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Abstract

The inertial parameters of a vehicle, which include the mass, centre of gravity position and
the moments of inertia, influences the dynamics of the vehicle. Currently, the modelling
of the vehicle is done by assuming fixed, conservative, values for the inertial parameters.
Knowing the exact values may increase the performance, safety and comfort of the vehicle. A
literature review has been conducted [1], where different methods for online inertial parameter
estimation have been graded based on the amount of parameters it is able to estimate, the
sensors used and the accuracy of the methods. Rozyn’s method seems best for online inertial
parameter estimation. Rozyn proposes a method which can estimate the inertial parameters
from vertical acceleration data using a state variable method, modal analysis and a simple
vehicle model. Rozyn’s method can be summarised in four steps:

1. Extract the free decay response from acceleration data.

2. Construct the state transition matrix.

3. Construct the system characteristic matrix.

4. Estimate the inertial parameters using the constructed characteristic matrix and sim-
plified vehicle model.

The main shortcoming of Rozyn’s method is the road profile which is used for the simulation,
which is described in the ISO 8608 norm. The ISO 8608 description is a stationary Gaus-
sian process. This means that the road profile random variables are normally distributed.
Furthermore, the properties of the road profile (mean and variance) does not change over
time. In practice however, road profiles never follow a stationary Gaussian process, but are
much more random, with more variance between different sections. Another, more realistic,
road profile description is proposed by Bogsjö where the road profile follows a non-stationary
Laplace distribution. Another shortcoming of Rozyn’s paper is that it only shows results for
only one condition. For the simulation, the vehicle is driving 100 km/h and a measurement
period of 1,000 seconds is used. Unknown is the influence of the velocity of the vehicle on
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the results. It is to be expected that the accuracy decreases for shorter measurement periods,
but by how much is also unknown.

In this thesis, Rozyn’s algorithm is explained and implemented using a half car vehicle model.
Rozyn’s algorithm is validated using the ISO 8608 road profile description on similar condi-
tions. The algorithm is then tested using the ISO 8608 road profile description where the
velocity of the vehicle is varied between 30 and 100 km/h and the measurement periods be-
tween 30 and 120 seconds. This is done 100 times for each condition. This results in 100
estimates of the inertial parameters of each condition. From these results, the average and
standard deviation between the estimates can be calculated. This is also done for the alterna-
tive Laplace road description. The resulting standard deviations are plotted in surface plots,
as function of the varying velocity and measurement period.

The results show that the standard deviation between the different estimated parameters
when using the Laplace description for the road profile are up to 5 times higher compared
to the ISO 8608 road profile description. The results also show that the performance of the
algorithm is heavily dependent on the measurement time. A measurement time of at less
then 60 seconds is not recommended, due to the large deviation in the estimated parameters.
For the mass and centre of gravity position, the performance is independent of the velocity of
the vehicle. However, the pitch moment of inertia shows a slight dependency on the velocity,
with lower deviations between the different estimates for higher velocities.

The algorithm can still be used on non-stationary road profiles. However, more and longer
measurements are needed for the algorithm to return with an accurate estimation of the
inertial parameters. Even then, some errors in the estimated parameters in the order of 10%
are present.
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Chapter 1

Introduction

In the last decades, many new active safety systems, such as ABS (Anti-lock Braking System)
and ESP (Electronic Stability Program) have been introduced. These systems increase the
safety on the road and decrease the number of fatalities. Knowing the exact dynamics of a ve-
hicle is very important for the safety and comfort of the vehicle. Currently, the determination
of the vehicle dynamics is done by extensive modelling of the vehicle. However, determining
the dynamics is a very time consuming and expensive procedure since it requires full insight
in the properties of the vehicle. All of the systems controlling the car are sensitive to the
vehicle inertial parameters, such as vehicle weight, position of the center of gravity and mo-
ments of inertia [2]. But what if these properties are unknown? Determining the parameters
of the vehicle online might reduce the time and cost needed to determine the dynamics of the
vehicle. Furthermore, these vehicle inertial properties can change over time, due to change in
load or fuel usage [3]. Knowing the exact value of the parameter can increase the effectiveness
of a mid-level controller, such as ABS [4].

A literature review has been conducted about this subject [1]. The online inertial parameter
estimation can be estimated using different dynamics of the vehicle, namely the longitudinal,
the lateral and the suspension dynamics. For the longitudinal dynamics, it is necessary
to estimate all the forces acting in the longitudinal plane of the vehicle, which include the
aerodynamic drag, the rolling resistance, the engine force and the force due to a road grade.
This influences the estimation accuracy of the inertial parameters of the vehicle [5]. For the
lateral dynamics, the tyre dynamics are used. This complicates the problem, since the tyres
road interaction changes over time, based on the road surface, weather, temperature, wear
of the tyres, etc. In the literature, these variables are assumed constant, which influences
the estimation of the inertial parameters [4]. The suspension dynamics are also used in
literature to estimate the inertial parameters using suspension displacement sensors [6] or
using accelerometers in the body of the vehicle [4]. The literature has been graded based on
the number of parameters which can be estimated using the methods, the sensors used and
the accuracy of the proposed methods. Here, Rozyn scores the best with an algorithm that is
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2 Introduction

able to estimate all the necessary inertial parameters using cheap and easy to use sensors with
an high accuracy of the estimated inertial parameters.

The method proposed by Rozyn et al [4] is able to obtain the vehicle’s unknown inertial
parameters, which include the mass, position of centre of gravity and the moments of iner-
tia. This is done by measuring the sprung mass response when the vehicle is excited by an
unknown and unmeasured road profile. From these measurements the free decay response of
the vehicle is extracted. This is followed by modal analysis to estimate the vehicle’s sprung
mass natural frequencies, damping ratios and mode shapes. This information can be used
to create an estimation of the vehicle’s characteristic matrix. This matrix is then compared
to the vehicle’s characteristic matrix obtained from a simplified vehicle model followed by a
least squares analysis to obtain the vehicle’s inertial parameters.

The road profile that is used by Rozyn is defined in the ISO 8608 standard, however it is not
suitable for the description for longer road profiles [7]. A more realistic road profile descrip-
tion is provided by Bogsjö [8]. Furthermore, Rozyn only gives result for the algorithm using
a measurement period of 1,000 seconds and a velocity of 100 km/h. Unknown is the influence
of these parameters on the performance of the algorithm. This leads to the following research
question:

How does the method proposed by Rozyn, for online vehicle inertial parameter estimation,
perform under more realistic conditions?

This is tested by implementing the two road profile description, and testing Rozyn’s algorithm
on both road profiles for measurement periods between 10 and 120 seconds and also by varying
the velocity between 30 and 100 km/h. This is done by estimating the parameters on above
mentioned conditions 100 times for each condition using 100 different, randomly created,
road profiles. This results in 100 estimates of the inertial parameters each condition. The
results will show the standard deviation of the estimates plotted against the velocity and
measurement period.
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Chapter 2

Rozyn’s Method

Rozyn et al proposes a method where the inertial parameters are estimated, based on vertical
acceleration data of the vehicle. These sensors are place in the body of the vehicle, on the
corners. The algorithm extracts the free-decay response of the vehicle from this acceleration
data using the autocorrelation function. From this free-decay response, the state transition
matrix is estimated. The system characteristic matrix can be estimated, by using modal
analysis. This characteristic matrix is then compared to a simple vehicle model, where a
error minimisation scheme is used to estimate the inertial parameters.

Rozyn’s description of the algorithm is very brief and not all the equations necessary are
mentioned. Two papers by Zhang, [9] and [10], are used to implement the algorithm.

2-1 Extracting Free-Decay Response

The input of the algorithm is a free-decay response of the body of the vehicle. Free-decay,
also called free vibration response, is the response of the vehicle when the system is given an
initial condition and is allowed to vibrate freely. If the vehicle is excited by a random road
profile, the acceleration data contains the accelerations due to excitation of this road profile.
The free-decay response is hidden in this data and can be extracted using an autocorrelation
function. The autocorrelation function calculates the correlation between one time point of
the data and the other, which is equivalent to the free decay response, in the case of a system
that is excited by stationary Gaussian white noise [11], [12]. The equation to calculate the
autocorrelation function can be seen in equation 2-1.

Ryy(τ) =
∫ ∞

0
y(t) · y(t+ τ)dt (2-1)

One requirement for the autocorrelation function is that the process, on which it is applied,
is stationary [13]. The road surface can be seen as a wave. The propagation of the wave is
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4 Rozyn’s Method

the velocity of the vehicle. The condition that the wave must be stationary means that the
free-decay response of the vehicle can only be determined accurately if the vehicle is driving
at a constant velocity. Also the road surface should be stationary, which is not always the
case in real life. These assumptions leads to inaccuracies of the extracted free decay responses
if the road surface is not a stationary and Gaussian distributed process.

2-2 Estimating State Transition Matrix

The state transition matrix contains the characteristics of the system in continuous and
discrete time [10]. Since the measurements are performed at fixed time resolutions, the
system is represented in discrete time as follows:

X(k + 1) = A1 ·X(k) (2-2)

With A1 as the state transition matrix. In this equation, the discrete state vectors are sampled
at time t = kT, where T is the sampling interval. The modal parameters of the system can
be obtained by solving the corresponding eigenvalue problem. However, the measured signals
will always contain some errors. To identify these errors, the size of the state transition matrix
is increased by adding pseudo measurements.

X(k) =
[
Y T (k) Y T (k + 1) · · · Y T (k + p)

]T
(2-3)

Where Y are the sensor measurements and p = γ ·p0. In this equation, γ is a tuning parameter
based on the signal to noise ratio, in the case of a higher signal to noise ratio, γ is selected
as 4 ∼ 6. Since no noise is present in the simulation, γ is chosen as 2. This results in the
best estimates of the inertial parameters. p0 is a parameter based on the system and can be
calculated as follows:

p0 = 2n
m

(2-4)

Where n is the degrees of freedom of the system and m the measured outputs. In this case,
where a half car model is used for the simulation (see Chapter 3), the degrees of freedom
of the system is four, namely the vertical position of the the wheels of the vehicle and the
vertical position and pitch angle of the body. The number of measurement sensors is two, the
acceleration of the front of the body and the acceleration of the rear. This makes p equal to:

p = γ · 2n
m

= 6 · 2 · 4
2 = 24 (2-5)

The transition matrix A can be obtained by using the following state matrices:

Φ =
[
X(1) X(2) · · · X(M)

]
Φ =

[
X(2) X(3) · · · X(M + 1)

] (2-6)
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2-3 Estimating System Characteristic Matrix 5

Here, M is the number of data points in the measurements. However, this means that it uses
M + p + 1 data points to calculate the state transition matrix, while only N data points are
available. This means that the variable M should be calculated as follows:

M = N − p− 1 (2-7)

The two state matrices must satisfy the following equation:

Φ = A1Φ + Φ̃ (2-8)

The state transition matrix A1 can then be determined by using least squares, as follows:

A1 = (ΦΦT )(ΦΦT )−1 (2-9)

2-3 Estimating System Characteristic Matrix

In continuous time, the system can be described in the form of the state equation:

Ẋ = A0 ·X (2-10)

Here, A0 is the system characteristic matrix which relates the mass, stiffness and damping
matrices as follows:

A0 =
[

0 I
−M−1K −M−1C

]
(2-11)

The state characteristic matrix can be calculated by solving the eigenvalue problem of the
state transition matrix. This yields the the eigenvalues of the system in the complex, discrete,
Z-plane. Since state transition matrix A1 has the size of 2 · (p + 1) by 2 · (p + 1), this will
result in 2 · (p + 1) eigenvalues and corresponding eigenvectors. The system characteristic
matrix A0 is, however, defined in the continuous S-plane as in equation 2-11. This means
that the eigenvalues must be converted to the S-plane. The relation between the Z-plane and
the S-plane is as follows: [10]

Z = eS·T (2-12)

Where Z and S are defined as follows:

Z = a+ jb (2-13)

S = α+ jβ = −ζω + jω(1 − ζ2)1/2 (2-14)
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6 Rozyn’s Method

Where the real and imaginary part of the eigenvalues in the S-plane are expressed as:

α = ln(a2 + b2)
2 · T

(2-15)

β =
tan−1

(
b
a

)
T

(2-16)

The damped and undamped natural frequencies and the damping ratios can be calculated as
follows:

ωn =
√
α2 + β2 (2-17)

ωd = β (2-18)

ζ = − α

ωn
(2-19)

The system will have two natural modes, the front of the body of the vehicle and the rear. The
estimation however has 2 · (p+ 1) modes. This means the noise modes will have to be found
and disregarded. This is done by looking at several known characteristics of the system. A car
will be underdamped, this means it oscillates with an amplitude that gradually decreases to
zero. An underdamped system will have eigenvalues that appear in complex conjugates [14].
This means that all non-imaginary eigenvalues can be removed from the list. Furthermore,
the frequencies must lie within a certain range. It is known, for instance that the bounce
frequency will lie within the 1-3 Hz range [15] and are underdamped with a damping loss
factor between 0.1 and 0.5. Every frequency and damping loss factor outside this range can
be assumed to be a noise mode and can thus be disregarded. The corresponding eigenvectors
are generated by normalizing the first m, two in the case of the half-car model, elements of
the eigenvector.

The estimated system characteristic matrix can then be written as follows [9]:

A0 =
[
ψ ψ∗

ψλ ψ∗λ∗

] [
λ 0
0 λ∗

] [
ψ ψ∗

ψλ ψ∗λ∗

]−1

(2-20)

Where λ denotes the eigenvalues and ψ the eigenvectors, the complex conjugate is indicated
with a *.
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2-4 Estimating Inertial Parameters 7

2-4 Estimating Inertial Parameters

Now the system characteristic matrix is constructed from the measurements, it can be com-
pared to the system characteristic matrix with some known parameters. Assumed is that the
stiffness and damping parameter are known. With this assumption, a characteristic matrix
is constructed from a simplified vehicle model, see Figure 2-1, where the unsprung masses
and the springs and dampers have been combined into one spring/damper with an equivalent
stiffness/damping coefficient which can be calculated as follows:

keq = ks · kt

ks + kt
(2-21)

According to Rozyn, this equation is not accurate enough due to the presence of non-
proportional damping. Rozyn uses an equation for the equivalent stiffness which depends
on the frequency in which it oscillates and also the damping coefficients, as seen in equa-
tion 2-22. However, since no non-proportional damping is present in the simulation model,
equation 2-21 will not add any errors to the estimation of the parameters. If the algorithm
is implemented in a real vehicle non-proportional damping characteristics might be present.
In this case equation 2-21 might result in errors and the equivalent stiffness as calculated in
equation 2-22 will be more suited to this case.

keq = ksk
2
t + k2skt + ω(ksc

2
t + ktc

2
s)

(ks + kt)2 + ω2(cs + ct)2 (2-22)

Xs

X s,f

l flr

eq,feq,f

Xs,r

eq,r eq,r

sM , Iyy

KC CK

Figure 2-1: Equivalent half car model with as generalised coordinates xs and ϕ.

The corresponding equations to the equivalent half car model can be written as follows:

ms · ẍs = −keq,f · xs,f − ceq,f · ẋs,f − keq,r · xs,r − ceq,r · ẋs,r (2-23)

Iyy · ϕ̈ = −lf · (keq,f · xs,f + ceq,f · ẋs,f ) + lr · (keq,r · xs,r + ceq,r · ẋs,r) (2-24)
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8 Rozyn’s Method

Where xs,f and xs,r can be written as follows, according to the linearised equations:

xs = lr · xs,f + lf · xs,r

L
(2-25)

ϕ = xs,f − xs,r

L
(2-26)

For these equations, small angles for the pitch angles are assumed to linearize the equation.
This can be done with no problem, since the pitch angle of the vehicle driving over a road is
very small.

The corresponding matrices of the system characteristic matrix are as follows:

A0 =
[

0 I
−M−1K −M−1C

]
(2-27)

M =
[
ms · lr

L ms · lf
L

Iyy

L − Iyy

L

]
(2-28)

K =
[

keq,f + keq,r lf · keq,f − lr · keq,r

lf · keq,f − lr · keq,r l2f · keq,f + l2r · keq,r

]
(2-29)

C =
[

ceq,f + ceq,r lf · ceq,f − lr · ceq,r

lf · ceq,f − lr · ceq,r l2f · ceq,f + l2r · ceq,r

]
(2-30)

Since both the measured system characteristics matrix from equation 2-20 and vehicle system
characteristic matrix (equation 2-27) are in the same form, the unknown parameters (ms, Iyy,
lf and lr) can be estimated using a least squares algorithm.

In this chapter, Rozyn’s algorithm has been explained. It estimates the inertial parameters
by extracting the free-decay response from the acceleration data. The extracted free decay is
used to build the state transition matrix. By solving the eigenvalue problem of this matrix
and some filtering, the system characteristic matrix can be constructed. This matrix is then
compared to a system characteristic matrix constructed using a simplified vehicle model to
estimate the inertial parameters.
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Chapter 3

Vehicle model

To obtain the acceleration data, which is used as input of the algorithm, a vehicle model is
necessary. A half car model with four degrees of freedom is defined which is excited by a
random road profile. Using a half car model means that the following inertial parameters can
be estimated:

• Body mass

• Pitch moment of inertia

• Longitudinal position centre of gravity

It is also possible to use a more complex vehicle model, such as a 12 degree of freedom ve-
hicle model which can estimate more parameters, such as the height of the centre of gravity.
However, due to time constraints, a half car model is chosen. This model can still estimate
important parameters and is able to show what happens when more realistic conditions are
applied on Rozyn’s algorithm.

The body of the vehicle is connected to the wheels with springs and dampers. The wheels
are connected to the road with tyres, modelled as springs and dampers. A figure of the used
half car model can be seen in Figure 3-1.

The following coordinates have been chosen as general coordinates:

• Vertical movement of the front wheels of the vehicle (xt,f )

• vertical movement of the rear wheels of the vehicle (xt,r)

• vertical movement of the body of the vehicle (xs)

• pitch angle of the body of the vehicle (ϕ)

Master of Science Thesis J.C. Dijkhuizen - 4225457



10 Vehicle model

Xs

X t,f

t,f

X r,f

X s,f

l flr

s,fs,f

Xt,r

t,r t,r

X r,r

Xs,r

s,r s,r

sM

t,rM t,fM

, Iyy

KC

C C

C

KK

K

t,f

Figure 3-1: Half car model with as generalised coordinates xt,f , xt,r, xs and ϕ.

The resulting acceleration of the vehicle body will be used to estimate the vehicle mass, pitch
inertia and longitudinal position of the centre of gravity.

The generalized coordinates of this systems are:

q =
[
xt,f xt,r xs ϕ

]T
(3-1)

And the state X is as follows:

X =
[
q
q̇

]
(3-2)

The equations of motion of this system are given by the following equations:

Mq̈ + Cq̇ + Kq = Bu (3-3)

Where u is the input of the system: u =
[
xr,f xr,r ẋr,f ẋr,r

]T
The mass, damping and stiffness matrices M, C, K and B are as follows:

M =


mt,f 0 0 0

0 mt,r 0 0
0 0 ms 0
0 0 0 Iyy

 (3-4)
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K =


kt,f + ks,f 0 −ks,f −lf · ks,f

0 kt,r + ks,r −ks,r lr · ks,r

−ks,f −ks,r ks,f + ks,r lf · ks,f − lr · ks,r

−lf · ks,f lr · ks,r lf · ks,f − lr · ks,r l2f · ks,f + l2r · ks,r

 (3-5)

C =


ct,f + cs,f 0 −cs,f −lf · cs,f

0 ct,r + cs,r −cs,r lf · cs,r

−cs,f −cs,r cs,f + cs,r lf · cs,f − lr · cs,r

−lf · cs,f lr · cs,r lf · cs,f − lr · cs,r l2f · cs,f + l2r · cs,r

 (3-6)

B =


kt,f

mt,f
0 ct,f

mt,f
0

0 kt,r

mt,r
0 ct,r

mt,r

0 0 0 0
0 0 0 0

 (3-7)

Where xs,f and xs,r can be written as follows, according to the linearised equations:

xs,f = xs + lf · ϕ (3-8)
xs,r = xs − lf · ϕ (3-9)

In these equations, the subscripts s, t and r represents, respectively, the sprung mass (body),
mass of the wheels (including tyres) and the road. The subscript f and r stands for the front
and rear, respectively. The position of the centre of gravity with respect to, respectively the
front and rear wheels are represented by lf and lr. For these equations, small angles for the
pitch angles are assumed to linearise the equation. This can be done with no problem, since
the pitch angle of the vehicle driving over a road is very small, as can be seen in Figure A-3.

The derivative of the state, Ẋ, can then be calculated using the following equation:

Ẋ = A0 ·X (3-10)

Where A0 is:

A0 =
[

0 I
−M−1K −M−1C

]
(3-11)

This results in the accelerations and velocities of the generalised coordinates. The input of
the estimation method are the accelerations of the front and the rear of the body, ẍt,f and ẍt,r.

To check the implemented vehicle model, the motion of the body and the wheels of the vehicle
have been plotted against the time for a free decay of the vehicle and using a random road
profile. The pitch angle for the body has also been illustrated. The results show that the
pitch angle of the body of the vehicle is very small, and the linearization in equation 3-8 and
3-9 can be used. The results of this can be seen in Appendix A-1.
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12 Vehicle model

In this chapter, the vehicle model, which is used to generate the acceleration data is explained.
A half car vehicle model is chosen with 4 degrees of freedom, namely the vertical position
of the front and rear wheels, the vertical position of the body and the pitch angle. Using a
half car model means that the algorithm is able to estimate the following parameters: Mass,
longitudinal position of centre of gravity.
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Chapter 4

Problem Statement

The vehicle model, which is introduced in Chapter 3 needs to be excited by a road profile for
the simulation of the acceleration data. Rozyn uses a road profile which is described in the ISO
8608 standard [16]. It is important to understand the road profile used by Rozyn to explain
the shortcomings of using this road profile. The road profile used by Rozyn is explained in
Section 4-1-1. The problem with this road profile description is that it can only be used for
shorter road sections in the range of 100 meters [7]. Rozyn, however uses a measurement
period of 1,000 seconds with a velocity of the vehicle of 100 km/h. This means that the ISO
8608 norm cannot be used to accurately describe the road profile over this road section. A
more realistic road profile is described by Bjogsö and explained in Section 4-1-2. Also, the
vehicle conditions used by Rozn, in terms of the measurement period and the velocity, are
beneficial for the accurate estimation of the inertial parameters, as explained in Section 4-2.

4-1 Road Profile

4-1-1 ISO 8608

The road profile used by Rozyn is constructed using methods discussed in Cebon [17]. Cebon
uses a method described by the ISO Standard: ISO 8608 [16]. This method reports the road
profile as a Power Spectral Density (PSD). The PSD describes the power of the road elevation
versus the wavenumber. The wavenumber is the spatial frequency of the wave, measured in
cycles per unit distance. Using the PSD to describe the road profile, means that only two
parameters are necessary to describe the road profile, the roughness of the road, Gd(n0), and
the slope of the fitted PSD, which is the waviness of the road profile, w. In Figure 4-1 the
fitted PSD is visible. The roughness Gd(n0) is displayed on the y-axis at the reference spatial
frequency n0. The exponent of the equation, w, is the slope of the fitted PSD.
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14 Problem Statement

Figure 4-1: Smoothed and Fitted Power Spectral Density (PSD) according to ISO 8608. [18]

The equation for the fitted PSD is:

Gd(n) = Gd(n0) ·
(
n

n0

)−w

(4-1)

In this equation Gd represents the vertical displacements of the road profile as function of the
frequency n, n0 represents the reference spatial frequency [cycles/m], which is 0.1 for the ISO
8608 road description. The slope, w, is the waviness of the road.

The unevenness index, Gd(n0), is based on the quality of the road surface. The values can be
seen in Table 4-1. In the ISO 8608 norm, eight classes are identified: from class A to class H.
Class A represents the roads with a good quality and low roughness. Class H roads have a
high degree of roughness. Rozyn does not include which road class is used for the road profile.
In the simulation road class A has been used, since this represents an average quality asphalt
road, according to Mucka et al [19]. The waviness is a measurement of the waves that the
road profile follows. According to Mucka, the average waviness of a road profile is 2.

We can also describe the road profile as a function of distance. This is done by using a sinus
approximation of the PSD. Agostinacchio [20] describes how a road profile can be generated,
using the spectral density. According to Agostinacchio, the ISO 8608 norm provides that the
roughness profile of the road surface can be defined as follows:

Gd(n) = lim
∆n→0

ψ2
x

∆n (4-2)
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4-1 Road Profile 15

Where ψ2
x is the mean square value of the component of the signal for the spatial frequency

n, within the frequency band ∆n.

The mean square value can also be written as:

ψ2
x = A2

i

2 (4-3)

Combining these two equations, the following results for the amplitude Ai

Ai =
√

2ψ2
x =

√
2∆nGd(ni) (4-4)

The profile of the road can be written as a simple harmonic function as follows:

h(x) =
N∑

i=0
Ai · cos(2π · ni · xi + ϕi) (4-5)

In this equation Ai represents the amplitude of the road vertical displacements, ni is the
spacial frequency in cycles/meter, x the abscissa variable from 0 to L (the length of the road).
ϕ is the phase angle, with random angles, uniformly distributed between 0 and 2π.

Combining Equation 4-4 and 4-5 will result in the following equation, which describes the
spot heights of the road surface:

h(x) =
N∑

i=0

√
2 · ∆n ·Gd(ni) · cos(2π · ni · xi + ϕi) (4-6)

The road profile can then be generated by combining Equation 4-1 and 4-6, which results in
a final equation for the artificial road profile:

h(x) =
N∑

i=0

√
2 · ∆n ·Gd(n0) ·

(n0
n

)
· cos(2π · ni · xi + ϕi) (4-7)

Where ∆n = 1/L and Gd(n0) is a degree of roughness, as seen in Table 4-1.

Table 4-1: ISO 8608:2016 Road classification

Road class Gd(n0) · 10−6 m3

Lower limit Geometric mean Upper limit

A - 16 32
B 32 64 128
C 128 256 512

Master of Science Thesis J.C. Dijkhuizen - 4225457



16 Problem Statement

An example of a generated road profile can be seen in Figure 4-2.
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ISO 8608 road profile

Figure 4-2: Road profile generated with the ISO 8608: 1995 description. The variability of the
road is the same over the whole section.

The road surface used for the front and the rear wheels are the same, but only delayed for
the rear wheels. The delay is based on the velocity of the vehicle and the wheelbase.

The problem with the ISO road profile description is that it is a stationary Gaussian process.
When a system is excited by a stationary Gaussian process, the autocorrelation of the accel-
eration data will be equivalent to the free decay response [21]. However, stationary Gaussian
processes cannot accurately describe the road profile of longer sections, since they contain
sections with above average irregularity. Furthermore, the ISO 8608 description is the result
of straight line fitting of the PSD [22]. This means that the PSD provided in the ISO 8608
description is not always a good representation of the PSD of the real road profiles. There-
fore, more realistic road profile descriptions have been proposed, as explained in the following
section.

4-1-2 Laplace

Although the ISO 8608 description of the road profile is widely used in literature ([19], [18],
[23], etc.) it is only suitable for shorter sections of a few hundred meters [7]. Bogsjö et al [8]
proposes another description for the road profile, which has a more realistic course, which is
called the Laplace description. In this description, the road is divided into shorter sections
with some variability between the different sections. The variance is continuous varied ac-
cording to the Laplace distribution. This description gives a more accurate profile of the road
for longer sections.
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4-2 Vehicle Conditions 17

The Laplace description can be seen as a non-stationary Gaussian process with randomly
varying variance of the irregularities. For the simulation purpose, one road profile of 3500
meter is compiled, with 35 sections of 100 meter. This is equal to driving 100 km/h for 120
seconds.

An example of a Laplace road profile, consisting of 5 sections of 100 meter, can be seen in
Figure 4-3. The variance between the sections is clearly visible. The first section between 0
and 100 meters has a higher amplitude than the section between 100 and 200 meters. Also, if
compared with the ISO 8608 road profile in 4-2 it can be seen that the ISO 8608 road profile
is much more constant in amplitude over the distance.

Figure 4-3: Road profile generated according to the Laplace description of Bogsjö. Visible is the
different amplitudes between the different sections with a length of 100m each.

4-2 Vehicle Conditions

For the inertial parameter estimation, not only the road profile is an important factor on the
results, but also the velocity. The wavelength of the oscillations of the road are constant,
however the frequency changes depending on the velocity of the vehicle. Changing the veloc-
ity might influence the performance of the estimation of the inertial parameters. Rozyn only
uses a velocity of 100 km/h. This is quite high, since it is often only reached after driving for
some time. In this research, a range of velocities is selected to test the algorithm on its perfor-
mance. The range selected is 30-100 km/h. 30 km/h is selected as lower end of the range, since
that is a common velocity in residential areas. On the highway, 100 km/h is a normal velocity.

To identify the road influence on the oscillation of the body of the vehicle, a frequency analysis
is performed. The road will have a constant wavelength, independent on the velocity of the
vehicle. The propagation of the road however is dependent on the velocity. This means that
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the impact of the road onto the vehicle is dependent on the velocity of the vehicle.

The spatial frequency of the road in m−1 can be seen in Figure 4-4. The spatial frequency is
the inverse of the wavelength of the road:

ζ = 1
λ

(4-8)

Where ζ is the spatial frequency in m−1 and λ the wavelength in m.

Figure 4-4: Fourier transform of the road. The area indicated is the oscillation range of the
vehicle

The spatial frequency of the road will be constant, regardless of the velocity of the vehicle.
The time frequency however is dependent on the velocity the vehicle is driving. This means
that for different velocities of the vehicle, the road profile input will have a different frequency.
If the frequency of the excitation of the road is the same as the natural frequency of the body
of the vehicle it will add resonance to the body. If that is the case, it is more difficult
to determine the modal parameters of the body of the vehicle. The relation between the
frequency, the wavelength and the velocity is as follows:
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4-2 Vehicle Conditions 19

λ = v

f
(4-9)

With the current test conditions, the body of the vehicle will have a natural frequency be-
tween 1.5 and 2 Hz. For a velocity of 30 km/h, this will result in a wavelength of the body
between 4 and 6 meters. For a velocity of 100 km/h, the wavelengths will be between 14
and 20 meters. So, the bandwidth of the wavelengths of the oscillation of the vehicle will
be between 4 and 20 meters, or 0.05 m−1 and 0.25 m−1 as spatial frequency. As can be
seen in Figure 4-4, most of the frequencies lie in a lower range (< 0.05 m−1). This means
that most oscillations of the road profile will consist of longer waves and thus a lower spa-
tial frequency and will not add any resonance with a high amplitude to the body of the vehicle.

Also the measurement time will influence the performance of the estimation. The longer the
measurement time is, the more data points are available, with a more accurate estimation
as result. However, in practice such long measurement periods will not be feasible. Further-
more, a constant velocity is desired during the measurement period. Changing the velocity
will make the road profile less stationary, which will add extra errors in the estimation of
the inertial parameters. Therefor, in this research a range of measurement periods is used,
between 30 and 120 seconds. It is to be expected that a shorter measurement period results
in a less accurate estimate of the inertial parameters, since less data points are available.

In this chapter, the shortcomings of Rozyn’s algorithm has been explained. The road profile
used by Rozyn is not a realistic description of a real life road profile, where there is much more
variability over longer road sections which the ISO 8608 road profile fails to describe. Therefor,
a more realistic road profile has been proposed, the Laplace description. Furthermore, the
algorithm of Rozyn uses a measurement period of 1,000 seconds at a velocity of 100 km/h.
During this period the velocity should remain constant for the algorithm to work optimal.
This is not realistic, therfor, more realistic conditions are proposed, where the measurement
time is varied between 10 and 120 seconds and the velocity between 30 and 100 km/h. The
results of this can be seen in the next chapter, Chapter 5
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Chapter 5

Results

In this chapter the results of the two different road profile, as introduced in Chapter 4-1 will
be shown. But first, the algorithm needs to be validated for a correct implementation. To
validate Rozyn’s implemented algorithm, two tests have been conducted. In the first test, the
vehicle is not excited by a road profile, instead the body of the vehicle has been given initial
conditions to extract the free decay response of the vehicle. In the second test, the ISO 8608
road profile is used where the vehicle is driving 100 km/h and a measurement period of 100
seconds is used.

The following parameters have been used for the experiments:

Table 5-1: Vehicle parameters. The bold parameters indicate the parameters which are estimated
using the algorithm.

Parameter Value Symbol Unit

Tyre stiffness kt,f 200,000 N/m
Front suspension stiffness ks,f 45,000 N/m
Rear suspension stiffness ks,r 80,000 N/m
Tyre damping ct,f 50 N·s/m
Front suspension damping cs,f 2,800 N·s/m
Rear suspension damping cs,r 3,500 N·s/m
Front unsprung wheel mass mt,f 40 kg
Rear unsprung wheel mass mt,r 65 kg
Wheelbase WB 2.8 m
Body mass ms 1,000 kg
Body pitch moment of inertia Iyy 2,000 kg·m2

Centre of gravity position
(measured from front axle) lf 1.2 m
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5-1 Free Decay Response

The input of the algorithm is a free decay response. When the vehicle model is excited by the
road, the free decay response can be extracted using an autocorrelation function. To validate
the algorithm, a free decay response have been generated by setting the road profile to zero
and giving the vehicle an initial condition. The resulting free decay response of the front and
rear of the vehicle can be seen in, respectively, Figure 5-1 and 5-2. Since the algorithm uses
the free decay response of the vehicle as input, this should result in a perfect estimation of
the inertial parameters.
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Figure 5-1: Free decay response of the
front of the vehicle.
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Figure 5-2: Free decay response of the
rear of the vehicle.

The resulting estimates of the algorithm, with the free decay as input is as follows:

Mass estimate = 1,002 kg
Inertia estimate = 2,009 kg·m2

Centre of gravity estimate = 1.204 m

As can be seen, the algorithm does indeed estimate the inertial parameters with a very high
accuracy. These results can be used as baseline performance of the algorithm, and be com-
pared with the results of the following experiments.
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5-2 ISO 8608 Road Profile 23

5-2 ISO 8608 Road Profile

In the second experiment, the algorithm is tested using the same parameters as used in Rozyn
et al. This means that the vehicle is excited by the ISO 8608 road profile, while driving at
a constant velocity of 100 km/h. The measurement period is, due to computational power,
reduced to 100 seconds. However, as can be seen in the results, this does not contribute to large
errors in the estimation of the parameters. The simulation creates 100 pseudo measurements,
using 100 different random profiles, resulting in 100 different accelerations of the vehicle
body. Each time, the autocorrelation function is used to extract the free decay response of
the vehicle. The end result are 100 estimates for the inertial parameters. The average of
these estimates is:

Mass estimate : 984.7 kg
Inertia estimate : 2,038 kg·m2

Centre of gravity estimate : 1.201 m

The following figures have been generated for this experiment:

• Autocorrelation of the front acceleration, see Figure 5-3

• Autocorrelation of the rear acceleration, see Figure 5-4

• Comparison between autocorrelation and free decay for the front of the vehicle, see
Figure 5-5

• Comparison between autocorrelation and free decay for the rear of the vehicle, see Figure
5-6

• Histogram for the mass estimates, see Figure 5-7

• Histogram for the inertia estimates, see Figure 5-8

• Histogram for the centre of gravity estimates, see Figure 5-9

• Boxplot of the errors of the estimates, see Figure 5-10

In Figure 5-3 and 5-4 the extracted free decay response of the vehicle body can be seen for
the 100 different pseudo measurements. As can be seen, the difference between the different
extracted free decay responses are very small. This indicates that the algorithm should be
able to estimate the inertial parameters with a small deviation.

The extracted free decay response is also compared with the free decay response from Figure
5-1 and 5-2 and can be seen in Figure 5-5 and 5-6. As can be seen, there is a difference in
amplitude between the real free decay response and the extracted free decay response. More
important for the estimation of the inertial parameters is the period of the free decay, which
is the same for the free decay and the autocorrelation function.
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Figure 5-3: Autocorrelation of the front
acceleration for 100 measurements using
the ISO 8608 road profile. There is very
little difference between the 100 different
extracted free decay responses.

Figure 5-4: Autocorrelation of the rear ac-
celeration for 100 measurements using the
ISO 8608 road profile. There is very lit-
tle difference between the 100 different free
decay responses.

Figure 5-5: Free decay (blue) response
compared to the extracted free decay re-
sponse using the autocorrelation function
(red) for the front of the vehicle. There is
a difference in the amplitude, however the
period is the same.

Figure 5-6: Free decay (blue) response
compared to the extracted free decay re-
sponse using the autocorrelation function
(red) for the front of the vehicle. There is
a difference in the amplitude, however the
period is the same.
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5-2 ISO 8608 Road Profile 25

Figure 5-7: Histogram of the mass esti-
mates with a good estimate of the mass
parameter and a small deviation between
the different estimates for the ISO 8608
road profile.

Figure 5-8: Histogram inertia estimates
with a good estimate of the inertia param-
eter and a small deviation between the dif-
ferent estimates for the ISO 8608 road pro-
file.

Figure 5-9: Histogram centre of gravity
estimates with a very good estimate and a
small deviation between the different esti-
mates of the position of the centre of grav-
ity for the ISO 8608 road profile.

Figure 5-10: Boxplot of the errors of the
estimates with very low deviation of the es-
timates of the inertial parameters for the
ISO 8608 road profile.
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Figure 5-11: Standard deviation of the estimates of the vehicles mass for the ISO road pro-
file. The standard deviation remains constant over varying velocity, where as it increases with
decreasing measurement time.

The histogram in Figure 5-7 - 5-9 shows the estimates of the parameters each measurement.
The results show that the inertial parameters can be estimated with a good average of the
different measurements. Furthermore, the deviation between the different measurements is
small, as can also be seen in the boxplot in Figure 5-10. All the estimates lie within a 6%
error margin, the standard deviation σ between the different estimates is very small. This
means that all the estimates are close to the average of the estimated inertial parameters.
The standard deviation can also be used as performance indicator of the algorithm, since a
small standard deviation indicates that less pseudo measurements are needed to tell some-
thing about the real inertial parameters. The results from the second experiment, with the
ISO 8608 description as road profile are comparable to Rozyn’s results.

The experiments have been repeated for different velocities, between 30 and 100 km/h and
measurement periods: between 10 and 120 seconds. Each time, the inertial parameters have
been estimated using 100 different random road profiles. The standard deviation of the
different estimates for each condition can be seen in Figure 5-11 - 5-13. It is clearly visible
that the standard deviation of the estimates remains constant over a varying velocity. The
standard deviation however increases for decreasing measurement periods.
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Figure 5-12: Standard deviation of the estimates of the vehicles pitch moment of inertia for
the ISO road profile. The standard deviation remains constant over varying velocity, where as it
increases with decreasing measurement time.
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Figure 5-13: Standard deviation of the estimates of the vehicles longitudinal position of centre
of gravity for the ISO road profile. The standard deviation shows a slight dependency over the
velocity, where as it increases with decreasing measurement time.
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5-3 Laplace Road Profile

In the following experiment we use the algorithm to estimate the parameters of the vehicle,
while the vehicle is excited by the Laplace description of the road, as proposed by Bogsjö.
This is done with the same parameters, thus a velocity of 100 km/h and a measurement time
of 100 seconds. The estimation of the inertial parameters is as follows:

Mass estimate = 950 kg
Inertia estimate = 2,088 kg·m2

Centre of gravity estimate = 1.199 m

The results of the first experiment can be seen in Figures 5-14 - 5-19. The average of the esti-
mates are still fairly accurate (+- 5%), however the standard deviation of the measurements
are a factor 5 higher, compared to the ISO 8608 road. This means that more measurements
are needed for an accurate estimate of the inertial parameters.

These experiments have been repeated for measurement periods between 10 and 120 seconds
and velocities between 30 and 100 km/h. The standard deviation of these estimation of the
inertial parameters have been plotted against the velocity and measurement period and can
be seen in Figure 5-20 - 5-22.

Figure 5-14: Autocorrelation front accel-
eration of the vehicle for 100 estimates, us-
ing the Laplace road profile. The free de-
cay response shows more deviation in the
extracted free decay response between the
different measurements in comparison to
the ISO 8608 road profile in Figure 5-3.

Figure 5-15: Autocorrelation rear acceler-
ation of the vehicle for 100 estimates, us-
ing the Laplace road profile. The free de-
cay response shows more deviation in the
extracted free decay response between the
different measurements in comparison to
the ISO 8608 road profile in Figure 5-4.
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Figure 5-16: Histogram mass estimates
for the Laplace road profile with higher
deviation between the different estimates
compared to the ISO 8608 road profile.

Figure 5-17: Histogram inertia estimates
for the Laplace road profile with higher
deviation between the different estimates
compared to the ISO 8608 road profile.

Figure 5-18: Histogram centre of grav-
ity estimates for the Laplace road profile
with higher deviation between the different
estimates compared to the ISO 8608 road
profile.

Figure 5-19: Boxplot of the errors of the
estimates for the Laplace road profile with
higher deviation between the different esti-
mates compared to the ISO 8608 road pro-
file.
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Figure 5-20: Standard deviation of the body mass estimates for the Laplace road profile. The
standard deviation is lower for shorter measurement periods and does not change much for different
velocities. Clearly visible is the higher deviation between the different estimates in comparison to
the ISO 8608 road profile in Figure 5-11.
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Figure 5-21: Standard deviation of the pitch moment of inertia estimates for the Laplace road
profile. The standard deviation is lower for shorter measurement periods and shows a slight
dependency on the velocity, where higher velocities results in lower deviations between the different
estimates. Clearly visible is the higher deviation between the different estimates in comparison to
the ISO 8608 road profile in Figure 5-12.
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Figure 5-22: Standard deviation of the longitudinal position centre of gravity estimates for the
Laplace road profile. The standard deviation is lower for shorter measurement periods. Clearly
visible is the higher deviation between the different estimates in comparison to the ISO 8608 road
profile in Figure 5-13.

It is clearly visible that the standard deviation of the estimates remains constant over a varying
velocity. The standard deviation however increases for decreasing measurement periods.
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Chapter 6

Conclusion & Discussion

6-1 Contributions

In this thesis, Rozyn’s algorithm has been explained and implemented in Python. The input
of the algorithm are vertical accelerations of the body of a vehicle. For this, a vehicle model
has been introduced and implemented in Python. The vehicle model has been given an initial
condition which results in a free decay of the vehicle. This is used to validate the implemented
algorithm. Also, the road description, which is used by Rozyn, as described in the ISO 8608
standard, is implemented and used under the same conditions as Rozyn to verify that the
algorithm has been implemented correctly.

The experiments have been repeated under different conditions. The velocity is varied be-
tween 30 and 100 km/h and the measurement period between 10 and 120 seconds. For each
condition, 100 random road profiles have been used to generate 100 accelerations. From these
accelerations, 100 different estimates of the inertial parameters have been made. The standard
deviation between these estimates tells something about the accuracy of the measurement.
A surface graph has been made where the standard deviation has been plotted against the
velocity and measurement period. This is done for both the ISO 8608 and the Laplace road
profile. From the results can be concluded that Rozyn uses a unrealistic framework for his
algorithm, with a road profile which is not realistic and unrealistic vehicle conditions, such
as a high velocity and a long measurement period.
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6-2 Conclusion & Recommendation

In this thesis, a method for online inertial parameter estimation has been implemented and
tested on multiple conditions. The algorithm is proposed by Rozyn et al and is able to esti-
mate the mass of the body of the vehicle, the position of the centre of gravity and the inertial
moments with high accuracy, according to Rozyn. The input of the algorithm is a free decay
response which is extracted from vertical acceleration data using an autocorrelation function.
This acceleration data is generated by exciting a simulated vehicle model with a road profile
where the accelerometers are placed on the corners of the vehicle.

The road profile used by Rozyn is described in the ISO 8608 standard. It is a random road
profile, constructed as a stationary and homogeneous Gaussian process. In real life, however,
a road profile is never stationary and homogeneous but changes over time and distance. This
is why the ISO 8608 standard is not suitable for generating longer road profiles, according
to Johannesson. A more realistic road profile is proposed by Bjogsö. He calls it the Laplace
description, where the road profile is constructed using smaller road sections with a random
variability, according to the Laplace distribution, between those sections.

In this thesis, the algorithm for inertial parameter estimation as proposed by Rozyn is imple-
mented in Python. Since the input of the algorithm is a free decay response, the implemented
algorithm is first validated using a free decay response of the vehicle. This is done by setting
the road profile to zero and giving the vehicle an initial condition. This results in a free decay
response, where the movement of the vehicle decays to zero. The results show that the algo-
rithm estimates the inertial parameters with a very high accuracy, within a 0.5 % error margin.

The method has also been validated by estimation of the inertial parameters, under the same
conditions that Rozyn uses, with a random road profile, as defined in the ISO 8608 standard.
Using this random road profile, the algorithm is able to estimate the parameters with high
accuracy and small deviation between the estimated parameters, where all the measurements
fall into a 6% error range. The average of the estimated inertial parameters has a deviation
of 2 % compared to the real inertial parameters.

The problem with Rozyn’s algorithm is that he uses an unrealistic framework with a high
velocity and measurement period of 1000 seconds at a constant velocity of 100 km/h. This is
why, in this thesis, a range of velocities, between 30 and 100 km/h and measurement periods,
between 10 and 120 seconds, have been proposed. The algorithm has been used to estimate
the inertial parameters, using the ISO 8608 road profile. Here, 100 pseudo measurements
for each velocity and time parameter on 100 random road profiles are used. This results
in 100 estimates of the inertial parameters. These results are used to calculate both the
average of the estimates and the standard deviation of the estimates. The standard deviation
indicates the reliability of the algorithm. A low standard deviation means that less estimates
are needed for insight in the inertial parameters. The standard deviation is plotted against
the measurement period and the velocity in a 3D surface plot. The results show that the
standard deviation is independent on the velocity but increases with shorter measurement
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periods. The standard deviation between the different estimates is small for measurement
periods longer than 60 seconds.

The algorithm has also been tested on the Laplace road description, proposed by Bjogsö, with
velocities between 30 and 100 km/h and measurement periods between 10 and 120 seconds.
Results show that using the Laplace description for the road profile results in a much larger
standard deviation of the estimated inertial parameters in comparison to Rozyn’s algorithm,
under the same conditions of the measurement time and velocity. Rozyn uses the ISO 8608
description for the road profile which is constructed according to a stationary Gaussian pro-
cess. This means that the free decay response of the vehicle can be extracted more accurately
by the autocorrelation function. The Laplace description is constructed using a Laplace de-
scription, which can be seen as a non-stationary Gaussian process with a random variability
between different sections of the road profile. This means that the autocorrelation function
cannot extract the free decay response accurately enough. This can be seen in the results,
where for the same conditions for the velocity and measurement period, the standard devi-
ation of the estimation increases by a factor 5. Reducing the measurement period from 120
seconds will increase this standard deviation of the estimated inertial parameters even more.

The results of other experiments, where the measurement time and velocity is varied, shows
that for the estimates of the inertial parameters the velocity has no or little influence on the
standard deviation of the estimates. The standard deviation of the estimates does increase
with decreasing measurement periods.

Recommended is to estimate the parameters using a measurement period longer than 60 sec-
onds. The deviation in the estimated parameters increase heavily for measurement periods
below 60 seconds.

The algorithm can still be used on non-stationary road profiles. However, more and longer
measurements are needed for the algorithm to return with an accurate estimation of the
inertial parameters. Even then, some errors in the estimated parameters in the order of 10%
are present.
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Appendix

A-1 Vehicle Model

In Figure A-1 and A-2 the response of the front and rear, respectively, can be seen after the
body (green line) and the wheels (blue line) of the vehicle have been given an initial condition.
The road surface (red line) is zero. It clearly shows the free decay of the vehicle until steady
state. The vehicle behaves as expected.

In Figure A-3 the pitch angle during the free decay can be seen. It shows that the pitch angle
is indeed very small. This is also the case if the vehicle is excited by a road profile. This
indicates that the linearized equations in 3-8 and 3-9 can indeed be used.
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Figure A-1: Front vehicle response upon free decay
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Figure A-2: Rear vehicle response upon free decay
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Figure A-3: Pitch angle during free decay
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Figure A-4: Front vehicle response ISO 8608 road profile
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Figure A-5: Rear vehicle response ISO 8608 road profile
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Figure A-6: Pitch angle ISO 8608 road profile
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A-2 Programming Code

A-2-1 Main File

1 """
2 @author: JoÃńl Dijkhuizen
3 """
4 import matplotlib . pyplot as plt
5 from matplotlib . font_manager import FontProperties
6 import numpy as np
7 from scipy . integrate import odeint
8 from EOM1 import parameters , road , solution , dstate , state_transition ,

estimation , parameter
9 from scipy . optimize import fsolve

10 import time
11 from statsmodels . tsa . stattools import acf , ccf
12 import seaborn as sns
13 from scipy . signal import resample
14 from scipy . fftpack import fft
15
16 sns . set ( )
17 plt . close ("all" )
18 start = time . time ( )
19
20 ## Import paramters
21 [ m , k , c , I , l_s , l , var ] = parameters ( )
22 m_t_f , m_t_r , m_s = m # Masses
23 k_t_f , k_t_r , k_s_f , k_s_r = k # Stiffnesses
24 c_t_f , c_t_r , c_s_f , c_s_r = c # Damping coefficients
25 I_yy = I # Inertia moment
26 l_f , l_r = l # Position CoG with respect to the unsprung masses
27 l_s_f , l_s_r = l_s # Length of the springs
28 vel , stoptime , L , T_s , N , WB , road_profile = var
29 p = [ m_t_f , m_t_r , m_s , k_t_f , k_t_r , k_s_f , k_s_r , c_t_f , c_t_r , c_s_f ,

c_s_r , I_yy , l_f , l_r ] # Pack up the paramters
30
31 ## Time vector
32 t = np . linspace (0 , stoptime , N )
33
34 mp = 1 # Number of pseudo measurments
35
36 m_s_est = np . zeros (mp )
37 I_yy_est = np . zeros (mp )
38 l_f_est = np . zeros (mp )
39
40 ddx_s_f = np . zeros ( (101 , mp ) )
41 ddx_s_r = np . zeros ( (101 , mp ) )
42
43 for z in range (0 , mp ) :
44 print ("z = " , z+1, "/" , mp )
45 ## Import road profile
46 x_r = [ x_r_f , dx_r_f , x_r_r , dx_r_r , L ] = road (t , var , z )
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47
48 ## Initial conditions
49 if road_profile in range ( 1 , 2 ) : # Random road
50 x_t_f0 = x_r_f [ 0 ]
51 dx_t_f0 = dx_r_f [ 0 ]
52 x_t_r0 = x_r_r [ 0 ]
53 dx_t_r0 = dx_r_f [ 0 ]
54 x_s0 = ( x_r_f [ 0 ] + x_r_r [ 0 ] ) /2
55 dx_s0 = ( dx_r_f [ 0 ] + dx_r_r [ 0 ] ) /2
56 phi0 = ( x_r_f [ 0 ] + x_r_r [ 0 ] ) /WB
57 dphi0 = ( dx_r_f [ 0 ] + dx_r_r [ 0 ] ) /WB
58
59 if road_profile == 0 : # Free decay
60 x_t_f0 = −0.015
61 dx_t_f0 = 0
62 x_t_r0 = −0.015
63 dx_t_r0 = 0
64 x_s0 = −0.03
65 dx_s0 = 0
66 phi0 = 0.00
67 dphi0 = 0
68
69 state = np . zeros ( ( N , 8) ) # define size of the state
70 state_0 = np . array ( [ x_t_f0 , x_t_r0 , x_s0 , phi0 , dx_t_f0 , dx_t_r0 ,

dx_s0 , dphi0 ] ) # initial condition state
71 state [ 0 , : ] = state_0 # initial condition state
72
73 ## Integration
74 for i in range (0 , N − 1) :
75 tt = [0 , T_s ] #integrate over 1 timestep
76 x_r_f_ = x_r_f [ i ] # corresponding road profile
77 dx_r_f_ = dx_r_f [ i ]
78 x_r_r_ = x_r_r [ i ]
79 dx_r_r_ = dx_r_r [ i ]
80 x_ra = [ x_r_f_ , dx_r_f_ , x_r_r_ , dx_r_r_ , L ]
81 state_temp = odeint ( solution , state [ i , : ] , tt , args=(p , x_ra ) ) #

Integrate state dot using solution function , state0 as initial
values and paramters p

82 state [ i+1, : ] = state_temp [ 1 , : ] # new state
83
84 state = np . transpose ( state )
85
86 dstate_temp = dstate ( state , p , t , x_r )
87 ddx_s = np . ravel ( dstate_temp [ 6 , : ] )
88 ddphi = np . ravel ( dstate_temp [ 7 , : ] )
89
90 T_s_sample = 0.01 #Sampling frequency 100 Hz
91 N_sample = round ( stoptime/T_s_sample )
92
93 ddx_s_f__ = ddx_s + l_f∗ddphi
94 ddx_s_r__ = ddx_s − l_r∗ddphi
95
96 if road_profile == 2 :
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97 ddx_s_f_ = resample ( ddx_s_f__ , N_sample ) # Sample accelerations
on sampling frequency

98 ddx_s_r_ = resample ( ddx_s_r__ , N_sample )
99 else :

100 ddx_s_f_ = ddx_s_f__
101 ddx_s_r_ = ddx_s_r__
102
103 if road_profile in range ( 1 , 2 ) : # take autocorrelation of signal for

random road input
104 lag = round (1/ T_s_sample )
105 ddx_s_f [ : , z ] = acf ( ddx_s_f_ , nlags = lag )
106 ddx_s_r [ : , z ] = acf ( ddx_s_r_ , nlags = lag )
107 ACC_t = np . linspace (0 , lag∗T_s_sample , lag + 1)
108 ddx = [ ddx_s_f [ : , z ] , ddx_s_r [ : , z ] ]
109
110 plt . figure (1 )
111 plt . plot ( ACC_t , ddx_s_f [ : , z ] )
112 plt . xlabel (’time lag [s]’ )
113 plt . ylabel (’ACF’ )
114 plt . title (’Autocorrelation front acceleration - ISO 8608’ )
115 plt . savefig (’Autocor_front’ )
116
117 plt . figure (2 )
118 plt . plot ( ACC_t , ddx_s_r [ : , z ] )
119 plt . xlabel (’time lag [s]’ )
120 plt . ylabel (’ACF’ )
121 plt . title (’Autocorrelation rear acceleration - ISO 8608’ )
122 plt . savefig (’Autocor_rear’ )
123
124 if road_profile == 0 : # Free decay input
125 ddx_s_f = ddx_s_f__
126 ddx_s_r = ddx_s_r__
127
128 ddx_s_f = ddx_s_f__/np . max ( ddx_s_f__ )
129 ddx_s_r = ddx_s_r__/np . max ( ddx_s_r__ )
130 ddx = [ ddx_s_f , ddx_s_r ]
131
132 plt . figure (1 )
133 plt . plot (t , ddx_s_f )
134 plt . xlabel (’time [s]’ )
135 plt . ylabel (’Amplitude’ )
136 plt . title (’Normalized free decay response front - Impulse

response’ )
137 plt . savefig (’Acceleration free decay front’ )
138
139 plt . figure (2 )
140 plt . plot (t , ddx_s_r )
141 plt . xlabel (’time [s]’ )
142 plt . ylabel (’Amplitude’ )
143 plt . title (’Normalized free decay response rear - Impulse response

’ )
144 plt . savefig (’Acceleration free decay rear’ )
145
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146 ## State transition
147 A_meas , omega_nS_hz , omega , index , omega_nS_hz_noise =

state_transition (ddx , N , T_s_sample , t )
148
149 if omega != [ 0 , 0 ] : # Estimate parameters if identification is

succesfull
150 A_est , cost , k_eq_f , k_eq_r = estimation ( A_meas , k , c , l , omega )
151 x0 = [800 , 1750 , 1 ] #initial estimate mass, inertia , l_f
152 par_est = fsolve ( parameter , x0 , args=(A_meas , k_eq_f , k_eq_r , WB )

)
153
154 [ m_s_est [ z ] , I_yy_est [ z ] , l_f_est [ z ] ] = par_est
155
156 else : # Estimation is zero
157 [ m_s_est [ z ] , I_yy_est [ z ] , l_f_est [ z ] ] = [ 0 , 0 , 0 ]
158 z += 1
159
160 np . save (’mass_estimate’ , m_s_est )
161 np . save (’inertia_estimate’ , I_yy_est )
162 np . save (’cog_estimate’ , l_f_est )
163
164 l_r_est = WB − l_f_est
165 dif_m = np . abs ( m_s_est − m_s ) /m_s∗100
166 dif_I_yy = np . abs ( I_yy_est − I_yy ) /I_yy ∗100
167 dif_l_f = np . abs ( l_f_est − l_f ) /l_f∗100
168
169 m_s_estimate = np . average ( m_s_est [ m_s_est != 0 ] )
170 print (’Mass estimate =’ , m_s_estimate , ’kg’ )
171 I_yy_estimate = np . average ( I_yy_est [ I_yy_est != 0 ] )
172 print (’Inertia estimate =’ , I_yy_estimate , ’kg*m^2’ )
173 l_f_estimate = np . average ( l_f_est [ l_f_est != 0 ] )
174 print (’COG estimate =’ , l_f_estimate , ’m’ )
175
176 m_bin = np . linspace ( int ( round (np . min ( m_s_est ) −49, −2) ) , int ( round (np . max (

m_s_est )+49, −2) ) , 41)
177 plt . figure (3 )
178 plt . hist ( m_s_est , bins = m_bin )
179 plt . text ( int ( round (np . min ( m_s_est ) −49, −2) ) , 0 .9∗ plt . ylim ( ) [ 1 ] , ’$\mu$ =

{:.2f}’ . format ( m_s_estimate ) )
180 plt . text ( int ( round (np . min ( m_s_est ) −49, −2) ) , 0 .8∗ plt . ylim ( ) [ 1 ] , ’$\sigma$

= {:.2f}’ . format ( m_s_est . std ( ) ) )
181 plt . title (’Mass estimates - Laplace’ )
182 plt . xlabel (’Mass [kg]’ )
183 plt . ylabel (’Occurance’ )
184 plt . savefig (’hist_mass’ )
185
186 I_bin = np . linspace ( int ( round (np . min ( I_yy_est ) −49, −2) ) , int ( round (np . max

( I_yy_est )+49, −2) ) , 41)
187 plt . figure (4 )
188 plt . hist ( I_yy_est , bins = I_bin )
189 plt . text ( int ( round (np . min ( I_yy_est ) −49, −2) ) , 0 .9∗ plt . ylim ( ) [ 1 ] , ’$\mu$ =

{:.2f}’ . format ( I_yy_estimate ) )
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190 plt . text ( int ( round (np . min ( I_yy_est ) −49, −2) ) , 0 .8∗ plt . ylim ( ) [ 1 ] , ’$\
sigma$ = {:.2f}’ . format ( I_yy_est . std ( ) ) )

191 plt . title (’Pitch moment of inertia estimates - Laplace’ )
192 plt . xlabel (’Inertia [kg*m^2]’ )
193 plt . ylabel (’Occurance’ )
194 plt . savefig (’hist_inertia’ )
195
196 l_f_bin = np . linspace ( round (np . min ( l_f_est ) −0.049 , 1) , round (np . max (

l_f_est ) +0.049 , 1) , 41)
197 plt . figure (5 )
198 plt . hist ( l_f_est , bins = l_f_bin )
199 plt . text ( round (np . min ( l_f_est ) −0.049 , 1) , 0 .9∗ plt . ylim ( ) [ 1 ] , ’$\mu$ =

{:.4f}’ . format ( l_f_estimate ) )
200 plt . text ( round (np . min ( l_f_est ) −0.049 , 1) , 0 .8∗ plt . ylim ( ) [ 1 ] , ’$\sigma$ =

{:.4f}’ . format ( l_f_est . std ( ) ) )
201 plt . title (’CoG estimates (from front axle) - Laplace’ )
202 plt . xlabel (’Distance [m]’ )
203 plt . ylabel (’Occurance’ )
204 plt . savefig (’hist_cog’ )
205
206 m_s_error = ( m_s_est − m_s ) /m_s∗100
207 I_yy_error = ( I_yy_est − I_yy ) /I_yy ∗100
208 l_f_error = ( l_f_est − l_f ) /l_f∗100
209 error = [ m_s_error , I_yy_error , l_f_error ]
210
211 label = [ ’m_s_est’ , ’I_yy_est’ , ’l_f_est’ ]
212 plt . figure (6 )
213 plt . title (’Error in estimated parameters - Laplace’ )
214 plt . ylabel (’error [%]’ )
215 plt . boxplot ( error , labels = label )
216 plt . savefig (’Boxplot’ )
217
218 Results = [ [ stoptime ] , [ vel ] , [ m_s_estimate ] , [ m_s_est . std ( ) ] , [

I_yy_estimate ] , [ I_yy_est . std ( ) ] , [ l_f_estimate ] , [ l_f_est . std ( ) ] ]
219
220 import os
221 mydir = os . getcwd ( ) # Get directory
222 updir = os . path . dirname ( mydir ) # Go up one directory
223 mydir_new = os . chdir ( updir ) # Change current directory to updir
224 np . savetxt (’Result_test.txt’ , Results )
225
226 dx = 0.05
227
228 plt . figure (8 )
229 yf = fft ( x_r_f )
230 tf = np . linspace ( 0 . 0 , 1 . 0 / ( 2 . 0∗ dx ) , N//2)
231 plt . plot (tf , 2 .0/ N ∗ np . abs (yf [ 0 : N //2 ] ) )
232 plt . title (’Road spatial frequency’ )
233 plt . xlabel (’Spatial frequency [cycles/m]’ )
234 plt . ylabel (’FFT Magnitude (power)’ )
235
236
237 # Plot results
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238 x_t_f = state [ 0 , : ]
239 x_t_r = state [ 1 , : ]
240 x_s = state [ 2 , : ]
241 phi = state [ 3 , : ]
242
243 x_s_f = x_s + l_f∗phi
244 x_s_r = x_s − l_r∗phi
245
246 # Plots
247 plt . figure (10 , figsize=(12 , 4) ) # Plot road profile and body displacement

front
248 plt . xlabel (’t [s]’ )
249 plt . ylabel (’road profile [m]’ )
250 plt . grid ( True )
251 lw = 1
252 plt . plot (t , x_r_f , ’r’ , linewidth=lw ) #plot road displacement
253 plt . plot (t , x_t_f , ’b’ , linewidth=lw ) #plot wheel displacement
254 plt . plot (t , x_s_f , ’g’ , linewidth=lw ) #plot body displacement
255 plt . legend ( ( r’$x_{road, front}$’ , r’$x_{tyre, front}$’ ,r’$x_{sprung ,

front}$’ ) , prop=FontProperties ( size=16) )
256 plt . title (’Mass Displacements for the\nCoupled Spring -Mass System , front’

)
257 plt . savefig (’two_springs_f.png’ , dpi=1000)
258
259 plt . figure (11 , figsize=(12 , 4) ) # Plot road profile and body displacement

rear
260 plt . xlabel (’t [s]’ )
261 plt . ylabel (’road profile [m]’ )
262 plt . grid ( True )
263 plt . plot (t , x_r_r , ’r’ , linewidth=lw ) #plot road displacement
264 plt . plot (t , x_t_r , ’b’ , linewidth=lw ) #plot wheel displacement
265 plt . plot (t , x_s_r , ’g’ , linewidth=lw ) #plot body displacement
266 plt . legend ( ( r’$x_{road, rear}$’ , r’$x_{tyre, rear}$’ ,r’$x_{sprung , rear}$

’ ) , prop=FontProperties ( size=16) )
267 plt . title (’Mass Displacements for the\nCoupled Spring -Mass System , rear’ )
268 plt . savefig (’two_springs_r.png’ , dpi=1000)
269
270 plt . figure (12 , figsize=(12 , 4) ) # Plot body angle phi
271 plt . xlabel (’t [s]’ )
272 plt . ylabel (’body angle [rad]’ )
273 plt . grid ( True )
274 plt . plot (t , phi , ’g’ , linewidth=lw ) #plot x_s
275 plt . legend ( ( [ ’Pitch angle’ ] ) , prop=FontProperties ( size=16) )
276 plt . title (’Body angle over time’ )
277 plt . savefig (’two_springs.png’ , dpi=1000)
278
279 end = time . time ( )
280
281 print ("time elapsed" , end − start , "s" )
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A-2-2 Function File

1 """
2 @author: JoÃńl Dijkhuizen
3 """
4 import matplotlib . pyplot as plt
5 import numpy as np
6 from sympy import Symbol , Matrix
7 from Norm import normalize
8 from scipy . io import loadmat
9 import math

10
11 plt . close ("all" )
12
13 def parameters ( ) :
14 # Parameter values
15
16 # Masses:
17 m_t_f = 40 # Front unsprung mass [kg]
18 m_t_r = 65 # Rear unsprung mass [kg]
19 m_s = 1000 # Sprung mass [kg]
20 m = m_t_f , m_t_r , m_s
21
22 # Spring constants
23 k_t_f = 200000 # Tyre stiffness front [N/m]
24 k_t_r = k_t_f # Tyre stiffness rear [N/m]
25 k_s_f = 45000 # Front suspension stiffness [N/m]
26 k_s_r = 80000 # Rear suspension stiffness [N/m]
27 k = k_t_f , k_t_r , k_s_f , k_s_r
28
29 c_t_f = 50 # Tyre damping front [N*s/m]
30 c_t_r = c_t_f # Tyre damping rear [N*s/m]
31 c_s_f = 2800 # Front suspension damping [N*s/m]
32 c_s_r = 3500 # Rear suspension damping [N*s/m]
33 c = c_t_f , c_t_r , c_s_f , c_s_r
34
35 I_yy = 2000 # Chassis pitch mass moment of inertia [Kg*m^2]
36 I = I_yy
37
38 l_s_f = 0.3 #height sprung mass front
39 l_s_r = 0.3 #height sprung mass rear
40 l_s = l_s_f , l_s_r
41
42 l_f = 1.2 # Distance from front axle to CoG [m]
43 l_r = 1.6 # Distance from rear axle to CoG [m]
44 l = l_f , l_r
45
46 WB = l_f + l_r #Vehicle wheelbase [m]
47
48 vel = 100/3.6 # velocity
49 stoptime = 100 # runtime
50 print ("Velocity = " , vel ∗3 . 6 , "km/h" )
51 print ("Measurement time = " , round ( stoptime , 2 ) , "sec." )
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52
53 L = vel∗stoptime # Covered distance
54 dx = 0.05 # Spatial frequency
55
56 road_profile = 1 # 0 for free decay , 1 for ISO, 2 for Laplace road

profile
57
58 if road_profile == 0 :
59 print ("Free decay" )
60 stoptime = 1
61 L = vel∗stoptime
62 T_s = 0.01
63 N = round ( stoptime/T_s )
64 if road_profile == 1 :
65 print ("ISO Road Profile" )
66 T_s = 0.01
67 N = round ( stoptime/T_s )
68 if road_profile == 2 :
69 print ("Laplace Road Profile" )
70 N = round (L/dx )
71 T_s = stoptime/N
72
73 var = vel , stoptime , L , T_s , N , WB , road_profile
74
75 return m , k , c , I , l_s , l , var
76
77
78 def road ( t_road , var , z ) :
79 vel , stoptime , L , T_s , N , WB , road_profile = var
80
81 dt = WB/vel # Time difference between front and rear [s]
82 dindex = int (dt/T_s ) # index difference between front and rear wheel
83 dL = dindex ∗ T_s ∗ vel # Extra distance covered
84 tt = np . linspace (0 , stoptime + dindex∗T_s , N + dindex )
85
86 if road_profile == 0 : # Free decay
87 x_r = np . zeros (N + dindex )
88 L = 0
89
90 if road_profile == 1 : # ISO road profile
91 k = 3 # Road roughness ISO 8608
92 dn = 1/L
93 B = L/N
94 n0 = 0.1
95 n = np . linspace (dn , (N + dindex ) ∗dn , N + dindex )
96 angle = 2∗np . pi∗np . random . uniform (0 , 1 , size= N + dindex )
97 ampx = np . sqrt (dn ) ∗(2∗∗k ) ∗(1e−3)∗(n0/n )
98
99 x_r = np . zeros (N + dindex )

100
101 x = np . linspace (0 , L + dL − B , N + dindex )
102 tt = np . linspace (0 , stoptime + dindex∗T_s , N + dindex )
103

Master of Science Thesis J.C. Dijkhuizen - 4225457



48 Appendix

104 x_road = np . linspace (0 , L , N )
105
106 for i in range (0 , N + dindex ) :
107 x_r [ i ] = np . dot (ampx , np . sin (2∗ math . pi∗n∗x [ i ] + angle ) )
108
109 if road_profile == 2 : # Laplace road profile
110 data = loadmat (’road_surface.mat’ )
111 x_r = np . array ( data [ ’zLAR’ ] )
112 x_r = x_r [ : , z ]
113
114 x_r_f = np . ravel ( x_r [ dindex : N + dindex ] ) # Front road profile
115 x_r_r = np . ravel ( x_r [ 0 : N ] ) # Rear road profile
116
117 dx_r_f = np . zeros (N )
118 dx_r_r = np . zeros (N )
119
120 for i in range (1 , N − 1) :
121 dx_r_f [ i ] = ( x_r_f [ i+1] − x_r_f [ i −1]) /(2∗ T_s )
122 dx_r_r [ i ] = ( x_r_r [ i+1] − x_r_r [ i −1]) /(2∗ T_s )
123
124 plt . figure (7 )
125 plt . plot (tt , vel∗np . ones (N + dindex ) )
126 plt . title (’Velocity profile’ )
127 plt . xlabel (’Time [s]’ )
128 plt . ylabel (’Velocity [m/s]’ )
129 plt . savefig (’Velocity_profile’ )
130
131 return x_r_f , dx_r_f , x_r_r , dx_r_r , L
132
133
134 def solution ( state , tt , p , x_r ) :
135 x_t_f , x_t_r , x_s , phi , dx_t_f , dx_t_r , dx_s , dphi = state
136 m_t_f , m_t_r , m_s , k_t_f , k_t_r , k_s_f , k_s_r , c_t_f , c_t_r , c_s_f ,

c_s_r , I_yy , l_f , l_r = p
137 x_r_f , dx_r_f , x_r_r , dx_r_r , L = x_r
138
139 x_s_f = x_s + l_f ∗ phi
140 dx_s_f = dx_s + l_f ∗ dphi
141 x_s_r = x_s − l_r ∗ phi
142 dx_s_r = dx_s − l_r ∗ dphi
143
144
145 dstate_0 = [ dx_t_f ,
146 dx_t_r ,
147 dx_s ,
148 dphi ,
149 (−k_t_f ∗( x_t_f − x_r_f ) − c_t_f ∗( dx_t_f − dx_r_f ) + k_s_f

∗( x_s_f − x_t_f ) + c_s_f ∗( dx_s_f − dx_t_f ) ) /m_t_f ,
150 (−k_t_r ∗( x_t_r − x_r_r ) − c_t_r ∗( dx_t_r − dx_r_r ) + k_s_r

∗( x_s_r − x_t_r ) + c_s_r ∗( dx_s_r − dx_t_r ) ) /m_t_r ,
151 (−k_s_f ∗( x_s_f − x_t_f ) − c_s_f ∗( dx_s_f − dx_t_f ) − k_s_r

∗( x_s_r − x_t_r ) − c_s_r ∗( dx_s_r − dx_t_r ) ) /m_s ,
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152 (−l_f ∗( k_s_f ∗( x_s_f − x_t_f ) + c_s_f ∗( dx_s_f − dx_t_f ) ) +
l_r ∗( k_s_r ∗( x_s_r − x_t_r ) + c_s_r ∗( dx_s_r − dx_t_r ) )

) /I_yy ]
153
154 dstate_0 = np . transpose ( dstate_0 )
155
156 return dstate_0
157
158
159 def dstate ( state , p , t , x_r ) :
160 m_t_f , m_t_r , m_s , k_t_f , k_t_r , k_s_f , k_s_r , c_t_f , c_t_r , c_s_f ,

c_s_r , I_yy , l_f , l_r = p
161 x_r_f , dx_r_f , x_r_r , dx_r_r , L = x_r
162 ## Equation of motion: M*ddx + C*dx + K*x = 0, x = [x_t_f , x_t_r , x_s

, phi], u = [x_r_f , x_r_r]
163
164 u = [ x_r_f ,
165 x_r_r ,
166 dx_r_f ,
167 dx_r_r ]
168 u = np . matrix (u )
169
170 M = [ [ m_t_f , 0 , 0 , 0 ] ,
171 [ 0 , m_t_r , 0 , 0 ] ,
172 [ 0 , 0 , m_s , 0 ] ,
173 [ 0 , 0 , 0 , I_yy ] ]
174
175 K = [ [ k_t_f + k_s_f , 0 , −k_s_f , −l_f∗

k_s_f ] ,
176 [ 0 , k_t_r + k_s_r , −k_s_r , l_r∗

k_s_r ] ,
177 [−k_s_f , −k_s_r , k_s_f + k_s_r , l_f∗

k_s_f − l_r∗k_s_r ] ,
178 [−l_f∗k_s_f , l_r∗k_s_r , l_f∗k_s_f − l_r∗k_s_r , l_f

∗∗2∗ k_s_f + l_r∗∗2∗ k_s_r ] ]
179
180 C = [ [ c_t_f + c_s_f , 0 , −c_s_f , −l_f∗

c_s_f ] ,
181 [ 0 , c_t_r + c_s_r , −c_s_r , l_r∗

c_s_r ] ,
182 [−c_s_f , −c_s_r , c_s_f + c_s_r , l_f∗

c_s_f − l_r∗c_s_r ] ,
183 [−l_f∗c_s_f , l_r∗c_s_r , l_f∗c_s_f − l_r∗c_s_r , l_f

∗∗2∗ c_s_f + l_r∗∗2∗ c_s_r ] ]
184
185 B = [ [ 0 , 0 , 0 , 0 ] ,
186 [ 0 , 0 , 0 , 0 ] ,
187 [ 0 , 0 , 0 , 0 ] ,
188 [ 0 , 0 , 0 , 0 ] ,
189 [ −k_t_f/m_t_f , 0 , −c_t_f/m_t_f , 0 ] ,
190 [ 0 , −k_t_r/m_t_r , 0 , −c_t_r/m_t_r ] ,
191 [ 0 , 0 , 0 , 0 ] ,
192 [ 0 , 0 , 0 , 0 ] ]
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193
194 AA_p1 = np . hstack ( [ np . zeros ( shape=(4 ,4) ) , np . identity (4 ) ] )
195 AA_p2 = np . hstack ([−(np . dot (np . linalg . inv (M ) ,K ) ) , −(np . dot (np . linalg .

inv (M ) ,C ) ) ] )
196 A_int = np . concatenate ( ( AA_p1 , AA_p2 ) , axis = 0)
197
198 dstate = np . dot ( A_int , state ) + np . dot (B , u )
199
200 return dstate
201
202
203 def state_transition (ddx , N , T_s , t ) :
204 ddx_s_f , ddx_s_r = ddx
205
206 gamma = 2 # Tuning parameter
207 DoF = 4 # Degrees of Freedom
208 M = 2 # Number of measuement stations
209 p_0 = 2∗DoF//M
210 p = gamma ∗ p_0
211
212 arr1 = np . zeros ( shape=(M∗p , np . size ( ddx_s_f )−p ) )
213 i = 0
214 k = 0
215 for k in range (0 , p ) :
216 for i in range (0 , np . size ( ddx_s_f )−p ) :
217 arr1 [ M∗k , i ] = ddx_s_f [ i+k ]
218 arr1 [1+M∗k , i ] = ddx_s_r [ i+k ]
219
220 arr2 = np . zeros ( shape=(M∗p , np . size ( ddx_s_f )−p ) )
221 i = 0
222 k = 0
223 for k in range (0 , p ) :
224 for i in range (0 , np . size ( ddx_s_f )−p ) :
225 arr2 [ M∗k , i ] = ddx_s_f [ i+k+1]
226 arr2 [ M∗k+1,i ] = ddx_s_r [ i+k+1]
227
228 A1 = np . dot (arr2 , np . transpose ( arr1 ) )
229 A2 = np . linalg . inv (np . dot (arr1 , np . transpose ( arr1 ) ) )
230 A_Z = np . dot (A1 , A2 )
231
232 eigenvalues_Z , eigenvectors_Z = np . linalg . eig ( A_Z ) #Eigenvalues and

eigenvectors in Z-plane
233
234 a = np . real ( eigenvalues_Z )
235 b = np . imag ( eigenvalues_Z )
236
237 alpha = np . log (a∗∗2 + b∗∗2) /(2∗ T_s )
238 beta = np . arctan (b/a ) /T_s
239
240 eigenvalues_S_noise = alpha + beta∗1j #Eigenvalues in S -plane
241 eigenvectors_S_noise = eigenvectors_Z
242
243 omega_nS = np . sqrt ( alpha∗∗2 + beta ∗∗2)
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244 omega_nS_hz_noise = omega_nS /(2∗ np . pi )
245
246 damping_noise = −alpha/omega_nS
247
248 # Cleaning
249 eigenvalues_S = eigenvalues_S_noise [ np . where (np . imag (

eigenvalues_S_noise ) ) [ 0 ] ] # Remove all non complex eigenvalues
250
251 eigenvectors_S = eigenvectors_S_noise [ : , np . where (np . imag (

eigenvalues_S_noise ) ) [ 0 ] ] # Remove all eigenvectors belonging to
non complex eigenvalues

252
253 omega_nS_hz = omega_nS_hz_noise [ np . where (np . imag ( eigenvalues_S_noise )

) [ 0 ] ] # Remove all frequencies beloning to the non complex
eigenvalues

254
255 #Choose the correct omega’s
256 index = np . array (np . where ( ( omega_nS_hz >= 1) & ( omega_nS_hz <= 3) ) ) #

Select the indeces where omega is in range 1-3 Hz
257
258 if np . size ( index [ 0 ] ) == 4 :
259 index_r = np . where ( omega_nS_hz == np . max ( omega_nS_hz [ index ] [ 0 ] ) )
260 index_f = np . where ( omega_nS_hz == np . min ( omega_nS_hz [ index ] [ 0 ] ) )
261
262 ind = [ index_f [ 0 ] [ 0 ] , index_r [ 0 ] [ 0 ] ]
263 ind_conj = [ index_f [ 0 ] [ 1 ] , index_r [ 0 ] [ 1 ] ]
264
265 omega_f = omega_nS_hz [ ind [ 0 ] ] ∗ 2 ∗ np . pi
266 omega_r = omega_nS_hz [ ind [ 1 ] ] ∗ 2 ∗ np . pi
267
268 omega = [ omega_f , omega_r ]
269
270 damping_f = damping_noise [ ind [ 0 ] ]
271 damping_r = damping_noise [ ind [ 1 ] ]
272 damping = [ damping_f , damping_r ]
273
274 labda = np . diagflat ( eigenvalues_S [ ind ] )
275 labda_conj = np . diagflat ( eigenvalues_S [ ind_conj ] )
276
277 psi = eigenvectors_S [ : , ind ]
278 psi = psi [ [ 0 , 1 ] , : ]
279 psi_norm = normalize ( psi )
280
281 psi_conj = eigenvectors_S [ : , ind_conj ]
282 psi_conj = psi_conj [ [ 0 , 1 ] , : ]
283 psi_conj_norm = normalize ( psi_conj )
284
285 labda_diag1 = np . hstack ( [ labda , np . zeros ( shape=(2 , 2) ) ] )
286 labda_diag2 = np . hstack ( [ np . zeros ( shape=(2 , 2) ) , labda_conj ] )
287 labda_diag = np . concatenate ( ( labda_diag1 , labda_diag2 ) , axis = 0)
288
289 A_meas1 = np . hstack ( [ psi_norm , psi_conj_norm ] )
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290 A_meas2 = np . hstack ( [ np . dot ( psi_norm , labda ) , np . dot (
psi_conj_norm , labda_conj ) ] )

291 A_meas_nor = np . concatenate ( ( A_meas1 , A_meas2 ) , axis = 0)
292 A_meas_inv = np . linalg . inv ( A_meas_nor )
293 A_meas = np . dot (np . dot ( A_meas_nor , labda_diag ) , A_meas_inv )
294
295 else :
296 A_meas = np . zeros ( ( 4 , 4 ) )
297 omega_nS_hz = 0
298 omega = [0 , 0 ]
299 index = 0
300
301 return A_meas , omega_nS_hz , omega , index , omega_nS_hz_noise
302
303
304 def estimation ( A_meas , k , c , l , omega ) :
305 k_t_f , k_t_r , k_s_f , k_s_r = k
306 c_t_f , c_t_r , c_s_f , c_s_r = c
307 omega_f , omega_r = omega
308 l_f , l_r = l
309
310 WB = l_f + l_r
311
312 # Unknown parameters
313 m_s = Symbol (’m_s’ )
314 I_yy = Symbol (’I_yy’ )
315 l_f = Symbol (’l_f’ )
316 l_r = (WB−l_f )
317
318 # Equivalent stiffensses
319 #k_eq_f = (k_s_f*k_t_f**2 + k_s_f**2*k_t_f + (omega_f**2)*(k_s_f*

c_t_f**2 + k_t_f*c_s_f**2))/((k_s_f+k_t_f)**2 + (omega_f**2)*((
c_s_f + c_t_f)**2))

320 #k_eq_r = (k_s_r*k_t_r**2 + k_s_r**2*k_t_r + (omega_r**2)*(k_s_r*
c_t_r**2 + k_t_r*c_s_r**2))/((k_s_r+k_t_r)**2 + (omega_r**2)*((
c_s_r + c_t_r)**2))

321 k_eq_f = ( k_s_f∗k_t_f ) /( k_s_f+ k_t_f )
322 k_eq_r = ( k_s_r∗k_t_r ) /( k_s_r+ k_t_r )
323 c_eq_f = ( c_s_f∗c_t_f ) /( c_s_f + c_t_f )
324 c_eq_r = ( c_s_r∗c_t_r ) /( c_s_r + c_t_r )
325
326 # Matrices
327 M = [ [ ( l_r/WB ) ∗m_s , ( l_f/WB ) ∗m_s ] ,
328 [ I_yy/WB , −I_yy/WB ] ]
329
330 M = Matrix (M )
331 M_inv = M . inv ( )
332
333 K_eq = [ [ k_eq_f , k_eq_r ] ,
334 [ l_f∗k_eq_f , −l_r∗k_eq_r ] ]
335
336 K_eq = np . matrix ( K_eq )
337
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338 C_eq = [ [ c_eq_f , c_eq_r ] ,
339 [ l_f∗c_eq_f , −l_r∗c_eq_r ] ]
340
341 C_eq = np . matrix ( C_eq )
342
343 AA_p1 = np . hstack ( [ np . zeros ( shape=(2 ,2) ) , np . identity (2 ) ] )
344 AA_p2 = np . hstack ( [ −M_inv∗K_eq , −M_inv∗C_eq ] )
345 A_est = np . concatenate ( ( AA_p1 , AA_p2 ) , axis = 0)
346
347 cost = ( A_meas − A_est ) ∗∗2
348
349 return A_est , cost , k_eq_f , k_eq_r
350
351 def parameter ( parameters , A_meas , k_eq_f , k_eq_r , L ) :
352 m_s , I_yy , l_f = parameters
353
354 A_meas1 = np . abs ( A_meas [ 2 , 0 ] )
355 A_meas2 = np . abs ( A_meas [ 2 , 1 ] )
356 A_meas3 = np . abs ( A_meas [ 3 , 1 ] )
357
358 f1 = (−I_yy∗k_eq_f /(L∗(−I_yy∗l_f∗m_s/L∗∗2 − I_yy∗m_s ∗(L − l_f ) /L∗∗2) )

− k_eq_f∗l_f∗∗2∗m_s /(L∗(−I_yy∗l_f∗m_s/L∗∗2 − I_yy∗m_s ∗(L − l_f ) /L
∗∗2) ) − A_meas1 ) ∗∗2

359 f2 = (−I_yy∗k_eq_r /(L∗(−I_yy∗l_f∗m_s/L∗∗2 − I_yy∗m_s ∗(L − l_f ) /L∗∗2) )
− k_eq_r∗l_f∗m_s∗(−L + l_f ) /(L∗(−I_yy∗l_f∗m_s/L∗∗2 − I_yy∗m_s ∗(L

− l_f ) /L∗∗2) ) − A_meas2 ) ∗∗2
360 f3 = (−I_yy∗k_eq_r /(L∗(−I_yy∗l_f∗m_s/L∗∗2 − I_yy∗m_s ∗(L − l_f ) /L∗∗2) )

+ k_eq_r∗m_s∗(−L + l_f ) ∗(L − l_f ) /(L∗(−I_yy∗l_f∗m_s/L∗∗2 − I_yy∗
m_s ∗(L − l_f ) /L∗∗2) ) − A_meas3 ) ∗∗2

361
362 return f1 , f2 , f3
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