Online Vehicle Inertial Parameter Estimation

Testing Rozyn's Algorithm Under More Realistic Conditions

J.C. Dijkhuizen - 4225457

hilips Car Systems

Department of Cognitive Robotics - Vehicle Engineering

Online Vehicle Inertial Parameter Estimation

Testing Rozyn's Algorithm Under More Realistic Conditions

MASTER OF SCIENCE THESIS

For the degree of Master of Science in Vehicle Engineering at Delft University of Technology

J.C. Dijkhuizen - 4225457

August 13, 2019

Faculty of Mechanical, Maritime and Materials Engineering $(3\mathrm{mE})$ \cdot Delft University of Technology

Copyright © Department of Cognitive Robotics (CoR) All rights reserved.

Abstract

The inertial parameters of a vehicle, which include the mass, centre of gravity position and the moments of inertia, influences the dynamics of the vehicle. Currently, the modelling of the vehicle is done by assuming fixed, conservative, values for the inertial parameters. Knowing the exact values may increase the performance, safety and comfort of the vehicle. A literature review has been conducted [1], where different methods for online inertial parameter estimation have been graded based on the amount of parameters it is able to estimate, the sensors used and the accuracy of the methods. Rozyn's method seems best for online inertial parameter estimation. Rozyn proposes a method which can estimate the inertial parameters from vertical acceleration data using a state variable method, modal analysis and a simple vehicle model. Rozyn's method can be summarised in four steps:

- 1. Extract the free decay response from acceleration data.
- 2. Construct the state transition matrix.
- 3. Construct the system characteristic matrix.
- 4. Estimate the inertial parameters using the constructed characteristic matrix and simplified vehicle model.

The main shortcoming of Rozyn's method is the road profile which is used for the simulation, which is described in the ISO 8608 norm. The ISO 8608 description is a stationary Gaussian process. This means that the road profile random variables are normally distributed. Furthermore, the properties of the road profile (mean and variance) does not change over time. In practice however, road profiles never follow a stationary Gaussian process, but are much more random, with more variance between different sections. Another, more realistic, road profile description is proposed by Bogsjö where the road profile follows a non-stationary Laplace distribution. Another shortcoming of Rozyn's paper is that it only shows results for only one condition. For the simulation, the vehicle is driving 100 km/h and a measurement period of 1,000 seconds is used. Unknown is the influence of the velocity of the vehicle on

the results. It is to be expected that the accuracy decreases for shorter measurement periods, but by how much is also unknown.

In this thesis, Rozyn's algorithm is explained and implemented using a half car vehicle model. Rozyn's algorithm is validated using the ISO 8608 road profile description on similar conditions. The algorithm is then tested using the ISO 8608 road profile description where the velocity of the vehicle is varied between 30 and 100 km/h and the measurement periods between 30 and 120 seconds. This is done 100 times for each condition. This results in 100 estimates of the inertial parameters of each condition. From these results, the average and standard deviation between the estimates can be calculated. This is also done for the alternative Laplace road description. The resulting standard deviations are plotted in surface plots, as function of the varying velocity and measurement period.

The results show that the standard deviation between the different estimated parameters when using the Laplace description for the road profile are up to 5 times higher compared to the ISO 8608 road profile description. The results also show that the performance of the algorithm is heavily dependent on the measurement time. A measurement time of at less then 60 seconds is not recommended, due to the large deviation in the estimated parameters. For the mass and centre of gravity position, the performance is independent of the velocity of the vehicle. However, the pitch moment of inertia shows a slight dependency on the velocity, with lower deviations between the different estimates for higher velocities.

The algorithm can still be used on non-stationary road profiles. However, more and longer measurements are needed for the algorithm to return with an accurate estimation of the inertial parameters. Even then, some errors in the estimated parameters in the order of 10% are present.

Table of Contents

	Pref	ace	v										
1	Introduction												
2	Rozyn's Method												
	2-1	Extracting Free-Decay Response	3										
	2-2	Estimating State Transition Matrix	4										
	2-3	Estimating System Characteristic Matrix	5										
	2-4	Estimating Inertial Parameters	7										
3	Vehi	cle model	9										
4	Prot	olem Statement	13										
	4-1	Road Profile	13										
		4-1-1 ISO 8608	13										
		4-1-2 Laplace	16										
	4-2	Vehicle Conditions	17										
5	Resu	llts	21										
	5-1	Free Decay Response	22										
	5-2	ISO 8608 Road Profile	23										
	5-3	Laplace Road Profile	28										
6	Con	clusion & Discussion	33										
	6-1	Contributions	33										
	6-2	Conclusion & Recommendation	34										

J.C. Dijkhuizen - 4225457

Α	Арр	endix																		3	37
	A-1	Vehicle	Model																	. :	37
	A-2	Progra	mming Code .																	. 2	40
		A-2-1	Main File																	. 4	40
		A-2-2	Function File																	. 2	16
	Bibliography									5	5										

Preface

Before you lies my thesis about Online Vehicle Inertial Parameter Estimation. It is a subject that interests me as a future Vehicle Engineer. The inertial parameters of a vehicle are never constant, and I was interested which online methods exists for estimation of these parameters. This started with a literature study where I read many papers regarding this subject. This turned out to be an exhausting process, but it resulted in a clear conclusion: That it is very difficult to estimate the inertial parameters using an online method. Although Rozyn proposes a method which seems best for this task, it was not easy to implement it in Python, since the equations and assumptions used were not well documented. But, eventually, after some hard work I got a working algorithm, which was able to estimate the inertial parameters.

I would like to thank my supervisor Prof.dr.ir. Martijn Wisse for his guidance and support during the process. Also, I would like to thank my friends from the UNO Club, Robert Cornet, Alexander van Doeveren, Mounir El Hassnaoui, Gowtham Nagalingam and Quinn Vroom. I always looked forward to playing a few games of UNO during the lunch break. Thanks to them, it was never boring. I also want to thank my family and the rest of my friends for their support.

I hope you enjoy reading my thesis.

Joël Dijkhuizen

Delft, University of Technology August 13, 2019

Chapter 1

Introduction

In the last decades, many new active safety systems, such as ABS (Anti-lock Braking System) and ESP (Electronic Stability Program) have been introduced. These systems increase the safety on the road and decrease the number of fatalities. Knowing the exact dynamics of a vehicle is very important for the safety and comfort of the vehicle. Currently, the determination of the vehicle dynamics is done by extensive modelling of the vehicle. However, determining the dynamics is a very time consuming and expensive procedure since it requires full insight in the properties of the vehicle. All of the systems controlling the car are sensitive to the vehicle inertial parameters, such as vehicle weight, position of the center of gravity and moments of inertia [2]. But what if these properties are unknown? Determining the parameters of the vehicle online might reduce the time and cost needed to determine the dynamics of the vehicle. Furthermore, these vehicle inertial parameters can change over time, due to change in load or fuel usage [3]. Knowing the exact value of the parameter can increase the effectiveness of a mid-level controller, such as ABS [4].

A literature review has been conducted about this subject [1]. The online inertial parameter estimation can be estimated using different dynamics of the vehicle, namely the longitudinal, the lateral and the suspension dynamics. For the longitudinal dynamics, it is necessary to estimate all the forces acting in the longitudinal plane of the vehicle, which include the aerodynamic drag, the rolling resistance, the engine force and the force due to a road grade. This influences the estimation accuracy of the inertial parameters of the vehicle [5]. For the lateral dynamics, the tyre dynamics are used. This complicates the problem, since the tyres road interaction changes over time, based on the road surface, weather, temperature, wear of the tyres, etc. In the literature, these variables are assumed constant, which influences the estimation of the inertial parameters [4]. The suspension dynamics are also used in literature to estimate the inertial parameters using suspension displacement sensors [6] or using accelerometers in the body of the vehicle [4]. The literature has been graded based on the number of parameters which can be estimated using the methods, the sensors used and the accuracy of the proposed methods. Here, Rozyn scores the best with an algorithm that is able to estimate all the necessary inertial parameters using cheap and easy to use sensors with an high accuracy of the estimated inertial parameters.

The method proposed by Rozyn et al [4] is able to obtain the vehicle's unknown inertial parameters, which include the mass, position of centre of gravity and the moments of inertia. This is done by measuring the sprung mass response when the vehicle is excited by an unknown and unmeasured road profile. From these measurements the free decay response of the vehicle is extracted. This is followed by modal analysis to estimate the vehicle's sprung mass natural frequencies, damping ratios and mode shapes. This information can be used to create an estimation of the vehicle's characteristic matrix. This matrix is then compared to the vehicle's characteristic matrix obtained from a simplified vehicle model followed by a least squares analysis to obtain the vehicle's inertial parameters.

The road profile that is used by Rozyn is defined in the ISO 8608 standard, however it is not suitable for the description for longer road profiles [7]. A more realistic road profile description is provided by Bogsjö [8]. Furthermore, Rozyn only gives result for the algorithm using a measurement period of 1,000 seconds and a velocity of 100 km/h. Unknown is the influence of these parameters on the performance of the algorithm. This leads to the following research question:

How does the method proposed by Rozyn, for online vehicle inertial parameter estimation, perform under more realistic conditions?

This is tested by implementing the two road profile description, and testing Rozyn's algorithm on both road profiles for measurement periods between 10 and 120 seconds and also by varying the velocity between 30 and 100 km/h. This is done by estimating the parameters on above mentioned conditions 100 times for each condition using 100 different, randomly created, road profiles. This results in 100 estimates of the inertial parameters each condition. The results will show the standard deviation of the estimates plotted against the velocity and measurement period.

Chapter 2

Rozyn's Method

Rozyn et al proposes a method where the inertial parameters are estimated, based on vertical acceleration data of the vehicle. These sensors are place in the body of the vehicle, on the corners. The algorithm extracts the free-decay response of the vehicle from this acceleration data using the autocorrelation function. From this free-decay response, the state transition matrix is estimated. The system characteristic matrix can be estimated, by using modal analysis. This characteristic matrix is then compared to a simple vehicle model, where a error minimisation scheme is used to estimate the inertial parameters.

Rozyn's description of the algorithm is very brief and not all the equations necessary are mentioned. Two papers by Zhang, [9] and [10], are used to implement the algorithm.

2-1 Extracting Free-Decay Response

The input of the algorithm is a free-decay response of the body of the vehicle. Free-decay, also called free vibration response, is the response of the vehicle when the system is given an initial condition and is allowed to vibrate freely. If the vehicle is excited by a random road profile, the acceleration data contains the accelerations due to excitation of this road profile. The free-decay response is hidden in this data and can be extracted using an autocorrelation function. The autocorrelation function calculates the correlation between one time point of the data and the other, which is equivalent to the free decay response, in the case of a system that is excited by stationary Gaussian white noise [11], [12]. The equation to calculate the autocorrelation function can be seen in equation 2-1.

$$R_{yy}(\tau) = \int_0^\infty y(t) \cdot y(t+\tau)dt$$
(2-1)

One requirement for the autocorrelation function is that the process, on which it is applied, is stationary [13]. The road surface can be seen as a wave. The propagation of the wave is

the velocity of the vehicle. The condition that the wave must be stationary means that the free-decay response of the vehicle can only be determined accurately if the vehicle is driving at a constant velocity. Also the road surface should be stationary, which is not always the case in real life. These assumptions leads to inaccuracies of the extracted free decay responses if the road surface is not a stationary and Gaussian distributed process.

2-2 Estimating State Transition Matrix

The state transition matrix contains the characteristics of the system in continuous and discrete time [10]. Since the measurements are performed at fixed time resolutions, the system is represented in discrete time as follows:

$$X(k+1) = A_1 \cdot X(k)$$
 (2-2)

With A_1 as the state transition matrix. In this equation, the discrete state vectors are sampled at time t = kT, where T is the sampling interval. The modal parameters of the system can be obtained by solving the corresponding eigenvalue problem. However, the measured signals will always contain some errors. To identify these errors, the size of the state transition matrix is increased by adding pseudo measurements.

$$X(k) = \begin{bmatrix} Y^{T}(k) & Y^{T}(k+1) & \cdots & Y^{T}(k+p) \end{bmatrix}^{T}$$
(2-3)

Where Y are the sensor measurements and $p = \gamma \cdot p_0$. In this equation, γ is a tuning parameter based on the signal to noise ratio, in the case of a higher signal to noise ratio, γ is selected as $4 \sim 6$. Since no noise is present in the simulation, γ is chosen as 2. This results in the best estimates of the inertial parameters. p_0 is a parameter based on the system and can be calculated as follows:

$$p_0 = \frac{2n}{m} \tag{2-4}$$

Where n is the degrees of freedom of the system and m the measured outputs. In this case, where a half car model is used for the simulation (see Chapter 3), the degrees of freedom of the system is four, namely the vertical position of the the wheels of the vehicle and the vertical position and pitch angle of the body. The number of measurement sensors is two, the acceleration of the front of the body and the acceleration of the rear. This makes p equal to:

$$p = \gamma \cdot \frac{2n}{m} = 6 \cdot \frac{2 \cdot 4}{2} = 24$$
 (2-5)

The transition matrix A can be obtained by using the following state matrices:

$$\Phi = \begin{bmatrix} X(1) & X(2) & \cdots & X(M) \end{bmatrix}$$

$$\overline{\Phi} = \begin{bmatrix} X(2) & X(3) & \cdots & X(M+1) \end{bmatrix}$$
(2-6)

J.C. Dijkhuizen - 4225457

Here, M is the number of data points in the measurements. However, this means that it uses M + p + 1 data points to calculate the state transition matrix, while only N data points are available. This means that the variable M should be calculated as follows:

$$M = N - p - 1 \tag{2-7}$$

The two state matrices must satisfy the following equation:

$$\overline{\Phi} = A_1 \Phi + \widetilde{\Phi} \tag{2-8}$$

The state transition matrix A_1 can then be determined by using least squares, as follows:

$$A_1 = (\overline{\Phi}\Phi^T)(\Phi\Phi^T)^{-1} \tag{2-9}$$

2-3 Estimating System Characteristic Matrix

In continuous time, the system can be described in the form of the state equation:

$$\dot{X} = A_0 \cdot X \tag{2-10}$$

Here, A_0 is the system characteristic matrix which relates the mass, stiffness and damping matrices as follows:

$$A_0 = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}C \end{bmatrix}$$
(2-11)

The state characteristic matrix can be calculated by solving the eigenvalue problem of the state transition matrix. This yields the the eigenvalues of the system in the complex, discrete, Z-plane. Since state transition matrix A_1 has the size of $2 \cdot (p+1)$ by $2 \cdot (p+1)$, this will result in $2 \cdot (p+1)$ eigenvalues and corresponding eigenvectors. The system characteristic matrix A_0 is, however, defined in the continuous S-plane as in equation 2-11. This means that the eigenvalues must be converted to the S-plane. The relation between the Z-plane and the S-plane is as follows: [10]

$$Z = e^{S \cdot T} \tag{2-12}$$

Where Z and S are defined as follows:

$$Z = a + jb \tag{2-13}$$

$$S = \alpha + j\beta = -\zeta\omega + j\omega(1 - \zeta^2)^{1/2}$$
(2-14)

Master of Science Thesis

J.C. Dijkhuizen - 4225457

Where the real and imaginary part of the eigenvalues in the S-plane are expressed as:

$$\alpha = \frac{\ln(a^2 + b^2)}{2 \cdot T} \tag{2-15}$$

$$\beta = \frac{\tan^{-1}\left(\frac{b}{a}\right)}{T} \tag{2-16}$$

The damped and undamped natural frequencies and the damping ratios can be calculated as follows:

$$\omega_n = \sqrt{\alpha^2 + \beta^2} \tag{2-17}$$

$$\omega_d = \beta \tag{2-18}$$

$$\zeta = -\frac{\alpha}{\omega_n} \tag{2-19}$$

The system will have two natural modes, the front of the body of the vehicle and the rear. The estimation however has $2 \cdot (p+1)$ modes. This means the noise modes will have to be found and disregarded. This is done by looking at several known characteristics of the system. A car will be underdamped, this means it oscillates with an amplitude that gradually decreases to zero. An underdamped system will have eigenvalues that appear in complex conjugates [14]. This means that all non-imaginary eigenvalues can be removed from the list. Furthermore, the frequencies must lie within a certain range. It is known, for instance that the bounce frequency will lie within the 1-3 Hz range [15] and are underdamped with a damping loss factor between 0.1 and 0.5. Every frequency and damping loss factor outside this range can be assumed to be a noise mode and can thus be disregarded. The corresponding eigenvectors are generated by normalizing the first m, two in the case of the half-car model, elements of the eigenvector.

The estimated system characteristic matrix can then be written as follows [9]:

$$A_{0} = \begin{bmatrix} \psi & \psi^{*} \\ \psi\lambda & \psi^{*}\lambda^{*} \end{bmatrix} \begin{bmatrix} \lambda & 0 \\ 0 & \lambda^{*} \end{bmatrix} \begin{bmatrix} \psi & \psi^{*} \\ \psi\lambda & \psi^{*}\lambda^{*} \end{bmatrix}^{-1}$$
(2-20)

Where λ denotes the eigenvalues and ψ the eigenvectors, the complex conjugate is indicated with a *.

2-4 Estimating Inertial Parameters

Now the system characteristic matrix is constructed from the measurements, it can be compared to the system characteristic matrix with some known parameters. Assumed is that the stiffness and damping parameter are known. With this assumption, a characteristic matrix is constructed from a simplified vehicle model, see Figure 2-1, where the unsprung masses and the springs and dampers have been combined into one spring/damper with an equivalent stiffness/damping coefficient which can be calculated as follows:

$$k_{eq} = \frac{k_s \cdot k_t}{k_s + k_t} \tag{2-21}$$

According to Rozyn, this equation is not accurate enough due to the presence of nonproportional damping. Rozyn uses an equation for the equivalent stiffness which depends on the frequency in which it oscillates and also the damping coefficients, as seen in equation 2-22. However, since no non-proportional damping is present in the simulation model, equation 2-21 will not add any errors to the estimation of the parameters. If the algorithm is implemented in a real vehicle non-proportional damping characteristics might be present. In this case equation 2-21 might result in errors and the equivalent stiffness as calculated in equation 2-22 will be more suited to this case.

$$k_{eq} = \frac{k_s k_t^2 + k^2 s k_t + \omega (k_s c_t^2 + k_t c_s^2)}{(k_s + k_t)^2 + \omega^2 (c_s + c_t)^2}$$

Figure 2-1: Equivalent half car model with as generalised coordinates x_s and φ .

The corresponding equations to the equivalent half car model can be written as follows:

$$m_s \cdot \ddot{x}_s = -k_{eq,f} \cdot x_{s,f} - c_{eq,f} \cdot \dot{x}_{s,f} - k_{eq,r} \cdot x_{s,r} - c_{eq,r} \cdot \dot{x}_{s,r}$$
(2-23)

$$I_{yy} \cdot \ddot{\varphi} = -l_f \cdot (k_{eq,f} \cdot x_{s,f} + c_{eq,f} \cdot \dot{x}_{s,f}) + l_r \cdot (k_{eq,r} \cdot x_{s,r} + c_{eq,r} \cdot \dot{x}_{s,r})$$
(2-24)

Master of Science Thesis

J.C. Dijkhuizen - 4225457

(2-22)

Where $x_{s,f}$ and $x_{s,r}$ can be written as follows, according to the linearised equations:

$$x_s = \frac{l_r \cdot x_{s,f} + l_f \cdot x_{s,r}}{L} \tag{2-25}$$

$$\varphi = \frac{x_{s,f} - x_{s,r}}{L} \tag{2-26}$$

For these equations, small angles for the pitch angles are assumed to linearize the equation. This can be done with no problem, since the pitch angle of the vehicle driving over a road is very small.

The corresponding matrices of the system characteristic matrix are as follows:

$$A_0 = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}C \end{bmatrix}$$
(2-27)

$$M = \begin{bmatrix} m_s \cdot \frac{l_r}{L} & m_s \cdot \frac{l_f}{L} \\ \frac{I_{yy}}{L} & -\frac{I_{yy}}{L} \end{bmatrix}$$
(2-28)

$$K = \begin{bmatrix} k_{eq,f} + k_{eq,r} & l_f \cdot k_{eq,f} - l_r \cdot k_{eq,r} \\ l_f \cdot k_{eq,f} - l_r \cdot k_{eq,r} & l_f^2 \cdot k_{eq,f} + l_r^2 \cdot k_{eq,r} \end{bmatrix}$$
(2-29)

$$C = \begin{bmatrix} c_{eq,f} + c_{eq,r} & l_f \cdot c_{eq,f} - l_r \cdot c_{eq,r} \\ l_f \cdot c_{eq,f} - l_r \cdot c_{eq,r} & l_f^2 \cdot c_{eq,f} + l_r^2 \cdot c_{eq,r} \end{bmatrix}$$
(2-30)

Since both the measured system characteristics matrix from equation 2-20 and vehicle system characteristic matrix (equation 2-27) are in the same form, the unknown parameters $(m_s, I_{yy}, l_f \text{ and } l_r)$ can be estimated using a least squares algorithm.

In this chapter, Rozyn's algorithm has been explained. It estimates the inertial parameters by extracting the free-decay response from the acceleration data. The extracted free decay is used to build the state transition matrix. By solving the eigenvalue problem of this matrix and some filtering, the system characteristic matrix can be constructed. This matrix is then compared to a system characteristic matrix constructed using a simplified vehicle model to estimate the inertial parameters.

Chapter 3

Vehicle model

To obtain the acceleration data, which is used as input of the algorithm, a vehicle model is necessary. A half car model with four degrees of freedom is defined which is excited by a random road profile. Using a half car model means that the following inertial parameters can be estimated:

- Body mass
- Pitch moment of inertia
- Longitudinal position centre of gravity

It is also possible to use a more complex vehicle model, such as a 12 degree of freedom vehicle model which can estimate more parameters, such as the height of the centre of gravity. However, due to time constraints, a half car model is chosen. This model can still estimate important parameters and is able to show what happens when more realistic conditions are applied on Rozyn's algorithm.

The body of the vehicle is connected to the wheels with springs and dampers. The wheels are connected to the road with tyres, modelled as springs and dampers. A figure of the used half car model can be seen in Figure 3-1.

The following coordinates have been chosen as general coordinates:

- Vertical movement of the front wheels of the vehicle $(\mathbf{x}_{t,f})$
- vertical movement of the rear wheels of the vehicle $(\mathbf{x}_{t,r})$
- vertical movement of the body of the vehicle (x_s)
- pitch angle of the body of the vehicle (φ)

Master of Science Thesis

J.C. Dijkhuizen - 4225457

Figure 3-1: Half car model with as generalised coordinates $x_{t,f}$, $x_{t,r}$, x_s and φ .

The resulting acceleration of the vehicle body will be used to estimate the vehicle mass, pitch inertia and longitudinal position of the centre of gravity.

The generalized coordinates of this systems are:

$$q = \begin{bmatrix} x_{t,f} & x_{t,r} & x_s & \varphi \end{bmatrix}^T$$
(3-1)

And the state X is as follows:

$$X = \begin{bmatrix} q \\ \dot{q} \end{bmatrix} \tag{3-2}$$

The equations of motion of this system are given by the following equations:

$$\mathbf{M}\ddot{q} + \mathbf{C}\dot{q} + \mathbf{K}q = \mathbf{B}u\tag{3-3}$$

Where u is the input of the system: $u = \begin{bmatrix} x_{r,f} & x_{r,r} & \dot{x}_{r,f} & \dot{x}_{r,r} \end{bmatrix}^T$

The mass, damping and stiffness matrices M, C, K and B are as follows:

$$M = \begin{bmatrix} m_{t,f} & 0 & 0 & 0\\ 0 & m_{t,r} & 0 & 0\\ 0 & 0 & m_s & 0\\ 0 & 0 & 0 & I_{yy} \end{bmatrix}$$
(3-4)

J.C. Dijkhuizen - 4225457

$$K = \begin{bmatrix} k_{t,f} + k_{s,f} & 0 & -k_{s,f} & -l_f \cdot k_{s,f} \\ 0 & k_{t,r} + k_{s,r} & -k_{s,r} & l_r \cdot k_{s,r} \\ -k_{s,f} & -k_{s,r} & k_{s,f} + k_{s,r} & l_f \cdot k_{s,f} - l_r \cdot k_{s,r} \\ -l_f \cdot k_{s,f} & l_r \cdot k_{s,r} & l_f \cdot k_{s,f} - l_r \cdot k_{s,r} & l_f^2 \cdot k_{s,f} + l_r^2 \cdot k_{s,r} \end{bmatrix}$$
(3-5)

$$C = \begin{bmatrix} c_{t,f} + c_{s,f} & 0 & -c_{s,f} & -l_f \cdot c_{s,f} \\ 0 & c_{t,r} + c_{s,r} & -c_{s,r} & l_f \cdot c_{s,r} \\ -c_{s,f} & -c_{s,r} & c_{s,f} + c_{s,r} & l_f \cdot c_{s,f} - l_r \cdot c_{s,r} \\ -l_f \cdot c_{s,f} & l_r \cdot c_{s,r} & l_f \cdot c_{s,f} - l_r \cdot c_{s,r} & l_f^2 \cdot c_{s,f} + l_r^2 \cdot c_{s,r} \end{bmatrix}$$
(3-6)

$$B = \begin{bmatrix} \frac{k_{t,f}}{m_{t,f}} & 0 & \frac{c_{t,f}}{m_{t,f}} & 0\\ 0 & \frac{k_{t,r}}{m_{t,r}} & 0 & \frac{c_{t,r}}{m_{t,r}}\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
(3-7)

Where $x_{s,f}$ and $x_{s,r}$ can be written as follows, according to the linearised equations:

$$x_{s,f} = x_s + l_f \cdot \varphi \tag{3-8}$$

$$x_{s,r} = x_s - l_f \cdot \varphi \tag{3-9}$$

In these equations, the subscripts s, t and r represents, respectively, the sprung mass (body), mass of the wheels (including tyres) and the road. The subscript f and r stands for the front and rear, respectively. The position of the centre of gravity with respect to, respectively the front and rear wheels are represented by l_f and l_r . For these equations, small angles for the pitch angles are assumed to linearise the equation. This can be done with no problem, since the pitch angle of the vehicle driving over a road is very small, as can be seen in Figure A-3.

The derivative of the state, \dot{X} , can then be calculated using the following equation:

$$\dot{X} = A_0 \cdot X \tag{3-10}$$

Where A_0 is:

$$A_0 = \begin{bmatrix} 0 & I \\ -M^{-1}K & -M^{-1}C \end{bmatrix}$$
(3-11)

This results in the accelerations and velocities of the generalised coordinates. The input of the estimation method are the accelerations of the front and the rear of the body, $\ddot{x}_{t,f}$ and $\ddot{x}_{t,r}$.

To check the implemented vehicle model, the motion of the body and the wheels of the vehicle have been plotted against the time for a free decay of the vehicle and using a random road profile. The pitch angle for the body has also been illustrated. The results show that the pitch angle of the body of the vehicle is very small, and the linearization in equation 3-8 and 3-9 can be used. The results of this can be seen in Appendix A-1.

In this chapter, the vehicle model, which is used to generate the acceleration data is explained. A half car vehicle model is chosen with 4 degrees of freedom, namely the vertical position of the front and rear wheels, the vertical position of the body and the pitch angle. Using a half car model means that the algorithm is able to estimate the following parameters: Mass, longitudinal position of centre of gravity.

Chapter 4

Problem Statement

The vehicle model, which is introduced in Chapter 3 needs to be excited by a road profile for the simulation of the acceleration data. Rozyn uses a road profile which is described in the ISO 8608 standard [16]. It is important to understand the road profile used by Rozyn to explain the shortcomings of using this road profile. The road profile used by Rozyn is explained in Section 4-1-1. The problem with this road profile description is that it can only be used for shorter road sections in the range of 100 meters [7]. Rozyn, however uses a measurement period of 1,000 seconds with a velocity of the vehicle of 100 km/h. This means that the ISO 8608 norm cannot be used to accurately describe the road profile over this road section. A more realistic road profile is described by Bjogsö and explained in Section 4-1-2. Also, the vehicle conditions used by Rozn, in terms of the measurement period and the velocity, are beneficial for the accurate estimation of the inertial parameters, as explained in Section 4-2.

4-1 Road Profile

4-1-1 ISO 8608

The road profile used by Rozyn is constructed using methods discussed in Cebon [17]. Cebon uses a method described by the ISO Standard: ISO 8608 [16]. This method reports the road profile as a Power Spectral Density (PSD). The PSD describes the power of the road elevation versus the wavenumber. The wavenumber is the spatial frequency of the wave, measured in cycles per unit distance. Using the PSD to describe the road profile, means that only two parameters are necessary to describe the road profile, the roughness of the road, $G_d(n_0)$, and the slope of the fitted PSD, which is the waviness of the road profile, w. In Figure 4-1 the fitted PSD is visible. The roughness $G_d(n_0)$ is displayed on the y-axis at the reference spatial frequency n_0 . The exponent of the equation, w, is the slope of the fitted PSD.

Figure 4-1: Smoothed and Fitted Power Spectral Density (PSD) according to ISO 8608. [18]

The equation for the fitted PSD is:

$$G_d(n) = G_d(n_0) \cdot \left(\frac{n}{n_0}\right)^{-w} \tag{4-1}$$

In this equation G_d represents the vertical displacements of the road profile as function of the frequency n, n_0 represents the reference spatial frequency [cycles/m], which is 0.1 for the ISO 8608 road description. The slope, w, is the waviness of the road.

The unevenness index, $G_d(n_0)$, is based on the quality of the road surface. The values can be seen in Table 4-1. In the ISO 8608 norm, eight classes are identified: from class A to class H. Class A represents the roads with a good quality and low roughness. Class H roads have a high degree of roughness. Rozyn does not include which road class is used for the road profile. In the simulation road class A has been used, since this represents an average quality asphalt road, according to Mucka et al [19]. The waviness is a measurement of the waves that the road profile follows. According to Mucka, the average waviness of a road profile is 2.

We can also describe the road profile as a function of distance. This is done by using a sinus approximation of the PSD. Agostinacchio [20] describes how a road profile can be generated, using the spectral density. According to Agostinacchio, the ISO 8608 norm provides that the roughness profile of the road surface can be defined as follows:

$$G_d(n) = \lim_{\Delta n \to 0} \frac{\psi_x^2}{\Delta n} \tag{4-2}$$

J.C. Dijkhuizen - 4225457

Where ψ_x^2 is the mean square value of the component of the signal for the spatial frequency n, within the frequency band Δn .

The mean square value can also be written as:

$$\psi_x^2 = \frac{A_i^2}{2} \tag{4-3}$$

Combining these two equations, the following results for the amplitude A_i

$$A_i = \sqrt{2\psi_x^2} = \sqrt{2\Delta n G_d(n_i)} \tag{4-4}$$

The profile of the road can be written as a simple harmonic function as follows:

$$h(x) = \sum_{i=0}^{N} A_i \cdot \cos(2\pi \cdot n_i \cdot x_i + \varphi_i)$$
(4-5)

In this equation A_i represents the amplitude of the road vertical displacements, n_i is the spacial frequency in cycles/meter, x the abscissa variable from 0 to L (the length of the road). φ is the phase angle, with random angles, uniformly distributed between 0 and 2π .

Combining Equation 4-4 and 4-5 will result in the following equation, which describes the spot heights of the road surface:

$$h(x) = \sum_{i=0}^{N} \sqrt{2 \cdot \Delta n \cdot G_d(n_i)} \cdot \cos(2\pi \cdot n_i \cdot x_i + \varphi_i)$$
(4-6)

The road profile can then be generated by combining Equation 4-1 and 4-6, which results in a final equation for the artificial road profile:

$$h(x) = \sum_{i=0}^{N} \sqrt{2 \cdot \Delta n \cdot G_d(n_0)} \cdot \left(\frac{n_0}{n}\right) \cdot \cos(2\pi \cdot n_i \cdot x_i + \varphi_i)$$
(4-7)

Where $\Delta n = 1/L$ and $G_d(n_0)$ is a degree of roughness, as seen in Table 4-1.

Table 4-1: ISO 8608:2016 Road classification

Road class	$G_d(n_0) \cdot 10^{-6} \text{ m}^3$		
	Lower limit	Geometric mean	Upper limit
A	-	16	32
В	32	64	128
С	128	256	512

An example of a generated road profile can be seen in Figure 4-2.

Figure 4-2: Road profile generated with the ISO 8608: 1995 description. The variability of the road is the same over the whole section.

The road surface used for the front and the rear wheels are the same, but only delayed for the rear wheels. The delay is based on the velocity of the vehicle and the wheelbase.

The problem with the ISO road profile description is that it is a stationary Gaussian process. When a system is excited by a stationary Gaussian process, the autocorrelation of the acceleration data will be equivalent to the free decay response [21]. However, stationary Gaussian processes cannot accurately describe the road profile of longer sections, since they contain sections with above average irregularity. Furthermore, the ISO 8608 description is the result of straight line fitting of the PSD [22]. This means that the PSD provided in the ISO 8608 description is not always a good representation of the PSD of the real road profiles. Therefore, more realistic road profile descriptions have been proposed, as explained in the following section.

4-1-2 Laplace

Although the ISO 8608 description of the road profile is widely used in literature ([19], [18], [23], etc.) it is only suitable for shorter sections of a few hundred meters [7]. Bogsjö et al [8] proposes another description for the road profile, which has a more realistic course, which is called the Laplace description. In this description, the road is divided into shorter sections with some variability between the different sections. The variance is continuous varied according to the Laplace distribution. This description gives a more accurate profile of the road for longer sections.

The Laplace description can be seen as a non-stationary Gaussian process with randomly varying variance of the irregularities. For the simulation purpose, one road profile of 3500 meter is compiled, with 35 sections of 100 meter. This is equal to driving 100 km/h for 120 seconds.

An example of a Laplace road profile, consisting of 5 sections of 100 meter, can be seen in Figure 4-3. The variance between the sections is clearly visible. The first section between 0 and 100 meters has a higher amplitude than the section between 100 and 200 meters. Also, if compared with the ISO 8608 road profile in 4-2 it can be seen that the ISO 8608 road profile is much more constant in amplitude over the distance.

Figure 4-3: Road profile generated according to the Laplace description of Bogsjö. Visible is the different amplitudes between the different sections with a length of 100m each.

4-2 Vehicle Conditions

For the inertial parameter estimation, not only the road profile is an important factor on the results, but also the velocity. The wavelength of the oscillations of the road are constant, however the frequency changes depending on the velocity of the vehicle. Changing the velocity might influence the performance of the estimation of the inertial parameters. Rozyn only uses a velocity of 100 km/h. This is quite high, since it is often only reached after driving for some time. In this research, a range of velocities is selected to test the algorithm on its performance. The range selected is 30-100 km/h. 30 km/h is selected as lower end of the range, since that is a common velocity in residential areas. On the highway, 100 km/h is a normal velocity.

To identify the road influence on the oscillation of the body of the vehicle, a frequency analysis is performed. The road will have a constant wavelength, independent on the velocity of the vehicle. The propagation of the road however is dependent on the velocity. This means that the impact of the road onto the vehicle is dependent on the velocity of the vehicle.

The spatial frequency of the road in m^{-1} can be seen in Figure 4-4. The spatial frequency is the inverse of the wavelength of the road:

$$\zeta = \frac{1}{\lambda} \tag{4-8}$$

Where ζ is the spatial frequency in m^{-1} and λ the wavelength in m.

Figure 4-4: Fourier transform of the road. The area indicated is the oscillation range of the vehicle

The spatial frequency of the road will be constant, regardless of the velocity of the vehicle. The time frequency however is dependent on the velocity the vehicle is driving. This means that for different velocities of the vehicle, the road profile input will have a different frequency. If the frequency of the excitation of the road is the same as the natural frequency of the body of the vehicle it will add resonance to the body. If that is the case, it is more difficult to determine the modal parameters of the body of the vehicle. The relation between the frequency, the wavelength and the velocity is as follows:

$$\lambda = \frac{v}{f} \tag{4-9}$$

With the current test conditions, the body of the vehicle will have a natural frequency between 1.5 and 2 Hz. For a velocity of 30 km/h, this will result in a wavelength of the body between 4 and 6 meters. For a velocity of 100 km/h, the wavelengths will be between 14 and 20 meters. So, the bandwidth of the wavelengths of the oscillation of the vehicle will be between 4 and 20 meters, or 0.05 m^{-1} and 0.25 m^{-1} as spatial frequency. As can be seen in Figure 4-4, most of the frequencies lie in a lower range (< 0.05 m^{-1}). This means that most oscillations of the road profile will consist of longer waves and thus a lower spatial frequency and will not add any resonance with a high amplitude to the body of the vehicle.

Also the measurement time will influence the performance of the estimation. The longer the measurement time is, the more data points are available, with a more accurate estimation as result. However, in practice such long measurement periods will not be feasible. Furthermore, a constant velocity is desired during the measurement period. Changing the velocity will make the road profile less stationary, which will add extra errors in the estimation of the inertial parameters. Therefor, in this research a range of measurement periods is used, between 30 and 120 seconds. It is to be expected that a shorter measurement period results in a less accurate estimate of the inertial parameters, since less data points are available.

In this chapter, the shortcomings of Rozyn's algorithm has been explained. The road profile used by Rozyn is not a realistic description of a real life road profile, where there is much more variability over longer road sections which the ISO 8608 road profile fails to describe. Therefor, a more realistic road profile has been proposed, the Laplace description. Furthermore, the algorithm of Rozyn uses a measurement period of 1,000 seconds at a velocity of 100 km/h. During this period the velocity should remain constant for the algorithm to work optimal. This is not realistic, therfor, more realistic conditions are proposed, where the measurement time is varied between 10 and 120 seconds and the velocity between 30 and 100 km/h. The results of this can be seen in the next chapter, Chapter 5

Chapter 5

Results

In this chapter the results of the two different road profile, as introduced in Chapter 4-1 will be shown. But first, the algorithm needs to be validated for a correct implementation. To validate Rozyn's implemented algorithm, two tests have been conducted. In the first test, the vehicle is not excited by a road profile, instead the body of the vehicle has been given initial conditions to extract the free decay response of the vehicle. In the second test, the ISO 8608 road profile is used where the vehicle is driving 100 km/h and a measurement period of 100 seconds is used.

The following parameters have been used for the experiments:

Parameter	Value	Symbol	Unit
Tyre stiffness	$k_{t,f}$	200,000	N/m
Front suspension stiffness	$k_{s,f}$	45,000	N/m
Rear suspension stiffness	$k_{s,r}$	80,000	N/m
Tyre damping	$c_{t,f}$	50	N·s/m
Front suspension damping	$c_{s,f}$	$2,\!800$	N·s/m
Rear suspension damping	$c_{s,r}$	$3,\!500$	N·s/m
Front unsprung wheel mass	$m_{t,f}$	40	kg
Rear unsprung wheel mass	$m_{t,r}$	65	kg
Wheelbase	WB	2.8	m
Body mass	$\mathbf{m_s}$	1,000	\mathbf{kg}
Body pitch moment of inertia	I_{yy}	2,000	$kg \cdot m^2$
Centre of gravity position (measured from front axle)	l_{f}	1.2	m

Table 5-1: Vehicle parameters. The bold parameters indicate the parameters which are estimated using the algorithm.

5-1 Free Decay Response

The input of the algorithm is a free decay response. When the vehicle model is excited by the road, the free decay response can be extracted using an autocorrelation function. To validate the algorithm, a free decay response have been generated by setting the road profile to zero and giving the vehicle an initial condition. The resulting free decay response of the front and rear of the vehicle can be seen in, respectively, Figure 5-1 and 5-2. Since the algorithm uses the free decay response of the vehicle as input, this should result in a perfect estimation of the inertial parameters.

Figure 5-1: Free decay response of the front of the vehicle.

Figure 5-2: Free decay response of the rear of the vehicle.

The resulting estimates of the algorithm, with the free decay as input is as follows:

 $\label{eq:mass_matrix} \begin{array}{l} {\rm Mass~estimate}\,=\,1,002~{\rm kg}\\ {\rm Inertia~estimate}\,=\,2,009~{\rm kg}{\cdot}{\rm m}^2\\ {\rm Centre~of~gravity~estimate}\,=\,1.204~{\rm m} \end{array}$

As can be seen, the algorithm does indeed estimate the inertial parameters with a very high accuracy. These results can be used as baseline performance of the algorithm, and be compared with the results of the following experiments.

5-2 ISO 8608 Road Profile

In the second experiment, the algorithm is tested using the same parameters as used in Rozyn et al. This means that the vehicle is excited by the ISO 8608 road profile, while driving at a constant velocity of 100 km/h. The measurement period is, due to computational power, reduced to 100 seconds. However, as can be seen in the results, this does not contribute to large errors in the estimation of the parameters. The simulation creates 100 pseudo measurements, using 100 different random profiles, resulting in 100 different accelerations of the vehicle body. Each time, the autocorrelation function is used to extract the free decay response of the vehicle. The end result are 100 estimates for the inertial parameters. The average of these estimates is:

Mass estimate : 984.7 kg Inertia estimate : 2,038 kg·m² Centre of gravity estimate : 1.201 m

The following figures have been generated for this experiment:

- Autocorrelation of the front acceleration, see Figure 5-3
- Autocorrelation of the rear acceleration, see Figure 5-4
- Comparison between autocorrelation and free decay for the front of the vehicle, see Figure 5-5
- Comparison between autocorrelation and free decay for the rear of the vehicle, see Figure 5-6
- Histogram for the mass estimates, see Figure 5-7
- Histogram for the inertia estimates, see Figure 5-8
- Histogram for the centre of gravity estimates, see Figure 5-9
- Boxplot of the errors of the estimates, see Figure 5-10

In Figure 5-3 and 5-4 the extracted free decay response of the vehicle body can be seen for the 100 different pseudo measurements. As can be seen, the difference between the different extracted free decay responses are very small. This indicates that the algorithm should be able to estimate the inertial parameters with a small deviation.

The extracted free decay response is also compared with the free decay response from Figure 5-1 and 5-2 and can be seen in Figure 5-5 and 5-6. As can be seen, there is a difference in amplitude between the real free decay response and the extracted free decay response. More important for the estimation of the inertial parameters is the period of the free decay, which is the same for the free decay and the autocorrelation function.

Figure 5-3: Autocorrelation of the front acceleration for 100 measurements using the ISO 8608 road profile. There is very little difference between the 100 different extracted free decay responses.

Figure 5-4: Autocorrelation of the rear acceleration for 100 measurements using the ISO 8608 road profile. There is very little difference between the 100 different free decay responses.

Figure 5-5: Free decay (blue) response compared to the extracted free decay response using the autocorrelation function (red) for the front of the vehicle. There is a difference in the amplitude, however the period is the same.

Figure 5-6: Free decay (blue) response compared to the extracted free decay response using the autocorrelation function (red) for the front of the vehicle. There is a difference in the amplitude, however the period is the same.

Figure 5-7: Histogram of the mass estimates with a good estimate of the mass parameter and a small deviation between the different estimates for the ISO 8608 road profile.

Figure 5-8: Histogram inertia estimates with a good estimate of the inertia parameter and a small deviation between the different estimates for the ISO 8608 road profile.

Figure 5-9: Histogram centre of gravity estimates with a very good estimate and a small deviation between the different estimates of the position of the centre of gravity for the ISO 8608 road profile.

Figure 5-10: Boxplot of the errors of the estimates with very low deviation of the estimates of the inertial parameters for the ISO 8608 road profile.

Figure 5-11: Standard deviation of the estimates of the vehicles mass for the ISO road profile. The standard deviation remains constant over varying velocity, where as it increases with decreasing measurement time.

The histogram in Figure 5-7 - 5-9 shows the estimates of the parameters each measurement. The results show that the inertial parameters can be estimated with a good average of the different measurements. Furthermore, the deviation between the different measurements is small, as can also be seen in the boxplot in Figure 5-10. All the estimates lie within a 6% error margin, the standard deviation σ between the different estimates is very small. This means that all the estimates are close to the average of the estimated inertial parameters. The standard deviation can also be used as performance indicator of the algorithm, since a small standard deviation indicates that less pseudo measurements are needed to tell something about the real inertial parameters. The results from the second experiment, with the ISO 8608 description as road profile are comparable to Rozyn's results.

The experiments have been repeated for different velocities, between 30 and 100 km/h and measurement periods: between 10 and 120 seconds. Each time, the inertial parameters have been estimated using 100 different random road profiles. The standard deviation of the different estimates for each condition can be seen in Figure 5-11 - 5-13. It is clearly visible that the standard deviation of the estimates remains constant over a varying velocity. The standard deviation however increases for decreasing measurement periods.

Figure 5-12: Standard deviation of the estimates of the vehicles pitch moment of inertia for the ISO road profile. The standard deviation remains constant over varying velocity, where as it increases with decreasing measurement time.

Figure 5-13: Standard deviation of the estimates of the vehicles longitudinal position of centre of gravity for the ISO road profile. The standard deviation shows a slight dependency over the velocity, where as it increases with decreasing measurement time.

5-3 Laplace Road Profile

In the following experiment we use the algorithm to estimate the parameters of the vehicle, while the vehicle is excited by the Laplace description of the road, as proposed by Bogsjö. This is done with the same parameters, thus a velocity of 100 km/h and a measurement time of 100 seconds. The estimation of the inertial parameters is as follows:

Mass estimate = 950 kgInertia estimate = $2,088 \text{ kg} \cdot \text{m}^2$ Centre of gravity estimate = 1.199 m

The results of the first experiment can be seen in Figures 5-14 - 5-19. The average of the estimates are still fairly accurate (+- 5%), however the standard deviation of the measurements are a factor 5 higher, compared to the ISO 8608 road. This means that more measurements are needed for an accurate estimate of the inertial parameters.

These experiments have been repeated for measurement periods between 10 and 120 seconds and velocities between 30 and 100 km/h. The standard deviation of these estimation of the inertial parameters have been plotted against the velocity and measurement period and can be seen in Figure 5-20 - 5-22.

Figure 5-14: Autocorrelation front acceleration of the vehicle for 100 estimates, using the Laplace road profile. The free decay response shows more deviation in the extracted free decay response between the different measurements in comparison to the ISO 8608 road profile in Figure 5-3.

Figure 5-15: Autocorrelation rear acceleration of the vehicle for 100 estimates, using the Laplace road profile. The free decay response shows more deviation in the extracted free decay response between the different measurements in comparison to the ISO 8608 road profile in Figure 5-4.

28

Figure 5-16: Histogram mass estimates for the Laplace road profile with higher deviation between the different estimates compared to the ISO 8608 road profile.

Figure 5-17: Histogram inertia estimates for the Laplace road profile with higher deviation between the different estimates compared to the ISO 8608 road profile.

Figure 5-18: Histogram centre of gravity estimates for the Laplace road profile with higher deviation between the different estimates compared to the ISO 8608 road profile.

Figure 5-19: Boxplot of the errors of the estimates for the Laplace road profile with higher deviation between the different estimates compared to the ISO 8608 road profile.

Standard deviation estimation mass - Laplace STD [kg] 10.0 12.5 15.0 17.5 20.0 22.5 7.5 Velocity [m/s] time [s] 25.0 27.5

Figure 5-20: Standard deviation of the body mass estimates for the Laplace road profile. The standard deviation is lower for shorter measurement periods and does not change much for different velocities. Clearly visible is the higher deviation between the different estimates in comparison to the ISO 8608 road profile in Figure 5-11.

Figure 5-21: Standard deviation of the pitch moment of inertia estimates for the Laplace road profile. The standard deviation is lower for shorter measurement periods and shows a slight dependency on the velocity, where higher velocities results in lower deviations between the different estimates. Clearly visible is the higher deviation between the different estimates in comparison to the ISO 8608 road profile in Figure 5-12.

Standard deviation estimation longitudinal centre of gravity - Laplace

Figure 5-22: Standard deviation of the longitudinal position centre of gravity estimates for the Laplace road profile. The standard deviation is lower for shorter measurement periods. Clearly visible is the higher deviation between the different estimates in comparison to the ISO 8608 road profile in Figure 5-13.

It is clearly visible that the standard deviation of the estimates remains constant over a varying velocity. The standard deviation however increases for decreasing measurement periods.

Chapter 6

Conclusion & Discussion

6-1 Contributions

In this thesis, Rozyn's algorithm has been explained and implemented in Python. The input of the algorithm are vertical accelerations of the body of a vehicle. For this, a vehicle model has been introduced and implemented in Python. The vehicle model has been given an initial condition which results in a free decay of the vehicle. This is used to validate the implemented algorithm. Also, the road description, which is used by Rozyn, as described in the ISO 8608 standard, is implemented and used under the same conditions as Rozyn to verify that the algorithm has been implemented correctly.

The experiments have been repeated under different conditions. The velocity is varied between 30 and 100 km/h and the measurement period between 10 and 120 seconds. For each condition, 100 random road profiles have been used to generate 100 accelerations. From these accelerations, 100 different estimates of the inertial parameters have been made. The standard deviation between these estimates tells something about the accuracy of the measurement. A surface graph has been made where the standard deviation has been plotted against the velocity and measurement period. This is done for both the ISO 8608 and the Laplace road profile. From the results can be concluded that Rozyn uses a unrealistic framework for his algorithm, with a road profile which is not realistic and unrealistic vehicle conditions, such as a high velocity and a long measurement period.

6-2 Conclusion & Recommendation

In this thesis, a method for online inertial parameter estimation has been implemented and tested on multiple conditions. The algorithm is proposed by Rozyn et al and is able to estimate the mass of the body of the vehicle, the position of the centre of gravity and the inertial moments with high accuracy, according to Rozyn. The input of the algorithm is a free decay response which is extracted from vertical acceleration data using an autocorrelation function. This acceleration data is generated by exciting a simulated vehicle model with a road profile where the accelerometers are placed on the corners of the vehicle.

The road profile used by Rozyn is described in the ISO 8608 standard. It is a random road profile, constructed as a stationary and homogeneous Gaussian process. In real life, however, a road profile is never stationary and homogeneous but changes over time and distance. This is why the ISO 8608 standard is not suitable for generating longer road profiles, according to Johannesson. A more realistic road profile is proposed by Bjogsö. He calls it the Laplace description, where the road profile is constructed using smaller road sections with a random variability, according to the Laplace distribution, between those sections.

In this thesis, the algorithm for inertial parameter estimation as proposed by Rozyn is implemented in Python. Since the input of the algorithm is a free decay response, the implemented algorithm is first validated using a free decay response of the vehicle. This is done by setting the road profile to zero and giving the vehicle an initial condition. This results in a free decay response, where the movement of the vehicle decays to zero. The results show that the algorithm estimates the inertial parameters with a very high accuracy, within a 0.5 % error margin.

The method has also been validated by estimation of the inertial parameters, under the same conditions that Rozyn uses, with a random road profile, as defined in the ISO 8608 standard. Using this random road profile, the algorithm is able to estimate the parameters with high accuracy and small deviation between the estimated parameters, where all the measurements fall into a 6% error range. The average of the estimated inertial parameters has a deviation of 2 % compared to the real inertial parameters.

The problem with Rozyn's algorithm is that he uses an unrealistic framework with a high velocity and measurement period of 1000 seconds at a constant velocity of 100 km/h. This is why, in this thesis, a range of velocities, between 30 and 100 km/h and measurement periods, between 10 and 120 seconds, have been proposed. The algorithm has been used to estimate the inertial parameters, using the ISO 8608 road profile. Here, 100 pseudo measurements for each velocity and time parameter on 100 random road profiles are used. This results in 100 estimates of the inertial parameters. These results are used to calculate both the average of the estimates and the standard deviation of the estimates. The standard deviation indicates the reliability of the algorithm. A low standard deviation is plotted against the measurement period and the velocity in a 3D surface plot. The results show that the standard deviation is independent on the velocity but increases with shorter measurement

periods. The standard deviation between the different estimates is small for measurement periods longer than 60 seconds.

The algorithm has also been tested on the Laplace road description, proposed by Bjogsö, with velocities between 30 and 100 km/h and measurement periods between 10 and 120 seconds. Results show that using the Laplace description for the road profile results in a much larger standard deviation of the estimated inertial parameters in comparison to Rozyn's algorithm, under the same conditions of the measurement time and velocity. Rozyn uses the ISO 8608 description for the road profile which is constructed according to a stationary Gaussian process. This means that the free decay response of the vehicle can be extracted more accurately by the autocorrelation function. The Laplace description is constructed using a Laplace description, which can be seen as a non-stationary Gaussian process with a random variability between different sections of the road profile. This means that the autocorrelation function function cannot extract the free decay response accurately enough. This can be seen in the results, where for the same conditions for the velocity and measurement period, the standard deviation of the estimation increases by a factor 5. Reducing the measurement period from 120 seconds will increase this standard deviation of the estimated inertial parameters even more.

The results of other experiments, where the measurement time and velocity is varied, shows that for the estimates of the inertial parameters the velocity has no or little influence on the standard deviation of the estimates. The standard deviation of the estimates does increase with decreasing measurement periods.

Recommended is to estimate the parameters using a measurement period longer than 60 seconds. The deviation in the estimated parameters increase heavily for measurement periods below 60 seconds.

The algorithm can still be used on non-stationary road profiles. However, more and longer measurements are needed for the algorithm to return with an accurate estimation of the inertial parameters. Even then, some errors in the estimated parameters in the order of 10% are present.

Appendix A

Appendix

A-1 Vehicle Model

In Figure A-1 and A-2 the response of the front and rear, respectively, can be seen after the body (green line) and the wheels (blue line) of the vehicle have been given an initial condition. The road surface (red line) is zero. It clearly shows the free decay of the vehicle until steady state. The vehicle behaves as expected.

In Figure A-3 the pitch angle during the free decay can be seen. It shows that the pitch angle is indeed very small. This is also the case if the vehicle is excited by a road profile. This indicates that the linearized equations in 3-8 and 3-9 can indeed be used.

Figure A-1: Front vehicle response upon free decay

Figure A-2: Rear vehicle response upon free decay

Figure A-3: Pitch angle during free decay

J.C. Dijkhuizen - 4225457

Figure A-4: Front vehicle response ISO 8608 road profile

Figure A-5: Rear vehicle response ISO 8608 road profile

Figure A-6: Pitch angle ISO 8608 road profile

A-2 Programming Code

```
A-2-1 Main File
```

```
0.0.0
 1
 2 @author: JoÃńl Dijkhuizen
 3 """
 4 import matplotlib.pyplot as plt
 5 from matplotlib.font_manager import FontProperties
 6 import numpy as np
 7 from scipy.integrate import odeint
 8 from EOM1 import parameters, road, solution, dstate, state_transition,
               estimation, parameter
 9 from scipy.optimize import fsolve
10 import time
11 from statsmodels.tsa.stattools import acf, ccf
12 import seaborn as sns
13 from scipy.signal import resample
14 from scipy.fftpack import fft
15
16 sns.set()
17 plt.close("all")
18 start = time.time()
19
20 ## Import paramters
21 [m, k, c, I, l_s, l, var] = parameters()
22 m_t_f, m_t_r, m_s = m \# Masses
23 k_t_f, k_t_r, k_s_f, k_s_r = k # Stiffnesses
24 c_t_f, c_t_r, c_s_f, c_s_r = c # Damping coefficients
25 I_yy = I # Inertia moment
26 l_f, l_r = l # Position CoG with respect to the unsprung masses
27 l_s_f, l_s_r = l_s \# Length of the springs
28 vel, stoptime, L, T_s, N, WB, road_profile = var
29 \quad p = [m_t_f, m_t_r, m_s, k_t_f, k_t_r, k_s_f, k_s_r, c_t_f, c_t_r, c_s_f, k_s_r, k_s_r,
               c_s_r, I_yy, l_f, l_r] # Pack up the paramters
30
      ## Time vector
31
32 t = np.linspace(0, \text{ stoptime}, \mathbb{N})
33
34 mp = 1 # Number of pseudo measurments
35
36 m_s_est = np.zeros(mp)
       I_yy_est = np.zeros(mp)
37
38 \quad l_f_{est} = np.zeros(mp)
39
40 ddx_s_f = np.zeros((101, mp))
      ddx_s_r = np.zeros((101, mp))
41
42
43 for z in range(0, mp):
                 print("z = ", z+1, "/", mp)
44
                 ## Import road profile
45
                 x_r = [x_r_f, dx_r_f, x_r_r, dx_r_r, L] = road(t, var, z)
46
```

J.C. Dijkhuizen - 4225457

```
47
        ## Initial conditions
48
        if road_profile in range(1,2): # Random road
49
50
             x_t_{f0} = x_r_{f0}
             dx_t_f0 = dx_r_f[0]
51
             x_t_r0 = x_r_r[0]
52
             dx_t_r0 = dx_r_f[0]
53
             x_s0 = (x_r_f[0] + x_r_r[0])/2
54
             dx_s0 = (dx_r_f[0] + dx_r_r[0])/2
55
             phi0 = (x_r_f[0] + x_r_r[0]) / WB
56
             {\tt dphi0} \; = \; \left( \, {\tt dx\_r\_f} \left[ \, 0 \, \right] \; + \; {\tt dx\_r\_r} \left[ \, 0 \, \right] \, \right) \, / \, {\tt WB}
57
58
        if road_profile == 0: # Free decay
59
60
             x t f0 = -0.015
             dx t f0 = 0
61
             x_t_r0 = -0.015
62
             dx_t_r0 = 0
63
             x s0 = -0.03
64
             dx_s0 = 0
65
             phi0 = 0.00
66
             dphi0 = 0
67
68
        state = np.zeros((N, 8)) # define size of the state
69
70
        state_0 = np.array([x_t_f0, x_t_r0, x_s0, phi0, dx_t_f0, dx_t_r0,
            dx s0, dphi0]) # initial condition state
71
        state[0, :] = state_0 # initial condition state
72
        ## Integration
73
74
        for i in range(0, N - 1):
             tt = [0, T_s] #integrate over 1 timestep
75
             x_r_f = x_r_f[i] # corresponding road profile
76
             dx_r_f = dx_r_f[i]
77
             x_r_r = x_r_r[i]
78
             dx_r_r = dx_r_r[i]
79
             x_ra = [x_r_f, dx_r_f, x_r_r, dx_r_r, L]
80
             \texttt{state\_temp} = \texttt{odeint}(\texttt{solution}, \texttt{ state}[\texttt{i}, :], \texttt{tt}, \texttt{ args} = (\texttt{p}, \texttt{ x\_ra})) \texttt{ \#}
81
                 Integrate state dot using solution function, state0 as initial
                  values and paramters p
82
             state[i+1, :] = state\_temp[1, :] # new state
83
        state = np.transpose(state)
84
85
        dstate_temp = dstate(state, p, t, x_r)
86
        ddx_s = np.ravel(dstate_temp[6, :])
87
        ddphi = np.ravel(dstate_temp[7, :])
88
89
        T_s_sample = 0.01 #Sampling frequency 100 Hz
90
91
        N_sample = round(stoptime/T_s_sample)
92
        ddx_s_f_ = ddx_s + l_f*ddphi
93
        ddx_s_r_ = ddx_s - l_r*ddphi
94
95
        if road_profile == 2:
96
```

```
ddx_s_f = resample(ddx_s_f_, N_sample) # Sample accelerations
97
                on sampling frequency
            ddx_s_r_ = resample(ddx_s_r_, N_sample)
98
99
        else:
            ddx_s_f_ = ddx_s_f_
100
101
            ddx_s_r_ = ddx_s_r_
102
        if road_profile in range(1,2): # take autocorrelation of signal for
103
            random road input
            lag = round(1/T_s_sample)
104
            ddx_s_f[:,z] = acf(ddx_s_f_, nlags = lag)
105
            ddx_s_r[:, z] = acf(ddx_s_r, nlags = lag)
106
            ACC_t = np.linspace(0, lag*T_s_sample, lag + 1)
107
108
            ddx = [ddx_s_f[:,z], ddx_s_r[:,z]]
109
            plt.figure(1)
110
111
            plt.plot(ACC_t, ddx_s_f[:,z])
            plt.xlabel('time lag [s]')
112
            plt.ylabel('ACF')
113
            plt.title('Autocorrelation front acceleration - ISO 8608')
114
115
            plt.savefig('Autocor_front')
116
            plt.figure(2)
117
118
            plt.plot(ACC_t, ddx_s_r[:,z])
            plt.xlabel('time lag [s]')
119
            plt.ylabel('ACF')
120
            plt.title('Autocorrelation rear acceleration - ISO 8608')
121
            plt.savefig('Autocor_rear')
122
123
        if road_profile == 0: # Free decay input
124
            ddx_s_f = ddx_s_f_
125
            ddx_s_r = ddx_s_r_
126
127
            ddx_s_f = ddx_s_f_/np.max(ddx_s_f_)
128
            ddx_s_r = ddx_s_r_/np.max(ddx_s_r_)
129
            ddx = [ddx_s_f, ddx_s_r]
130
131
            plt.figure(1)
132
133
            plt.plot(t, ddx_s_f)
            plt.xlabel('time [s]')
134
            plt.ylabel('Amplitude')
135
            plt.title('Normalized free decay response front - Impulse
136
                response')
            plt.savefig('Acceleration free decay front')
137
138
            plt.figure(2)
139
            plt.plot(t, ddx_s_r)
140
            plt.xlabel('time [s]')
141
            plt.ylabel('Amplitude')
142
            plt.title('Normalized free decay response rear - Impulse response
143
            plt.savefig('Acceleration free decay rear')
144
145
```

```
## State transition
146
147
        A_meas, omega_nS_hz, omega, index, omega_nS_hz_noise =
            state_transition(ddx, N, T_s_sample, t)
148
        if omega != [0,0]: # Estimate parameters if identification is
149
            succesfull
             \texttt{A\_est}, \ \texttt{cost}, \ \texttt{k\_eq\_f}, \ \texttt{k\_eq\_r} = \texttt{estimation}(\texttt{A\_meas}, \ \texttt{k}, \ \texttt{c}, \ \texttt{l}, \ \texttt{omega})
150
             x0 = [800, 1750, 1] #initial estimate mass, inertia, l_f
151
             par_est = fsolve(parameter, x0, args=(A_meas, k_eq_f, k_eq_r, WB)
152
                 )
153
             [m_s_est[z], I_yy_est[z], l_f_est[z]] = par_est
154
155
        else: # Estimation is zero
156
            [m_s_est[z], I_yy_est[z], 1_f_est[z]] = [0, 0, 0]
157
158
            z += 1
159
    np.save('mass_estimate', m_s_est)
160
    np.save('inertia_estimate', I_yy_est)
161
    np.save('cog_estimate', l_f_est)
162
163
164
    l_r_{est} = WB - l_f_{est}
   dif_m = np.abs(m_s_est - m_s)/m_s*100
165
    dif_I_y = np.abs(I_yy_est - I_yy)/I_yy*100
166
    dif_l_f = np.abs(l_f_est - l_f)/l_f*100
167
168
    m_s_estimate = np.average(m_s_est[m_s_est != 0])
169
170 print('Mass estimate =', m_s_estimate, 'kg')
171 I_yy_estimate = np.average(I_yy_est[I_yy_est != 0])
172 print('Inertia estimate =', I_yy_estimate, 'kg*m^2')
173 l_f_estimate = np.average(l_f_est[l_f_est != 0])
    print('COG estimate =', l_f_estimate, 'm')
174
175
    m_bin = np.linspace(int(round(np.min(m_s_est)-49, -2)), int(round(np.max(np.max)))
176
       m_s_{est} + 49, -2)), 41)
177 plt.figure(3)
178 plt.hist(m_s_est, bins = m_bin)
    plt.text(int(round(np.min(m_s_est)-49, -2)), 0.9*plt.ylim()[1], '$\mu$ =
179
         {:.2f}'.format(m_s_estimate))
    plt.text(int(round(np.min(m_s_est)-49, -2)), 0.8*plt.ylim()[1], '$\sigma$
180
         = {:.2f}'.format(m_s_est.std()))
   plt.title('Mass estimates - Laplace')
181
182 plt.xlabel('Mass [kg]')
    plt.ylabel('Occurance')
183
184
    plt.savefig('hist_mass')
185
    I_bin = np.linspace(int(round(np.min(I_yy_est)-49, -2)), int(round(np.max
186
        (I_yy_est) + 49, -2)), 41)
   plt.figure(4)
187
    plt.hist(I_yy_est, bins = I_bin)
188
    plt.text(int(round(np.min(I_yy_est)-49, -2)), 0.9*plt.ylim()[1], '$\mu$ =
189
         {:.2f}'.format(I_yy_estimate))
```

```
plt.text(int(round(np.min(I_yy_est)-49, -2)), 0.8*plt.ylim()[1], '$
190
       sigma$ = {:.2f}'.format(I_yy_est.std()))
   plt.title('Pitch moment of inertia estimates - Laplace')
191
192 plt.xlabel('Inertia [kg*m<sup>2</sup>]')
193 plt.ylabel('Occurance')
   plt.savefig('hist_inertia')
194
195
   l_f_{\text{bin}} = \text{np.linspace}(\text{round}(\text{np.min}(l_f_{\text{est}}) - 0.049, 1), \text{round}(\text{np.max}(
196
       l_f_{est} + 0.049, 1), 41
   plt.figure(5)
197
198
   plt.hist(l_f_est, bins = l_f_bin)
   plt.text(round(np.min(l_f_est) - 0.049, 1), 0.9* plt.ylim()[1], '$\mu$ =
199
       {:.4f}'.format(l_f_estimate))
200
    plt.text(round(np.min(l_f_est) - 0.049, 1), 0.8*plt.ylim()[1], '$\sigma$ =
       {:.4f}'.format(l_f_est.std()))
   plt.title('CoG estimates (from front axle) - Laplace')
201
202 plt.xlabel('Distance [m]')
203 plt.ylabel('Occurance')
204 plt.savefig('hist_cog')
205
206 m_s\_error = (m_s\_est - m_s)/m_s*100
207 I_yy_error = (I_yy_est - I_yy)/I_yy*100
208 l_f = (l_f = (l_f + l_f) / l_f + 100)
209 error = [m_s_error, I_yy_error, l_f_error]
210
211 label = ['m_s_est', 'I_yy_est', 'l_f_est']
212 plt.figure(6)
213 plt.title('Error in estimated parameters - Laplace')
214 plt.ylabel('error [%]')
215 plt.boxplot(error, labels = label)
216 plt.savefig('Boxplot')
217
    Results = [[stoptime], [vel], [m_s_estimate], [m_s_est.std()], [
218
       I_yy_estimate], [I_yy_est.std()], [1_f_estimate], [1_f_est.std()]]
219
   import os
220
   mydir = os.getcwd() # Get directory
221
   updir = os.path.dirname(mydir) # Go up one directory
222
223
   mydir_new = os.chdir(updir) # Change current directory to updir
   np.savetxt('Result_test.txt', Results)
224
225
   dx = 0.05
226
227
228 plt.figure(8)
229 yf = fft(x_r_f)
230 tf = np.linspace(0.0, 1.0/(2.0*dx), N/2)
231 plt.plot(tf, 2.0/N * np.abs(yf[0:N//2]))
232 plt.title('Road spatial frequency')
233 plt.xlabel('Spatial frequency [cycles/m]')
   plt.ylabel('FFT Magnitude (power)')
234
235
236
   # Plot results
237
```

```
238 x_t_f = state[0, :]
239 x_t_r = state[1,:]
240 x_s = state[2, :]
241 phi = state [3, :]
242
243 x_s_f = x_s + l_f*phi
244 x_s_r = x_s - l_r*phi
245
246 # Plots
247 plt.figure(10, figsize=(12, 4)) # Plot road profile and body displacement
        front
248 plt.xlabel('t [s]')
249 plt.ylabel('road profile [m]')
250 plt.grid(True)
251 \ lw = 1
252 plt.plot(t, x_r_f, 'r', linewidth=lw) #plot road displacement
253 plt.plot(t, x_t_f, 'b', linewidth=lw) #plot wheel displacement
254 plt.plot(t, x_s_f, 'g', linewidth=lw) #plot body displacement
255 plt.legend((r'$x_{road, front}$', r'$x_{tyre, front}$', r'$x_{sprung,
       front}$'), prop=FontProperties(size=16))
   plt.title('Mass Displacements for the\nCoupled Spring-Mass System, front'
256
       )
   plt.savefig('two_springs_f.png', dpi=1000)
257
258
   plt.figure(11, figsize=(12, 4)) # Plot road profile and body displacement
259
        rear
260 plt.xlabel('t [s]')
261 plt.ylabel('road profile [m]')
262
   plt.grid(True)
263 plt.plot(t, x_r_r, 'r', linewidth=lw) #plot road displacement
264 plt.plot(t, x_t_r, 'b', linewidth=lw) #plot wheel displacement
265 plt.plot(t, x_s_r, 'g', linewidth=lw) #plot body displacement
266 plt.legend((r'$x_{road, rear}$', r'$x_{tyre, rear}$', r'$x_{sprung, rear}$
       '), prop=FontProperties(size=16))
   plt.title('Mass Displacements for the\nCoupled Spring-Mass System, rear')
267
   plt.savefig('two_springs_r.png', dpi=1000)
268
269
270 plt.figure(12, figsize = (12, 4)) # Plot body angle phi
271 plt.xlabel('t [s]')
272 plt.ylabel('body angle [rad]')
273 plt.grid(True)
274 plt.plot(t, phi, 'g', linewidth=lw) #plot x_s
275 plt.legend((['Pitch angle']), prop=FontProperties(size=16))
276 plt.title('Body angle over time')
   plt.savefig('two_springs.png', dpi=1000)
277
278
279
   end = time.time()
280
281 print("time elapsed", end - start, "s")
```

A-2-2 Function File

```
0.0.0
1
  Cauthor: JoÃńl Dijkhuizen
2
   .......
3
4 import matplotlib.pyplot as plt
5 import numpy as np
6 from sympy import Symbol, Matrix
7 from Norm import normalize
8 from scipy.io import loadmat
  import math
9
10
11
  plt.close("all")
12
13 def parameters():
       # Parameter values
14
15
        # Masses:
16
       m_t_f = 40 # Front unsprung mass [kg]
17
       m_t_r = 65 # Rear unsprung mass [kg]
18
19
       m_s = 1000  # Sprung mass [kg]
       \mathtt{m} = \mathtt{m\_t\_f} \,, \ \mathtt{m\_t\_r} \,, \ \mathtt{m\_s}
20
21
22
        # Spring constants
        k_t_f = 200000  # Tyre stiffness front [N/m]
23
        k_t_r = k_t_f # Tyre stiffness rear [N/m]
24
        k_s_f = 45000 # Front suspension stiffness [N/m]
25
26
        k_s_r = 80000 # Rear suspension stiffness [N/m]
27
       k = k_t_f, k_t_r, k_s_f, k_s_r
28
        c_t_f = 50 # Tyre damping front [N*s/m]
29
        c_t_r = c_t_f # Tyre damping rear [N*s/m]
30
        c_s_f = 2800 \text{ \# Front suspension damping [N*s/m]}
31
        c_s_r = 3500 # Rear suspension damping [N*s/m]
32
        c = c_t_f, c_t_r, c_s_f, c_s_r
33
34
        I_yy = 2000 # Chassis pitch mass moment of inertia [Kg*m<sup>2</sup>]
35
36
        I = I_yy
37
        l_s_f = 0.3 #height sprung mass front
38
        l_s_r = 0.3 #height sprung mass rear
39
40
        l_s = l_s_f, l_s_r
41
       l_f = 1.2 # Distance from front axle to CoG [m]
42
        l_r = 1.6 # Distance from rear axle to CoG [m]
43
       l = l_f, l_r
44
45
        WB = l_f + l_r #Vehicle wheelbase [m]
46
47
        vel = 100/3.6 # velocity
48
        stoptime = 100 \text{ \# runtime}
49
        print("Velocity = ", vel*3.6, "km/h")
50
        print("Measurement time = ", round(stoptime,2), "sec.")
51
```

J.C. Dijkhuizen - 4225457

```
52
         L = vel*stoptime # Covered distance
53
         dx = 0.05 # Spatial frequency
54
55
         road_profile = 1 # 0 for free decay, 1 for ISO, 2 for Laplace road
56
            profile
57
         if road_profile == 0:
58
             print("Free decay")
59
             stoptime = 1
60
             L = vel*stoptime
61
             T_s = 0.01
62
             N = round(stoptime/T_s)
63
64
         if road profile == 1:
             print("ISO Road Profile")
65
             T_s = 0.01
66
             N = round(stoptime/T_s)
67
         if road_profile == 2:
68
             print("Laplace Road Profile")
69
             N = round(L/dx)
70
71
             T_s = stoptime/N
72
         var = vel, stoptime, L, T_s, N, WB, road_profile
73
74
         return m, k, c, I, l s, l, var
75
76
77
    def road(t_road, var, z):
78
79
         vel, stoptime, L, T_s, N, WB, road_profile = var
80
         dt = WB/vel \# Time difference between front and rear [s]
81
         dindex = int(dt/T_s) # index difference between front and rear wheel
82
         dL = dindex * T_s * vel # Extra distance covered
83
         tt = np.linspace(0, stoptime + dindex*T_s, N + dindex)
84
85
         if road_profile == 0: # Free decay
86
             x_r = np.zeros(N + dindex)
87
             \mathtt{L}~=~0
88
89
         if road_profile == 1: # ISO road profile
90
             k = 3 # Road roughness ISO 8608
91
             dn = 1/L
92
             B = L/N
93
             \texttt{n0} = 0.1
94
             n = np.linspace(dn, (N + dindex)*dn, N + dindex)
95
             angle = 2*np.pi*np.random.uniform(0, 1, size N + dindex)
96
             ampx = np.sqrt(dn) * (2**k) * (1e-3) * (n0/n)
97
98
             x_r = np.zeros(N + dindex)
99
100
             x = np.linspace(0, L + dL - B, N + dindex)
101
             \texttt{tt} \ = \ \texttt{np.linspace} \left( 0 \ , \ \texttt{stoptime} \ + \ \texttt{dindex*T_s} \ , \ \texttt{N} \ + \ \texttt{dindex} \right)
102
103
```

```
104
             x_road = np.linspace(0, L, N)
105
             for i in range (0, \mathbb{N} + \text{dindex}):
106
                  x_r[i] = np.dot(ampx, np.sin(2*math.pi*n*x[i] + angle))
107
108
         if road_profile == 2: # Laplace road profile
109
             data = loadmat('road_surface.mat')
110
             x_r = np.array(data['zLAR'])
111
             x_r = x_r[:, z]
112
113
114
        x_r_f = np.ravel(x_r[dindex : N + dindex]) # Front road profile
        x_r_r = np.ravel(x_r[0 : N]) # Rear road profile
115
116
117
        dx_r_f = np.zeros(N)
        dx_r_r = np.zeros(N)
118
119
120
        for i in range(1, N - 1):
             dx_r_f[i] = (x_r_f[i+1] - x_r_f[i-1])/(2*T_s)
121
             dx_r_r[i] = (x_r_r[i+1] - x_r_r[i-1])/(2*T_s)
122
123
124
        plt.figure(7)
125
        plt.plot(tt, vel*np.ones(N + dindex))
        plt.title('Velocity profile')
126
127
        plt.xlabel('Time [s]')
        plt.ylabel('Velocity [m/s]')
128
129
        plt.savefig('Velocity_profile')
130
131
        return x_r_f, dx_r_f, x_r_r, dx_r_r, L
132
133
    def solution(state, tt, p, x_r):
134
         x_tf, x_tr, x_s, phi, dx_tf, dx_tr, dx_s, dphi = state
135
136
        \texttt{m_t_f}, \texttt{m_t_r}, \texttt{m_s}, \texttt{k_t_f}, \texttt{k_t_r}, \texttt{k_s_f}, \texttt{k_s_r}, \texttt{c_t_f}, \texttt{c_t_r}, \texttt{c_s_f},
            c_s_r, I_yy, l_f, l_r = p
         x_r_f, dx_r_f, x_r_r, dx_r_r, L = x_r
137
138
        x_s_f = x_s + l_f * phi
139
        dx_s_f = dx_s + l_f * dphi
140
141
        x_s_r = x_s - l_r * phi
        dx_s_r = dx_s - l_r * dphi
142
143
144
        dstate_0 = [dx_t_f,
145
                      dx_t_r,
146
147
                      dx_s,
148
                      dphi,
                      (-k_t_f*(x_t_f - x_r_f) - c_t_f*(dx_t_f - dx_r_f) + k_s_f
149
                          *(x_s_f - x_t_f) + c_s_f*(dx_s_f - dx_t_f))/m_t_f
                      (-k_t_r*(x_t_r - x_r_r) - c_t_r*(dx_t_r - dx_r_r) + k_s_r)
150
                          *(x_s_r - x_t_r) + c_s_r*(dx_s_r - dx_t_r))/m_t_r
                      (-k_s_f * (x_s_f - x_t_f) - c_s_f * (dx_s_f - dx_t_f) - k_s_r
151
                          *(x_s_r - x_t_r) - c_s_r*(dx_s_r - dx_t_r))/m_s,
```

J.C. Dijkhuizen - 4225457

152		(-l_f*(k l_r;)/I_3	<pre>x_s_f*(x_s_f - x] *(k_s_r*(x_s_r - y])</pre>	_t_f) + c_s_f*(d: x_t_r) + c_s_r*	$x_s_f - dx_t_f) + (dx_s_r - dx_t_r))$
153		detate 0 - nn transn	ose(dstate 0)		
154		ustate_0 = np. transp	ose(dstate_0)		
156		return detate 0			
157		letuin dstate_0			
158					
159	def	dstate(state p t	x r)·		
160	401	mtfmtrmsk		sf ksr cti	f ctr cs f
100		c s r. I vv. 1 f.	1 r = p	,,	·, ·_·_·, ·_··, ·
161		x r f. dx r f. x r r	dx r r. $L = x$	r	
162		## Equation of motio	n: M*ddx + C*dx	+ K * x = 0, x =	「xtf.xtr.xs
		, phi], u = [x r	f, x r r]	,	
163					
164		$\mathtt{u} = \left[\mathtt{x_r_f} \right],$			
165		x_r_r,			
166		dx_r_f ,			
167		dx_r_r]			
168		$\mathtt{u} = \mathtt{np.matrix}(\mathtt{u})$			
169					
170		$M = \left[\begin{bmatrix} m_t_f, 0, \end{bmatrix} \right]$	0, 0],		
171		$\begin{bmatrix} 0, & m_t_r, \end{bmatrix}$	$\begin{bmatrix} 0 & , & 0 & \end{bmatrix},$		
172		$\begin{bmatrix} 0, & 0, \\ 0 & 0 \end{bmatrix}$	m_s, 0],		
173		$\begin{bmatrix} 0, & 0, \end{bmatrix}$	0, 1_yy]]		
174		K — [[b + f ⊥ b e f	0	_k s f	_1 f*
175		k s f	, 0,].	K_S_I ,	±_1 *
176		[0,	k t r + k s r	r, —ksr,	l r*
		k_s_r],	· /	_
177		$[-k_s_f$,	$-k_s_r$,	$k_s_f + k_s$	_r, l_f*
		$k_s_f - l_r$	<k_s_r],<="" td=""><td></td><td></td></k_s_r>		
178		$[-l_f*k_s_f,$	l_r*k_s_r,	l_f*k_s_f -	l_r*k_s_r, l_f
		2*k_s_f +	l_r2*k_s_r]]		
179			0	c	7
180		$\mathbf{C} = \begin{bmatrix} \mathbf{C} & \mathbf{T} & \mathbf{I} \end{bmatrix} + \mathbf{C} & \mathbf{S} & \mathbf{I} \end{bmatrix}$, 0,	-c_s_i,	-1_I*
191],	- c s r] r.+
101		l O,		·, C_5_1,	±_± *
182		$\begin{bmatrix} -c & f \end{bmatrix}$	-csr.	csf+cs	r. lf*
		csf - lr	«csr],		
183		$[-1_f * c_s_f,$	l_r*c_s_r,	l_f*c_s_f -	l_r*c_s_r, l_f
		2*c_s_f +	l_r2*c_s_r]]		
184					
185		B = [[0,	0,	0, 0],
186		$\begin{bmatrix} & 0 \end{bmatrix}$	0,	0, 0],
187		$\begin{bmatrix} & 0 \end{bmatrix}$	0,	0, 0],
188		$\begin{bmatrix} 0 \end{bmatrix}$	0,	0, 0],
189		$\begin{bmatrix} -k_t_f/m_t_f \end{bmatrix}$	0, -	$-c_t_f/m_t_f, 0$],
190		$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$-\texttt{k_t_r/m_t_r}$,	$\mathbf{U}, -\mathbf{c}$	_t_r/m_t_r],
191		$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	U , 0	U, 0] , 11
192		[υ,	υ,	υ, 0]]

J.C. Dijkhuizen - 4225457

```
AA_p1 = np.hstack([np.zeros(shape=(4,4)), np.identity(4)])
194
        AA_p2 = np.hstack([-(np.dot(np.linalg.inv(M),K)), -(np.dot(np.linalg.
195
            inv(M),C))])
        A_{int} = np.concatenate((AA_p1, AA_p2), axis = 0)
196
197
        dstate = np.dot(A_int, state) + np.dot(B, u)
198
199
        return dstate
200
201
202
    def state_transition(ddx, N, T_s, t):
203
        ddx_s_f, ddx_s_r = ddx
204
205
206
        gamma = 2 # Tuning parameter
        DoF = 4 # Degrees of Freedom
207
        {
m M}\,=\,2 # Number of measuement stations
208
        p 0 = 2 * DoF / M
209
        p = gamma * p_0
210
211
        arr1 = np.zeros(shape=(M*p, np.size(ddx_s_f)-p))
212
213
        i = 0
        \mathbf{k} = 0
214
215
        for k in range (0, p):
             for i in range(0, np.size(ddx_s_f)-p):
216
                 arr1[M*k,i] = ddx_s_f[i+k]
217
                 arr1[1+M*k,i] = ddx_s_r[i+k]
218
219
220
        arr2 = np.zeros(shape=(M*p, np.size(ddx_s_f)-p))
        i = 0
221
        {\tt k}~=~0
222
        for k in range (0, p):
223
224
             for i in range(0, np.size(ddx_s_f)-p):
                 arr2[M*k,i] = ddx_s_f[i+k+1]
225
                 arr2[M*k+1,i] = ddx_s_r[i+k+1]
226
227
        A1 = np.dot(arr2, np.transpose(arr1))
228
        A2 = np.linalg.inv(np.dot(arr1, np.transpose(arr1)))
229
230
        A_Z = np.dot(A1, A2)
231
        eigenvalues_Z, eigenvectors_Z = np.linalg.eig(A_Z) #Eigenvalues and
232
            eigenvectors in Z-plane
233
        a = np.real(eigenvalues_Z)
234
235
        b = np.imag(eigenvalues_Z)
236
        alpha = np.log(a**2 + b**2)/(2*T_s)
237
238
        beta = np.arctan(b/a)/T_s
239
        eigenvalues_S_noise = alpha + beta*1j #Eigenvalues in S -plane
240
        eigenvectors_S_noise = eigenvectors_Z
241
242
        mega_nS = np.sqrt(alpha**2 + beta**2)
243
```

J.C. Dijkhuizen - 4225457

Master of Science Thesis

193

```
244
        omega_nS_hz_noise = omega_nS/(2*np.pi)
245
        damping noise = -alpha/omega nS
246
247
        # Cleaning
248
        eigenvalues_S = eigenvalues_S_noise[np.where(np.imag(
249
            eigenvalues_S_noise))[0]] # Remove all non complex eigenvalues
250
        eigenvectors_S = eigenvectors_S_noise[:,np.where(np.imag(
251
            eigenvalues_S_noise))[0]] # Remove all eigenvectors belonging to
            non complex eigenvalues
252
        omega_nS_hz = omega_nS_hz_noise[np.where(np.imag(eigenvalues_S_noise)]
253
            )[0]] # Remove all frequencies beloning to the non complex
            eigenvalues
254
255
        #Choose the correct omega's
        index = np.array(np.where((omega_nS_hz >= 1) \& (omega_nS_hz <= 3))) #
256
             Select the indeces where omega is in range 1-3 Hz
257
        if np.size(index[0]) == 4:
258
            index_r = np.where(omega_nS_hz = np.max(omega_nS_hz[index][0]))
259
260
            index_f = np.where(omega_nS_hz = np.min(omega_nS_hz[index][0]))
261
            ind = [index_f[0][0], index_r[0][0]]
262
            ind_conj = [index_f[0][1], index_r[0][1]]
263
264
            mega_f = mega_nS_hz[ind[0]] * 2 * np.pi
265
            omega_r = omega_nS_hz[ind[1]]*2*np.pi
266
267
268
            omega = [omega_f, omega_r]
269
            damping_f = damping_noise[ind[0]]
270
271
            damping_r = damping_noise[ind[1]]
272
            damping = [damping_f, damping_r]
273
            labda = np.diagflat(eigenvalues_S[ind])
274
            labda_conj = np.diagflat(eigenvalues_S[ind_conj])
275
276
            psi = eigenvectors_S[:, ind]
277
            psi = psi[[0, 1], :]
278
            psi_norm = normalize(psi)
279
280
            psi_conj = eigenvectors_S[:,ind_conj]
281
            psi_conj = psi_conj [[0, 1], :]
282
            psi_conj_norm = normalize(psi_conj)
283
284
            labda_diag1 = np.hstack([labda, np.zeros(shape=(2, 2))])
285
            labda_diag2 = np.hstack([np.zeros(shape=(2, 2)), labda_conj])
286
            labda_diag = np.concatenate((labda_diag1, labda_diag2), axis = 0)
287
288
            A_meas1 = np.hstack([psi_norm, psi_conj_norm])
289
```

J.C. Dijkhuizen - 4225457

```
A_meas2 = np.hstack([np.dot(psi_norm, labda), np.dot(
290
                psi_conj_norm, labda_conj)])
             A_{meas_nor} = np.concatenate((A_{meas1}, A_{meas2}), axis = 0)
291
292
             A_meas_inv = np.linalg.inv(A_meas_nor)
             A_meas = np.dot(np.dot(A_meas_nor, labda_diag), A_meas_inv)
293
294
        else:
295
             A_{meas} = np.zeros((4,4))
296
             mega_nS_hz = 0
297
             omega = [0, 0]
298
             index = 0
299
300
        return A_meas, omega_nS_hz, omega, index, omega_nS_hz_noise
301
302
303
    def estimation(A_meas, k, c, l, omega):
304
305
        k_t_f, k_t_r, k_s_f, k_s_r = k
        c_t_f, c_t_r, c_s_f, c_s_r = c
306
307
        {\tt omega_f}, {\tt omega_r} = {\tt omega}
        l_f, l_r = 1
308
309
310
        WB = l_f + l_r
311
312
        # Unknown parameters
        m s = Symbol('m s')
313
        I_yy = Symbol('I_yy')
314
        l_f = Symbol('l_f')
315
        l_r = (WB - l_f)
316
317
        # Equivalent stiffensses
318
        #k_eq_f = (k_s_f*k_t_f**2 + k_s_f**2*k_t_f + (omega_f**2)*(k_s_f*
319
            c_t_f**2 + k_t_f*c_s_f**2))/((k_s_f+k_t_f)**2 + (omega_f**2)*((
            c s f + c t f) * * 2))
        #k_eq_r = (k_s_r*k_t_r**2 + k_s_r**2*k_t_r + (omega_r**2)*(k_s_r*
320
            c_t_r**2 + k_t_r*c_s_r**2))/((k_s_r+k_t_r)**2 + (omega_r**2)*((
            c_s_r + c_t_r)**2))
        k_eq_f = (k_s_f * k_t_f) / (k_s_f + k_t_f)
321
        k_eq_r = (k_s_r*k_t_r)/(k_s_r+k_t_r)
322
323
        c_eq_f = (c_s_f * c_t_f) / (c_s_f + c_t_f)
        c_eq_r = (c_s_r*c_t_r)/(c_s_r + c_t_r)
324
325
        # Matrices
326
        M = [[ (1_r/WB) * m_s, (1_f/WB) * m_s ],
327
              [ I_yy/WB,
                               -I_yy/WB
                                               ]]
328
329
        M = Matrix(M)
330
        M_{inv} = M.inv()
331
332
        K_eq = [[ k_eq_f,
333
                                k_eq_r
                 [ l_f*k_eq_f, -l_r*k_eq_r ]]
334
335
        K_eq = np.matrix(K_eq)
336
337
```

J.C. Dijkhuizen - 4225457

```
C_eq = [[ c_eq_f,
                                  c_eq_r
338
                                                  ],
                  [ l_f*c_eq_f, -l_r*c_eq_r ]]
339
340
         C eq = np.matrix(C eq)
341
342
         AA_p1 = np.hstack([np.zeros(shape=(2,2)), np.identity(2)])
343
         AA_p2 = np.hstack([ -M_inv*K_eq,
                                                              -M inv*C eq ])
344
         A_{est} = np.concatenate((AA_p1, AA_p2), axis = 0)
345
346
         cost = (A_meas - A_est) **2
347
348
         return A_est, cost, k_eq_f, k_eq_r
349
350
    def parameter(parameters, A_meas, k_eq_f, k_eq_r, L):
351
352
         m_s, I_yy, l_f = parameters
353
         A_{meas1} = np.abs(A_{meas}[2,0])
354
         A_{meas2} = np.abs(A_{meas}[2,1])
355
         A_{meas3} = np.abs(A_{meas}[3,1])
356
357
         \texttt{f1} = (-\texttt{I}_y * \texttt{k}_eq_f / (\texttt{L} * (-\texttt{I}_y * \texttt{l}_f * \texttt{m}_s / \texttt{L} * * 2 - \texttt{I}_y * \texttt{m}_s * (\texttt{L} - \texttt{l}_f) / \texttt{L} * * 2))
358
              - k_eq_f*l_f**2*m_s/(L*(-I_yy*l_f*m_s/L**2 - I_yy*m_s*(L - l_f)/L))
             **2)) - A_meas1)**2
         f2 = (-I_yy*k_eq_r/(L*(-I_yy*l_f*m_s/L**2 - I_yy*m_s*(L - l_f)/L**2)))
359
              -k_eq_r*l_f*m_s*(-L + l_f)/(L*(-I_yy*l_f*m_s/L**2 - I_yy*m_s*(L)))
             - l_f)/L**2)) - A_meas2)**2
         f3 = (-I_yy*k_eq_r/(L*(-I_yy*l_f*m_s/L**2 - I_yy*m_s*(L - l_f)/L**2)))
360
              + k_eq_r*m_s*(-L + 1_f)*(L - 1_f)/(L*(-I_yy*l_f*m_s/L**2 - I_yy*))
             m_s*(L - l_f)/L**2)) - A_meas3)**2
361
362
         return f1, f2, f3
```

Bibliography

- [1] J. Dijkhuizen, "Online inertial parameter estimation," August 2018.
- [2] S. Bruyne, H. Van der Auweraer, P. Diglio, and J. Anthonis, "Online estimation of vehicle inertial parameters for improving chassis control systems," *IFAC Proceedings Volumes* (*IFAC-PapersOnline*), vol. 18, January 2011.
- [3] G. J. Heydinger, R. A. Bixel, N. J. Durisek, E. Yu, and D. A. Guenther, "Effects of loading on vehicle handling," SAE Transactions, vol. 107, pp. 407–415, 1998.
- [4] M. Rozyn and N. Zhang, "A method for estimation of vehicle inertial parameters," Vehicle System Dynamics, vol. 48, no. 5, pp. 547–565, 2010.
- [5] W. Chu, K. Cao, S. Li, Y. Luo, and K. Li, "Vehicle mass estimation based on high-frequency-information extraction," *IFAC Proceedings Volumes*, vol. 46, no. 21, pp. 72 76, 2013. 7th IFAC Symposium on Advances in Automotive Control.
- [6] B. HS, J. Ryu, and C. Gerdes, "Road grade and vehicle parameter estimation for longitudinal control using gps," *IEEE Transactions on Intelligent Transportation Systems -TITS*, 01 2001.
- [7] P. Johannesson and I. Rychlik, "Modelling of road profiles using roughness indicators," International Journal of Vehicle Design, vol. 66, pp. 317–346, January 2014.
- [8] K. Bogsjö, K. Podgorski, and I. Rychlik, "Models for road surface roughness," Vehicle System Dynamics, vol. 50, pp. 725–747, May 2012.
- [9] N. Zhang and S. Hayama, "Identification of structural system parameters from time domain data : Direct identification of mass, stiffness and damping parameters of a structure," JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, vol. 34, no. 1, pp. 64–71, 1991.
- [10] N. Zhang and S. Hayama, "Identification of structural system parameters from time domain data : Identification of global modal parameters of a structural system by the

Master of Science Thesis

J.C. Dijkhuizen - 4225457

improved state variable method," JSME international journal. Ser. 3, Vibration, control engineering, engineering for industry, vol. 33, no. 2, pp. 168–175, 1990.

- [11] A. Kareem and K. Gurley, "Damping in structures: its evaluation and treatment of uncertainty," *Journal of Wind Engineering and Industrial Aerodynamics*, vol. 59, no. 2, pp. 131 – 157, 1996. Meeting on Structural Damping International Wind Engineering Forum and Additional Papers.
- [12] T. L. Kijewski and A. Kareem, "Estimation and modeling of damping and engineering auxiliary damping systems in civil engineering structures : An overview," NatHaz Modeling Laboratory Report 9., 2001.
- [13] R. G. Brown and P. Y. C. Hwang, Introduction to random signals and applied kalman filtering: with MATLAB exercises and solutions; 3rd ed. New York, NY: Wiley, 1997.
- [14] G. Lallement and D. J. Inman, "A Tutorial on Complex Eigenvalues," Proceedings of the 13th International Modal Analysis Conference, vol. 2460, p. 490, 1995.
- [15] R. Barbosa, "Vehicle vibration response subjected to longwave measured pavement irregularity," *Journal of Mechanical Engineering and Automation*, vol. 2, pp. 17–24, March 2012.
- [16] ISO, "Iso 8608:2016 mechanical vibration road surface profiles reporting of measured data," standard, International Organization for Standardization, Geneva, CH, November 2016.
- [17] D. Cebon, Handbook of Vehicle-Road Interaction. Swets & Zeitlinger, 2000. ISBN 90-265-1554-5.
- [18] G. Loprencipe, P. Zoccali, and G. Cantisani, "Effects of vehicular speed on the assessment of pavement road roughness," *Applied Sciences*, vol. 9, p. 1783, 04 2019.
- [19] P. Múčka, "Simulated road profiles according to iso 8608 in vibration analysis," Journal of Testing and Evaluation, vol. 46, p. 20160265, 01 2018.
- [20] M. Agostinacchio, D. Ciampa, and S. Olita, "The vibrations induced by surface irregularities in road pavements – a matlab approach," *European Transport Research Review*, vol. 6, pp. 267–275, September 2014.
- [21] J. Vandiver, A. B. Dunwoody, R. B. Campbell, and M. F. Cook, "A mathematical basis for the random decrement vibration signature analysis technique," *Journal of Mechanical Design - J MECH DESIGN*, vol. 104, 04 1982.
- [22] G. Loprencipe and P. Zoccali, "Use of generated artificial road profiles in road roughness evaluation," *Journal of Modern Transportation*, vol. 25, pp. 24–33, Mar 2017.
- [23] J. Tudón-Martínez, F. Soheib, O. Sename, J. Martinez Molina, R. Morales-Menendez, and L. Dugard, "Adaptive road profile estimation in semi-active car suspensions," *IEEE Transactions on Control Systems Technology*, vol. 23, 04 2015.