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Abstract
In this paper, a pseudo-rigid body model is proposed for the analysis of a spatial mechanical metamaterial and its applica-
tion is demonstrated. Using this model, the post-buckling behavior of the mechanical metamaterial can be determined
without the need to consider the whole elastic structure, e.g., using finite-element procedures. This is done by analyzing
a porous cylindrical mechanical metamaterial using a rigid body mechanism, consisting of rigid squares that are connected
at their corners. Stiffness in this model comes from torsion springs placed at the connections between rigid parts. The
theory of the model is presented and the results of two versions of this model are compared through experiments. One
version describes the metamaterial in the free state, while the other, more extended, version includes clamped bound-
aries, matching the conditions of the experimental set-up. It is shown that the mechanical behavior of the spatial metama-
terial is captured by the models and that the shape of the metamaterial in the deformed state can be obtained from the
more extended model.
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1. Introduction

Mechanical metamaterials are artificially designed materials of which the mechanical properties are
dominated by their structures, rather than by the chemical composition of the constituent materials. In
this way, materials can be designed with novel properties, such as negative Poisson’s ratios, vanishing
elastic moduli, and extreme stiffness to weight ratios [1, 2].
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These material structures have potential applications in a variety of fields. Mechanical metamaterials
with negative Poisson’s ratios are applied in a diverse range of industries [3]. In medicine, such structures
have been proposed as stents [4, 5]; in sporting equipment, structures with negative Poisson’s ratios have
been used in the soles of running shoes for their shock-absorbing properties [6] or in textiles for better
shape-fitting to the wearer [7].

Material structures with vanishing elastic moduli could find applications in impact protection and
seismic isolation [8]. Materials with extreme stiffness to weight ratios could be used in automotive or
aerospace applications to reduce weight without reducing the strength of the parts fabricated from these
structured materials [9, 10].

Mechanical metamaterials can be split into two classes: bending- and stretching-dominated structures
[11, 12], named after the most dominant deformation of the slender parts of their structures. Stretching-
dominated structures are generally designed to be stiff and light [13]. Bending-dominated structures,
however, have been designed to have a broader range of properties, such as a negative Poisson’s ratio
[14–16] and a number of stable states [17–20]. This paper is focused on the modeling of bending-
dominated structures.

Because of the elastic deformations of the structure, bending-dominated mechanical metamaterials
require extensive computational effort for analysis, since the complete elastomeric structure must be con-
sidered at once. Generally, this is achieved using finite-element methods [20–22].

As an alternative to the computationally intensive finite-element methods, pseudo-rigid body models
(PRBMs) [23] can be used for the analysis of these structures. In this method, the elastomeric structure is
approximated by a rigid body mechanism with torsion springs at the hinges to model the elastic forces.
Using this method, the calculations for analysis become significantly simpler and analytical solutions of
the material properties can be obtained. Similar methods have been used by Florijn et al. [17] to model a
planar bistable mechanical metamaterial and by Turco et al. [24] to model planar pantographic lattices.

Current examples of rigid body mechanisms used to model mechanical metamaterials are either solely
kinematic [25–27] or only consider planar structures [17, 28–30]. However, for spatial mechanical meta-
materials, PRBMs have not yet been applied, while for these more complicated structures the resulting
computational efficiency will be of significant benefit.

In this paper, we present a PRBM for the analysis of the kinematics as well as the force–displacement
characteristic of a spatial mechanical metamaterial. We investigate a known spatial tubular mechanical
metamaterial [31–33]. This tubular structure has a negative Poisson’s ratio, owing to a square array of
round holes, which is patterned around the circumference of the cylinder. The PRBM we present in this
paper is able to replicate this property, as well as capturing the force–displacement behavior of the
structure.

By including fixed boundary conditions, matching the clamping in the experimental set-up in one of
the models, we are able to model the inhomogeneously deformed shape of the elastomeric structure.
This is an advantage over common unit-cell-based models, where the deformations of the structure are
assumed to be periodic and therefore only homogeneous deformations of the metamaterial are consid-
ered [34].

We will first describe how the tubular mechanical metamaterial deforms under uniaxial compression
and indicate the geometrical features that give rise to the negative Poisson’s ratio. Secondly, we present
and discuss two representative spatial PRBMs for the analysis of the metamaterial, both of which share
the same geometrical structure. One model describes the metamaterial under idealized conditions, while
the other also considers boundary effects due to clamping. Finally, we will validate the two implemented
models with experimental data.

2. The elastomeric tubular structure

The tubular mechanical metamaterial under study in this paper consists of a hollow cylinder with a
square array of pores around the circumference, as shown in Figure 1. Figure 1(a) shows a front view of
the structure and Figure 1(b) shows a top view. Figure 1(c) shows a section of a single pore of the struc-
ture, which is circular at the outer perimeter of the cylinder and elliptical at the inner perimeter. It was
made such that the holes follow the curvature of the cylinder, with the wall thickness between the holes
remaining constant throughout the radius of the cylinder.
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Figure 2 shows snapshots taken during compression of the tubular mechanical metamaterial along
the cylinder’s central axis. Two distinct stages can be identified in the compression characteristics:

� Pre-buckling. The whole structure undergoes a uniform vertical strain. The holes deform into
ellipses, with their largest principal axis oriented horizontally, as shown in Figure 2(b).

� Post-buckling. The slender parts between the holes buckle and the pattern of holes deforms into
alternatingly oriented ellipses, as shown in Figure 2(c) to (f).

During the first stage of the compression, the slender parts between the holes undergo uniform verti-
cal compression. The Poisson’s ratio of the structure is therefore determined by the Poisson’s ratio of the
material. However, because the deformation is mostly localized in the slender parts, the overall structure
has a Poisson’s ratio close to zero.

In the second stage of the deformation, the slender parts between the holes have buckled and the holes
form a checkerboard pattern of horizontally and vertically elongated ellipses. This pattern transforma-
tion causes a new deformation mode, in which the structure has a negative Poisson’s ratio; the radius of
the structure decreases with increasing compression along the cylinder axis. It is in this stage that the
deformation of the metamaterial becomes bending-dominated.

In the post-buckling stage of the deformation, the majority of the deformation of the structure is loca-
lized in the slender parts between the holes. Therefore, the solid square parts between the holes behave
approximately as rigid parts. These square parts rotate alternatingly clockwise and counterclockwise,
deforming the holes into the alternatingly oriented ellipses. This is illustrated in Figure 3.

Figure 1. The tubular mechanical metamaterial under study in this paper. Shown are a front view (a), a top view (b), and a section
containing a single hole (c). This structure has 7 holes along the height and 16 holes around the circumference. The holes are
tapered such that they are round at the outer perimeter and elliptical at the inner perimeter, with a constant thickness of the most
slender parts between the holes.

Figure 2. The elastomeric, porous cylinder at various stages of vertical compression dy. The height of the undeformed cylinder in
these pictures is 70 mm, indicated by two white lines on the left in each picture. The arrow indicates the compressed height of the
cylinder. (a) Undeformed structure. (b) At low compressions, the whole structure undergoes a vertical strain. (c–f) At higher
compressions, a buckling transition has occurred and the holes have deformed into alternatingly oriented ellipses.
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In both stages of the deformation, the overall structure of the tube remains approximately cylindrical.
In previous studies of this structure, it was shown that this is the case whenever the beams between the
holes are sufficiently slender with respect to the size of the holes [33].

3. Two pseudo-rigid body models for post-buckling behavior

In this section, we introduce the spatial PRBMs used to analyze the elastomeric tubular structure, one
including the clamping of the ends, and one without clamping. Both models are based on the same
mechanical structure, illustrated in Figure 4(a), where the clamping has been included. The structure
consists of Nh layers of rigid squares. In each layer, there are Nc squares, where Nc is an even number.
Within a layer, the squares are joined at their corners by spherical joints, shown in green. The centers of
all squares in a layer are at a distance ri from the central axis of the modeled cylinder; each square occu-
pies a constant sector angle a = 2p=Nc. These values are indicated in Figure 4(b).

Each square in a layer can rotate about an axis normal to its surface and crossing its center. We call
this rotation angle ui. All squares in a layer rotate simultaneously about their respective normals through
an angle 6ui, alternating in sign around the circumference of the cylinder. When they rotate, they move
radially with respect to the cylinder axis in order to maintain the constant sector angle a. Additionally,
the squares are allowed to rotate about a horizontal axis tangent to the cylinder surface and crossing the
midpoint of the square through an angle ci. This angle is the same for all squares in a layer. These rota-
tion angles are illustrated in Figure 4(c) and (d). Rotations about the ẑ-axis and translations within the
x̂ŷ-plane tangent to the cylinder are fixed.

The radius ri of a layer is

ri =
l cos(ui)

2 sin p
Nc

� � , ð1Þ

where l is the length of the diagonal of the squares. The height of a layer, measured along the ẑ-axis is

hi = l cos(ui) cos (ci): ð2Þ

The squares in consecutive layers are coupled at their corners, such that these corners share their
radial and ẑ coordinates. These connections are indicated in red in Figure 4. At these connections,

Figure 3. In the post-buckling stage of the deformation, the solid parts between the holes behave approximately as rigid square
plates, and rotate in an alternating pattern. These squares are indicated with dashed lines and the direction of rotation for each of
the plates is indicated by arrows.
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relative displacements of the two connected corners in the x̂ŷ-plane, tangent to the cylindrical
surface are allowed, as are relative rotations of the squares. These connections place constraints on the
angles ci:

ri � ri + 1 =
l

2
ðcos(ui)sin(ci)� cos(ui + 1)sin(ci + 1)Þ, 8i 2 ½1,Nh � 1�: ð3Þ

The total height of the modeled structure is

H =
h0 + hNh

2
+
XNh�1

i = 2

hi, ð4Þ

where the heights of the top and bottom layers have been halved to reflect the flat top and bottom sur-
faces of the elastomeric structure.

We add stiffness to the model by adding torsion springs to the connections between the squares, as
illustrated in Figure 5. Within a layer, we place torsion springs at each connection, oriented radially
(Figure 5(a)). For this, we define the rotation angle fi of a square, as projected along the radial line
through the connection:

fi = arctan
tan(ui)

cos p
Nc

� �
0
@

1
A: ð5Þ

Figure 4. (a) The pseudo-rigid body model of the elastomeric cylindrical metamaterial structure consists of rigid squares, coupled
at their corners. (b) Each square occupies a fixed sector angle a around the circumference of the cylinder and is placed at a radius ri
from the cylinder’s central axis. (c) The squares rotate through an angle ui around their respective normals. (d) A single column of
squares shown from the side, indicating that the squares also rotate around a tangential axis through an angle ci.
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The energy in these torsion springs is then

Eh =
1

2
NckR

XNh

i = 1

(2fi)
2, ð6Þ

where kR is the stiffness of the radially oriented torsion springs.
Between the layers, we place two springs at each connection, one oriented radially and one tangen-

tially to the cylindrical surface. The stiffness of the radially oriented springs is equal to that of the previ-
ously described radial springs within a layer. The radial springs are illustrated in Figure 5(b). The energy
in these springs is

Ev =
1

2
NckR

XNh�1

i = 1

(ui + ui + 1)2: ð7Þ

The energy in the torsion springs placed tangent to the cylinder is

Es =
1

2
NckS

XNh�1

i = 1

ci � ci + 1

� �2
, ð8Þ

where kS is the stiffness of the tangent springs. These springs are illustrated in Figure 5(c).
We implement this model in two distinct ways: a simplified one-degree-of-freedom (1-DOF) model

with free boundaries, and a model with (Nh � 2) degrees of freedom, where the boundaries are fixed.
The 1-DOF model can be solved analytically and can therefore be used to obtain a quick estimate of
the properties of the spatial metamaterial under idealized conditions. The second model allows us to
match the boundary conditions observed in experiments and therefore better represents the measure-
ments, at the expense of requiring numerical methods for its evaluation.

3.1 1-DOF model.

In the simplified model, we take all ui to be equal. Therefore, the radius will be constant along the height
of the modeled structure and the Poisson’s ratio can be calculated analytically:

n = � H

r

∂r

∂H
= � 1: ð9Þ

Figure 5. Three types of torsion spring are used to model the stiffness of the elastomeric structure in the pseudo-rigid body
model. In the horizontal connections (green), there are radially oriented (a) torsion springs. In the vertical connections (red), there
are both radially oriented (b) and tangentially oriented (c) torsion springs.
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Because the radius is constant along the height of the cylinder, we have ci = 0 for all layers and the
torsion springs tangent to the cylinder do not contribute to the total energy; Es = 0. The energy for a
state of the structure can be expressed as a function of the single variable u:

E = Eh + Ev + Es

=
1

2
NckR Nh 2f(u)ð Þ2 + (Nh � 1)(2u)2

� �
,

ð10Þ

where the sums over the layers have been evaluated.

3.2. (Nh � 2)-DOF model

In the second model, we constrain the top and bottom boundary of the structure in the radial direction
by setting u0 = uNh

= 0. This matches the boundary conditions observed in compression experiments of
the elastomeric structure.

This model is evaluated numerically for a range of vertical strains ey. This is done by minimizing the
total energy E = Eh + Ev + Es under the constraint H = H0(1 + ey), where H0 is the maximum height of
the structure, obtained when ui = 0 for all layers.

4. Pre-buckling estimation

To estimate the stiffness of the structure in the pre-buckling regime, as well as the buckling threshold,
we model the structure as Nc parallel columns with each Nh serial linear springs. Therefore, if one such
spring has a stiffness kL, the total pre-buckling stiffness of the structure will be estimated as

kPB = Nc
kL

Nh
: ð11Þ

The reaction force of the structure in the pre-buckling stage is then

FPB = kPB(H � H0), ð12Þ

where H is the current height of the structure and H0 the original height.
The buckling transition is then assumed to occur at the point where the force–displacement graphs of

the pre-buckling and the post-buckling model intersect.

5. Experimental validation

5.1. Methods

For the experimental validation of the PRBM, we constructed a porous cylinder with Nh = 8,Nc = 16,
an outer radius of 25 mm, an inner radius of 16.7 mm and a total height of 70 mm. The elastomeric
structure is flat on the top and bottom. A mold was 3D printed on a Prusa i3 MK2 3D printer in poly-
lactic acid (PLA). The structure was then molded in a single piece using a two-part silicone rubber with
a Shore hardness of A10 (Poly-Sil PS8510 by Poly-service BV). The silicone rubber was placed under
vacuum during curing to reduce the formation of air bubbles in the structure.

The structure was compressed by a universal testing machine (Zwick/Roell AG, Ulm, Germany). The
cylinder was placed between two acrylic plates, which were covered in masking tape to reduce reflec-
tions. The cylinder was compressed by 8 mm, at a rate of 5 mm/min, during which a digital camera
(Canon EOS 70D) was used to acquire image data. Using the image data and image recognition soft-
ware (Python3 with the OpenCV2 module), the width of the central 10% of the cylinder was determined
during compression.

The experimental data were compared with both models. The stiffness of the torsion springs and the
pre-buckling linear springs were calculated for notch hinges with radii of 9 mm, a minimum thickness of
1.13 mm and a height of 8.45 mm [35]. The Young’s modulus of the material was taken to be 0.67 MPa.
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These, and other parameters for the model, were measured on the silicone structure. The used values are
presented in Table 1.

5.2. Poisson’s ratio

Figure 6 shows the observed radial strain er and the Poisson’s ratio n plotted against the applied vertical
strain ey for the experiment and the two PRBMs. In Figure 6(a), we see that there is an offset between
the modeled and experimental strain curves. This is caused by the pre-buckling stage of the elastomeric
structure, which was not taken into account in the PRBMs. Therefore, we compare the slope of the
experimental curve after buckling to the modeled curves. This is best reflected by the Poisson’s ratio,
shown in Fig. 6(b). To obtain the Poisson’s ratio of the elastomeric structure, we fitted the radial strain
with the following function:

f (ey) =
a + bey + ce2

y, ey\e0

a + be0 + ce2
0 + d(ey � e0), ey ø e0

�
: ð13Þ

We fit a linear function to deformation in the pre-buckling behavior and a quadratic function to the
post-buckling behavior. The Poisson’s ratio is then determined as the negative derivative of this func-
tion with respect to the applied strain ey. By applying this fit, we remove the noise from the determined
Poisson’s ratio. The chosen function fits the experimental data with a root mean square error of
6× 10�14.

Table 1. Parameters of the PRBM for validation.

Symbol Description Value Unit

l Diagonal length of square 9.8 mm
kR Stiffness of radially oriented torsion springs 0:24× 10�3 Nm/rad
kS Stiffness of tangentially oriented torsion springs 5:7× 10�3 Nm/rad
kL Linear stiffness of pre-buckling springs 9:6× 10�2 N/m
Nh Number of squares along height 8
Nc Number of squares along circumference 16

Figure 6. Plots of (a) radial strain and (b) ratio as a function of the applied vertical strain on the structures. Shown are the data
from the experiment (green), and the calculated values for the one-degree-of-freedom (blue) and (Nh � 2)-degrees-of-freedom
(orange) pseudo-rigid body model.
DOF: degree(s) of freedom.
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In Figure 6(b), we see that the 1-DOF model predicts a Poisson’s ratio of �1, greater than the experi-
mentally observed value. The (Nh � 2)-DOF model matches the observed Poisson’s ratio more closely,
also showing an increase in its value for larger applied strains.

Figure 7 shows the shapes predicted by the (Nh � 2)-DOF model drawn over pictures of the elasto-
meric structure at matching vertical strains. The model captures the hourglass-like shape observed in the
deformed elastomeric structure.

5.3. Force–displacement behavior

Figure 8 shows the force–displacement behavior measured on the elastomeric structure and predicted
by the two PRBMs. In the experiment, we observe a steep increase in the reaction force up to the buck-
ling point, after which the force is close to constant, around 3 N. Both models predict close to constant
force–displacement behavior, but overestimate the total force by approximately 0.43 N and 0.14 N,
respectively. The N -DOF model predicts a lower total force because the square plates in the top and
bottom layer do not rotate and therefore the torsion springs in these layers are not loaded, which is
closer to reality.

Figure 7. Three snapshots of the elastomeric structure during the compression test, with the shape calculated by the (Nh � 2)-
DOF model overlaid in green. The value of the applied vertical strain for each snapshot is indicated at the top of each frame.

Figure 8. Plots of the force–displacement behavior of the cylindrical structure. The green line shows the experimental data. The
blue and orange lines show the calculated post-buckling behavior of the structure as calculated using the 1-DOF and (Nh � 2)-DOF
pseudo-rigid body models, respectively. The red dashed line shows an approximation of the pre-buckling behavior.
DOF: degree(s) of freedom.
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In the experimental results, we observe a buckling transition at a strain of �0:03. Using the pre-
buckling estimation based on linear springs, the pre-buckling stiffness of the structure is greater, leading
to an estimated buckling strain of �0:01.

6. Discussion

The experimentally determined Poisson’s ratio is less than the value of �1 predicted in the 1-DOF
model, while the (Nh � 2)-DOF model matches it substantially better. Since the only difference between
the two models is the inclusion of fixed boundaries in the (Nh � 2)-DOF model, this suggests that the
experimental boundary conditions, where the top and bottom surface of the cylinder are fixed radially
due to friction, significantly affect the Poisson’s ratio, decreasing its value to less than �1. This is con-
firmed by Figure 7, where we see the elastomeric cylinder deform into an hourglass-like shape when
compressed. In the 1-DOF model, the structure remains cylindrical, while the (Nh � 2)-DOF model
matches the experimental shape.

The force–displacement data of Figure 8 also shows a better match between the experimental post-
buckling behavior and the (Nh � 2)-DOF model than it does for the 1-DOF model. Both models predict
a low stiffness of the structure in the post-buckling regime, which is also observed in the elastomeric
structure. The difference between the two models lies mainly in the magnitude of the force, where the
(Nh � 2)-DOF model predicts a smaller force, which is closer to the experimentally observed values.

The observed difference between the reaction force of the elastomeric structure and that predicted by
the PRBMs could also be attributable to imperfections in the elastomeric structure. The Young’s modu-
lus used to calculate the stiffness of the joints was converted from the Shore hardness provided by the
supplier of the silicone rubber and was not tested experimentally. Therefore, the elastomeric structure
could have a Young’s modulus different from the value (0.667 MPa) used in the models. Furthermore,
residual air bubbles or imperfect mixing of the two silicone components would also have an effect on
the stiffness. A larger Young’s modulus would increase the reaction forces of the elastomeric structure,
while air bubbles would decrease the stiffness of the material and therefore result in lower forces.

The buckling strain is substantially overestimated by the intersection of the force–strain curves from
the pre-buckling analysis and the post-buckling models. This is due to a calculated pre-buckling stiffness
that is greater than the experimental values. In the calculations, it is assumed that all deformation is
localized in the notch joints, just as was done for the post-buckling analysis. From the experiments, we
observe that this assumption might not be valid. If there is also deformation in the square parts of the
structure, the total stiffness of the structure will be smaller since the deformation is more evenly spread
throughout the structure. This would result in a buckling transition at lower values of the strain.

The 1-DOF PRBM presented in this paper can be solved analytically and is therefore useful for cal-
culating a quick estimate of the properties of the metamaterial under ideal compression conditions.
However, as we see in the experimental validation, it is unable to replicate the significant effects of the
boundary conditions. The (Nh � 2)-DOF PRBM is able to predict the post-buckling behavior of these
porous elastomeric metamaterials more accurately, taking into account the fixed boundaries in our
experiments. However, because of the greater complexity of this model, numerical methods were needed
to obtain the shown results.

7. Conclusion

In this paper, we have demonstrated the application of two PRBMs to a spatial mechanical metamater-
ial. This was achieved by analyzing a cylindrical mechanical metamaterial with a negative Poisson’s
ratio. The PRBMs used for this analysis consist of rigid squares that rotate about their normals as well
as around a horizontal axis tangential to the cylindrical surface. Two PRBMs were presented, a simpli-
fied version with a single variable and one with one variable per non-boundary layer of rigid squares
along the height of the cylinder.

We have validated the PRBMs by measuring the Poisson’s ratio and force–displacement characteris-
tics of the tubular mechanical metamaterial, molded from silicone rubber. The 1-DOF model captured
the main features of the metamaterial in the post-buckling regime, predicting a negative Poisson’s ratio
and giving a reasonable estimate for the reaction force. However, this model was unable to include the
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boundary conditions introduced by clamping of the specimen in the experimental set-up, causing it to
underestimate the Poisson’s ratio.

The second model, with (Nh � 2) degrees of freedom, proved to be able to capture the experimental
boundary conditions and therefore matches the observed Poisson’s ratio and force–displacement beha-
vior of the elastomeric structure more accurately. This model was also able to match the hourglass-like
shape of the deformed cylinder.

To obtain an estimate of the buckling strain of the structure, a simple model based on linear springs
was used. This model overestimated the pre-buckling stiffness of the structure and therefore predicted a
lower buckling strain than was observed in the experiment.

By analyzing spatial mechanical metamaterials using PRBMs, analytical equations for the effective
material properties of these structures can be obtained. This greatly reduces the computational effort
necessary to analyze these structures and can lead to a more intuitive evaluation of the complex defor-
mation patterns that occur in these novel materials.

As the field of mechanical metamaterials grows toward the design of materials with tailored mechani-
cal properties, fast evaluation of design iterations will become crucial. PRBMs, such as those shown in
this paper, can greatly reduce the computational effort involved in these iterations, allowing for a more
efficient design process.
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