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A B S T R A C T   

The present work discusses an innovative approach to metamodeling in reliability that uses a field-transversal 
rationale. Adaptive metamodeling in reliability is characterized by its large spectra of models and techniques 
with different assumptions. As a result, the reliability engineer is frequently faced with the highly challenging 
task of selecting an appropriate model or technique with limited a priori knowledge about the performance 
function that defines the problem of reliability. 

To tackle this challenge, a complement-basis is proposed for adaptive metamodeling. It consists in using a 
batch of multiple metamodels or techniques that, accordingly to an activation criterion, are selected to solve the 
reliability analysis. This activation is set to depend on the model synergy with the problem in-hand. In the 
present work the leave-one-out loss is applied as evaluator of compatibility, and results show that the absolute 
loss successfully performs as an activator. 

A metamodel-independent learning approach and stopping criterion are implemented to study the proposed 
approach in five representative examples. Results show that the complement-basis allows to increase the effi-
ciency of the reliability analysis through the selection of adequate metamodels, which is indicative of the un-
tapped potential that further transversal research may add to metamodeling in reliability analysis.   

1. Introduction 

In recent years research in adaptive metamodeling for reliability 
analysis has increased. A metamodel surrogates the limit state function 
that defines the problem of reliability and, because in reliability the 
limit state function needs to be evaluated multiple times, it significantly 
reduces the effort that is required to complete the reliability assessment. 
When an accurate surrogate of the true performance function is set, 
reliability analysis becomes virtually effortless. Hence, metamodeling is 
an effective bypass technique to solve problems that are computation-
ally challenging in reliability engineering, such as, reliability-based 
design optimization [1–4] or time-variant reliability analysis [5–7]. 

In the context of metamodeling for reliability, adaptive approaches 
have gained particular prominence due to their superior performance. 
Adaptive metamodeling involves the construction of measures of im-
provement (usually using an unsupervised learning technique) that 
yield accurate cost-effective surrogates. In the past different meth-
odologies have been introduced to perform reliability analysis with the 
minimum number of performance function evaluations that guarantees 
accurate estimations of the probability of failure (Pf). As a result, one of 
the characteristics of the current state-of-art in the field is the existence 

of a plurality of metamodels and approaches to solve the same problem, 
where only few works transversally research between different ap-
proaches and models [8,9]. Due to the existence of a spectrum of me-
tamodels and approaches, it is also challenging for a reliability engineer 
to select a priori, frequently without knowledge about the limit-state 
function form, the most adequate metamodel for the reliability calcu-
lations of a certain problem (in particular if the performance function is 
implicit). Simpler metamodels (e.g. quadratic polynomial) are expected 
to perform adequately for low complexity limit-state functions, while 
more complex metamodels (e.g. Kriging) are expected to perform better 
for highly complex functions. It is not uncommon for the metamodel 
capability to tackle complex functions to come attached with added 
effort in the analysis from the understanding and implementation per-
spectives. It is then of interest to establish some measure of compat-
ibility or hierarchy in metamodeling which may work as a black-box 
evaluator of an adequate metamodeling approach. 

In the present paper, the demand to establish a comparative no-
tional improvement in regard to the type of metamodel used is re-
searched. An innovative approach is proposed in order to tackle pro-
blems of reliability analysis that draws its roots from the complement 
system in immunology [10]. The parallel idea is that of having active 

https://doi.org/10.1016/j.ress.2020.107248 
Received 21 May 2020; Received in revised form 24 August 2020; Accepted 21 September 2020    

⁎ Corresponding author. 
E-mail address: rui.teixeira@ucd.ie (R. Teixeira). 

Reliability Engineering and System Safety 205 (2021) 107248

Available online 24 September 2020
0951-8320/ © 2020 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).

T

http://www.sciencedirect.com/science/journal/09518320
https://www.elsevier.com/locate/ress
https://doi.org/10.1016/j.ress.2020.107248
https://doi.org/10.1016/j.ress.2020.107248
mailto:rui.teixeira@ucd.ie
https://doi.org/10.1016/j.ress.2020.107248
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2020.107248&domain=pdf


and inactive models (equivalent to immune defence actors) that tackle 
the performance function (parallel to invasor) depending on their ac-
tivation status. Activation and deactivation is triggered by a measure of 
compatibility with the performance function. 

The challenge of active learning using different metamodels is 
tackled by the introduction of learning and convergence considerations 
that are metamodel-independent. [11] has previously addressed the 
demand for universal techniques of learning by introducing three me-
tamodel-independent learning functions. In the context of compat-
ibility, ensembles of metamodels have been developed for multi-meta-
model reliability analysis [9]. [12] elaborates on this idea in the 
selection of metamodels, by studying hierarchy through the influence of 
the Kriging parameters and assumptions in the metamodeling of a wind 
turbine. The present research is in-line with the ideas and concerns 
raised in these works. 

It was highlighted that recent trends of adaptive metamodeling in 
reliability analysis are characterized by an increasing number of tech-
niques and approaches. Five main types of metamodels can be dis-
tinguished in the context of reliability analysis: response surfaces (e.g., 
linear regression with polynomial or radial basis functions) [13,14], 
Polynomial Chaos Expansions (PCE)[15–17], Support Vector Machines  
[18,19], Artificial Neural Networks [20], and Kriging models [21,22]. 
In adaptive metamodeling for reliability, many different methodologies 
that use these different metamodels emerged in recent years. [13,23] 
propose multi-stage adaptive implementations with response surfaces 
that use a quadratic polynomial basis function and nested Latin Hy-
percube Sampling (LHS). [14] proposed an adaptive response surface 
that uses radial basis functions and an iterative optimization to enrich 
the experimental design. [15] proposes the usage of sparsity in meta-
modeling for reliability, applying it to PCE. [13] extends then the 
concept of sparsity when applying polynomial basis functions. [24] uses 
an adaptive reduction of the experimental design (ED) dimension. And,  
[25] researches on metamodeling definition on an alternative random 
variable space. The spectrum of methodologies for reliability analysis 
increases even further when addressing the different learning functions 
and stopping criteria used. A learning function uses a notion of im-
provement in order to sequentially improve the metamodeling ap-
proximation to the performance function. The efficiency of active 
learning that uses this notion of improvement generated a proliferation 
of learning functions for reliability analysis, such as, the Expected 
Feasibility Function (EFF) [26] the U-function [21], the Least im-
provement function [27], the adapted U with Failed bootstrap dupli-
cates [17], the universal learning function of [11], the cross-validation 
learning of [28], the failure pursuit sensitivity of [29] or the reliability 
expected improvement function [30]. At the same time, further layers 
of complexity have been added to existing applications by the con-
sideration of further complementary in learning through the combina-
tion of different techniques that accelerate the reliability analysis, such 
as importance sampling [22,31,32], usage of new measures of con-
vergence and accuracy [33–35], parallel sampling [36,37], candidate 
sample sizes and domain [36,38–40], or learning function randomisa-
tion [41]. Moreover, the application of further sampling and hybrid 
techniques in adaptive approaches [43–45], further extends this batch 
of alternatives. Kriging models have been particularly relevant in the 
context of developing new techniques given that, as they enclose an 
intrinsic measure of uncertainty, they are well suited as self-improving 
functions [42]. 

This brief discussion allows to rapidly perceive the large variety that 
exists in adaptive metamodeling implementations in reliability analysis, 
which makes it challenging for a reliability engineer to grasp the full 
extent of this field. It was highlighted that only few works explore a 
transversal approach to metamodeling and address the challenge that 
relates a metamodel to the problem in-hand. The purpose of the present 
work is that of addressing this challenge. For this, Section 2 introduces 
the topic of reliability analysis using metamodeling, and discusses some 
of the models used for the effect. Section 3 presents the idea of a 

complement-basis to metamodeling, discussing concepts of active 
learning such as, activation and deactivation, learning and stopping 
criterion. Section 4 presents five examples of application of the com-
plement-basis to solve reliability problems, and discusses implementa-
tion and results. Finally, the main conclusions of the work developed 
are drawn in Section 5. 

2. Reliability analysis using metamodels 

In the general framework for time-invariant reliability analysis of 
scalar functions, the probability of failure (Pf) is expressed as the 
probability P[ · ] of the performance function g(x) taking values smaller 
or equal than 0. The probability of failure is then calculated as, 

= =P P g x f x dx[ ( ) 0] ( )f g x x( ) 0 (1) 

where fx(x) is the continuous joint distribution of d input variables, x (d 
is the dimension of the space of x). g(x) divides x in two domains: the 
safe-domain, g(x) > 0, and the failure domain, g(x) ≤ 0. 

One of the elementary methods to evaluate the cumbersome integral 
in Equation (1) is to classify g(x) according to this division in, 

=
>

I x
if g x
if g x

( )
0, ( ) 0
1, ( ) 0f

(2) 

where If is a binary performance evaluator of failure that is If(x) = 1 in 
failure and If(x) = 0 in non-failure. A simple statistical estimator of Pf 

that uses If can be obtained with the Monte Carlo Sampling (MCS) 
technique and evaluating the following ratio, 

=
=

P P
N

I x^ 1 ( )f f
MCS i

N

f i
1

MCS

(3) 

where NMCS is the total number of random xi, drawn accordingly to fx, 
used to assess the classification of If. The coefficient of variation (CoV) 
of this calculation for a sample size of NMCS is, 

=CoV
P

N P

1 ^

^P
f

MCS f
f̂

(4) 

The low values that are expected for Pf, and consequently large NMCS 

requirement, constitute a challenge in terms of the analysis time and 
effort needed to set a meaningful IF sample. In order to alleviate the 
calculation of this integral metamodeling is one of the commonly ap-
plied alternatives. Metamodels ( ) as black box-functions that, in re-
liability, approximate the costly to evaluate g(x) with a predictor model 
G(x) appear in different forms, with different contexts of application 
and assumptions. In the present work, three main types of metamodels 
are discussed in order to research the complement-basis approach; 
linear regression with polynomial functions, Polynomial Chaos Expan-
sion (PCE), and Kriging. 

2.1. Linear regression with polynomial functions 

Linear regression with polynomial functions are the simplest of the 
existing metamodeling approaches. They are defined as a linear com-
bination of p ( +p IN ) basis functions f f[ , , ]p1 that fit an ED and its 
respective g(x) evaluations, using weight values a. 

=
=

G x a f x( ) ( )
h

p

h h
1 (5) 

where the =a a a[ , , ]p
T

1 is the set of weight factors that will depend on 
an ED [ =X x ,ED =Y g X( )], of size m (m points), used to support the 
definition of G(x). The ED encloses all the information about g(x) that is 
used to define G(x) and has critical importance for the metamodeling 
accuracy. In metamodeling X and Y are respectively defined as a sample 
of m support points in x and their respective evaluations in g(X). 
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The basis functions of G(x) may appear in different forms. The most 
common form is the usage of up to q degree simple polynomials of type 
x ,h

0 x ,h
1 x ,h

2 xh
q for =h p1, , , which is the basis of polynomial regres-

sion. Definition of a commonly uses fitting techniques such as the least 
square regression. Despite limited to some extent (e.g., overfitting in 
higher order basis functions; or minimum ED size dependence on a), 
Polynomial functions are appealing due to their relative simplicity. 

2.2. Polynomial Chaos Expansion 

Polynomial Chaos expansions (PCE) are a metamodel that is able to 
expand finite variance g(x) processes using a combination of multi-
variate basis functions that are orthogonal with respect to the joint 
probability density function fx of input variables x. PCE dependence on 
the stochastic inputs and mentioned orthogonal relationship allow g(x) 
to be well represented by a proper set of basis functions, which perform 
efficiently in the capture of the global stochastic behaviour of the re-
sponse [8]. 

Considering that x is characterized by its fx, the polynomial chaos 
expansion of g(x) (on a truncated basis) can be simply written as 

=
=

G x a x( ) ( )
i

P

i i
1 (6) 

where ai are a series of deterministic coefficients and Φi(x) is a basis of 
multivariate orthonormal polynomials. These multivariate basis poly-
nomials are defined as a tensor of the univariate polynomials related to 
variables =x x x[ , , ]d1 . Definition of =a a a[ , , ]P

T
1 also uses a sample 

of ED points fitted with established techniques, such as, least squares 
regression. 

2.3. Kriging 

Kriging models, or Gaussian process models, G(x), are a particular 
case of metamodel that interpolates g(x) considering that G(x) predic-
tions follow a Gaussian process and approximating the true response 
function g(x) as 

= +G x f a x Z x( ) ( ; ) ( ) (7)  

= + +f a x a f x a f x( ; ) ( ) ... ( )p p1 1 (8)  

=Z x C x( ) (0, ( )) (9) 

where f(a; x) is a polynomial regression in its standard form with p 
( +p IN ) basis trend functions fp(x) and p regression coefficients a to be 
defined; with p being the number of coefficients that defines the ap-
proximation intended in the regression. Z(x) is a Gaussian stochastic 
process with zero mean. This Gaussian stochastic process is defined 
with basis on a covariance matrix (C) that relates generic x points by 
using a constant process variance (σ2) and a correlation function R(x; θ) 
(set on an incremental form of type x xi in most cases of reliability, 
but that can take other forms), and using θ hyperparameters (frequently 
one for each dimension of the space, but that also function of the cor-
relation used). Such as for the previous metamodels, an ED is required 
to define G(x). 

With Kriging as a metamodel, a prediction of the response for a 
realisation of a random point x in the space is given by an expected 
value component (μG(x)) and a standard deviation component (σG(x)). In 
X, =µ YG X( ) and = 0G X( ) . 

3. The complement-basis approach to metamodeling 

It was highlighted that the idea of a complement-basis in metamo-
deling has its roots in the concept of complement system in im-
munology. The complement system uses a series of activators that en-
able actors in a batch to change from passive to active depending on the 
specifications of the problem that needs to be tackled (e.g., in 

immunology the problem can be a intruder molecule, while in relia-
bility the reciprocate of this is g(x)). 

Figure 1 presents the conceptualization of the complement-basis 
approach to metamodeling. When addressing the problem of defining a 
surrogate of g(x), different models can be applied (each with its as-
sumptions). Reliability engineers are faced with the complex nature of 
the problem of metamodeling as soon as they are required to choose a 
model from a batch of existing models and techniques for reliability 
analysis. The idea of the proposed approach is that of iteratively se-
lecting a metamodel considering its compatibility with the limit-state 
function. Depending on the function to be addressed, the complement- 
basis may trigger active model(s) for reliability analysis from a com-
plement-batch, while leaving the remaining models in a dormant state. 
In some state of the iterative approach metamodels can move from 
being passive to active and vice-versa, accordingly to some activator or 
activation criteria. 

With such implementation it is possible to create a black-box ap-
proach without any prior assumptions on the limit-state function. 
Moreover, it can be adapted to be applied in other fields of metamo-
deling, other than reliability. It is noted also that the degree of com-
plexity that can be used in a complement-basis may depend on the 
number of activators, passive and active models and their inter-re-
lationship. Such idea can be used to create complement cascades (or 
chain activation) that may trigger an ensemble of metamodels. It is 
noted however that [46] identified limited gains when considering 
more complex metamodel interactions (e.g. weighted ensembles) in 
detriment of using the most suitable metamodel according to an ap-
propriate surrogate selection criterion. As a result, such implementa-
tions that may trigger more complex model interactions may need to be 
discussed in further detail. 

3.1. Multi-metamodel complement-basis 

In the present work, in order to illustrate how to construct a com-
plement-basis for reliability analysis, a basis with four metamodels is 
discussed. A quadratic and cubic polynomial linear regression, a sparse 
Polynomial Chaos Expansion (PCE) with P ∈ [2, 5] and a Kriging model 
with constant trend and Gaussian correlation function are considered to 
build a complement-basis for active metamodeling. These models are 
selected in order to be representative of different types of metamodels 
with different assumptions. The quadratic regression is representative 
of a simple model, the cubic regression is a slightly more complex 
model but that is expected to be less stable, the PCE is an even more 
complex model that uses a more involved basis and that is expected to 
produce an efficient global approach to smooth functions, and the 
Kriging (with constant trend and anisotropic Gaussian correlation) is an 
interpolator that is expected to perform when the limit-state function 
becomes highly non-linear. The basis as defined may be applied to solve 
low to moderate dimension reliability problems. Other models can be 
added to the basis, and its definition may depend on the problem being 
analysed. One particular instance of relevance in this context is the case 
of reliability problems that involve a large number of random variables. 

Fig. 1. General description of the complement-basis approach to metamo-
deling. 
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For high-dimensional problems, which are a highly relevant topic in 
metamodeling for reliability, it may be of interest to expand the basis to 
enclose models such as support vector machines. These have synergy 
with high dimensional problems and were shown to perform with ap-
propriate selection of kernel type and estimation method [47]. An al-
ternative is also to expand the consideration of different parameters for 
each model of the basis, using a similar rationale to the applied in [12]. 

An example of a more involved basis can be found in the work of  
[46], where 24 models are considered to study global surrogate selec-
tion. Considering more metamodels in the basis is expected to increase 
the capability to approximate g(x). However, it is necessary to infer the 
extent to which more models will increase the prediction accuracy and 
will not become redundant in relation to the additional effort that is 
needed to use a larger basis (e.g. calculation of compatibility measures 
in the present case). 

Figure 2 presents an implementation of a complement-basis using 
the basis selected. The complement-basis has two states, in activation 
and deactivated. In the beginning of a reliability metamodeling pro-
blem the complement structure is in activation. At this point any me-
tamodel can be applied to surrogate g(x). This is illustrated by the 
colours of the metamodels in Figure 2. A measure of compatibility is 
then required in order to set the active model. This measure is eval-
uated for the whole basis and activates the most suitable metamodel. In 
the illustrative example, it is possible to see that at iteration (i) = 1, the 
PCE becomes the active model while the remaining models become 
passive (blank state). While the active metamodel improves at new 
iterations according to some notion of improvement, the activator is 
disabled. This occurs for the PCE in the passage from =i 1 to =i 2. If 
such does not occur (after learning of =i 2), the activator is enabled 
and the measure of compatibility is used to reassess if an alternative 
metamodel is now more compatible with the function being analysed. 
Accordingly to this, it is possible to infer that in iteration 3 the Kriging 
is activated, and the PCE deactivated, as a result of the re-assessment of 
compatibility for the complement-basis. The Kriging is then enriched, 
and its compatibility reassessed, as it increases the Kriging stays active 
in the following iteration. 

Some questions emerge when setting the approach described. In 
particular, two implementation aspects need to be discussed: the mea-
sure of compatibility (that will evaluate the adequacy of the metamo-
dels in the basis to surrogate g(x)), and the active learning approach 
(the adaptive implementation applied to the basis selected and the 

halting evaluator that will guarantee an accurate surrogate). In the 
present implementation, metamodel-independent measures of activa-
tion and learning are considered. 

3.2. Measure of compatibility 

The average Leave-one-out (LOO) loss is applied as a measure of 
compatibility in order to select the active metamodel in the adaptive 
implementation. The interest of the LOO is that it does not demand 
additional g(x) computations and it can be built using exclusively the i- 
th ED. 

The LOO is a cross-validation technique that consists in measuring 
the loss of a rebuilt metamodel X Xk*

for each of the m ED points. In 
each re-definition a subset of the X (X k*) that excludes the Xk with 

=k m1, , is used to re-build as X Xk*
. Then the m X Xk*

are 
used to define the respective loss of Xk ( k) in prediction. The average 
LOO loss (ϵLOO) is then given by 

=
=m

1
LOO

k

m

k
1 (10)  

The LOO is almost an unbiased estimator of error [48], and as such 
is expected to perform as a comparative measure of compatibility of the 
candidate model from the complement-basis to approximate g(x). [46] 
showed in a comparative study that this is verified in practice, inferring 
that the LOO with squared residual loss (here referred to as L2 loss 
function) is an efficient measure for an adequate selection of global 
surrogates. [9] applies this same LOO to weight on the adequacy of 
different metamodels in an ensemble approach. However, in the present 
example the LOO is applied with absolute deviation loss (here referred 
to as the L1 loss function), given by 

= g X G X| ( ) ( )|k
k X X kk*

(11)  

Most adaptive metamodeling techniques for reliability analysis in-
tend to create highly populated ED near the failure region in order to 
capture the details of it. As a result, in the selection of an active me-
tamodel in an adaptive implementation the error of losing one point in 
the ED is more likely to be smaller in the failure region where there is 
more information available about the true function. Hence, if a meta-
model has in average a small absolute LOO error then it is expected to 
be an efficient surrogate of the failure region. Consideration of a 

Fig. 2. Illustrative example of complement-basis approach functioning. Note: the figure is only illustrative and is not the result of any implementation procedure.  
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measure of error for selection that minimizes the influence of points 
with small error (e.g., through the square of the error) and that prior-
itizes large errors (expected to occur in less populated regions or areas 
of the x space) may be counter-productive. This is the reason for the 
choice of the L1 loss function to be preferred for the complement-basis 
activation in detriment of other widely implemented measures for LOO 
cross-validation in metamodeling, such as the L2 loss function. The 
intent is therefore that of capturing the trend of the error in the region 
of interest. 

Figure 3 illustrates the relevance of this consideration. It is possible 
to see that for two metamodels the L1 loss function prioritizes the 
Kriging, and that the L2 loss function the PCE. In this case of a relatively 
complex g(x) with four failure regions, for the presented ED the Kriging 
approximates better the failure region (Kriging produces an error of less 
than 1% in Pf prediction, whereas the PCE estimates Pf with an error of 
18%). The absolute error in the points near g(x) = 0 is mostly green for 
the Kriging, whereas, for the PCE, even in populated areas, it is re-
currently yellow or mangenta. When using the L2 loss these smaller 
errors are further minimized, and less important ED regions for the 
problem of reliability start weighting more on the selection of the active 
metamodel. 

To conclude the discussion on the measure of compatibility that sets 
the activation, simpler models may be activated if the ϵLOO and the error 
in the Pf estimation are similar (e.g. within an assumption of negligible 
or comparable deviations) when compared with the more complex 
models in the basis. It is noted that the LOO already introduces some 
sense of hierarchy between models. 

Quadratic and cubic response surfaces are considered to have lower 
hierarchy than the Kriging and PCE which are considered to have si-
milar hierarchy (Kriging as a surrogate of local non-linear functions and 
PCE as a global surrogate of smooth functions). Therefore, if one of the 
latter is activated, the LOO and Pf estimation of the simpler models 
should be considered in order to infer if the metamodeling can proceed 
with a simpler and less expensive to compute model. Section 5 further 
discusses this consideration in the implementation of the complement- 
basis to the representative examples. 

3.3. Active learning approach 

It was highlighted that recent developments in adaptive metamo-
deling for reliability analysis were characterized by an emergence of 
multiple learning functions for reliability applications. In the context of 
using a complement-basis, a measure of learning that is transversal to 
different types of models is of interest. However, this is not mandatory 
and different functions can be applied with distinct models (e.g., com-
plement-basis with AKMCS-EFF [26] and bootstrapped PCE [17]). 

[11] previously tackled the need for learning approaches that are of 

transversal application to all metamodeling techniques by proposing 
three learning functions that depend on: the Euclidean distance, a 
construct of variance, and a hybrid of both. The learning approach in 
the present implementation follows the requirements identified in this 
work. In order to evaluate convergence fo the surrogate, analysis of the 
reliability problem distribution function is proposed to evaluate the 
stopping condition for the enrichment of the ED and accurate estima-
tion of Pf. Convergence is considered to be attained when the tail region 
or region of interest in the tail of the performance function is con-
verged. 

3.3.1. Convergence of the density region of interest for Pf prediction 
The problem of reliability is that of characterizing G(x) such that Pf 

can be accurately estimated. In terms of adaptive metamodeling this 
problem is solved in different forms; it can be attained solving a pro-
blem of accurate classification of If(x) [21,49], or pursuing to converge 
the estimation of Pf [27,34]. 

The pursuit of establishing a G(x) that accurately approximates the 
reliability calculations for g(x), can be translated to a search for the P 
[G(x) ≤ 0] ≈ P[g(x) ≤ 0] prediction. Therefore, the problem of re-
liability can be rewritten as a problem of finding the probability density 
function of G(x) (fG(x)) such that the previous approximation is true. 
Using this consideration, an universal measure of convergence for 
metamodeling is proposed in the present work. It uses knowledge of a 
region of interest in tail of the probability distribution function in order 
to infer on the improvement of the complement-basis approach. A 
metamodel allows the definition of fG(x), where Pf represents the lower 
tail given by G(x) ≤ 0. As a result, the problem of reliability can be seen 
from a similar perspective to the problem of finding extreme occur-
rences in probability theory. 

There are different techniques to approximate and evaluate the tail 
region of a probability density function [50]. One that enables a sys-
tematized approach is truncation of the density function at non-ex-
ceedance percentiles u of interest [51], mitigating the influence of the 
main body of the distribution in the approximation of the tail or region 
of interest. 

Being Gu ⊂ G(x) the truncated G(x) at percentile u1 and u2, with 
u2 > u1 and =u u u ,2 1 and fG(x) and fx respectively the distribution 
function of G(x) and x random variables, then 

=f x dx f x dx( ) ( )
x G G x x( )u u (12) 

that is, the truncated distribution function f x( )Gu of fG(x) conditional on 
Gu encloses the same probability content as the truncated fx at the same 
threshold percentiles, and both are equal to u. 

A measure of shift between two probability functions fx and qx can 
be given by δ [52], expressed as follows, 

Fig. 3. Comparision of LOO using L1 and L2 loss functions applied to a problem of reliability analysis.  
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= f x q x dx| ( ) ( )|x x (13) 

and translated in metamodeling to the total variational change in 
probability content (δP) in iteration i from f x( )Gui 1

to f x( )Gui
as 

= f x f x dx1
2

| ( ) ( )|P G Gu
i

u
i 1 (14) 

where, as in [52], the factor 1
2

is considered for = 1P in the case where 
no overlap exists between densities. δP represents the shift that occurs 
in the truncated region accordingly to u in iteration i, considering the 
effects of the learning by comparing fGu

i and f ,Gu
i 1 i.e. the truncated 

fG(x) distribution before (i 1) and after (i) the metamodel is updated. 
Based on Equation 12, it is possible to construct a measure of ac-

curacy for the truncated u by considering a weighting factor that con-
siders the amount of probability that is enclosed under the truncated 
region, 

= f x f x dx f x dx1
2

| ( ) ( )| ( )P G G G x x( )u u
i

u
i

u
1 (15) 

and a statistical approximation of this measure can be obtained with 
MCS, 

=
=

N
N

f x f x^
2

| ( ) ( )|P
u

MCS o

n

G o G o
1

u u
i

u
i 1

(16) 

with n being the number of discrete points used to approximate the 
integral of Equation (14), f x( )G ou the corresponding value of the mass 
function, and Nu the size of the subset of NMCS that encloses the same 
probability of u. ^Pu can be related to Pf using u. For any u, ^Pu evaluates 
the sensitivity of the metamodel region of interest to additional in-
formation enclosed in the ED or learning procedure. 

If G(x) is a perfect metamodel of g(x) then the difference in the 
distribution of G(x) and g(x) is 

=G x g x^ [ ( ) ( )] 0Pu (17) 

and this knowledge is used to infer that as the number of i increase, G(x) 
is expected to be progressively a closer approximation of g(x), and 
hence, G x G x^ [ ( ) ( ) ]P i i 1u is expected to average to 0 in successive i 
(as new ED points are not expected to change the distribution of G(x)). 

Figure 4 -(a) illustrates the rationale behind ^Pu using the tail region, 

where both distribution functions enclose the same probability under 
the curve, u, but different estimates of Pf with ^

Pu representing the 
maximum value relative to u that one estimate may diverge from the 
other. If the ED is enriched and ^

Pu remains unaltered, then it is likely 
that the new points have not brought relevant information to the pro-
blem of estimating Pf. 

Analysis of the density function in a region of interest is more in-
formative than inference on Pf, because it also provides information on 
the rate of change of G(x). Two distinct density functions may generate 
the same value of Pf however, having large divergence in their tail 
shape (e.g., one having long tail with very extreme values, while the 
other has a shorter tail but with large cumulative density, and lower 
extreme values). The example presented in Figure 4 - (b) depicts such 
situation. Both truncated distributions enclose the same probability of 
failure, however, present a difference in the distribution of densities of 
17%. Therefore, even considering that both give similar predictions of 
Pf, the change in G(x) may justify further learning. 

It is noted that different values of u to truncate the probability 
function can be applied, and this may depend on the implementation. In 
reliability, u must be set to relate to Pf in order to enclose the region of 
G(x)=0 and to capture more information about: the stability of Pf and 
how the region of interest and its vicinity are characterized. 

If in consecutive i, changes to the failure region prediction are sti-
mulated and ^Pu remains relatively unaltered then the representation of 
the density region of interest is expected to be robust. 

3.3.2. Learning function 
In order to set an adaptive ED that stimulates changes in the region 

of interest, the minimum of the prediction weighted by the Euclidean 
distance, such as proposed by [11], is used to evaluate new candidates 
to enrich the ED. [11] results show that limited gains are achieved with 
more involved metamodel-independent learning functions (estimating 
measures of uncertainty). 

If Nc candidates identified as =x x x[ , , ]j N1 c are considered, then 

= =d d j Nmin( ), 1, ,j X cj (18) 

is a measure of distance for the j candidate, where dX is a vector with 
the Euclidean distance from the candidate to existing ED points calcu-
lated using, 

=
= = =

d x X x X x X( ) , ( ) , , ( )X k

d
j
k k

k

d
j
k k

k

d
j
k

m
k

1 1
2

1 2
2

1
2

j

(19) 

and the candidate xc to be added to the ED is defined as 

=x
G x

d
arg min

| ( )|
c x

j

j
2j

(20) 

This criterion uses local exploitation using the G(x) prediction, and also 
prioritizes exploration using the Euclidean distance. The addition of the 
square of the distance enhances exploration of the space (it is noted that 
it may be removed for large d problems, or replaced by a compatible 
measure of distance in large d). 

Low-discrepancy samples are implemented to generate the set of xj 

points. [11] highlighted the interest of having an optimization proce-
dure in the x space in order to find xc, opting to use MCS due to the 
large analysis cost that can be expected on the application of the former 
alternative. In this context of searching x, low-discrepancy samples are 
an effective technique to set a balanced coverage of the learning space 
using smaller sample sizes [53]. As xc depends on the minimum of G(x), 
when compared with crude MCS, low-discrepancy xj decreases the se-
lection of xc that may provide redundant information to the problem of 
learning (very close in x). In the light of stimulating changes in the 
density function shape, this feature of low-discrepancy samples is of 
interest. In the present implementation, low discrepancy samples are 

Fig. 4. Examples of truncated density function analysis. PDF - Probability 
density function. 
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generated using Halton sequences. It is noted that other low dis-
crepancy samples can be used to generate xj, see [54] for a discussion 
on different low-discrepancy techniques. Non-relevant candidates in 
low-discrepancy xj are truncated with i using a beta-sphere that relates 
the probability of failure and the remaining probability left outside of 

the beta-sphere [55,56], = P(1 ^ ) ,HS f
i2 ( 1)

where βHS is the 
hypersphere radius that contains the low-discrepancy sample. 2 is the 
inverse chi-square distribution function, and η the threshold value of 
learning space, which is set to be compared with P̂f

i( 1)
. The set of 

candidates xj in iteration i, depends on the present estimation of P̂ ,f
obtained in i 1. Assuming that η is set to be small, xj that are outside 
of this radius enclose limited information about the problem of relia-
bility and the density region of interest, as a result, are not enclosed in 
the learning. It is important to remark that this truncation is not a 
mandatory requirement for a functional implementation, however, as 
the learning function depends on the Euclidean distance and xj offers a 
balanced coverage of x, it mitigates the possibility of learning in regions 
that have limited interest. The low-discrepancy sample can be also used 
to estimate Pf, see [30], however, in the present implementation the 
MCS is used for comparative purposes. 

Following the discussion of Section 3.3.1, to halt the adaptive se-
quence, and conclude the problem of reliability estimation with the 
complement-basis, ^

Pu is used. The learning is halted using ^
Pu and a 

simple moving average (MA) evaluated on the following condition, 

<
= +

P1 ^ ^
h i

i

P
h

f
i

1
u

(21) 

where γ is the i range of the simple MA, and is an error factor that 
compares error in the tail region with Pf. In practice this means that 
changes in the truncated region account in average less than Pf . If 

= 0.01, then 1% of the Pf. If in successive i, the leaning function is not 
able to stimulate changes in the region of interest that account for more 
than P̂ ,f then the density function of G(x) is expected to provide a ro-
bust estimation of the target region. 

The stopping criterion presented in [28] is also of interest for a 
complement-basis implementation. It also uses cross-validation (al-
ready used in the proposed approach) and should be investigated in 
further applications that use similar approaches. 

The adaptive metamodeling technique implemented is composed of 
the following sequential steps, also summarized in Figure 5:  

• Step 1: Select a batch of metamodels to create the complement- 
basis. This batch should use a priori knowledge on metamodel as-
sumptions to set a complementary basis;  

• Step 2: Create an initial ED using LHS, a sample of low discrepancy 
candidates to set xj, and a MCS sample to estimate Pf. Convert 
variables to the standard normal space;  

• Step 3: This step has two states: in activation or deactivated. The 
algorithm is started in activation. If in activation state, evaluate the 
complement-basis to select the active model, see Section 3.2. This is 
achieved using a measure of compatibility, the LOO, complemented 
by a comparison of model hierarchy. If in deactivated state, progress 
with the currently active metamodel; 

• Step 4: Truncate non-relevant xc accordingly to the present esti-
mation of P̂f ;  

• Step 5: Enrich the ED using the learning approach proposed in the 
present Section;  

• Step 6: Update G(x) and evaluate Pf using MCS;  

• Step 7: Evaluate the divergence in the tail region with ^
Pu using 

G(x)i (newly enriched model) and G x( )i 1(model before enrichment) 
with the MCS sample. Use the estimation of P̂f in 6 to define the 
region of interest. If the region of failure was not yet found use a 
large value of u (e.g., 0.01) and a detailed characterization of the 
mass densities.  

• Step 8: Update the MA. If i ≥ γ, check criterion of Equation 21. If 
fulfilled, move to step 10, otherwise proceed to 9. If i < γ, proceed 
to 9.  

• Step 9: Update the LOO estimation using the active metamodel and 
the newly enriched ED. If the LOO increases, return to 3 and activate 
the complement basis (and calculate the LOO for the remaining 
models in the batch). If the LOO decreases, return to 3 with the 
complement basis in deactivated state.  

• Step 10: Halt the learning, and use the present G(x) as a metamodel 
of g(x). 

A metamodel is activated using the initial ED. This metamodel is 
then used as a self improving function that selects the new candidate xc 

to expand the ED. The ED design is enriched according to the approach 
introduced. Then the tail sensitivity is calculated in order to infer on the 
MA. When convergence in the MA is attained the learning is stopped. 
Otherwise, it progresses with the analysis of the LOO error in order to 
select if the complement-basis should be activated or not. If it increases 
it may be indicative of a lower capability of the active model to sur-
rogate the complexity of g(x). Nonetheless, if it is still the most suitable 

Fig. 5. Complement-basis metamodeling approach scheme.  
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model from the basis selected, it will be reactivated again in the acti-
vation stage. 

Figure 6 presents an example of the learning implementation to a 
highly complex two-dimensional limit state function. In this case the 
algorithm is started with a less complex model, but with the progressive 
increase of knowledge about g(x) the complement-basis activates the 
Kriging (which is the only model from the batch capable of efficiently 
approaching this g(x)). The idea of the learning function used, and in 
the absence of efficient alternative to estimate the uncertainty of the 
basis selected in x for all metamodels, is to stimulate the ED such that 
the region of interest of the density function of G(x) is stimulated to 
change. In this example u is set to enclose the lower tail, with cumu-
lative probability equal to twice Pf. It is possible to infer that when the 
information on g(x) is scarce, the lower tail of G(x) experiences sig-
nificant changes with the enrichment of the ED. However, as the ED is 
progressively enriched, new ED points stimulate progressively less the 
tail region, indicating that it is converging to the true tail. The changes 
in the lower tail region are an indicator of robustness of the density 
function estimation in the region of interest. In iteration 24 the density 
function is close to converge in successive iterations and halt the 
learning. ED enrichment in this case introduces limited new informa-
tion in definition of the tail that encloses Pf. All the regions of failure for 
an accurate estimation of Pf are already identified and the error in the 
estimation is already under 1%. The lower tail region is stable at this 
stage. 

In applications of reliability analysis, the totality of the lower tail 
can be used to identify convergence. Nonetheless, there is a region of 
further interest for accurate Pf estimation; the region highlighted in the 
(blue) trimmed rectangle of the tail shape in iteration 24. This region 
encloses a probability equal to Pf in the region of G(x) = 0, equally 
distributed in the safe and failure domains. Hence, if u is defined such 
that =u Pf and equally distributed around =G x( ) 0, Pu provides an 
estimate that relates to a change in Pf in the boundary region. 

With FGi as the cumulative distribution function of G(x) in iteration 
i, and F

G
1
i its inverse, this truncated region of G(x), Gu(x) with dis-

tribution functions fGu
i and F ,Gu

i is defined ∀i by 

= =( ) ( )x F u x F u,u
i

G u
i

G
1 1

2
1 3

2i i1 2 with, 

=u f x dx( )
x

x
G

u
i

u
i

i
1

2

(22) 

The change in the truncated u that occurs from i 1 to i can be ap-
proximated using F ,Gu

i fGu
i and F ,Gu

i 1 fGu
i 1 with 

= u f x f x dx1
2

| ( ) ( )|P x x

x x
G Gmin( , )

max( , )
u

u
i

u
i

u
i

u
i

u
i

u
i

1 1
1

2 2
1

1
(23) 

which again can be estimated with MCS using Equation (16). In the 
present implementation calculation of ^

Pu is approximated using x0 to 
characterize the probability mass function with, 

= + +

=

x x x o

x x x x
n

min( , ) 1
2

( 1) ,

with
max( , ) min( , )

o u
i

u
i

o o

o
u
i

u
i

u
i

u
i

1

1 1

1 1

2 2 1 1
(24) 

and with the mass functions being obtained from the empirical prob-
ability distribution with reference to the truncated region and the MCS. 
If ^

Pu=1 then there is no overlapping in densities and the truncated 
region changed by the value of u from i 1 to i, which indicates a total 
change of position of the region of failure G(x)=0. 

The following section discusses examples of implementation. For 
this purpose, γ is set to 3 and = 0.01, which means that convergence is 
attained when changes in the region of interest characterized by P̂

represent in average less than 1% in density the value of P̂f . η in the low 
discrepancy sequence is 0.05, as there is very low probability of the 
whole external beta-sphere being misclassified; and =n 20 is applied to 
enable a detailed analysis of the density characterization in the region 
of interest. 

4. Examples of application 

Five representative studies of implementation are discussed to il-
lustrate the implementation of the proposed methodology. For these 
representative examples, the LOO is complemented by inference on 
model complexity, models are assumed to be comparable when their 
LOO and P̂f are close (a maximum of 25% and within a   ±  2.5% range, 
respectively, is assumed for the representative examples studied), see  

Fig. 6. Example of implementation to two dimensional complex g(x). The threshold u is set to 2Pf to compute the lower tails. The ED, G(x) and g(x) representation 
(top graph) is accompanied by its respective tail description (bottom graph). 
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Section 3.2. Despite the ultimate goal being the estimation of Pf, LOO 
considerations are important to complement the reliability prediction, 
as they are a measure of accuracy of G(x) as a surrogate of g(x) (two 
models may give the same estimation of Pf, and have different forms). 

4.1. Example 1: A non-linear performance function 

In the first case a highly non-linear performance function is studied. 
The performance function for this example is given by g(x) 

=g x x x( ) 0.5 ( 2) 1.5( 5) 31
2

2
3 (25) 

where both x1 and x2 are standard Gaussian variables. This function is 
representative of a smooth non-linear function in a small dimensional 
space, and with only a region of failure. Results of the implementation 
are presented in Table 1. 

This non-linear performance function problem is an interesting ex-
ample that highlights the relevance of using the adequate models in the 
problem of metamodeling. Both the cubic polynomial and the PCE 
provide almost perfect surrogates when there are only few points in the 
ED, making both preferable for this example. Both have LOO that are 
close to zero, being minimum for the cubic polynomial regression. Both 
perform even with non-iterative LHS ED that can be decreased to 10 or 
less points, see Figure 7, where the comparison of fit given for an ED of 
10 points is presented for the PCE, Kriging and 3rd polynomial regres-
sion. The Kriging with the U function demands almost twice the number 
of geval. The iRS of [13] is also highly efficient in approaching this limit- 
state function, however, slightly less accurate and demanding a more 
involved analysis. 

In practical reliability implementations it is not possible to know 
this (possibility of perfect fit) before-hand as limited knowledge exists 
about g(x), hence different models need to be tested, such as proposed. 

One of the drawbacks of the complement-basis with evaluation of a 
distribution region of interest and the adaptive approach proposed, and 
that is illustrated in this example, is that at least γ iterations are de-
manded to halt the learning. As soon as the cubic polynomial regression 
is activated, convergence is achieved in γ iterations. 

4.2. Example 2: A series system 

The series system is one of the most widely studied examples in 
reliability analysis. This problem is representative of a case where ex-
ploration has large importance. There are four distinct regions of failure 
that need to be accurately characterized to estimate Pf. The limit-state 
function has global complexity, but is weakly non-linear in each of the 
branches. 

In this example g(x) is defined as, 

=

= +

= + +

= +

= +

+

+

g x

g x x x

g x x x

g x x x

g x x x

( ) min

( ) 3 0.1( )

( ) 3 0.1( )

( ) ( )

( ) ( )

x x

x x
1 1 2

2
2

2 1 2
2

2

3 1 2
6
2

4 2 1
6
2

1 2

1 2

(26) 

where x1 and x2 are random standard Gaussian variables. 
Results for the implementation of the complement-basis approach 

are presented in Table 2. 
Results for the proposed approach are comparative to the results 

presented by some of the most efficient methods used for reliability 
analysis in this example. The method in average demands about the 
same number of iterations of some of the most efficient model-based 
algorithms [9,27,29,39]. In this particular case, the Kriging was the 
dominant complement, but some iterations use other models in the 
learning process (occurs when limited information about the perfor-
mance function exists). 

Figure 8 presents implementation results for the complement-basis 
approach. The algorithm is started with kriging as active and then 
shifted to the quadratic, cubic and PCE models in iterations 5, 9 and 10 
respectively, having the PCE active until iteration 16. In here the 
complement-basis is altered between Kriging and PCE, which can be 
identified in this region by the instability of Pf until in iteration 22 the 
kriging is activated for the remaining of the learning. It is possible to 
infer that the MA is sensitive to changes in Pf, even when the error in 
the approximation is already low. Only when the region of failure (u 
around the density area that separates failure and non-failure) encloses 

Table 1 
Average results for the bivariate non-dimensional performance function,  
Equation (25) and relative comparison with other metamodeling approaches. 
geval refers to the average number of g(x) evaluations. The initial ED of the 
proposed approach uses a LHS of +d2 3 points. Low-discrepancy sample uses 
104 points.       

Algorithm ×P̂ ( 10 )f 5 CoV Pf er(%) geval  

MCS 2.87 0.03 - 1 × 107 

IS⁎ [22] 2.86 0.03 0.0 19+104 

AKMCS-U 2.87 0.03 0.0 23.6 
AK-IS⁎ [22] 2.87 0.03 0.0 26.0 
iRS⁎ [13] 2.84 - 0.26 16.0 
Complement-basis approacha 2.87 0.03 0.0 13.0 

a Active complement: 3rd polynomial function, with minimum value of LOO. 
Results are based on 10 runs. CoV of geval of 7.9%. 

⁎ Results reported in reference.  

Fig. 7. Example of non-linear limit function prediction using an ED of 10 LHS 
points for the implemented PCE, Kriging and 3rd degree polynomial regression. 

Table 2 
Average results for the bivariate non-dimensional performance function, of  
Equation (26) and relative comparison with other metamodeling approaches. 
geval refers to the average number of g(x) evaluations. Initial ED of the proposed 
approach uses a LHS of +d2 3 points. Low-discrepancy sample uses 104 points.       

Algorithm ×P̂ ( 10 )f 3 CoV Pf er(%) geval  

MCS 4.456 0.02 - 106 

AKMCS-U 4.455 0.02 0.02 103.8 
AKMCS-EFF 4.455 0.02 0.02 114.0 
FPS - U⁎ [29] 4.423 - 0.05 64.7 
FPS - RD⁎ [29] 4.478 - 0.54 56.5 
AKMCS+LIF⁎ [27] [4.27, 4.54] - [0.8, 3.3] [26, 51] 
WAS Ensemble⁎ [9] 4.37 - 1.13 63.0 
REAK⁎ [39] [4.401,4.478] - [0.4, 2.1] [60, 76] 
Complement-basis approacha 4.437 0.02 0.44 55.2 

a Active complement: Kriging, with minimum value of LOO. Results are 
based on 25 runs. CoV of geval of 18.4%. 

⁎ Results reported in reference.  
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in average a variation in successive iteration of less than 1% of Pf, the 
algorithm is stopped. 

Figure 9 presents average results for the methodology implemented 
with different low-discrepancy samples of candidates of sizes varying 
between 5 × 103 and 1 × 105, and with the MCS. The idea of using the 
low-discrepancy sample is that of fomenting a balanced coverage of x, 
which allows to decrease the average error in the prediction. It is noted 
that the MCS is also adequate to apply with the methodology proposed, 
however attention should be given to the fact that it is occasionally less 
explorative than the low-discrepancy sample, originating a larger error 
in the prediction. Additionally, when the ED is small and a simple 
model is activated this characteristic may lead to a premature halting of 
the learning. 

In LOO error, the Kriging final activation has in average a final LOO 
that is approximately between 2 to 3 times less than the second model 
in LOO error (PCE). If the PCE is the only model in the complement, 
using the same learning procedure, the average number of iterations 
increases to 66.2, however the error in the approximation increases to 
5.7%, which is indicative of the relevance of the choice of the most 
adequate basis to model the problem. Within the basis of models se-
lected, the Kriging is the only mode capable of providing robust pre-
dictions. An example of predictions for the three higher-order models is 
presented in Figure 10, for the same ED, where it is possible to infer the 
Kriging capability to outperform the other models in approximating the 
series system performance function. 

4.3. Example 3: Serviceability limit state of non-linear oscillator 

The following example concerns the serviceability analysis of a non- 
linear oscillator. This problem has a medium-low dimensional level, 
with 6 random variables, and its limit-state function is smooth in the 
standard normal space. As sparsity is not used in the polynomial re-
gression and to avoid even larger initial ED, in all the examples the 
cubic polynomial metamodel is activated in the basis only when the ED 
achieves the minimum size to estimate a. 

A rectangular load F with random duration t is applied to the os-
cillator, with its performance function being defined by the following 
equation, 

= = +G c c m r t F r F
m

t c c
m

( , , , , , ) 3 2 sin
2

, with1 2
0
2

0
0
2 1 2

(27) 

with the characterization of the problem’s random variables being 
presented in Table 3. 

Results for the implementation of the a complement-basis are pre-
sented in Table 4. 

In the case of the oscillator the PCE was the prominent complement 
to approximate g(x). Figure 11 shows an example of convergence for 
this problem, where convergence is attained with 36 iterations. ^

Pu
decreases to halt the algorithm when Pf becomes stable, and changes in 
the density region of interest become less prominent in more than γ 
iterations. The gains of using a complement-basis are quite significant 
when compared with other common implementations of adaptive me-
tamodeling, being only slightly less efficient than the REAK of [39]. In 
this context, applying =n 20 in a relatively small portion of the density 
function imposes a highly detailed characterization of the densities in 
this region. If =n 10 is applied, geval is reduced to 34 with no significant 
loss of accuracy in the prediction of P̂f (er(%) = 0.4). In the case of the 
series system, if =n 10 is applied, geval is reduced to 47, but with a slight 
increase of the prediction error (er(%)= 2.2). If n= 30 is applied, geval 

increases to 56.6 (er(%) = 0.14) in the oscillator example, and 70.6 (er 

(%) = 0.25) in the series system example. 
The particular application of PCE to approximate this smooth 

function is relevant for the efficiency attained. If the Kriging is forced to 
be permanently active in the basis, in average the halting of the 
learning occurs at 60.2 iterations. 

Measuring convergence using the tail region has synergy with the 
LOO. A model with low LOO error, in addition to its expectation of 
being an accurate g(x) surrogate, is expected to hold better the dis-
tribution function shape in the region of interest when the ED is en-
riched. It is noted that this feature is also related to the complexity of 
the model (e.g. in polynomials the order of the basis will also influence 
the capability of the metamodel to change shape when new ED points 
are added). In the present example the LOO of the final PCE activation 
was in average between 2 to 3 times smaller than the Kriging, and more 
than 10 times smaller than the polynomial regressions. 

4.4. Example 4: Cantilever tube 

The cantilever tube is an interesting example of a limit-state func-
tion in a medium dimensional space, with 11 random variables, but that 
is expected to have a relatively simple shape. The list of random vari-
ables in the present example is listed in Table 5. Results for the im-
plementation are presented in Table 6. 

The performance function of the cantilever tube is given by, 

= +g x S( ) 3 , withy x zx
2 2 (28)  

= + + +P F F sin
A

Mr
I

sin
x

1 1 2 2
(29)  

Fig. 8. Example of iteration results for the series system. Black asterisk markers 
are read on the left vertical axis and diamond markers on the right vertical axis. 

Fig. 9. Influence of the xj sample in the learning implementation. er(%) is 
presented above the bars of Pf (black bar) and P̂f (grey bar). 
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= TD
J2xz (30)  

= +M F L F Lcos cos1 1 1 2 2 2 (31)  

= = = =A D D t I D D t r D J I
4

[ ( 2 ) ],
64

[ ( 2 ) ],
2

, 22 2 4 4

(32)  

In the present case, the gains in the adaptive implementation are 
achieved with two main models, the 2nd order polynomial response 
surface and the PCE. When the ED is low the quadratic polynomial is 
activated due to a lower LOO or due to comparable LOO and Pf esti-
mation. In comparison to AKMCS with U and EFF, the gains of using the 
quadratic polynomial and the PCE are significant, resulting in ap-
proximately half the number of required geval, with a relatively small 
trade-off in accuracy (hence the larger CoV obtained in geval). 

When the 2nd order polynomial basis model becomes active, and 
remains as such, convergence is achieved earlier. However, as the ED 
increases, the PCE tends to overtake the quadratic model, and the al-
gorithm spends additional effort in setting a more accurate P̂f .  
Figure 12 presents an example of two results for learning im-
plementation where this occurs. The activation of the polynomial me-
tamodel produces efficient results in terms of geval but with a trade-off in 
accuracy. It is also possible to infer that the Kriging is the model from 
the basis that has larger LOO. The trade-off in accuracy of comparable 
LOO and estimation error was not addressed in detail in the present 
work, and this selection used only simple assumptions to complement 

Fig. 10. Example of surrogate approximation given by higher-order models considered in the basis, the 3nd polynomials, PCE and Kriging, for an ED (49 points) 
obtained with the complement-basis and the proposed active learning implementation. 

Table 3 
Random variables involved in the problem of serviceability for the non-linear 
oscillator.      

Variable μ σ Distribution  

c1 1 0.1 Gaussian 
c2 0.1 0.01 Gaussian 
m 1 0.05 Gaussian 
r 0.5 0.05 Gaussian 
t 1 0.2 Gaussian 
F 1 0.2 Gaussian 

Table 4 
Average results for the non-linear oscillator and relative comparison with other 
metamodeling approaches. geval refers to the number of g(x) evaluations. Initial 
ED of the proposed approach uses a LHS of +d2 3 points. Low-discrepancy 
sample uses 2 × 104 points.       

Algorithm ×P̂ ( 10 )f 3 CoV Pf er(%) geval  

MCS 2.851 0.03 - 5  × 104 

AKMCS-U 2.86 0.03 0.0 96.4 
iRS⁎ [13] 2.82 - 0.55 52.0 
AK-ARBIS⁎ [56] 2.831 - 0.1 63.0 
REAK⁎ [39] [2.846,2.864] - [0.2,0.6] [30,40] 
Complement-basis approacha 2.846 0.03 0.2 43.1 

a Active complement: PCE, with minimum value of LOO. Results are based 
on 25 runs. CoV of geval of 16.7%. 

⁎ Results reported in reference.  

Fig. 11. Example of iteration results for the non-linear oscillator. Black asterisk 
markers are read on the left vertical axis and diamond markers on the right 
vertical axis. 

Table 5 
Random variables of the Cantilever tube problem.      

Variable Parameter 1 Parameter 2 Distribution  

x1[t(mm)] 5.0(μ) 0.1(σ) Gaussian 
x2[D(mm)] 42.0(μ) 0.5 (σ) Gaussian 
x3[L1(mm)] 119.75(lower bound) 120.25(upper bound) Uniform 
x4[L2(mm)] 59.75(lower bound) 60.25(upper bound) Uniform 
x5[F1(kN)] 3.0(μ) 0.3(σ) Gaussian 
x6[F2(kN)] 3.0(μ) 0.3(σ) Gaussian 
x7[P(kN)] 12.0(μ) 1.2(σ) Gaussian 
x8[T(Nm)] 90.0(μ) 9.0(σ) Gumbel 
x9[Sy(MPa)] 210.0(μ) 21.0(σ) Gaussian 
x10[θ1(∘)] 5.0(μ) 0.5(σ) Gaussian 
x11[θ2(∘)] 10.0(μ) 1.0(σ) Gaussian 
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the LOO and P̂f . Further research should comprehensively extend the 
discussion on this aspect of model selection. If the LOO and Pf are re-
currently comparative for a large portion of the adaptive learning for 
the 2nd order polynomial metamodel and other more complex meta-
models, such as the PCE, then g(x) should be expected to be relatively 
simple (e.g., weak non-linearity in g(x) and failure may be confined to a 
single region of the space). This consideration, and evaluation of trade- 
off gains in Pf when using the PCE and simpler models, can provide 
further insights into the possibility of using simpler metamodels (e.g in 
optimization, if gains in geval are expected, it may be of interest to allow 
a larger margin of error than in detailed reliability design). 

In terms of computational effort and time it is also of interest to use 
a simpler model when feasible. The computational effort required to 
work on larger dimensional examples increases for all models, but with 
more incidence on complex models such as the Kriging or PCE. 
Comparative results for the time demanded for 30 and 50 iterations in 
the present example are presented in Table 7 for two implementations 
of learning. Even considering the need to calculate the LOO, the time 

needed to perform the 30 iterations and 50 iterations is slightly re-
duced. It is noted that these times were computed using the ooDACE 
Kriging [57] and the PCE of [58]. Times may differ depending on the 
implementation of the metamodeling algorithms. 

It is important to emphasize that these times are expected to have 
limited relevance when compared with the time that may be demanded 
to run a finite element analysis or a computational fluid dynamics code 
multiple times. 

4.5. Example 5: Serviceability limit state of a traffic network 

The final example studied in the present work is a traffic network in 
a 19 dimensions space ( =d 19). This traffic network consists of 13 
nodes, 38 links, 66 routes, and 34 origin-destination (OD) pairs, see  
Figure 13 for a graphical description. 

In order to solve the traffic assignment problem to define the traffic 
cost for the presented network, a User Equilibrium (UE) traffic assign-
ment model is applied. The UE can be defined as: for each OD pair, at 
user equilibrium, the travel time on all used paths is equal, and (also) 
less than or equal to the travel time that would be experienced by a 
single vehicle on any unused path. 

This definition was transformed by Beckmann et al. [59] into the 
following mathematical programming problem. Having a connected 
transport network, with a set of nodes N, and a set of links A. For certain 
origin-destination (OD) pairs of nodes, pq ∈ D, where D is a subset of 

Table 6 
Average results for the bivariate non-dimensional performance function and 
relative comparison with other metamodeling approaches. geval refers to the 
number of g(x) evaluations. Low-discrepancy sample uses 4 × 104 points. 
Initial ED of the proposed approach uses a LHS of size +d2 3. AKMCS uses 
initial ED of size 10 points.       

Algorithm ×P̂ ( 10 )f 4 CoV Pf er(%) geval  

MCS 4.304 0.04 - 1 × 106 

AKMCS-U 4.303 0.04 0.02 164.6 
AKMCS-EFF 4.304 0.04 0.0 189.0 
Complement-basis approacha 4.266 0.04 0.88 83.6 

a Dominant complement: PCE, with minimum LOO, and 2nd order poly-
nomial, with minimum LOO or comparable LOO and P̂f . Results are based on 25 
runs. CoV of geval of of 27.5%.  

Fig. 12. Convergence results of the 
learning algorithm for examples: (a) 
Case where activation converges to the 
quadratic polynomial (final error in Pf 

estimation of 1.6%); and (b) Case where 
activation converges to PCE (final error 
in Pf estimation of 0.2%). Large LOO 
( >  4) are not plotted to enhance vi-
sualization of the LOO of interest (e.g., 
Kriging in low i). Vertical trimmed lines 
represent the basis in activation. When 
the active metamodel is changed, the 
text above the vertical trimmed line 
highlights the newly activated model. 
Initial ED of +d2 3 points. 

Table 7 
Average time demanded to solve 30 and 50 iterations for the beam problem 
with the AKMCS and the complement-basis (PCE as complement). Both use an 
initial ED of 25 LHS points.     

Algorithm t[30i] (s) t[50i] (s)  

AKMCS-U 449 934 
Complement-basis approach1 432 922 
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NxN, connected by a set of routes Rpq, there are given positive demands 
dpq which give rise to a link flow pattern = vv ( ) ,a a A and a route flow 
pattern = hh ( ) ,pqr r R pq D,pq when distributed through the network. 

=Minimize C c s ds( ) ,
a A

v
a

h v, 0

a

(33) 

subject to: 

=h d p q D, ( , )
r R

pqr pq
pq (34)  

=h v a A,
p q D r R

apqr pqr a
( , ) pq (35)  

h r R p q D0, ( , )pqr pq (36) 

with 

= r p q a1 if route from node to node contains arc ;
0 otherwise,apqr

(37) 

where νa is the link flow, ca(νa) is the travel cost function for a link a, 
assuming that it is positive and strictly increasing. A detail description 
of this methodology and network used can be found in [60,61]. 

In this example a service failure is assumed to occur when the 
average travelling time per user of the network increases by tCf in a day. 

19 random variables (xOD), each one representing the statistical 
distribution of the daily number of users in 19 OD pq pairs are con-
sidered in the present example. The cost function selected is the well- 
known Bureau of Public Roads (BPR) function. Failure is analysed using 
the total traffic cost C for random conditions divided by the number of 
users in the network (in regard to travelling time), and compared with 
the standard operational cost (when all the xOD are evaluated in mean 
values and mean number of users, Cx̄OD). The performance function of 
this problem is given by, 

= +g x t
C
C

( ) 1OD C
x

x̄
f

OD

OD (38)  

Cx̄OD is the expected cost of travelling in the network for mean va-
lues of x̄ ,OD CxOD is the cost of travelling for a random vector of xOD, 
which is used to compare the value of tCf . tCf is equivalent to an average 
increase of travelling time of tCf in % per user in a day. Results for the 
implementation of this example and the capability to surrogate pre-
dictions for a MCS sample of 5 × 104 are presented in Table 8. 

Knowledge on the network indicates that g(x) should be expected to 

enclose more than one region of failure, with the performance function 
varying in a low range of values. Figure 14 presents the learning results 
for the AKMCS with EFF and U, and the complement-basis. The incre-
mental behaviour of the three learning implementation is illustrative of 
the mentioned complexity of g(x). 

A reduction of geval was achieved when comparing with the AKMCS 
with EFF and U for the case of tCf =0.15, and with relatively low loss of 
accuracy. It is noted however that considering convergence of the re-
gion of interest with the EFF function allows a reduction of more than 
100 iterations (halts the AKMCS-EFF after 378 iterations) with no re-
levant loss of accuracy (below 1%). In the case of =t 0.20,Cf the EFF 
function showed the best performance. In this case Pf was relatively 
small in relation to the MCS (only 100 points corresponded to failures). 
The AKMCS with the U function repeatedly halted the learning pre-
maturely. It is noted with respect to the learning function implemented 
with the complement that in larger dimensions the Euclidean distance 
is expected to decrease its efficiency, decreasing the efficiency of the 
learning in comparison with metamodel-specified functions. Indicators 
of this characteristic can be identified in the evolution of the accuracy 
in Figure 14. As d increases, if the complement is given by a complex 
metamodel, it may of interest to consider adaptation of the basis to use 
model-specified learning functions such as the EFF. 

The gains in computational time are very relevant in both cases, as 
the initial problem of estimating 5 × 104 samples demanded approxi-
mately 100 hours of computational calculations. However, this only 
occurs for the complement-basis if a full implementation is not pursued, 
i.e. reducing the allocation of analysis time that does not contribute to 
improve the accuracy of the results (e.g., activating the basis when the 
ED is already enriched). One particular consideration is that after a 
certain amount of activations of the complement there is limited in-
terest in testing other than the currently active model. In the present 
context, the problem of the network is of relevance because it highlights 
limitations of the complement-basis as defined and objectively indicates 
new topics of discussion for further implementations. Additional re-
marks in regard to the present example and that are of large relevance 
for the efficiency of proposed complement-basis approach and future 
work are:  

• It is of interest to emphasize that a reduced mean LOO activator is 
expected to perform as well as the full mean LOO. The reduced mean 
LOO can be evaluated using only the points that are added to the ED 
or a subset of the ED. This may be of relevance in order to save 
computational time in future implementations of a complement- 
basis that uses the LOO as activator. [46] showed before that there is 
an upper threshold for the number of LOO evaluations that effec-
tively contributes to the accuracy of an efficient estimator of 

Fig. 13. Nguyen-Dupuis traffic network, graphical description by nodes and 
links. 

Table 8 
Results for the serviceability limit-state function of the network. geval refers to 
the number of g(x) evaluations. Low-discrepancy sample uses 2 × 104 points. 
Initial ED uses a LHS of size +d2 3.     

=t 0.15Cf

Algorithm ×P̂ ( 10 )f 2 geval  

MCS 1.452 5 × 104 

AKMCS-U 1.448 637 
AKMCS-EFF 1.452 532 
Complement-basis approach1 1.436 480 

=t 0.20Cf
Algorithm ×P̂ ( 10 )f 3 geval 

MCS 2.000 5 × 104 

AKMCS-U 1.920 415 
AKMCS-EFF 2.020 289 
Complement-basis approacha 1.980 364 

a Dominant complement: Kriging with minimum LOO.  
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generalized error with the LOO.  
• Above a certain number of iterations there is limited interest in 

activating the complement-basis (activation tends to the recurrent 
usage of a single model, see example of Figure 12) which indicates 
that the learning can proceed without the activation step and 
keeping the dominant model active when the ED achieves a speci-
fied size. This and the previous consideration are of interest to ac-
celerate the implementation in more involved problems such as the 
presented network example, otherwise, significant computational 
time is spent without any gain in accuracy. [46] also showed before 
that in an enriched ED, cross-validation is able to correctly select the 
best metamodel to approximate different test functions, and in dif-
ferent dimensions.  

• With reference to the network example, the need to perform LOO 
and fit an enriched model justifies the need to reduce the number of 
activations as the ED increases, in particular because these are not 
necessary and their cost is significant. In the example of the network 
if a model is kept active after being repeatedly activated in =t 0.15cf
(considering 20 consecutive selections repetition in the basis), the 
computational time of the analysis is reduced to 11.2 hours. For 
reference, the AKMCS-EFF solution uses 8.7 hours of implementa-
tion (it is important to highlight that in both cases time can be 
further reduced). A rationale that limits the activation of the basis 
above a certain threshold is mandatory in the implementation of 
more involved problems and should be considered in future re-
search. 

• Future applications should also infer on the usage of a com-
plementary measure of compatibility, other than the LOO, that may 
consider explicit information about g(x) (such as a degree of non- 
linearity).  

• Improvements in performance are expected to be achieved with a 
more detailed analysis of the initial ED. In tandem with the lack of a 
transversal rationales in the application of different metamodels in 
regard to their adequacy to surrogate a certain g(x) accordingly to 
model assumptions, the initial ED is rarely addressed as a measure of 
improvement in the adaptive metamodeling. Recent works, such as  
[25,62], showed that comprehensively analysing it can contribute to 
improve the performance of metamodeling. 

5. Conclusion 

The present work investigates the possibility of using a multiple 
model implementation using a complement-basis approach in meta-
modeling for reliability analysis. This work was motivated by the large 
number of works that emerged in recent years in adaptive metamo-
deling for reliability analysis, which generated a demand for measures 
of unification and transversality (between metamodeling approaches) 
in the field. In the present it is challenging for a reliability engineer to 
efficiently select a metamodeling approach from the batch of existing 
techniques without a priori information about the problem in-hand, and 
in particular, the shape of the performance function. Moreover, model 
assumptions and adequacy to surrogate a certain performance function 
are rarely addressed in a comprehensive way in the adaptive meta-
modeling literature. It is of interest to foment interaction between fields 
of metamodeling. This was identified before to be almost non-existent  
[8]. 

The present development builds on ideas from immunology in order 
to create an approach that iteratively selects suitable metamodels for 
reliability analysis depending on a measure of expectation or suitability 
to the problem being addressed. Within different alternative models, 
one is expected to have more synergy with the problem being analysed. 
In order to implement a complement-basis, a batch of metamodels is 
selected and these are set to be in an active or passive state, accordingly 
to an activator that measures their affinity with the performance 
function, and also considering their complexity. In this context, selec-
tion of the basis should consider different model assumptions and the 
problem in-hand (e.g. the basis for a reliability analysis of a problem 
with few random variables will have different requirements than a 
problem with large number of random variables). 

The leave-one-out absolute error is applied as a measure of activa-
tion. If a metamodel has relatively low leave-one-out absolute error, it 
is expected to perform as an efficient boundary of failure for the per-
formance function. Results of the implementation studied confirmed 
this characteristic. 

A learning approach that is metamodel-independent was used in the 
present research to enable metamodel adaptivity. Convergence was 
evaluated using information about the sensitivity of the probability 
density function. This convergence criterion is of particular interest due 
to its universality in relation to the metamodel used. Nonetheless, the 
same complement-basis framework can be applied with different 

Fig. 14. Results of the adaptive metamodelling for the network function operation with =t 0.15Cf .  
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metamodeling approaches, i.e. it is not strictly necessary to use the 
same learning function and stopping criterion for the whole basis. As 
soon as a metamodel is added to the batch and activated it may use a 
metamodel-specific learning approach. 

It is noted that possible conflicts in redundancy of the learning 
approach in such case (in case activation shifts the metamodels in the 
middle of the procedure) need to be checked. As most learning ap-
proaches use similar principles of learning, such as searching for the 
region close to g(x)=0 and(or) using uncertainty measures, it is likely 
that different learning functions share synergies. 

Five examples with different complexities were used to infer on the 
performance of the proposed method. Results showed that the com-
plement-basis approach can be highly efficient, in particular, exploiting 
the advantages resulting from the consideration of the (expected) most 
suitable model to perform a certain reliability analysis. Its performance 
is at least comparable to some of the most efficient algorithms used for 
reliability analysis that are constructed for specific metamodels, and it 
is not uncommon for the gains in efficiency from using an active and 
adequate selection of different models to be significant. One of the 
important considerations from the work developed is related to the 
identification that above a certain number of activations or experi-
mental design size, it is frequent for a single model from the basis to be 
recurrently selected as active. This indicates that in the complement- 
basis a level of confidence can be established in relation to whether a 
model should remain active or the basis activated after a number of 
activations is performed, a experimental design size is achieved, or a 
LOO comparative asymptotic behaviour is found. This is an aspect of 
the implementation that can be used to improve the efficiency of the 
complement-basis approach. Future works that use a complement ra-
tionale should also research on the possibility of using: a reduced leave- 
one-out error with incidence in regions of interest, comprehensive 
measures of hierarchy, or new ways of activation that depend on the 
complexity of the function that is set to be surrogate (e.g., an identifier 
of non-linearity). Any of three considerations are expected to have large 
impact in the field of metamodeling for reliability analysis. 
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