P5 Vihaan Shah - Explore Lab Contemporary Pilgrimage-The Case of Elephanta Island ### A long multilayered history #### **Timeline** Site Context Forests Elephanta Island Journey ### **Visitor flows** Upcoming ropeway 60-65 PER FERRY (7HR WINDOW) 20-30 PER CABIN (12HR WINDOW) WEEKDAY 150 PER HR WEEKEND 600 PER HR ROPOSED MAX-1700 PER HR Large influx • Lack of infrastructure for this influx of visitors Protection of the site at risk • Locals rely on the informal tourist economy #### **Problem statement** Lack of enough **drinking water** No capacity for septic waste management **Invasive** alien terrestrial **species** Peak tourist season DEC JAN APR 思 MI 705 The need for Ecological Resilience Informal economy **dependent** on tourism **Residents** Strategy + Design Methods of management Managing visitor flows on the Island # Proposal for the Island **Spreading** visitors around the island **Strengthening** existing routes to other sites Proposal for the Island Proposal for the route **Determining** crowd control points within the journey ## Proposal for the route The Pier # Existing # Studying the Pier Formalised units Mapping current conditions Informal units Disassemble and repurpose Documenting materials and joints Focusing on the **primary route** to the caves Proposal for the Pier **Densification** of the pier to **increase the dwell time** of visitors. Proposal for the Pier FACILITATE INTEGRATE Aims of the proposal Tying the themes with an ecology-first approach A series of **small-scale** infrastructural changes Restore the **ecological balance** of the site **Slow down visitors** along their journey ### A beginning RainWaste waterFood WasteStoragePlant filtrationNatural compostingDrinkingBioswalesBiogas generationWashing Waste-Water-Energy loop #### Using a selection of **native and regional species** each with their own function #### **Bamboo farming** is also emphasized for its use in construction | | Native Vegetation | | | | | | | | | Proposed Vegetation | | | | | |--|---|--|--|--|--|---|--|---|---|---|--|---|---|--| | | Avicennia
marina | Sonneratia
apetala | Sonneratia
caseolaris | Acanthus
ilicifolius | Azadirachta
indica | Bambusa
(balcooa and
bambos | Tamarindus
indica | Pongamia
pinnata | Aegle
marmelos | Canna
indica | Phragmites
australis | Chrysopogon
zizanioides | Ricinus
communis | Colocasia
esculenta | | | 4.00 | , r | | | | | | | | Ny. | | | | | | Common
name and use | Grey Mangrove-
Absorbs heavy
metals (lead,
mercury, arsenic),
reduces water
salinity | Mangrove Apple-
Filters organic
pollutants, excess
nutrients, prevents
coastal erosion | Mangrove Tree-
Improves water
quality and stabilizes
soil | Holly Mangrove-
Removes pollutants
from water in
wetlands | Neem-
Removes toxins from
soil, acts as a natural
pesticide | Bamboo-
Absorbs heavy
metals (cadmium,
lead), nitrates, and
stabilizes soil | Tamarind-
Improves soil fertility,
removes fluoride
from soil | Indian Beech-
Absorbs
hydrocarbons and
heavy metals from
contaminated soils | Bael-
Improves soil
microbial activity,
removes pollutants
from water | Canna Lilly-
Absorbs heavy
metals, nitrogen,
phosphates from
wastewater | Reed Grass-
Filters wastewater,
stabilizes wetland
ecosystems | Vetiver Grass-
Absorbs toxins,
nitrates, phosphates
from greywater | Castor Plant-
Absorbs cadmium,
lead, arsenic from
soil | Taro-
Absorbs heavy
metals from
waterlogged areas | | Size required | 5-10 Sq. M | 5-10 Sq. M | 5-10 Sq. M | 2-5 Sq. M | 3-6 Sq. M | 5-10 Sq. M | 4-8 Sq. M | 3-7 Sq. M | 3-6 Sq. M | 2-4 Sq. M | 4-8 Sq. M | 2-5 Sq. M | 3-5 Sq. M | 2-4 Sq. M | | per plant
Time taken
to grow
Key role | 4-5 Years | 3-4 Years | 3-4 Years | 2-3 Years | 5-7 Years | 3-5 Years | 5-7 Years | 4-6 Years | 5-7 Years | 1-2 Years | 2-3 Years | 1-2 Years | 1-2 Years | 1-2 Years | | | | | | | Water | | Soil | | Require monitorin | ıg | | | | | Remediation and management Purification Strategic phytoremediation Reorganizing and densifying the market Integrated seating and viewing points Public toilets and water taps Public programmed space Workshop areas Amphitheatre Office ### Supporting infrastructure **Integrating** formal and informal **Infrastructure**Address the needs of residents as well as visitors. Programmatic overlay # Programmatic overlay ## Concrete pier excavated to **store rainwater** ### Solar-powered **slow-moving fans** and shade from an **exaggerated roof** Slowing down visitors Pause points with panoramic **views** Integrated seating + Amphitheatre to increase the dwell time # Proposed Wayfinding and Signage #### Resource sensitive – Employs basalt rocks available on site **Treated bamboo** deployed as **shading** elements **Raised roof** to promote cross ventilation **Gabion wall** Section through proposal Using **locally available** Kota stone in different finishes Basalt stone **available on the site** is used for circulation spaces Random basalt polished floor Grey-green Kota stone tile Public programmed space Grey-Kota stone tile- Falmed finish ## **Delineating spaces** **Rotating panels** to modulate light Panels use **treated bamboo** and **repurposed** steel sections **Tensile steel** bracing elements West and East facades Corrugated metal roof and bent steel gutter Engineered bamboo purlins **Reusing** metal roof sheets Engineered bamboo frame Treated bamboo under decking for **insulation** Treated bamboo decking Engineered bamboo rafter and beam frame **Roof system** Kota and polished basalt flooring In-situ concrete #### A hybrid structural system consisting of steel and engineered bamboo Gabion walls **stabilize** columns **Raised** composite plinth Steel decking sheet Engineered bamboo and steel frame #### **Foundation** Heritage steps Existing Informal market thriving at the steps Providing locals with a **kit** and **methods** of construction Kit of parts Variations based on choice **Exaggerated** overhang providing shade Shopping module Terrace farming module Off-grid water collection Future phase- Cultivator module **Gabion walls** to negotiate the terrain **Treated bamboo** as the primary material Deployed for 2-3 monsoons Parts can be **disassembled** and **repurposed** Corrugated metal roof and bent steel gutter Treated bamboo purlins Treated bamboo decking Treated bamboo beam frame Treated bamboo inserted into gabion wall for stability Light structure