[2], magnetic reconnection [3], and accretion disks [4].
They require finite-amplitude triggers to transition from
one state to the other. Recent progress has been made via
the possibility of identifying the edge state [5], the asymp-
totical fate of all perturbations at the critical threshold
amplitude. In spatially extended systems, transition is con-
nected to localized edge states. A common feature of all
former investigations is the spatial homogeneity of the
underlying base state. Spatially developing media form a
much wider class of systems, a prime example being the
Blasius boundary-layer flow, which captures most of the
features of flows around smooth bodies. We identify here
the corresponding localized structures in that boundary-
layer flow and describe their spatial development as they
advect downstream, the process by which they are self-
sustained, and the dynamics inside the structure.

The Blasius boundary layer forms when a fluid of non-
zero viscosity flows over a flat surface [6]. There is no
natural length scale to the problem except the distance ‘
from the leading edge of the plate. Viscous diffusion of the
vorticity generated at the wall makes the boundary layer
grow in height, starting from the leading edge. A self-
similar laminar solution of the two-dimensional incom-
pressible boundary-layer equations can be found in terms

of the rescaled variable � ¼ yðU1=�‘Þ1=2, where y is the
wall-normal distance to the plate, U1 is the velocity far
above the plate, and � is the kinematic viscosity of the fluid
[6]. A local Reynolds number can be defined as Re�� ð‘Þ ¼
U1��ð‘Þ=�, where �� ¼ R1

0 ½1� uðyÞ=U1�dy ¼ Oð‘1=2Þ
is the displacement thickness, with uðyÞ the streamwise
velocity (see Fig. 1). The self-similar Blasius solution
represents the laminar base flow, which is linearly stable
for Re�� � Rec � 520 [2]. There are two possible routes

for the laminar-turbulent transition: in a weakly noisy
environment, classical transition occurs supercritically
for Re�� � Rec, where the base flow is unstable to infini-
tesimal disturbances. In the presence of stronger noise, a
subcritical transition can occur further upstream via a
bypass scenario: the base flow is unstable to finite-
amplitude disturbances only. Subcritical transition occurs
also in pipe flow and plane Couette flow [7], where non-
linear coherent structures were identified on the phase
space boundary � separating laminar and turbulent mo-
tion. The technique for the identification of critical

FIG. 1 (color online). Snapshot of the localized structure at
t ¼ 1050. Isosurfaces of streamwise velocity perturbation u ¼
�0:08 [dark gray (blue)] and �2 ¼ �10�5 [light gray (green)].
The robust core of the structure consists of streaks and stream-
wise vortices, indicated as well as the early stage of a streak
instability. Out of the streak instability grow secondary structures
that move downstream and dissipate. The spanwise lines corre-
spond to x ¼ 600, 800, and 1000. The developing boundary
layer is sketched out-of-scale on the left of the figure.
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disturbances proposed in Refs. [5,8,9] is based on
identifying initial conditions which neither return to lam-
inar nor become turbulent in the course of time, but instead
approach the edge state, the relative attractor within this
subspace. The associated velocity field in physical space is
three-dimensional and combines streamwise streaks (span-
wise modulations of the streamwise velocity) and stream-
wise vortices into a single stationary or traveling structure
via a nonlinear self-sustaining process (SSP) [10,11]. This
state, unstable by construction, is transiently approached
by all trajectories starting in the vicinity of �. Edge states
[12–15] become localized and unsteady when the domain
is extended in all homogeneous directions. The situation
for the Blasius boundary layer is a step up in complexity,
both conceptually and technically: the spatial development
implies that the control parameters vary along a trajectory,
and the flow is not confined in the wall-normal direction. A
recent calculation in a narrow periodic domain demon-
strates the applicability of edge tracking in a spatially
developing flow [16]. The introduction of a fixed length
scale is, however, incompatible with the localization and
the spatial spreading of the disturbance which follows from
the spatial expansion of the flow. In order to capture the
physically relevant dynamics, we use a sufficiently wide
domain such that we can track fully localized critical
disturbances in a realistic external boundary-layer flow.

Direct numerical simulation of the incompressible
Navier-Stokes equations is performed by a spectral method
using Fourier modes in the streamwise x and spanwise z
directions and Chebyshev polynomials in the wall-normal
direction y. The boundary conditions for the velocity field
(u, v, and w) are no-slip and impermeability on the plate
(y ¼ 0) and vanishing wall-normal derivatives at a finite
yet large enough value of y ¼ Ly. The use of Fourier

modes implies periodicity in x and z. However, because
�� increases with x, making streamwise periodicity unsuit-
able, a fringe region is incorporated ahead of the down-
stream edge of the computational domain, in which
artificial volume forcing dampens any disturbance [17].
The displacement thickness at x ¼ 0 is �� ¼ ��

0, chosen

such that Re��
0
¼ 300. We use a computational domain of

size ðLx; Ly; LzÞ ¼ ð3000; 60; 100Þ in units of ��
0, the fringe

region starting at x ¼ xf ¼ 2700. This implies that ��

grows by a factor of 5 over the length of the domain.
Time t is expressed in units of ��

0=U1. The numerical

resolution is ðNx; Ny; NzÞ ¼ ð3072; 201; 256Þ spectral

modes, and the phase space has dimension N ¼
2NxNyNz � 3:16� 108.

The dynamics on � is tracked using the bisection
method of Ref. [9]. A spatially localized initial perturba-
tion to the laminar base flow is imposed near x ¼ 0, similar
to the one used in Ref. [12]. It has the spanwise symmetry
ðu; v; wÞðx; y; zÞ ¼ ðu; v;�wÞðx; y;�zÞ. Its amplitude is
then adjusted until the corresponding phase space
trajectory neither reaches the base state nor the turbulent

attractor. The practical criterion for deciding whether the
regime is turbulent or laminar is based on adequate thresh-
olding of two volume-integrated quantities: the streamwise

vorticity !x ¼ ½Rð@yw� @zvÞ2dv=
R
dv�1=2 and the wall-

normal vorticity !y ¼ ½Rð@zu� @xwÞ2dv=
R
dv�1=2

(where dv ¼ dxdydz). !x is a direct measure of the am-
plitude of streamwise vortices, while the temporal fluctua-
tions of !y � j@zuj reflect the amplitude of the streaks,

both of those quantities vanishing for the laminar flow. In a
spatially parallel flow, such a bisection can in principle be
carried out ad eternum when periodic boundary conditions
are used, while for the Blasius case the effective length xf
is the limiting parameter. Edge tracking also proved robust
for values of Re�� , where the base flow is no longer linearly
stable.
For t � 500, the flow has lost the memory of the initial

perturbation, suggesting that a relative attractor is being
approached. The spatial structure stays fully localized but
grows slowly in all directions. Within it, we identify a
robust core (the upstream part of the structure) that persists
with relatively little time dependence and secondary struc-
tures downstream with larger fluctuations in time. The
robust core is best isolated at t � 1050 (Fig. 1). It features
at all times a pair of elongated low-speed streaks. These
streaks support convective instabilities in the form of time-
dependent wavy modulations [18]. Visualization of the
vortices using the �2 vortex identification criterion [19]
reveals longitudinal vortices staggered on the flanks of the
streaks, as well as hairpin-shaped vortices forming pre-
cisely above the region where streaks pinch. The temporal
robustness of this pinching structure suggests that it is a
quasiequilibrium state of the flow. The process is compa-
rable to that described in Ref. [20]; however, it does not
require continuous forcing, only adequate initial trigger-
ing. Note also the different symmetries compared to
Waleffe’s SSP [10], where sinusoidal streak instabilities
are found that do not give rise to hairpin vortices. However,
the global structure is highly unsteady in time as the
secondary structures undergo large temporal fluctuations,
which will be characterized in detail below.
The slow growth of the boundary-layer thickness ��ðxÞ

suggests the use of rescaled variables for a description of
the temporal dynamics. This is accomplished by rescaling
all space and time variables by a factor of ��

0=�ðtÞ, where
�ðtÞ refers to the local displacement thickness �� at the
‘‘location’’ xðtÞ of the structure at time t. Interpreted as the
maximum shear at the wall, xðtÞ is found in practice by
locating the maximum over x of �!zðy ¼ 0Þ, where we
have defined

�!zðx; y; tÞ ¼ !zðx; y; z ¼ 0; tÞ � h!zizðx; y; tÞ: (1)

Velocities are unaffected by the rescaling; thus, the con-
vection speed _xðtÞ at the wall is a constant independent of
the rescaling. Taking into account the � ¼ Oð‘1=2Þ devel-
opment of the Blasius solution, we anticipate that
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�ðtÞ=��
0 � ð1þ t=t0Þ1=2 and find a good fit with t0 �

177:8. Vorticities are, however, rescaled by ½�ðtÞ=��
0�.

The dimensions of the numerical domain are now time-
dependent in the rescaled variables; hence, a volumetric
correction factor ½�ðtÞ=��

0�3 must be incorporated into the

new integral vorticities �i ¼ ð��
0=�Þ1=2!iði ¼ x; yÞ. We

show �x plotted vs time in Fig. 2 (top), and a two-
dimensional phase space projection (�x, �y) is shown in

Fig. 2 (bottom). In the rescaled variables, it becomes clear
that, past the transient phase, the dynamics is cyclical in
time on a slow time scale of � 200�=U1. The four snap-
shots displayed in Fig. 3 cover one period of the

quasicycle, where the first and the last snapshot are taken
at approximately the same position in the cycle. Note that
the upstream robust core shows strong similarities at those
2 times, although the downstream secondary structures
exhibit differences. In the four snapshots, we see the tail
of the robust core slowly lengthening during the cycle, as
well as the detachment and disappearance of secondary
structures downstream. All snapshots shown are rescaled in
units of �ðtÞ, and the temporal evolution of the robust core
during the period depicted implies that we have not
reached an asymptotic self-similar edge state. This also
means that we cannot expect the next period of the cycle to
strictly retrace the path traced by the thick red curve in
Fig. 2. Scrutinizing the dynamics of low-speed streaks and
hairpin vortices in Fig. 3 and from a corresponding anima-
tion [21] also suggests a cyclic succession of events. At t �
650, that region downstream is dominated by a pair of low-
speed streaks. As time evolves, those streaks vanish slowly.
This corresponds to the phase where both �x and �y

decay. Note that the whole disturbance would have dissi-
pated if the amplitude at t ¼ 0 had been slightly lower (see
the relaminarizing trajectory in Fig. 2). Both �x and �y

increase again from t ¼ 1050 on, meaning that vorticity is
produced, corresponding to the formation of hairpin vorti-
ces apparent in Figs. 1 and 3. This increase of vorticity
could go on all the way towards the turbulent spot regime
(see the transitioning trajectory in Fig. 2); yet, in the
critical regime, �x decreases again from t � 1350 on.
New low-speed streaks form downstream, and the process
can start again. An early version of the same cycle is also
visible in Fig. 2 (top) and in the animation for 300 & t &
600. The quasicyclic variations in Fig. 2 are thus associated
to the streak dissipation or regeneration events downstream
of the robust core. The root of the instability responsible
for the regeneration of these secondary structures is not
local but has to be sought upstream, precisely where hair-
pin vortices are generated. Isosurfaces of negative �2 show
that neighboring streamwise vortices located near the
pinching region can reconnect to form hairpin-shaped
vortices lifted up above the low-speed streaks [22,23].
Hairpin vortices form as the finite-amplitude outcome of
streak instabilities of the subharmonic-sinusoidal or vari-
cose types [24]. In order to understand how vorticity can be
transferred from this region upstream to the region down-
stream while the structure moves as a whole, we quantify
the velocities of the vortical perturbations. Space-time
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FIG. 2 (color online). Top: Rescaled vorticity �x vs t and
ð�0t=�

�Þ. Bottom: Projection on the ð�x;�yÞ space. The edge

trajectory is plotted as solid red lines, and the diverging trajec-
tories are plotted in dotted blue lines. The symbols corresponds
to times t ¼ 550 (cross), 651 (open square), 1050 (filled square),
1350 (open circle), and 1640 (filled circle). The cyclical phase
650 � t � 1640 is plotted in thicker red lines.

FIG. 3 (color online). Side and top view of the quasicycle in rescaled spatial units. Four snapshots are shown, corresponding to the
nonrescaled times t ¼ 650, 1050, 1350, and 1640 marked in Fig. 2 (from left to right), with the same color code as in Fig. 1. The x
direction is squeezed by a factor of 2 for better visibility, with the flow from left to right.
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diagrams for �!zðx; tÞ were computed for all values of the
reduced wall-normal coordinate y� ¼ y=��ðxÞ. Velocities
can be extracted from these diagrams via linear interpola-
tion, yielding the quantity Ucðy�Þ shown in Fig. 4. The
lowest velocity is the signature of the streaks near the wall,
the others corresponding to convective streak instabilities
[18]. Both depart clearly from the Blasius profile, the
departure being maximal closest to the wall, as in the
turbulent regime [25]. Importantly, the hairpin vortices,
located above the streaks, travel fast enough to overtake
the core region. When far enough above the wall (at t ¼
650 and 1640), the vortices furthest on the side have
positive spanwise vorticity and can induce a local deficit
of streamwise velocity below their heads. New low-speed
streaks are thus born, replacing the ones that have decayed
earlier, while vortices move ahead of the structure and
dissipate. Figure 3 shows that the ejection and transport
of vortices give rise to a fluctuating leading edge position,
whereas the robust core moves steadily.

Using the technique of edge tracking, we have identified
a relatively simple localized structure able to sustain itself
against viscous decay in a spatially developing boundary
layer. As it travels downstream, this structure stretches,
adapting itself to the local characteristic length scale �� of
its environment. It is plausible that asymptotically long
edge tracking would lead to a perfectly self-similar edge
state. The root for the sustenance of the structure inves-
tigated here is located upstream, at the junction of two low-
speed streaks. For localized edge states in pipe flow
[13,15], strong spatial coherence suggestive for an SSP
[11] was found solely near the trailing edge, comparable
in energy to known (short-wavelength) traveling wave
solutions. The fluctuating leading edge appeared only as
a diffusive front, and the dynamic connection between the
two fronts remained obscure. In the present case of the
boundary layer, we also distinguish a robust and strongly
coherent structure upstream from a diffusive one down-

stream. The dynamic connection between the two fronts is
now clear: the fluctuating dynamics of the downstream
front can simply be interpreted as the transient outcomes
from convective instabilities occurring upstream and ad-
vected faster. These observations will prove useful for a
better understanding of the transition to turbulence via the
formation of localized patterns.
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