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Abstract—A novel temporal-spatial object classification neural
network model is proposed to improve the classification capability
of tracked objects. It takes queued points of tracked objects
using multiple frames as input, utilizes spatial and temporal
information from these points for sampling and grouping as
well as extracts hierarchical temporal-spatial features for target
classification. Experimental results on a proprietary 4D Imag-
ing Radar dataset and open-source 2D RadarScenes dataset
demonstrate that the proposed tracker-cued radar point-cloud
target classification method allows the model to learn meaningful
appearance and motion features from sparse radar points data,
and achieves accurate classification output as compared to a
baseline method, while being efficient to run on edge hardware
with limited resources.

Index Terms—Object classification, temporal-spatial sampling,
temporal-spatial grouping, temporal-spatial feature extraction.

I. INTRODUCTION

Automotive radar has been extensively utilized in cars
for many years as an essential sensor, primarily due to
its robustness in harsh weather conditions, its capacity to
measure Doppler information in the surrounding environment,
and its cost-effectiveness. Recently, developments in radar
technologies, coupled with the availability of open-source
radar datasets, have attracted increased attention to radar for
perception tasks in autonomous driving using deep learning.

Point cloud-based radar target tracking has been imple-
mented in many radar products [1], which can provide target
ID, position and velocity information at target level (repre-
sented as 2D bounding boxes or 3D bounding cubes). Classi-
fying the tracked targets is a vital component of this perception
stack. It allows a higher degree of scene understanding by
allowing the system to recognize objects present in the scene
as well as to provide essential information for downstream
tasks such as sensor fusion and motion control including
several deep learning applications [2].

There are existing techniques to classify objects based
on point clouds [3], [4], [5], [6], [7], [8]. However, these
techniques usually have certain limitations including:

o The sparsity of radar points presents challenges to classify
small targets, especially for vulnerable road users such as
pedestrians, bicyclists, and motorcyclists. Radar points on
vulnerable road users could degenerate into single-point
case, which cause most of the models to fail.

o Classification result would be sensitive to the segmenta-
tion quality in a single frame. When the segmentation
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quality drops, or tracking is inaccurate because of no
detection in a specific frame, inconsistent classification
results will be generated, even though the object is still
being tracked.

o Computation cost of these techniques are very high,
which makes these methods unsuitable to be implemented
on edge processors.

In this paper, we propose a novel solution which overcomes
the above mentioned limitations. We named our solution
Tracker-cued Point-cloud Target classification. Fig. 1 shows
a general pipeline of our proposed method. Our approach is
based on the intuition that combining spatial and temporal
information of points within a tracked object, should lead to
more robust classification output than using the information
from a single frame. The main components of our method
include:

« Point set queue, which contains both temporal and spatial
information of radar points.

o Hierarchical point set feature extraction achieved by
cascading multiple temporal-spatial point set feature ex-
traction modules.

o Temporal-spatial point set feature extraction modules that
comprise of a temporal-spatial sampling, a temporal-
spatial grouping, and a temporal-spatial feature extractor.

We evaluated our proposed classification methods on a
proprietary 4D imaging radar dataset from one of our collabo-
rators and the open-source RadarScenes dataset [9]. Our pro-
posed solution outperforms the baseline single frame classifier
[4] by providing an increase in classification accuracy of 8.6%
for a set of 5 classes, and 5.3% for the combined VRU/Vehicle
classes on the Imaging Radar dataset as well as an increase
in classification accuracy of 8.5% for the set of 5 combined
classes on RadarScenes dataset. The main contributions of
the paper are as follows: (1) We designed a classification
approach that uses multiple frames for classification of tracked
targets which showed a significant improvement in classi-
fication performance as compared to a baseline approach
[4] using single frame. (2) We proposed a novel temporal
sampling and grouping scheme that helps to extract diverse
and representative points coming from different spatial and
temporal locations as well as used a temporal-spatial feature
extractor to obtain hierarchical temporal-spatial features from
these points (3) We developed a classification NN that requires
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low memory and compute that is suitable for implementation
on real embedded automotive hardware.

The rest of this paper is organized as follows: Section
IT illustrates the approach used in this work. Section III
describes the various experiments performed with a discussion
on results. Section IV concludes this work.
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Figure 1: Overview of our model architecture.

II. PROPOSED METHOD

Our model is inspired from PointNet++ [4] which uses a
hierarchical feature extraction NN module for classification
of single frame lidar point cloud. However, we have several
key differences from this model which include: (1). Usage
of multiple frames of radar point clouds instead of single
frame lidar point cloud to account for the sparsity in radar
point clouds as well as to leverage additional radial cross
section (RCS) and Doppler measurement (2). Point set queue,
which contains both temporal and spatial information of radar
points. (3). Temporal-spatial point set feature extraction mod-
ules comprising of a temporal-spatial sampling, a temporal-
spatial grouping, and a hierarchical temporal-spatial feature
extraction.

A. Point Set Queue

The input to the our proposed model is a First-In-First-Out
(FIFO) queue that queues the points of a tracked object from
multiple frames. Fig. 2 shows the general concept. Points that
lie inside the bounding box of the tracked object are stored
for each timestamp for a total of T frames. Each point contain
six features: x, y, z, Doppler, RC'S, timestamp. Depending
on the scenario, each member of the queue can have different
number of points. The purposes of the queue design are:

o Accumulating more points for classification even if object
points are limited within one or all frames.

« Improving classification for extreme cases including zero-
point case where tracking is off (Fig. 3);

« Introducing relative timestamps to incorporate tempo-
ral information for points from different frames. The
temporal-spatial point set feature extraction module can
extract motion features using such timestamps.

B. Temporal-Spatial Point Set Feature Extraction

The points in the queue are then passed to the temporal-
spatial point set feature extraction module. This module is
essentially an encoder that generate temporal-spatial features
which are more reliable and accurate than spatial features
obtained using spatial encoding alone. Fig. 1 shows the

L e

Figure 2: A FIFO Point-set Queue with Timestamps.

UL

Figure 3: Case of zero-point when tracking is off.

placement of this module in the overall setup. Here, the
hierarchical temporal-spatial encoder includes multiple indi-
vidual temporal-spatial encoder stages cascaded in series. The
purpose of using this cascading approach is to obtain encoder
modules optimized for different characteristics. For example,
the first temporal-spatial encoder stage operate on a first
spatial scale (receptive field) optimized for detecting smaller
features, e.g., by applying a smaller grouping radius, whereas
the second temporal-spatial encoder stage operate on a second
spatial scale optimized for detecting larger features, e.g., by
applying a larger grouping radius. Numbers of samples and the
balance between spatial and temporal offsets is varied across
different encoder stages.

A more detailed view of each temporal-spatial encoder stage
is shown in Fig. 4. Here, the input is the point set queue or
abstracted point features obtained from the preceding encoder
module. This encoder module includes a temporal-spatial
sampling component, a temporal-spatial grouping component,
and a NN component which extract hierarchical temporal-
spatial features that are passed to the next stage of the module.

+Timestamp
vzt

sampled Points
Location
+Timestamp

Grouped Points JCILICIR Abstracted
Feature spatial Point Features
Feature
Extraction

Temporal- 5*'“7‘"’;';"'"" Temporal-
spatial spatial
Grouping
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Radar Point
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Figure 4: Temporal-spatial Point Set Feature Extraction.

C. Temporal-Spatial Sampling

Similar to [4], a sampling module is used to reduce the num-
ber of points for further processing. In the case of single frame
point cloud, a farthest-point-sampling (FPS) approach is often
used. The approach calculates the Euclidean distance from
the current selected point to all other points, then the point
with farthest distance is selected (sampled) as the next starting
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point. The goal of such sampling design is to preserve the
appearance information of the object during down-sampling
using only spatial coordinates. However, for our case, we are
storing points coming from multiple timestamps. Since the
object can be moving, using a sampling approach based on
only spatial locations may not be the best method.

We propose a temporal-spatial sampling module that is
designed to not only preserve the appearance, but also extract
potential object motion. In order to obtain the samples, we
modified the sampling distance by incorporating the timestamp
(t). The distance is defined as a function of (x,y, z,t) as in
Equation 1.

t—té) =1
t-ts (=)0 ; ts =2
d®
d© 4@ =

resizebox3.0in0.13ind, (x,y, 2,t) = /(x5 — )2 + (ys — y1)2 + (25 — 20)2 + Mts — t;)3

ey
where min(0, AT ax) <(ts — t;)<max(0, ATmax)

Here, ds(z,y,2,t) is the Euclidean distance to a point s
from the current sample, ¢+ which initially is the first sample.
The calculated distance is the square root of the sum of
the squares of offset components between points s and 7 in
each of the dimensions x, y, z, and t. Time values are in
units of relative timestamps, An adjustable parameter A sets a
balance between spatial components (x,y, z) and the temporal
component (t). For example, setting A to a large value ensures
that the time component \(t, — t;)? predominates over the
spatial components, such that the next sample is certain to be
selected from a different frame, assuming a timing constraint
is satisfied. The timing constraint limits points that are eligible
for selection as the next sample. If AT, is 1, for example,
then only points in the current frame or then immediately
next time-adjacent frame are candidates for selection as the
next sample. However, if AT,,,, is 0, then only points in
the current frame can be selected. Points outside the range
specified by AT, ., are ignored, with no distances calculated
for them, thus reducing the computational workload of the
system. Once a point is selected as a sample, that point
is removed from consideration from FPS operation going
forward, such that each point can be sampled only once.

Fig. 5 shows an example arrangement for sampling radar
points where AT, .. is 1. Here, the sample at AT'=1 (shown
by green arrow) is selected since it has the highest distance
from the current sample and is within the timing constraint.
However, samples at AT=0 and AT=2 are not selected since
the former has a higher distance than sample at AT=1 and
the latter is outside the timing constraint.

D. Temporal-Spatial Grouping

As proposed in [4], a local grouping is typically used
to exploit the local appearance structure of the point cloud
by grouping each of the sampled point with its neighbors.
A radius parameter “r” is used to defined the range of
neighborhood point search. To achieve a similar goal, but with
the context of temporal points, we scale the spatial radius r
by the timestamp difference AT Using this approach, points
that are both spatially and temporally local to each other are

prioritized to get grouped together.

(Xs, Vs, zs, ts)
At=1

Figure 5: Example of temporal-spatial sampling encouraging
temporal jumps.

Fig. 6 depicts grouping around a current sample point and
illustrates how the scaled radius affect grouping of neighbor-
hood points with different timestamp. Here, radar points are
represented in space (z,y, z) and points from different frames
are shown with different shading. Open circles represent
points in the same frame as sample, hatched circles represent
points in the immediately next frame (AT=+1), and solid
circles represent points in the second frame (AT=+2). Just
as the sampling is subject to timing constraints, so too is the
grouping. Timing constraints applied when grouping around
a current sample point are the same as those applied when
sampling from the same sample point using FPS. For example,
the current sample point may be associated with a AT}, 4,=+1,
because +1 was the AT}, applied when sampling from the
same sample point. Thus, grouping around sample for this
example is limited to the same frame that contains sample
and to the immediately next frame in time. Any points shown
with solid circles (AT,,q,=+2) are ignored for purposes of
grouping. Grouping proceeds by applying different spatial
radii for different frames. A first radius Rj,.q; is applied to
points in the same frame as sample and a second radius Rq;
is applied to points in the immediately time-adjacent frame
(AT, qz=+1). The grouping then groups together all points
in the same frame as of the sample within the radius Rjocq,
along with all points in the next frame within the radius R,4;.
In general, the farther away a point is in time, the smaller
the radius that is used for determining whether to include that
point in the group. Mathematically , the grouping radius Ra¢
for different values of AT, may be expressed as (2):

RAT = (Ag)AT : Rlocal (2)

where Rj,.q; is the grouping radius for AT'=0 (same frame)
and )\, is a scale factor. Both Rj,.q; and A, are adjustable
parameters. For example, different values of Rjocq; and/or A,
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are used by different encoder stages. Setting A, between 0 and
1 ensures that the grouping radius Rar becomes smaller for
larger values of AT.

~©0) —

O

r =A; -7

. T(z) =0

®
@ Q
(Xs, Vs, Zs, ts)

@

{At}={0,1}

Figure 6: Temporal-spatial Grouping by scaling grouping
radius.

E. Temporal-Spatial Feature Extraction

These temporal-spatial sampled points with their grouped
neighbors are passed to a NN module. This consists of a
series of a shared multi layer perceptron (MLP) layers to
extract temporal-spatial features for each sampled point. By
leveraging radar points across multiple frames, the temporal-
spatial encoder is able to to build denser and more robust
representations of features in the point cloud than could be
achieved by limiting sampling and grouping to individual
frames. These features at the current scale and are then passed
to the next cascaded temporal-spatial feature extraction module
to combine with the features extracted at next scale to obtain
hierarchical features.

FE. Classification Head

Finally, the hierarchical temporal-spatial features are passed
to the classification head which is configured to provide
output in the form of class labels. The classification head is
implemented using a series of MLP layers followed by a soft-
max layer to give the probability of each label. The object is
given the label of the class with the highest probability.

III. EXPERIMENTAL DATA AND RESULTS

A. Dataset

In order to assess the performance of our classifier, a pro-
prietary 4D Imaging Radar dataset is used. The 3D bounding
box annotations with corresponding class labels and track IDs
are available for each object in the scene. This dataset was

used because it provides height information and has a high
angular resolution that helps in obtaining a higher classifica-
tion performance. Labels include car, truck, pedestrian, cyclist
and motorcyclist.

To further validate our method, open-source 2D
RadarScenes dataset is also used which provides ground truth
annotation for moving objects with class labels and track IDs.
This dataset was used because it is a popular dataset used in
many automotive radar based research papers. Labels include
car, pedestrian, pedestrian group, two-wheeler and truck.

B. Metrics

The performance of the tracked object classification can
be measured by classification accuracy defined by (3). In the
context of radar for ADAS/AD applications, for quantitative
evaluation, the following accuracy metrics are measured:

o Multi-class accuracy: This is a single overall metric
which provide the classification accuracy between all
classes of interest (car, truck, pedestrian, cyclist, mo-
torcyclist for the Imaging Radar dataset as well as
car, pedestrian, pedestrian group, two-wheeler, truck for
RadarScenes dataset).

o VRU/Vehicle accuracy: The above mentioned classes
can be categorize into two groups: vulnerable road users
(VRUs) and vehicles. This metric measures classification
accuracy for these two merged classes.

TP+TN
ACCUTGCZJ_TP—}—TN—FFP-FFN 3)

where T'P represents true positive, T'N true negative, F'P
false positive and F'N false negative respectively.

C. Results

The performance and computation cost of the proposed
methodology comparing to the baseline method [4] is listed
in Table I, Table II for the Imaging Radar dataset and
RadarScenes dataset respectively. It can be observed that
there is a huge improvement in classification performance for
classifier using our methodology as compared to the baseline
method. Overall, the multi-class accuracy is increased by 8.6%
and VRU/Vehicle accuracy is increased by 5.3% for the Imag-
ing Radar dataset whereas the multi-class accuracy is increased
by 8.5% for RadarScenes dataset respectively. This is because
the higher number of frames, novel temporal sampling and
grouping and hierarchical temporal-spatial feature extraction,
used by our proposed model allow the classifier to extract
accurate and robust features that helps in classification of
different objects. Lastly, a higher classification performance
is observed on the Imaging Radar dataset than RadarScenes.
This is because the Imaging Radar dataset has a better angular
resolution than RadarScenes dataset and provides additional
height information.

Fig. 7 shows the confusion matrices for a classifier using
PointNet++ (Fig. 7a) and our proposed model (Fig. 7b)
respectively for all of the 5 classes. Here, we can see that
the accuracy is increased for each of the 5 classes using
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Table I: Performance comparison on the Imaging Radar

dataset.
Method PointNet++ | Our model
Multi-class Accuracy 87.5% 96.1%
VRU/Vehicle Accuracy | 92.7% 98.0%

Table II: Performance comparison on RadarScenes dataset.

Method
Multi-class Accuracy

Our model
89.0%

PointNet++
80.5%

our proposed model. The highest increase can be seen for
cyclist, motorcyclist and pedestrian classes. This is because
these VRU objects have lower number of points per frame
and have an irregular motion pattern that can confuse a single
frame classifier. Using multiple frames, allow the classifier to
utilize more points per object as well as capture the motion
of these VRU objects better, helping in classification.

Fig. 8 shows the confusion matrices for a classifier using
PointNet++ (Fig. 8a) and our proposed model (Fig. 8b) respec-
tively for all of the 5 classes. Here, we can see that the accu-
racy is increased for each of the 5 classes using our proposed
model. The highest increase can be seen for two-wheeler and
pedestrian group classes. This is because of the lower number
of points per frame large and the irregular motion pattern for
these classes that can confuse a single frame classifier. Using
multiple frames, allow the classifier to utilize more points per
object as well as to capture the motion of these VRU objects
better, helping in classification. A drop in accuracy is seen
for the pedestrian class where some pedestrians are assigned
as pedestrian group class. This may be due to the nature of
labels of the RadarScenes dataset where the difference between
pedestrian and pedestrian group label is that “pedestrian group
label is assigned where no certain separation of individual
pedestrians can be made” [10]. This means that for close-
by pedestrians, they are sometimes assigned as a pedestrian
group class instead of multiple instances of pedestrian class.
So, features learned for a pedestrian group is similar to the
features of multiple instances of close-by pedestrian class.
When multiple frames are used, there is a higher probability
that these close-by pedestrians will be classified as a pedestrian
group class because points from multiple frames will get
aggregated and these will produce features similar to that
coming from a pedestrian group class causing the classifier
to confuse them with pedestrian group class.

D. Robustness to Segmentation Quality

In real life ADAS/AD applications, segmentation errors of
tracked objects are almost inevitable due to many factors, such
as trajectory prediction errors, crowded scenes etc. For this
reason, being robust to different segmentation errors is another
key performance indicator of the classification module. From
the point cloud perspective, segmentation error could cause
two issues:

« Missing real object points;

Poinet++

TPoT
Overall Accuracy=0.875 Overall Accuracy=0.961

Il 256%  399%  1ss%  017%
a

091%  099%  021%  018%
600 935 441 ) 2

213 232

346% | 000%  427%  427%
180 [ 20 20

9so%  002% [RERPASM 1063%  004%
440 1 3659 438 2
04

14.45%  000% | 4L41% 0.00%
7 [ 212 )

000%  000%  0.00%
o ] o

Truck

512%  002% RIS
1 4

166%
235 76

True label

Motorcyclist  Cyclist  Pedestrian

True label

Motorcyclist  Cyclist  pedestrian

293%  000%  16.60%
15 0 85

3000%  143% | 4143% | 1429%  12.86% 870%  000%  1884%  507%
2 2 58 20 18 2 3 26 7

00

" s ’ v i " ‘ -00
car Tk Pedestrian  Cyclist  Motorcyclist. cr Truck
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I
(a) PointNet++ (b) Our Model

Figure 7: Confusion Matrix for the Imaging Radar Dataset.

Overal Accuracy=0.890
”””” .

(a) PointNet++ Classification. (b) Our Model

Figure 8: Confusion Matrix for RadarScenes Dataset.

« Including noise points (points that does not belong to
object);

The problem is illustrated by Fig. 9. Blue circles are real
object points, while red triangles represent noise points. When
the tracker output (red cube) is far from the real location (blue
cube), real object points are lost, and noise points are added
to the input. This results in a disrupted point cloud that may
confuse the classifier.

orig
vimeas

edesftnan, 1.0

4.5

- 4.0

Z Label

35

Figure 9: Point segmentation errors in tracking.
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To measure the segmentation quality of point cloud, we use
the V-measure metric (as proposed in [7]), which includes the
following two scores (sub-metrics):

« Homogeneity score: indicates the portion of real object

points included as as shown in (4).
H(Y;true|Y;7Ted)
H (Y;frue
o Completeness score: indicates the portion of real object

points to the total points (including noise) as shown in

).

4)

Homogeneity =1 —

H (Ypred
To reflect the overall quality, V-measure is used which is

the harmonic mean between homogeneity and completeness
scores. It can be calculated by (6).

Completeness =1 —

®)

2 - Homogeneity - Completeness
V — Measure = - (6)
Homogeneity + Completeness
Fig. 10 gives a comparison of the performance between the
baseline method and our proposed model for tracked objects
with different V-measures. Comparing to the baseline method,
the proposed methodology is more robust to different levels of
segmentation errors. This effect is visible especially for lower
V-measure since the point cloud is severely disturbed for these
cases causing the baseline method to fail. On the other hand,
our proposed model is able to retain the performance because
it can take advantage of multiple frames aided with temporal
sampling and grouping.

Robustness to Segmentation Quality

Figure 10: Robustness to segmentation errors.
E. Resource Requirements

Table III gives a comparison of the resource requirements
between the baseline classifier and our proposed model. It can
be seen that our model has a much lower resource requirement
with a reduced memory footprint of around 5 times (78k
instead of 382k activations), reduced parameter requirement
of around 6 times (20k instead of 119k parameters) and a
reduced compute requirement of around 30 times (28k instead
of 728k multiply accumulates (MACs)). This can be achieved
because the temporal-spatial sampling and grouping modules
are highly efficient in extracting features from radar point
cloud data. Therefore, the neural network part in both the
feature extraction module and the classification head can be
extremely lightweight.

Table III: Resource Requirements for a Single Inference

Method PointNet++ | Our Model
Memory Footprint 382k 78k
Number of Parameters 119k 20k
Number of MACs 728k 28k

IV. CONCLUSION

In this work, we propose a custom object classification
NN model that uses multiple frames to solve the problem of
target classification. A queue of points coming from multiple
timestamps is passed to a hierarchical temporal-spatial feature
extraction module using a temporal scheme for sampling and
grouping. The output of this module is passed to a classifica-
tion head that outputs labels. Applying our strategy showed
a consistent improvement in classification performance as
compared to a baseline classifier using PointNet++ [4]. More-
over, our method is more robust to segmentation errors as
compared to the baseline method because of using multiple
frames. Lastly, the overall classification methodology requires
much less memory and processing power on the die which is
extremely important when deploying to edge processors.
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