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Abstract

Spreadsheets have a life-cycle similar to that of other software: they are inherited throughout an
organization, are maintained by different users, and evolve over time to meet changing requirements.
This leads to increased complexity and technical debt. In software engineering, refactoring is used
to combat these problems by improving software structure without altering behavior. This technique
can also be applied to spreadsheets.

In this thesis we present an improved version of the spreadsheet refactoring tool BumbleBee,
extended with six refactorings: extract formula, inline formula, introduce cell name, group
references, introduce aggregate and introduce conditional aggregate. The inline formula,
group references and introduce conditional aggregate refactorings were not implemented
before and extract formula and introduce cell name improve upon previous implementations.
To support these refactorings and facilitate future spreadsheet research the formula parser used
needed improvements. We implemented these improvements and released the result as the open-
source software package XLParser, a stand-alone C# parser for spreadsheet formulas. XLParser was
evaluated on more than a million unique formulas from industrial datasets, and successfully parsed
99.999%.
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Chapter 1

Introduction

Like all people, I sometimes get asked what I do for a living. When I tell someone I am writing my master
thesis in Computer Science, their eyes start to glaze over as they anticipate some explanation peppered
with terms they will not understand about. I then tell them my thesis is about spreadsheets and ask if
they have ever worked with Excel, and nearly everyone who has ever worked in business or research has.
Nearly everyone has a horror story about that one unmaintainable spreadsheet that they had to work on,
or that day their reporting system broke down because 2009 turned into 2010 and the spreadsheet only
looked at the last digit.

This anecdotal evidence is mirrored in research. Panko [1] estimates that 80% to 95% of businesses
use spreadsheets in one of their processes. Furthermore, almost all spreadsheets contain at least one
error, and 1 to 5% of spreadsheet cells contains an error according to Panko [2]. Spreadsheets perform
roles very similar to software in that they perform business-critical roles, are inherited throughout the
organization and maintained by different users and accrue technical dept during and after the initial
development period [2]. In short, spreadsheets can be classified as programs, and spreadsheet creators
as end-user programmers.

This view, “spreadsheets are code”, could be the one-sentence summary of the ideology of the
Spreadsheet Lab, which is a part of the TU Delft Software Engineering Research Group (SERG). Using
this view as a baseline, the group works on translating tried and proven software engineering methods
to the spreadsheet domain so that they can be used to improve spreadsheets, spreadsheet development
practices and help spreadsheet programmers. As part of this effort, a spreadsheet formula refactoring tool
called BumbleBee was developed by Hermans and Dig [3]. This tool allows a formula to be transformed
into another by defining a transformation rule, which works very similar to a pattern or regular expression
replacement in a text editor.

However this approach has the downside that it can only consider one formula, and not the spreadsheet
as a whole. This leads to a lack of power to implement all spreadsheet refactorings, such as those
implemented by Badame and Dig [4] in earlier work. I joined the group to extend the capabilities of
BumbleBee so that it could take context into account when performing refactorings, and implement more
refactorings in BumbleBee.
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=1+2+3
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−−−−−−−−−−−−→

Ch . 5

F

SUM []

1 2 3

Print ing
−−−−−−−−→
Ch . 4.3

=SUM(1,2,3)

Figure 1.1: Overview of the refactoring process

After the initial literature research, I started implementing refactorings, but encountered a fundamental
problem in doing so. The standard way of implementing refactorings, illustrated in Figure 1.1, is by parsing
the source code to an Abstract Syntax Tree (AST), which represents the structure of the program. This
AST can then be manipulated into the desired form, after which it can be converted back to source code
(this is called printing or pretty-printing). While BumbleBee contained a home-grown parser, I found a
range of formulas that were either not parsable, or parsed into an incorrect AST. This made me refocus
the purpose of my thesis into making a better parser for Excel formulas, as this would not only be very
useful for implementing refactorings but would be beneficial to all future spreadsheet research projects.
Using this new parser, I implemented several refactorings, which are described in Chapter 5.

1.1 About this thesis

1.1.1 Contribution

The contributions of this thesis are twofold. Firstly I improved and open-sourced a stand-alone formula
parser called XLParser, which is available online1. The parser was tested on over a million formulas and
failed to parse merely two formulas. Details of this parser are published by Aivaloglou, Hoepelman and
Hermans [5]. This paper is partially re-used in this thesis report.

The second contribution is an improved version of BumbleBee, available online 2, which implements
the refactorings described in Chapter 5: extract formula, inline formula, introduce cell name,
group references, introduce aggregate and introduce conditional aggregate.

Of these refactorings, inline formula, group references and introduce conditional aggregate
where not implemented in any previous work known to us, and extract formula and introduce
aggregate offer improvements over previous implementations [4].

1https://github.com/spreadsheetlab/XLParser
2http://spreadsheetlab.org/2015/10/12/bumblebee-an-excel-refactoring-add-in/

https://github.com/spreadsheetlab/XLParser
http://spreadsheetlab.org/2015/10/12/bumblebee-an-excel-refactoring-add-in/


8 Introduction

1.1.2 Attribution

This thesis was performed at the TU Delft Spreadsheet Lab, and is partially based on a collaborative
effort in that group. During this thesis the Excel Formula parser XLParser was developed, and a paper
describing it was accepted into the 15th IEEE International Working Conference on Source Code Analysis
and Manipulation (SCAM 2015): A Grammar for Spreadsheet Formulas Evaluated on Two Large Datasets
by Efthimia Aivaloglou, David Hoepelman and Felienne Hermans [5]. This paper is attached verbatim as
published in appendix B. Chapter 3 is based on Section II, and was primarily written by the thesis author.
Chapter 4 is an updated and extended version of Section III, and was primarily written by the thesis author
with contributions from Efthimia Aivaloglou, except for Chapter 6, which incorporates parts of Section
IV of the paper which was primarily written by Efthimia Aivaloglou, who also performed the evaluation.

The grammar implementation (XLParser) was primarily done by the thesis author, but the implemen-
tation is based on the previous (un-named) parser which was primarily developed by Efthimia Aivaloglou
and Felienne Hermans. The spreadsheet scantool used to evaluate XLParser, which extracts formulas
from spreadsheet files, was developed as part of Infotron B.V.3, with many authors. The thesis author did
not contribute to this tool.

The refactorings described in Chapter 5 were added to the existing BumbleBee Excel add-in developed
by Felienne Hermans, but these refactorings were solely implemented by the author with very little of the
existing infrastructure used.

1.1.3 Outline

Chapter 2 details previous and related work on spreadsheet refactoring. A passing knowledge of Excel
and more in-depth knowledge of Excel formulas is needed to read the rest of this thesis, which is bundled
in Chapter 3.

Chapter 4 covers how XLParser parses spreadsheet formulas and why it was designed as it was.
Chapter 5 describes which spreadsheet refactorings were implemented and how this was done. Chapter
6 provides an overview of the evaluation done and Chapter 7 contains concluding remarks.

3http://www.infotron.nl/

http://www.infotron.nl/


9 Introduction

1.2 Timeline and decisions taken

December 2014 Literature study on refactoring, refactoring spreadsheets, converting spreadsheets
to programs.

Thesis topic selection.

January 2015 Studied practicality of generic spreadsheet refactoring language based on Bumble-
Bee transformation language, deemed inviable.

Gathered existing refactorings from spreadsheet literature and translated Fowler
refactorings.

Decided which refactorings to initially implement

Familiarization with existing BumbleBee code

February 2015 Implementing inline formula

Extended BumbleBee and parser to account for sheet and file names

March 2015 Implementing extract formula

Writing of paper "End user programming" 4

April 2015 Writing of paper "End user programming"

Various improvements to parser

May 2015 Decision to rewrite parser to solve several fundamental problems

Start work on XLParser

Implementing introduce (conditional) aggregate

Implementing group references

June 2015 Continued work on XLParser: Initial release

Writing of XLParser paper [5]

July 2015 Changing of refactoring UI to context-aware right-click menu, similar to IDE’s

August 2015 Continued work on XLParser: Several fixes to XLParser parse trees

Camera-ready adjustment of XLParser paper

Constructed demo application5 for XLParser which shows the parse trees.

September 2015 Continued work on XLParser: Adding structured references, file paths

Porting BumbleBee and refactorings to XLParser-based implementations

Writing of this thesis

October 2015 Implementing introduce cell name

Porting BumbleBee and refactorings to XLParser-based implementations.

Writing of this thesis

4First version was rejected from IEEE special issue on Refactoring: Accelerating Software Change. A significantly extended
and improved version was submitted to ICSE later, but I did not contribute to these changes.

5http://xlparser.perfectxl.nl/demo/

http://xlparser.perfectxl.nl/demo/


Chapter 2

Previous and related work

2.1 Refactoring

Refactoring is “the process of changing a software system in such a way that it does not alter the
external behaviour of the code, yet improves its internal structure” [6]. The process is probably as old as
programming itself, and was known since at least 1986 as “Restructuring” [7]. The term “Refactoring”
was coined by Opdyke in 1992 [6] and originally specifically meant the restructuring of Object Oriented
Programs, but nowadays the term is also used in other paradigms. Over time the popularity of both
the practice and the term “Refactoring” increased, greatly helped by Fowler’s 1999 book “Refactoring:
improving the design of existing code” [8], which has become the canonical reference. Currently, all
major programming Integrated Development Environments like Visual Studio, Eclipse, Netbeans and
IntelliJ include support for automated code refactorings.

2.2 Spreadsheet smells

Fowler [8] also introduced the concept of “code smells”: allegorical bad smells in code which are signs
that the code has design problems and could benefit from refactoring. The concept of code smells has
been translated to the spreadsheet domain by both Cunha et. al [9] and Hermans et. al [10–12]. Of
particular relevance are the multiple references, multiple operations, long calculation chain and
duplicated formulas “formula smells” defined by Hermans et. al [11, 12] because these can be solved
with the refactorings presented in this thesis.

2.3 Spreadsheet models

The tool presented in this thesis, BumbleBee, aims to empower spreadsheet users from within their familiar
environment, Microsoft Excel, to improve their spreadsheets by giving them additional capabilities.

10



11 Previous and related work

An alternative approach is to restrict the options spreadsheet users have, resulting in safer spreadsheets
similar to how schemas and foreign key constraints in databases and static typing in general purpose
programming languages prevent certain categories of errors. This can be done by defining a high level
model representing the data and generating a type-safe spreadsheet from this model, effectively using
spreadsheets as the target environment for a compiler. The way this model is constructed differs, and has
been done in general purpose programming languages [13,14], templates [15–20] and relational database
schemas [21]. Models can also be inferred from existing spreadsheets [22, 23].

2.4 Refactorings provided by excel

Several useful refactorings are already provided by Excel, although Excel does not call them refactorings.

The best example of this is the cut, copy and paste functionality of Excel. If a user cuts a selection of
cells and pastes it elsewhere, all references to those cells made in other cells will be moved as well. For
example if a user cut-pastes cell A1 to location C3, the formula =A1 will be changed to =C3 in other cells,
even though they were not selected by the user. This is very similar to the move method [8] refactoring,
because not only are the cells (method contents) themselves moved, references to them (call sites) are
adjusted for the new location as well. Another option Excel provides when copy-pasting is “Paste Values”,
with which a formula is replaced by its evaluated value and remains constant from that point on.

The fact that Excel has built-in support for these refactorings shows that there is a need among
spreadsheet users to change their spreadsheets without altering functionality, to refactor them, and that
spreadsheet users are likely already comfortable with the concept of refactoring, albeit it not by name.

2.5 Spreadsheet refactoring

In addition to Excel, two commercial Add-Ins are known to the author that implement refactorings.
The Power Utility Pak [24] contains a unapply names refactoring, which changes a named range to its
location, e.g. =TAX_RATE*100 to =$A$1*100. This is the exact inverse of the introduce cell name
refactoring defined in Section 5.3. It also contains a “Error Condition Wizard”, which is very similar in
purpose to the guard call refactoring defined by Badame and Dig [4]. The ASAP Utilities for Excel [25]
Add-In contains a “Change formula reference style” function, which implements the make cell constant
Refactoring described by Badame and Dig [4], and also contains its own version of unapply names. The
algorithms used and popularity of these Add-Ins is unknown, but their existence is additional indication
that advanced spreadsheets users recognize the usefulness of refactoring spreadsheets.

The first Excel Add-In specifically developed for refactoring, called RefBook, was presented by
Badame and Dig [4]. In this tool, seven refactorings are presented, four of which have been re-implemented
and improved in this thesis in Chapter 5.

Hermans et. al [12] present four refactorings designed to each solve a specific spreadsheet smell, which
is an indicator that something might be wrong with the spreadsheet. extract (common) subformula
is very similar to Refbook’s extract row or column, and is implemented in this thesis as extract
formula. The proposed group references refactoring is implemented in this thesis, as is the proposed
merge formulas refactoring under the name inline formula.
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Hermans and Dig [3] developed a refactoring tool called “BumbleBee” for Excel which operates using
a different principle. Instead of implementing a fixed set of refactorings, it uses “transformation rules”
which consist of two formulas, with extended syntax introducing placeholders for certain constructs such
as formulas, cells or ranges. For example the transformation rule =IF(F1>F2, F1, F2)↔ MIN(F1,F2)

indicates that these two formulas are equivalent to each other and can be transformed into each other.
However this approach is contained within one formula and can thus only be used to implement intra-
formula refactorings: refactorings which both only affect and require information from a single formula.
This thesis was started as an attempt to introduce BumbleBee with inter-formula refactorings, refactorings
which affect or require information from more than a single formula.

2.6 Parsing Spreadsheet Formulas

Most spreadsheet tools process formulas in one way or another. However, all of them have one or more
reasons which make them unsuitable for our purposes, which was the motivation to improve the previously
proprietary parser used by BumbleBee and release this as open-source, see Chapter 4.

Parser is proprietary

The most obvious case is the Microsoft Excel formula parser itself, which is not available for usage by
external programs or Add-Ins. Several research projects process formulas, but do not make available
their parser or grammar used, which is the case with Baryowy’s et. al CheckCell [26] and all of the work
by Cunha et. al [9, 23, 27].

Parser is not advanced enough for refactoring purposes

Several grammars are available online [28, 29], and a grammar is published as part of RefBook [4], but
all were found to contain errors, especially in the areas of operator precedence, reference expressions or
references to sheets or files. These errors were deemed crucial to solve by the thesis author, as making
errors in parsing has a high chance of resulting in errors, and thus violating the user expectation that a
refactoring will not introduce errors.

Parser is not stand-alone

Several open-source programs [30–32] can process Excel formulas in one way or another. However, these
parsers are deeply tied into the product, which makes using them from different program difficult. One
could re-implement the grammar used by these parsers, but the grammars are not available separatly, thus
requiring the grammar to first be extracted before it can be re-implemented. This has not been attempted,
but would likely result in grammar suffering from the same deficiencies as the official grammar provided
by Microsoft, which is unsuitable for reasons described in Section .

While it would have been possible to decouple the parser from an existing product, this likely would
have been more difficult and produced worse results than improving the existing parser, which was done
for this thesis.



Chapter 3

Anatomy of spreadsheets and
spreadsheet formulas

=1+2+3
Par sing
−−−−−−−→

+

+

1 2

3 Re f actor ing
−−−−−−−−−−−−→

F

SUM []

1 2 3

Print ing
−−−−−−−−→ =SUM(1,2,3)

Figure 3.1: Overview of the refactoring process

In order to be able to create a parser or refactor-tool for spreadsheets, a solid understanding of their
inner workings is necessary, especially of the formula language. This chapter details the properties and
syntax of spreadsheet and formula strings, shown boxed in Figure 3.1.

By a large margin, the most widely used spreadsheet system is Microsoft Office Excel, which has a
self-reported install base of 1.2 billion users [33]. Two less-popular but still common implementations are
Apache OpenOffice Calc and LibreOffice Calc, which evolved from the same product and thus have largely
identical semantics. Apache OpenOffice has a self-reported total download count of 150 million [34],
while LibreOffice has a self-reported download count of 120 million from unqiue IP adresses [35], both
excluding external download locations like Linux distribution repositories. Google Sheets is another
common implementation, and is special because it was the first widely used web-based collaborative
spreadsheet program. Google does not report usage numbers, but in 2010 has said it is used by “tens of
millions” of users [36]. There are many other spreadsheet implementations, but none of them come close
to the user base of the above programs.

When referencing “all” spreadsheet programs, this indicates the three implementations previously
mentioned: Microsoft Excel, LibreOffice and Google Sheets. These three implementations are the
systems studied because of their market share.

13



14 Anatomy of spreadsheets and spreadsheet formulas

3

5 +

2 × out

(a) Dataflow program (b) Spreadsheet implementation

Figure 3.2: An example dataflow program and its spreadsheet implementation

All mainstream implementations use the following model:

• A single spreadsheet file corresponds to a single (work)book.

• A workbook can contain any number of (work)sheets.

• A sheet consists of a two-dimensional grid (table) of cells.

• A vertical unit in the grid is called a column and a horizontal unit a row. Rows are numbered
sequentially top-to-bottom starting at 1, while columns are numbered left-to-right alphabetically,
i.e. base-26 using A to Z as digits. A column or row can also mean all cells contained in that
column or row.

• A cell can contain a constant value of any type, a calculation called a formula or a matrix
calculation called an array formula.

• An (array) formula can reference other cells to use their values. When the value of a referenced
cell changes, this new value is propagated and the dependent formula values are recalculated.

This model is a variation of the dataflow programming model. A dataflow program is a directed graph,
where data flows between operation in nodes along the graphs edges. In spreadsheets, cells represent the
nodes of a dataflow program and edges are represented by references. An example dataflow program and
its spreadsheet implementation can be seen in Figure 3.2.

The spreadsheet model is Turing complete, as proven by an Excel 2010 implementation of a Turing
machine [37].

3.1 Formulas

All spreadsheet programs currently use dialects of the same formula language. Two of these dialects have
been standardized: Office Open XML spreadsheet language is a standardization of the Excel language and
OASIS OpenFormula, which is part of the OpenDocument standard and aims to provide a specification
for all dialects. Both dialects are very similar and this section covers both unless otherwise noted.

Formulas consist of an expression which can contain constant values, function calls and operators
and, most importantly, references to other cells. A cell is identified as a formula cell because all formulas
must start with the equals sign =.
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Figure 3.3: Different copy-paste behavior depending on $ modifier, copy-direction is given by the arrow

3.1.1 Function calls and operators

Function calls are performed, similar to other programming languages, by starting with the function
name, followed by the arguments in parentheses, separated by a comma. All spreadsheet implementations
provide a range of built-in functions, and in most spreadsheet implementations it is possible to define new
functions yourself. However in current implementations this is not done directly inside the spreadsheet,
instead using an alternate programming language. In Microsoft Excel and LibreOffice this is done with a
variant of the BASIC programming language, while in Google Sheets this is done with Javascript. A way
for the user to define functions in the spreadsheet itself has been proposed by Peyton Jones et. al [38],
but as of now has not been implemented in mainstream spreadsheet programs yet.

The binary operators + - * / = >= <= < > and <> (inequality) can be used according to their usual
semantics. + and - are available both unary (=-1) and binary (=1-1). Additionally the % postfix unary
operator is defined to transform a number into a percentage (divining it by 100), ^ is the exponentiation
operator and & is the text concatenation operator.

Spreadsheet programs contain three fairly unique binary operators, the semantics of which are detailed
in Subsection 3.1.2. Firstly there is the range operator : then the union operator (, in Excel and ~ in
OpenFormula) and lastly the intersection operator (␣ in Excel and ! in OpenFormula). Note that
OpenFormula diverges from the Excel syntax, possibly because the comma is already used in other places
in the language and a single space as an operator is highly unusual. The Excel characters for the operators
will be used in the remainder of this thesis.

3.1.2 References

References are the core component of spreadsheets. The value of any cell can be used in a formula
by concatenating its column and row number, producing a reference like B5. This is called A1-style
referencing and is by far the most common in modern spreadsheet implementations. If the value of a cell
changes, this new value will be propagated to all formulas that use it.

When copying a cell to another cell, by default references will be adjusted by the offset, for example
copying =A1 from cell B1 to C2 will cause the copied formula to become =B2. This can be prevented by
making the reference absolute by prepending a $ to the column index, row index or both. The formula
=$A$1 will remain the same on copy while =$A1 will still have its row number adjusted when copied, as
ilustrated in Figure 3.3.
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Figure 3.4: Example usage of structured references

Ranges

References can also be ranges, which are collections of cells. Ranges can be constructed by three
operators: the range operator :, the union operator , (a comma) and the intersection operator ␣ (a space).
The range operator : creates a rectangular range with the two cells as top-left and bottom-right corners,
so =SUM(A1:B10) will sum all cells in columns A and B with row number 1 through 10. The range
operator is also used to construct ranges of whole rows or columns, for example 3:5 is the range of the
complete rows three through five, and A:D is the range of columns A through D. The union operator,
which is different from the mathematical union as duplicates are allowed, combines two references, so
A1,C5 will be a range of two cells, A1 and C5. Lastly the intersection operator takes only the cells which
are in both arguments, =A:A 5:5 will thus be equivalent to =A5.

A user can also give a name to any collection of cells, thus creating a named range which can be
referenced in formulas by name. For example one can give the name TAX_RATE to cell A2 and then use
this in a formula: =C3+C3*TAX_RATE instead of =C3+C3*$A$2.

Structured References

A recent addition to the Excel formula language introduced in Excel 2007 are structured (table) references.
To use this feature, a table must be given a name and column headers. One can then reference a column in
the table by entering TableName[ColumnName]. Inside the square brackets reference operators can be
used to construct more complex references, TableName[Column1,Column4] references two columns.

There is no way to reference a specific row, except the current row, for example if a formula is placed
in A3 it can only reference row number 3. The #This Row keyword and the @ operator are used for this:
TableName[#This Row] and TableName[@] both reference the current row number in the provided
table, and TableName[@ColumnName] references the cell in the provided column of the current row
number.

This feature is meant to make formulas easier to read, by replacing references with human readable
names as can be seen in Figure 3.4: the formula =SUM(B2:B6) - SUM(C2:C6) can instead be written
as =SUM(Budget[Revenue]) - SUM(Budget[Expenses]).
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(a) A1-style formulas (b) R1C1-style formulas

Figure 3.5: A1 vs R1C1 style on identical formulas with respect to cell position

R1C1 reference style

An alternate style called R1C1 as opposed to the above A1 style exists, but it is only rarely used by users
in modern spreadsheet implementations. In R1C1 reference style one specifies either the offset to a cell
between square brackets or its concrete location. In R1C1 style R[4]C[-2] means the cell two columns
to the left and four rows down, while R2C2 refers to cell B2. The biggest advantage of R1C1 is that it
causes identical formulas to be the same even when they operate on different cells or data because of
their position, illustrated in Figure 3.5. These properties make R1C1 useful as an internal representation
in spreadsheet implementations and in a spreadsheet refactoring tool.

Non-local references

References refer to cells or ranges in the same sheet as the formula by default, but this can be modified with
a prefix. A non-local reference consists of a prefix indicating the location, followed by an exclamation
mark, followed by the actual reference.

The simplest case is a reference to another sheet in the same workbook, where the prefix is simply
the sheet name: =Sheetname!A1. Sheet names can also be between single quotes if they contain
special characters: =’Sheetname with space’!A1. References to external spreadsheet files are also
possible, which is done by providing the file name in between square brackets and optionally the file
path: =[Filename]Sheetname!A1 or =’C:\Path\[Filename]Sheet’!A1. A peculiar type of prefix
are those that indicate multiple sheets: =Sheet1:Sheet10!A1 means A1 in Sheet1 through Sheet10.

In Windows versions of Microsoft Excel, formulas can also call external programs through Dynamic
Data Exchange (DDE). DDE links are a special case of references, used for receiving data from other
applications. They take the form of =Program|Topic!Arguments, e.g. =Database|TableA!Column1.

3.1.3 Case sensitivity

Formulas are case-insensitive outside of the trivial case of string literals. Identifiers have a canonical
capitalization, and while a user can type the identifier with any casing only the canonical form will be
displayed. While the canonical capitalization of built-in identifiers, functions and reserved names is
mostly uppercase, the canonical capitalization of user defined identifiers and named ranges, is as the user
defined them originally.
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3.1.4 Whitespace sensitivity

The Excel formula language is whitespace sensitive in several places:

• Whitespace is not allowed between function names and the argument list: =SUM (1) is invalid.

• Whitespace is not allowed inside internal or external references: =Sheet1 !A1 is invalid.

• The intersection operator is a single space: =A:A 3:3 is the intersection of column A and row 3,
equivalent to =A3 (Excel formula language only).

3.2 Array Formulas and Arrays

In spreadsheet formulas it is possible to transform one- or two-dimensional matrices.

When constructed from constant values they are called array constants, e.g. {1,2;3,4} constructs a
two-by-two matrix. They are surrounded by curly brackets, columns are separated by commas, and rows
by semicolons. Several matrix operations are available, for example =SUM({1,2,3}*10) will evaluate
to 60.

Array formulas use the same syntax as normal formulas, except that the user must enter Ctrl +
Shift + Enter to signal that it is an Array formula. Excel and LibreOffice surround the formula with
curly braces. Google Sheets works differently and requires the user to surround an array formula with
ARRAYFORMULA(. . .).

Marking a formula as an array formula will enable one- or two-dimensional reference ranges to be
treated as matrices, and several matrix operators and functions will be available. For example if A1,A3,A3
contain the values 1,2,3 the array formula {=SUM(A1:A3*10)} will evaluate to 60. Furthermore, an
array formula allows the user to return multiple results, which will be presented in multiple cells. The
array formula {={1,2,3}*{4,5,6}} will show 4, 10 and 18 in three different cells.
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3.3 Type system

The formula language uses a weak type system, because most types can be coerced into others. T he
following types exist:

Boolean values are either TRUE or FALSE. Booleans can be coerced to string and numbers, where TRUE will
become "True" and 1 and FALSE will become "False" and 0.

Numeric values are in the range of 8-byte IEEE doubles. Numbers can be provided as integers, decimals
or in scientific notation. When coerced to booleans 0 will become FALSE, all other values will be
TRUE. Numbers can also be coerced into strings, or type-casted with the TEXT function.

String values are any Unicode character enclosed in quotation marks ". Two quotation marks serve as the
escape character, thus """" represent the string ". If the contents of a cell start with a ’ the rest of
that cell content is interpreted as a string.

When coerced to booleans all strings except the empty string are TRUE, the empty string is FALSE.
When coerced to a numeric value the spreadsheet program will accept any string representing valid
numeric user input and otherwise give the error #VALUE!. Explicit conversion to a numeric value
is done with the VALUE function.

Error values are #DIV/0!, #NAME?, #NULL!, #NUM!, #N/A!, #VALUE! and #REF!. Errors behave similar
to exceptions in that they will propagate throughout a calculation. Errors cannot be coerced.

Ranges and arrays are one- or two-dimensional matrices of any non-array values. Arrays are rarely used outside of
array formulas, but ranges are very common in formulas. However, these types usually only serve
as inputs for functions and are thus fairly transparent to the user outside of array formulas. Both
types usually cannot be coerced, doing so will result in the #VALUE! error.

Some other "display types" exists, these can change the way the data is presented to or validated from
the user and can have implications when inter-operating with other programs. Usually the user can mark
a cell as containing one of these types, or Excel can automatically mark a cell to be of this type based on
heuristics. In formulas and internally these types are all represented by one of the above types. A few of
these are commonly used:

Dates and times are internally stored as a floating point with the integer portion being the number of days since
the epoch January 1st 1900, incorrectly considering 1900 a leap year, and the remainder being the
portion of the day that passed. Excel displays dates and times as is customary in the locale of the
user. When interoperating a date or time value will be exported as a datetime type value of that
system.

Currency is stored as other numbers and displayed in the format customary for the specific currency. When
interoperating with some other systems currency values will be exported using arbitrary-precision
arithmetic formats.

Percentages are stored as other numbers, but displayed as if multiplied by 100%.
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Parsing spreadsheet formulas
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Figure 4.1: Overview of the refactoring process

This chapter details parsing, converting a string formula to an AST, shown boxed in Figure 4.3. It assumes
the reader is familiar with basic parser theory, a good overview of which can be found in [39].

4.1 Motivation

In order to implement refactorings of spreadsheets, a refactoring tool must be able to manipulate spread-
sheets. The usual way to implement refactorings is by manipulating the original program’s AST until
it represents the desired program, and then print that back to a string. Excel exposes an API to retrieve
and update the contents of a spreadsheet file, but this API only provides access to formula strings, and
does not expose its parser or formula ASTs representations. Because of this, a refactoring tool needs to
contain a parser for Excel formulas.

BumbleBee relied on a parser developed over the years for previous research, however this parser had
accrued technical debt due to new rules being added over time, sometimes in an inconsistent manner or
not supporting the whole language. Furthermore the parser interpreted some language constructs wrong
and missed several features, which made implementing refactorings hard and error-prone. For example,
operator precedence was not taken into account, causing the formula =A1 + A2 * A3 to be parsed as
=(A1 + A2) * A3. The existing parser thus was insufficient to correctly implement the refactorings
presented in this thesis. Thus an additional goal for this thesis became to create a better parser.

20
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For BumbleBee and other research on spreadsheet formulas the following design goals were formu-
lated for the parser and grammar within the Spreadsheet lab group:

1. The parser must be compatible with the official language

2. Produced parse trees must be suited for further manipulation and analysis with minimal post-
processing required

3. The grammar must be compact enough to feasibly implement with a parser generator

While an official grammar for Excel formulas is published [40], it does not meet the above requirements
for two reasons. Firstly, it is over 30 pages long and contains hundreds of production rules and thus fails
Requirement 3. Secondly, because of the detail of the grammar and the large number of production rules
the resulting parse trees are very complex and fail requirement 2.

Because there is no suitable parser and grammar available that satisfy the above requirements, we
decided to clean up and partially rewrite the parser. The end result of this effort is an independent,
open-source parser for Excel formulas called XLParser1, about which a paper was published in IEEE
conference SCAM 2015 [5].

4.2 Parser implementation

The existing parsing was built using the Irony parser framework2, which is a C# parser generator that
produces parsers based on the LALR(1) algorithm using a grammar defined in C#.

Strictly speaking Irony produces a parse tree, however this tree is fairly high-level for a parse tree,
leaving out elements such as punctuation and whitespace, and no separate AST is (currently) constructed
in XLParser or BumbleBee, instead this tree is directly manipulated. To avoid confusion and use usual
nomenclature we will from now on refer to this tree as the AST.

4.2.1 Lexical Analysis

Table 4.1 contains the lexical tokens of the grammar, along with their identification patterns in a simple
regular expression language. All tokens are case-insensitive. Characters are defined as Unicode code
points x9 (tab), xA (newline), xD (carriage return) and x20 (space) and upwards.

This grammar requires the parser to support token priorities, which Irony does. Removing the
necessity for token priorities is possible by altering the tokens and production rules, but makes the
grammar more complicated and the resulting tree harder to use, thus being detrimental to design goals 2
and 3.

Some simple tokens (e.g. ’%’, ’!’) are directly defined in the production rules in Figure 4.2 in between
quotes for readability and compactness.

1https://github.com/PerfectXL/XLParser
2https://irony.codeplex.com/
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Token Name Description Contents Priority

BOOL Boolean literal TRUE | FALSE 0
CELL Cell reference $? [A-Z]+ $? [0-9]+ 2
DDECALL Dynamic Data Exchange link ’ ([^ ’] | ”)+ ’ 0

ERROR Error literal
#NULL! | #DIV/0! | #VALUE!
| #NAME? | #NUM! | #N/A

0

ERROR-REF Reference error literal #REF! 0
EXCEL-FUNCTION Excel built-in function (Any entry from the function list3) \( 5
FILE External file reference using number \[ [0-9]+ \] 5
FILENAME External file reference using name \[ �4+ \] -1
FILEPATH Windows file path [A-Z] : \\ (�4+ \\)* 0
HORIZONTAL-RANGE Range of rows $? [0-9]+ : $? [0-9]+ 0
MULTIPLE-SHEETS Multiple sheet references ((�2+ : �2+)|( ’ (�3 | ”)+ : (�3 | ”)+ ’ )) ! 1
NAME User Defined Name [A-Z_\\][A-Z0-9\\_.�1]* -2

NAME-PREFIXED
User defined name which starts with
a string that could be another token

(TRUE | FALSE | [A-Z]+[0-9]+) [A-Z0-9_.�1]+ 3

NUMBER
An integer, floating point
or scientific notation number literal

[0-9]+ ,? [0-9]* (e [0-9]+)? 0

REF-FUNCTION Excel built-in reference function (INDEX | OFFSET | INDIRECT)\( 5
REF-FUNCTION-COND Excel built-in conditional reference function (IF | CHOOSE)\( 5
RESERVED-NAME An Excel reserved name _xlnm\. [A-Z_]+ -1
SHEET The name of a worksheet �2+ ! 5
SHEET-QUOTED Quoted worksheet name �3+ ’ ! 5
STRING String literal " ([^ "] | "")* " 0
SR-COLUMN Structured reference column \[ [A-Z0-9\\_.�1]+ \] -3
UDF User Defined Function (_xll\.)? [A-Z_\][A-Z0-9_\\.�1]* ( 4
VERTICAL-RANGE Range of columns $? [A-Z]+ : $? [A-Z]+ 0

Placeholder character Placeholder for Specification
�1 Extended characters Non-control Unicode characters x80 and up

�2 Sheet characters
Any character except
’ * [ ] \ : / ? ( ) ; { } # " = < > & + - * / ^ % , ␣

�3 Enclosed sheet characters Any character except ’ * [ ] \ : / ?
�4 Filename characters Any character except " * [ ] \ : / ? < > |

3 A function list is available as part of the reference implementation.
Lists provided by Microsoft are also available in [41] and [40].

Table 4.1: Lexical tokens used in the XLParser grammar

Dates

The appearance of date and time values in spreadsheets depends on the presentation settings of cells.
Internally, date and time values are stored as positive floating point numbers with the integer portion
representing the number of days since a Jan 0 1900 epoch5 and the fractional portion representing the
portion of the day passed.

When extracting formulas from spreadsheets, only the floating point value is available. The parser
will thus never encounter the formatted notation of the date. For this reason, the grammar only parses
numeric dates and times and these are not distinguishable from other numbers.

5Note that 1900 is incorrectly considered a leap year, due to a bug in Lotus 1-2-3 (first released in 1983) which was
deliberately copied into the first Excel release and has since then been preserved for backwards compatibility reasons.
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⟨Start⟩ ::= ⟨Constant⟩
| ’=’ ⟨Formula⟩
| ‘{=’ ⟨Formula⟩ ‘}’

⟨Formula⟩ ::= ⟨Constant⟩
| ⟨Reference⟩
| ⟨FunctionCall⟩
| ‘(’ ⟨Formula⟩ ‘)’
| ⟨ConstantArray⟩
| RESERVED-NAME

⟨Constant⟩ ::= NUMBER | STRING | BOOL | ERROR

⟨FunctionCall⟩ ::= ⟨UnOpPrefix⟩ ⟨Formula⟩
| ⟨Formula⟩ ‘%’
| ⟨Formula⟩ ⟨BinOp⟩ ⟨Formula⟩
| EXCEL-FUNCTION ⟨Arguments⟩ ‘)’

⟨UnOpPrefix⟩ ::= ‘+’ | ‘-’

⟨BinOp⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’
| ‘<’ | ‘>’ | ‘=’ | ‘<=’ | ‘>=’ | ‘<>’

⟨Arguments⟩ ::= ϵ
| ⟨Argument⟩ { ‘,’ ⟨Argument⟩ }

⟨Argument⟩ ::= ⟨Formula⟩ | ϵ

⟨Reference⟩ ::= ⟨ReferenceItem⟩
| ⟨RefFunctionCall⟩
| ‘(’ ⟨Reference⟩ ‘)’
| ⟨Prefix⟩ ⟨ReferenceItem⟩
| FILE ‘!’ DDECALL

⟨RefFunctionCall⟩ ::= ‘(’ ⟨Union⟩ ‘)’
| ⟨RefFunctionName⟩ ⟨Arguments⟩ ‘)’
| ⟨Reference⟩ ‘:’ ⟨Reference⟩
| ⟨Reference⟩ ‘␣’ ⟨Reference⟩

⟨ReferenceItem⟩ ::= CELL
| ⟨NamedRange⟩
| ⟨StructuredReference⟩
| VERTICAL-RANGE
| HORIZONTAL-RANGE
| UDF ⟨Arguments⟩ ‘)’
| ERROR-REF

⟨NamedRange⟩ ::= ⟨Name⟩
⟨Name⟩ ::= NAME | NAME-PREFIXED

⟨File⟩ ::= FILE
| FILENAME
| FILEPATH FILENAME

⟨Prefix⟩ ::= SHEET
| ‘’’ SHEET-QUOTED
| ⟨File⟩ SHEET
| ‘’’ ⟨File⟩ SHEET-QUOTED
| FILE ‘!’
| MULTIPLE-SHEETS
| ⟨File⟩ MULTIPLE-SHEETS

⟨RefFunctionName⟩ ::= REF-FUNCTION
| REF-FUNCTION-COND

⟨Union⟩ ::= ⟨Reference⟩ { ‘,’ ⟨Reference⟩ }

⟨ConstantArray⟩ ::= ‘{’ ⟨ArrColumns⟩ ‘}’

⟨ArrColumns⟩ ::= ⟨ArrRows⟩ { ‘;’ ⟨ArrRows⟩ }

⟨ArrRows⟩ ::= ⟨ArrConst⟩ { ‘,’ ⟨ArrConst⟩ }

⟨ArrConst⟩ ::= ⟨Constant⟩
| ⟨UnOpPrefix⟩ NUMBER
| ERROR-REF

⟨StructuredReference⟩ ::= ⟨SRCol⟩
| ‘[’ ⟨SRExpr⟩ ‘]’
| ⟨Name⟩ ⟨SRCol⟩
| ⟨Name⟩ ‘[’ ⟨SRExpr⟩ ‘]’

⟨SRExpr⟩ ::= ⟨SRCol⟩
| ⟨SRCol⟩ ‘:’ ⟨SRCol⟩
| ⟨SRCol⟩ ‘,’ ⟨SRCol⟩
| ⟨SRCol⟩ ‘,’ ⟨SRCol⟩ ‘:’ ⟨SRCol⟩
| ⟨SRCol⟩ ‘,’ ⟨SRCol⟩ ‘,’ ⟨SRCol⟩
| ⟨SRCol⟩ ‘,’ ⟨SRCol⟩ ‘,’ ⟨SRCol⟩ ‘:’ ⟨SRCol⟩

⟨SRCol⟩ ::= FILENAME
| ‘[’ ⟨Name⟩ ‘]’
| ‘[’ SR-COLUMN ‘]’

Figure 4.2: Production rules used in the XLParser grammar

4.2.2 Syntactical Analysis

The complete production rules of the grammar are listed in Extended BNF syntax in Figure 4.2. Patterns
between { and } can be repeated zero or more times. The start symbol is Start.

The ⟨Formula⟩ rule covers all the expressions which can be used in spreadsheet formulas: constants
(=5), references (=A3), function calls and operators (=SUM(A1,A2)), array constants (={1,2;3,4} and
reserved names (=_xlnm.Print_Area). The ⟨Reference⟩ rule covers a subset of expressions known
as references expressions, expressions which can return a reference. These can be internal or external
cell and range references, functions and operators which can return references, named ranges, structured
references and dynamic data exchanges.
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Precedence Operator(s) Description

1 = < > <= >= <> Logical comparison
2 & Text concatenation
3 + - (binary) Addition and subtraction
4 ∗ / Multiplication and division
5 ^ Exponentiation
6 % Division by 100
7 + - (unary) No effect and inverting number sign
8 , Range union
9 ␣ Range intersection
10 : Range construction

Table 4.2: Operator precedence in formulas, with larger numbers indicating higher precedence

4.2.3 Precedence and ambiguity

The production rules are ambiguous, which means they cannot be directly used in a parser generator
based on the LALR(1) algorithm like Irony.

To resolve ambiguity with operators, e.g. whether to parse =1+2*3 as =(1+2)*3 or =1+(2*3),
operator precedence and associativity rules are defined. These can be found in Table 4.2.

However, even with precedence and associativity rules the grammar is still not fully un-ambigious.
This is due to trade-offs on parsing references ( see Section 4.4.1) and parsing unions (see Section 4.4.2).
Ambiguity exists between the following production rules:

1. ⟨Reference⟩ ::= ‘(’ ⟨Reference⟩ ‘)’

2. ⟨Union⟩ ::= ‘(’ ⟨Reference⟩ { ‘,’ ⟨Reference⟩ } ‘)’

3. ⟨Formula⟩ ::= ‘(’ ⟨Formula⟩ ‘)’

A formula like =(A1) can be interpreted as either a bracketed reference, a union of one reference, or
a reference within a bracketed formula.

In a LALR(1) parser, which Irony produces, this ambiguity manifests in a state where, on a ’)’ token,
shifting on rule 1 and reducing on either rule 2 or 3 are possibilities, causing a shift-reduce conflict. This
was solved by instructing the parser generator to shift on rule 1 in case of this conflict, because this always
is a correct interpretation and thus results in correct ASTs.

5This is contrary to most other languages, where the exponentiation operator is right-associative.
In Excel 2^1^2 will be (21)2 = 4, while in most other languages it will be 212

= 2
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Figure 4.3: Overview of the refactoring process

4.3 Pretty-printing the formula AST

Pretty-printing a formula AST is the reverse operation of parsing, and must be done to convert a refactored
AST back to a string as seen in Figure 4.3.

Pretty-printing is quite straightforward: it can be done by describing for each tree node type how it
can be translated back into a string, most of the time this is the exact reverse of the parser production rule.
Printing is done by starting at the root of the tree and calling the print function recursively for each child,
because nodes with children need to know the printed form of their children. A slightly simplified and
compacted version of the XLParser code responsible for printing can be found in Appendix A.1.

4.4 Trade-offs

The grammar presented in this chapter contains some trade-offs, partly due to the Excel language itself,
partly due to design decisions. These are detailed in this section.

4.4.1 References

References play an important role in the spreadsheet paradigm and therefore in the formula language.
Particularly reference expressions, expressions which evaluate to a reference, are a subset of expres-
sions and several operators and functions only accept reference expressions. For example the formula
=SUM(IF(...):A1) is valid, while =SUM((1+1):A1) is not, because IF can return a reference while +
cannot and the : operator only operates on references.

This is not unique to reference expressions, for example the operator + only operates on numeric
values, making the expression ="a"+1 invalid. What does make reference expressions special is how
Excel treats them. A formula which uses a non-reference expression where a reference expression is
required, like the previously mentioned =SUM((1+1):A1), will result in a parse error which means excel
will not accept this formula from the user. By contrast, ="a"+1 will only result in the runtime error
#VALUE!, but will still be parsed and evaluated.
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For XLParser we had three options: do not concern ourselves with invalidly type expressions,
incorporate the reference expression rules into the grammar, or implement a type system similar to how
this would be done in a full compiler and reject invalidly typed expressions. The first option is by far the
simplest, but would result in a lot of invalid formulas being accepted, the second option would result in
a more complicated grammar and might not even be possible, while the third option would result in an
additional layer on top of the parser generator.

Because references are of great interest when analyzing formulas and already had additional grammar
rules, the second option seemed to be achievable and acceptable and this is the route XLParser took and
successfully implemented. A downside of this approach turned out to be some additional ambiguity, as
explained in Section 4.2.3.

4.4.2 Unions

The comma serves both as the union operator and the function argument separator. This proves challenging
to correctly implement in a LALR(1) grammar.

A straightforward implementation would use production rules similar to this:

⟨Union⟩ ::= ⟨Reference⟩ ‘,’ ⟨Reference⟩

⟨Arguments⟩ ::= ⟨Argument⟩ { ‘,’ ⟨Arguments⟩ }

However, this will cause a reduce-reduce conflict because the parser will have a state wherein it can
reduce to both a ⟨Union⟩ or ⟨Argument⟩ on a , token. Unfortunately there is no correct choice: in a
formula like =SUM(A1,1) the parser must reduce on the ⟨Argument⟩ nonterminal, while in a formula like
=A1,A1 the parser must reduce to the ⟨Union⟩ nonterminal. With the above production rules a LALR(1)
parser could not correctly parse the language.

The presented grammar only parsers unions in between parentheses, e.g. =SMALL((A1,A2),1). This
is a trade-off between a lower compatibility (design goal 1) and an easier implementation (design goal
3). This lower compatibility is deemed acceptable, because unions are only extremely rarely used. In the
evaluation as described in Chapter 6 unions were only encountered in 0.002% of formulas.

Additionally formulas that this grammar does not parse often result in an error value after evaluation
in Excel. For example =A1,A1 does parse in Excel, but produces the error #VALUE! on evaluation.

Implementing the straightforward rules above, while desirable, is not possible without using a more
powerful grammar class.
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4.5 Improvements over existing parser

Improvements made to XLParser compared to the existing parser fall into the following categories:

More frequent rejecting of invalid formulas

XLParser is often less forgiving than the previous parser, and rejects more types of invalid formulas. This is
most prominently noticable in reference expressions, becaues the old parser does not differentiate between
reference and non-reference expressions. Therefore formulas like =1 1 and =LARGE((1,2,3),4) are
considered valid, while they are not and would be rejected by Excel.

Broader parsing of valid formulas

As detailed in Chapter 6, XLParser has a very high parse success rate.

Several language features were absent in the previous parser. Examples are ranges with multiple
limits (=SUM(A1:B2:C3:D4)), structured table references (=TableName[ColumnName]), array constants
=SUM({1,2,3}) and functions in reference expression (=SUM(IF(TRUE,A1,B2):C5)).

Furthermore the previous parser relied on a tool which extracted the formulas as stored in spreadsheets,
while BumbleBee is used as an Excel add-in and therefore receives its formulas from Excel. These formu-
las sometimes slightly differ in at least one aspect: when external files are referenced a numeric reference is
stored while Excel provides either the filename or the file path and name. Thus a formula could be received
as =[1]Sheet!A1 from the tool, and =[File]Sheet!A1 or =’C:\Path\[File.xlxs]Sheet’!A1 by
an Excel Add-In. XLParser supports al three formats, while the previous parser only supported the first.

AST improvements

Correctness

While the AST correctness is unverified for both XLParser and the previous parser, several im-
provements have been made. Operator precedence has been mentioned before, this was not taken into
consideration in the previous parser version, providing very problematic in BumbleBee’s use-case. Sev-
eral smaller corrections have also been made. For example in the previous version =F(1„1) and =F(1,1)
produced an identical AST, while they have a different meaning, especially in the case of user defined
functions.

Homogenization

The previous parser was constructed with a clean base grammar, but over time additions were made
to deal with constructs which could not be parsed. This caused the rules and therefore the AST to become
inconsistent. XLParser solves this by reducing the grammar to a clean grammar again and removing
inconsistencies. However, this advantage is subjective and hard to quantify. An example of this are
user defined functions which produced a different AST depending on whether they were internal =UDF()
or external =[1]UDF(). Another example are prefixes, all of the following used different tokens and
productions rules: =Sheet!A1, =’Sheet’!A1, =[1]Sheet!A1 and =’[1]Sheet’!A1while in XLParser
the tokens are unformalized, and the production rules are cleaner in the authors opinion.
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Refactoring spreadsheets
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Figure 5.1: Overview of the refactoring process

Refactoring a spreadsheet involves changing the worksheets, cells and formulas in a workbook. Excel
provides an API to change the worksheet and cells, and most other elements of a workbook. When it is
desired to refactor formulas this means the original formula string must be changed into a new formula
string. This is usually implemented by parsing the formula, performing the desired transformations on the
AST and then printing the AST back to a string form [8]. The inner workings of the parser are described
in Chapter 4. This chapter covers how the AST is transformed for each refactoring, as seen in Figure 5.1.

The refactorings are implemented in the BumbleBee Excel Add-In1, and presented to the user through
a context menu as seen in Figure 5.2. This context-menu automatically determines if a refactoring can
be performed on the specific selected cell(s) and disables inapplicable refactorings.

1http://spreadsheetlab.org/2015/10/12/bumblebee-an-excel-refactoring-add-in/
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Figure 5.2: BumbleBee context menu

Figure 5.3: An example application of extract formula

5.1 extract formula

The goal of the extract formula refactoring is to move part of a formula expression, a sub-formula, to
another cell, which has a number of potential use cases:

• Magic numbers or other constants can be extracted to a separate cell, thus making them easy to
adjust.

• A large or complicated formula can be made easier to understand by splitting it into more smaller
components. This solves the multiple operations smell [12].

• Reduce duplication in a formula by extracting common sub-formulas into another cell. This solves
the duplicated formulas smell [12].

5.1.1 User interface

This refactoring requires the user to select cell(s) to be refactored, enter the subformula to be extracted
and select where the extraction should occur to. Figure 5.3 shows the process as experienced by the
user. The user first selects the formulas to be extracted (Figure 5.3a) and clicks the Extract Formula entry
in the refactoring context menu (not shown). A side-panel pops out which allows the user to enter the
sub-formula to be extracted and where it should be extracted to (Figure 5.3b) and presses the Extract
Formula button. In the example the 50% subformula was extracted to the left, and Figure 5.3c shows the
situation after the user has named the new column.
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Figure 5.4: AST transformation to implement the extract formula refactoring

5.1.2 Implementation

This subsection describes the details of the refactoring implementation, which consists of 2 parts: an
AST tranformation of the formula, and a modification of the worksheet. The first part operates solely on
the formula and refactors it to the desired form, the second part handles actual placement of the formula
in the cells and the moving if necessary.

AST Transformation

The AST transformation takes the original AST, the AST to replace and the replacement AST as inputs.
Then the original AST is traversed and every occurrence of the AST to replace is replaced by the
replacement AST, yielding the new AST, this is illustrated in Figure 5.4. The C# code for the AST
replacement can be found in Listing A.2.

This transformation is somewhat similar to the BumbleBee formula transformation rules. However,
it is complimentary rather than identical as can be seen by comparing Figure 5.4 and Figure 5.5. It might
seem like the transformation rule "=I2 + [a] * I2" is suitable for this refactoring. However, using
transformation rules BumbleBee would have searched for the "outer" formula, keeping the [a] ← 50%

available for the replacement rule. In contrast, this transformation searches for the [a] "inner" formula,
and replaces it with something different.

Spreadsheet refactoring

The AST replacement is performed on the original formula yielding a new formula, which is assigned to
the cell that is being refactored. If multiple cells are refactored at once, the AST replacement is performed
on all of them. Formulas with the same original R1C1 formula will have the same new R1C1 formula,
so the AST replacement is only performed once per unique R1C1 formula and the resulting formula is
re-used.

If the target of the extraction is a single cell, that cell gets assigned the subformula that will be
extracted, otherwise if the user wants to extract in a direction, new cells are created in the appropriate
direction and all will get assigned the subformula that will be extracted.

The C# code for the spreadsheet refactoring can be found in Listing A.3.
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Figure 5.5: BumbleBee transformation rule

5.1.3 Detection of applicability

extract formula is always applicable to a formula cell, as even a very simple formula like =A1 still
has a component that can be extracted. In this case if =A1 would be extracted to B1 the original cell
would become =B1. This could be repeated endlessly, similar to how one could always extract a method
that only consists of a call to another method. Whether it is a good thing to perform this refactoring is
dubious, but BumbleBee relies on the user to make this assessment.

5.1.4 Improvements over RefBook’s extract row or column and extract literal

Two specialized versions of this refactoring were previously described by Bamade and Dig [4] and imple-
mented in their RefBook tool. RefBook’s extract row or column and extract literal refactorings
can both be performed by extract formula. We have chosen to not keep the extract row or col-
umn refactoring name because it does not fully describe the refactoring (a full row or column does not
necessarily have to be extracted) and to keep the name in line with refactoring names in other domains.

The RefBook extract literal refactoring can put a constant value into a cell and replace the
occurrences of it with references to that cell, which can also be achieved with the BumbleBee extract
formula refactoring. In addition this is possible for any constant expression, an expression without
references, instead of only for constants.

The BumbleBee extract formula refactoring has several advantages over Badame’s implementation
of extract row or column. Firstly RefBook does not handle operator precedence. This can be very
problematic for this refactoring, because one of the most important properties of a refactoring should be
that it does not change the program results. Note that the RefBook authors were aware of this deficiency,
and left this as future work. This future work has been performed by the thesis author.

Secondly RefBook can only handle a single row or column, which must have exactly the same R1C1
formula in every cell. It can only extract the subformula to a column to the right of the original range or a
row above the original range. BumbleBee can handle arbitrarily shaped ranges, with the only requirement
that the subformula to be extracted occurs in all selected cells. Furthermore in addition to extracting to a
cell neighboring the original formula cell (up, down, left or right) it can also extract the subformula to a
single shared cell location, which is very useful to remove duplication.
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Figure 5.6: The AST transformation for inline formula, which is the inverse of the extract formula
transformation in Figure 5.4

5.2 inline formula

The goal of the inline formula refactoring is to replace all references to a cell with its contents and
delete the original cell, and is therefore the inverse of the extract formula refactoring. For example if
A1 would contain =1+1 and B1 contains =A1*2, after applying this refactoring to A1 B2 would contain
=(1+1)*2. The main potential use case for this formula is when the contents of a cell are clearer or just
as clear as a cell reference. It can also be used to solve the long calculation chain smell [12].

While single cell references (e.g. =SUM(A1,A2,A3)) can always be inlined, a cell referenced as part
of a range (e.g. =SUM(A1:A3)) can not always be inlined. If in the previous example A1 would contain
20, the first formula would turn out fine: =SUM(20,A2,A3), while the formula =SUM(20:A3) is invalid.
It might be possible to handle inlining into ranges using array formulas, but the extra complexity this
would introduce in the formulas never outweighs the benefit of inlining in the authors opinion. Some
formulas might be able to be rewritten, e.g. =SUM(A1:A3) could become =SUM(20,A2:A3), but this
does not work in every case (e.g. A1 cannot be inlined into =A1:A5 3:3) and thus such behavior has
a higher chance to introduce errors and confuse users. For these reasons the implementation does not
perform the refactoring if the cell is referenced as part of a range.

For similar reasons, this refactoring cannot be performed on cells which are part of a named range
consisting of more than one cell.

5.2.1 User interface

The refactoring is a one-click refactoring that is activated from the cell context menu, no additional user
input is normally needed.

If one of the selected cells is referenced as part of a range, the user gets the choice to either abort the
refactoring or continue replacing all references where the cell isn’t part of a range.
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5.2.2 Implementation

If a formula cell D contains a reference to cell P, D is called a dependent of P, and P is called a precedent
of D. This refactoring works by first collecting all dependents of the to be inlined cell. This information
is provided by Excel, although it could be manually constructed by parsing all formulas and building a
dependency graph.

In every dependent a reference to the to be inlined cell is replaced by its contents, using the same
AST transformation used by extract formula as described in Section 5.1.2, with a reference to the cell
as the AST to replace and the cell contents as the replacement AST. This is also illustrated in Figure 5.6,
which shows the inline formula inverse action of the transformation performed in Figure 5.4. If the
refactoring is successful, the original cell is deleted.

The refactoring can be performed on multiple cells at the same time. To achieve this the above process
is simply repeated.

The C# code for this spreadsheet refactoring can be found in Listing A.4.

5.2.3 Detection of applicability

As described in the introduction of this section, inline formula is applicable to all cells which have
dependents but are not referenced as part of ranges. For speed purposed however, the BumbleBee
refactoring context menu only check whether the cell has any dependents. Doing the full check would
introduce significant delay every time the user would right click.
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5.3 introduce cell name

As noted in Chapter 3, a cell or range can have a user defined name. If the user has defined a name for a
cell or range, this name can be used in formulas instead of its location.

This is the motivation for the introduce cell name refactoring which was defined by Badame and
Dig [4]. With this refactoring, a user can define a name for a cell, and all references to that cell will be
replaced the name.

BumbleBee re-implements this refactoring, with as an additional functionality to name a range of
cells and replace all references to that range with the name.

5.3.1 User Interface

Excel has a “Define Name” option in cell the context-menu, but it lacks the functionality to also perform
this refactoring. The refactoring context-menu for this option closely mirrors the Excel user interface,
and is called “Define and Use Name”. After the user clicks it, he enters a new name in a dialog box and
the refactoring is performed.

5.3.2 Implementation

This implementation also uses the notion of dependents and precedence, which is explained in Section
5.2.2.

First the cell or range is given the name supplied by the user. Then in every dependent a reference
to the now named cell is replaced by its name, using the same AST transformation used by extract
formula as described in Section 5.1.2.

The C# code for this spreadsheet refactoring can be found in Listing A.5.

5.3.3 Detection of applicability

This refactoring shares the detection of applicability with inline formula: if the cell or range is
referenced anywhere in the spreadsheet

5.3.4 Improvements over RefBook’s introduce cell name

BumbleBee’s version incorporates a small improvements over RefBook’s refactoring: it not only works
on cells, but also on ranges.
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5.4 group references

In the spreadsheet formula language, some built-in functions have the ability to accept a variable number
of arguments, most prominently SUM, the most commonly used function [42]. These functions also accept
ranges, and thus the formulas =SUM(A1,A2,A3,A4) and =SUM(A1:A4) are equivalent. The group
references refactoring assumes spreadsheet users prefer the latter, and merges multiple adjacent cell
references into a single range reference. The refactoring can be used to solve the multiple references
[12] smell if the referenced cells are adjacent but referred to separately. The refactoring was defined but
not implemented by Hermans et. al [12]

5.4.1 User Interface

The refactoring is a one-click refactoring that is activated from the cell context menu, no additional user
input is needed.

5.4.2 Implementation

Grouping algorithm

In order to find the best grouping we have to solve the following problem: given a sheet with a certain set
of cells selected, what are the ranges that select exactly those cells and do so with a minimum amount of
ranges?

It turns out that this is a NP-hard problem, because it has a straightforward translation to a NP-hard
version of the Polygon Covering problem [43], specifically covering a rectilinear polygon (the selected
cells) with axis-parallel rectangles (ranges), allowing for holes. This allows us to use an approximation
algorithm or heuristic. A O(

√
log n) approximation algorithm for this specific problem has been found

by Kumar and Ramesh [44], but implementing this would take a non-trivial amount of effort.

However, rather than implementing a heuristic ourselves, this is currently delegated to Excel which
contains this functionality. The algorithm Excel uses for this is unknown.

Spreadsheet Refactoring

The implementation traverses the formula AST, and, for every function with a variable number of
arguments it encounters, groups its references by excluding all non-references (e.g. constants) and
sending these to Excel to be grouped. The function arguments then are replaced by grouped references
and the AST is printed back to the formula cell. References are processed separately depending on their
absolute markers, e.g. A1,$A1, A$1 and $A$1, because grouping references with different markers cannot
be done without changing the meaning of the formula.

If multiple cells are selected, the refactoring is repeated for every one.

The C# code for this refactoring can be found in Listing A.6

5.4.3 Detection of applicability

This refactoring will be available to the user if the formula contains two or more references.
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5.5 introduce aggregate

In the spreadsheet formula language, three binary operators have an equivalent aggregate function that
accepts any number of arguments: + corresponds to SUM, * to PRODUCT and & to CONCATENATE.

Thus a formula like =A1+A2+A3+A4 can be rewritten to =SUM(A1,A2,A3,A4), which is what the
replace awkward formula refactoring, defined by Badame and Dig [4], does. The refactoring is espe-
cially useful when combined with the group references refactoring, which rewrites it to =SUM(A1:A4).

The author proposes an alternate name for this refactoring, introduce aggregate, for two reasons.
Firstly replace awkward formula does not describe very good what the refactoring does, as more
types of “Awkward Formulas” could be thought of which cannot be handled. For example a formula with
multiple nested IFs like =IF(IF(IF(...),FALSE,TRUE),A1,B1) could be described as “awkward”,
but this refactoring does not replace it. Secondly this keeps the name consistent with the introduce
conditional aggregate refactoring.

5.5.1 User Interface

This refactoring is a one-click refactoring that is activated from the cell context menu, no additional user
input is needed. In the user interface it will always transparently be followed by the group references
refactoring.

The refactoring shares a menu item with introduce conditional aggregate, as the operator will
be changed to a SUMIF if applicable. The menu item is called “Change to SUM or SUMIF” to make
it easier to understand for users, because introduce (conditional) aggregate is abstract and contains
jargon. While “Change to SUM or SUMIF” does not fully describe the refactoring, this will be the most
common use case and easy to understand for spreadsheet users.

5.5.2 Implementation

The implementation traverses the formula AST until it encounters the first operator it can refactor. The
left subtree then gets added to a list of arguments for the aggregate function, and the right subtree gets
checked to see if it corresponds to the same operator. If it is, the process gets repeated until a non-operator
right subtree is encountered, at which point that subtree is the final addition to the argument list. Note
that this works because all operators are left-associative in Excel. If operator has other associativities the
algorithm would have to be slightly altered.

The C# code for this refactoring can be found in listing A.7.

5.5.3 Detecting applicability

This refactoring will only be offered to the user if the top layer of a formula cell consisting of one of the
applicable operators (+,* or &)
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5.5.4 Improvements over RefBook’s replace awkward formula

The concept of the introduce aggregate/replace awkward formula refactoring is not complicated,
and therefore not many improvements can be made. However, BumbleBee does improve over RefBook
in several ways related to this refactoring.

A first improvement in BumbleBee’s implementation comes through the underlying parser: the
RefBooks parser does not take operator precedence into account, and therefore a formula like =1 + 2 *

3 + 4 would be refactored into =SUM(1,2 * 3 + 4) by RefBook, while BumbleBee refactors it into
=SUM(1,2 * 3,4).

A second improvement comes by combining this refactoring with two other refactorings through the
user interface. Combining this refactoring with group references allows a formula like =A1+A2+A3+A4
to be rewritten into =SUM(A1:A4) instead of just =SUM(A1,A2,A3,A4). Combining this refactoring with
introduce conditional aggregate when the spreadsheet data allows for this enables a formula like
=B12+B24+B36 to be rewritten into =SUMIF("2015", B:B) instead of just =SUM(B12,B24,B36).
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Figure 5.7: An example spreadsheet which uses SUMIF

Figure 5.8: An example where SUMIF could be used, but is not

5.6 introduce conditional aggregate

Three aggregate functions also have conditional counterparts: SUMIF, AVERAGEIF and COUNTIF. These
functions take two mandatory arguments: check_range, condition and the optional operating_range. If
operating_range is absent it equals check_range, with COUNTIF not supporting operating_range at all.
These functions evaluate the condition on every cell of operating_range, and if it is met the function’s
operation is performed on the corresponding cell from operating_range.

Examples make this clearer: =SUMIF(A:A, "> 10") sums all cells in column A that contain a value
larger than 10, and =SUMIF(A:A, E2, C:C) sums the cell from column C of every row where the cell
value from column A equals E2 , as illustrated in Figure 5.7.

The conditional aggregate functions are powerful tools, but they are not always used. Instead what
we often encountered is the “Manual” selection of the correct cells and summing these, as illustrated in
Figure 5.8. When combining this refactoring with the introduce aggregate refactoring we can rewrite
=B3+B7+B11 to =SUM(B3,B7,B11), and that to =SUMIF(A:A, "2015", B:B). Because this was the
most common pattern we will focus on SUM and SUMIF, but the refactoring works identical for COUNT to
COUNTIF and AVERAGE to AVERAGEIF.

5.6.1 User Interface

This refactoring shares a context menu entry with introduce aggregate.
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(a) Supported:
Column A uniquely deter-
mines which values are
summed.

(b) Unsupported:
No column determines
which values are summed.

(c) Unsupported:
Column A does not de-
termine which values are
summed, because B5 is not
summed.

Figure 5.9: Example scenarios of introduce conditional aggregate

5.6.2 Implementation

In order to see if a SUM can be rewritten to a SUMIF, we must determine if there is another range of
cells with a value that uniquely identifies the summed cells. In relational database theory, this is a
concept known as a functional dependency. Several algorithms exist to automatically find functional
dependencies, such as Dep-Miner [45], FUN [46] and TANE [47], where FUN has been applied in a
spreadsheet context [21].

Due to implementation time constraints, these algorithms were not used, and instead only a very
simple but useful scenario is supported: the summed values are in a single row or column, and there is
a single row or column that has a single unique value in it which can serve as the condition for SUMIF.
Figure 5.9a shows such a scenario: column A uniquely determines the summed values and the formula
can thus be rewritten to =SUMIF(A:A, "A", B:B). Figure 5.9b shows a case where this is not possible:
A4 differs from A1 and A2 meaning there is no column that determines the summed values. Figure 5.9b
shows another impossible case: here column A determines the summed values, but there is an additional
row with an identical value in cell A5 and thus column A does not uniquely determine the summed values.
Additionally, the refactoring is not supported if the summed cells are not in a single row or column.

The C# code that performs the refactoring if the above conditions are met can be found in Listing
A.8.

5.6.3 Detection of applicability

This refactoring is activated only as part of the introduce aggregate refactoring, and therefore shares
its detection of applicability. Any further detection is performed within the code that implements the
refactoring itself.
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5.7 Discussion

5.7.1 Undo and redo functionality

It must be noted that all refactorings have a major deficiency: they cannot be undone with the Excel undo
function. This is not a limitation inherent to the refactorings, the previous state could be remembered
and some refactorings even have a well-defined inverse refactoring.

The reason that undo and redo functionality is not available in BumbleBee is a technical limitation
imposed by Excel: the Excel undo-redo stack is not available to Excel Add-Ins. Instead, as soon as a Excel
Add-In changes the Excel spreadsheet file, in fact as soon as it interacts with the internal document model
even if it does not change anything, the Excel undo-redo stack gets cleared. In an industrial-strength
application this functionality would be essential.

A workaround is possible by manually maintaining an undo stack, however this was deemed outside
of the scope of this thesis. This workaround also does not integrate well with Excel and does not allow
changes made outside of the Add-In to be undone. As long as Excel keeps this restriction this will always
be a severe limitation to any tool that automatically changes spreadsheet files for the user.

5.7.2 Future improvement possibilities

extract formula could benefit from more UI support. If the user could select the formula to be extracted
from within the Excel formula editor the user interface could be streamlined. Another possibility would
be to determine candidate subformulas that the user could extract, and present these in a list. Generating
a list of all subformulas is fairly trivial, but this list can become very large, especially in the longer
formulas that would benefit from this refactoring. A heuristic which can prune the list of subformulas
could improve this experience.

A minor deficiency in the current extract formula code is that is does not fully handle the
commutative operators + and *. An operator is commutative if the order of the operands does not matter:
1 + 2 is equal to 2 + 1. BumbleBee’s equality comparer takes this into account, and tries the reverse
order of the operands for + and * if it does not find a match. However, this does not fully solve the
problem: the formula =1 + 2 + 3 is parsed as =(1 + 2) + 3, thus if the user wishes to extract 2 + 3

BumbleBee will report an error since it does not encounter 2 + 3 in the AST.

The introduce conditional aggregate automated refactoring currently only supports a very basic
scenario. The algorithm only checks if a single column determines another column, and furthermore
the algorithm is not proven correct. Both of these problems could be solved by properly determining
functional dependencies using an established algorithm. Functional dependencies where two or more
columns determine the content of a single column can be supported through the SUMIFS, AVERAGEIFS
and COUNTIFS functions. For example =SUMIFS(C:C,A:A,2015,B:B,"John") sums the values from
column C of the rows where column A contains 2015 and column B contains "John", which corresponds
to column C being dependent on columns A and B.



Chapter 6

Evaluation

6.1 Refactorings

The refactorings implemented in BumbleBee were not formally evaluated as part of this thesis. Some of
the refactorings implemented in this thesis are based on RefBook [4], which did perform an evaluation, in
which it was found that the more people preferred formulas after the extract formula and introduce
aggregate refactorings were applied, while more people preferred the unrefactored formulas after the
introduce cell name refactoring was applied.

6.2 Parser

In order to evaluate XLParser, it was used to parse all formulas extracted from the two publicly available
spreadsheet research datasets, the EUSES corpus [48] and Enron email corpus [42, 49].

A “scantool” not developed by the thesis author was used to extract formulas from these two datasets,
which succeeded for 19.601 of the 20.688 spreadsheets. Not all spreadsheets could be read because
they were either password-protected or could not be processed by the scantool. A combined 22.310.406
formulas were found in these spreadsheets. Duplicate formulas were filtered on a sheet-level by using
the formula’s R1C1 notation. This resulted in 1.035.586 unique formulas. 26 formulas were discarded,
because they were corrupted by the scan tool, bringing the total to 1.035.558 formulas. The extracted
list of formulas is available as part of XLParser in its repository for both the Enron 1 and the EUSES 2

datasets.

Of these formulas, exactly two could not be parsed: =-NOX, Regi and -_SO2, regi, a successful
parse rate of 99.999%. The unparsable formulas are examples of unions without brackets which the
parser cannot parse due to reasons outlined in Section 4.4.2.

1https://github.com/spreadsheetlab/XLParser/blob/v1.2.1/src/XLParser.Tests/data/enron/formulas.txt
2https://github.com/spreadsheetlab/XLParser/blob/v1.2.1/src/XLParser.Tests/data/euses/formulas.txt
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It must be noted that both datasets used only contain spreadsheets created before 2005. This means
that they do not contain structured table references, as these were introduced in Excel 2007. It thus
remains unevaluated how well the parser handles formulas containing these constructs.

Another deficiency is that the scantool extracts formulas as they are stored inside the spreadsheet file.
When a formula references an external file, in the spreadsheet file the filename is stored in a separate
lookup array and the file is replaced by a numeric index in the stored formula. Thus a formula like
=’C:\path\[file.xlsx]Sheet!A1’ would be stored as =[1]Sheet!A1. However, Excel Add-Ins
like BumbleBee receive the file name and path in the formula when requested from Excel. It is thus
possible that the parser cannot handle all formulas formulas containing external references in their non-
numeric file reference form. However, a member of the spreadsheet lab who used the parser to process the
same two datasets reports using their non-numeric file reference form reports no additional parse errors,
except in the case of a file path containing a space, which is a problem that most likely can be solved.

6.2.1 Analysis

For all the formulas extracted from the Enron and EUSES datasets a count was performed of which tokens
(terminals, leaf nodes of the parse tree) and which production rules (non-terminal, internal nodes of the
parse tree) were used when parsing the formula.

At least one reference was used in 99.2% of the formulas, which shows that references are an integral
part of spreadsheets. Arithmetic operators are also very common (59.77%), as is the use of built-in excel
functions (35.82%).

Perhaps more interesting are the less commonly used grammatical constructs: Empty arguments,
Dynamic Data Exchange calls, Intersections and Unions, Multiple Sheets, Reserved Names and constant
arrays. All of these constructs are used in less than 0.05% of all formulas.

The rarity of empty argument, DDE calls, reserved names and multiple sheets can be expected because
of their very niche uses. Intersections, unions and constant arrays are powerful constructs, but apparently
users either do not know about these, prefer to use other constructs instead or their usage is too niche.

Interestingly, some of these constructs are quite hard to parse. Especially unions and intersections
complicate the grammar because of their curious syntax. Because these constructs are so rare this means
they are prime candidates to leave out of the grammar if simplification is desired.
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Syntax Example Unique formulas Total formulas
⟨Formula⟩ =1+2 1,035,586 22,310,406
⟨Reference⟩ =E9/E10 962,783 92.97% 22,131,002 99.20%
CELL =A5 951,521 91.88% 22,021,833 98.71%
⟨FunctionCall⟩ =SUM(A5:A22) 701,626 67.75% 18,944,204 84.91%
⟨BinOp⟩ =H10-H8 397,580 38.39% 13,333,844 59.77%
⟨Constant⟩ =A5+134 271,585 26.23% 8,731,489 39.14%
EXCEL-FUNCTION =SUM(A5:A22) 264,673 25.56% 7,991,329 35.82%
NUMBER =(B8/48)*15 250,085 24.15% 7,849,495 35.18%
⟨Prefix⟩ =Sheet1!B1 337,727 32.61% 5,599,011 25.10%
⟨RefFunctionName⟩ =SUM(J9:INDEX(J9:J41,B43)) 55,680 5.38% 5,349,237 23.98%
SHEET =Sheet1!B1 303,981 29.35% 5,282,386 23.68%
REF-FUNCTION-COND =IF(A1<0,0,1) 50,171 4.84% 4,872,661 21.84%
⟨Reference⟩ ’:’ ⟨Reference⟩ =SUM(A5:A22) 184,451 17.81% 3,735,005 16.74%
⟨UnOpPrefix⟩ =+B11+1 218,397 21.09% 3,289,326 14.74%
STRING =IF(AD3<0,"buy","sell") 56,635 5.47% 2,587,971 11.60%
⟨NamedRange⟩ =SUM(freq) 20,686 2.00% 1,645,120 7.37%
BOOL =IF(AND(R11=1,R14=TRUE),G19,0) 7,532 0.73% 1,183,798 5.31%
FILE =[11]Sheet1!C5 104,892 10.13% 1,135,185 5.09%
REF-FUNCTION =SUM(J9:INDEX(J9:J41,B43)) 9,907 0.96% 778,056 3.49%
SHEET_QUOTED =(’[2]Detail I&E’!D62)/1000 33,781 3.26% 325,498 1.46%
UDF =SQRT(_eoq2(C5,C4,C6,C7)) 21,352 2.06% 286,210 1.28%
(’ ⟨Reference⟩ ’)’ =(2*(B29))/(1+B29) 6,394 0.62% 266,420 1.19%
_xll. =_xll.RiskTriang(F9,F7,F8) 11,922 1.15% 127,348 0.57%
ERROR-REF =AVERAGE(#REF!) 3,477 0.34% 123,447 0.55%
VERTICAL-RANGE =COUNT(A:A) 851 0.08% 55,254 0.25%
FILE ’!’ =[1]!today 2,040 0.20% 28,448 0.13%
ERROR =IF(R14=TRUE,G19,#N/A) 379 0.04% 27,237 0.12%
’%’ =IF(E5>I8,3%,0%) 858 0.08% 16,606 0.07%
Empty argument =DCOUNT(Lettergrades„I80:I81) 1,343 0.13% 10,512 0.05%
DDECALL =TWINDDE|RSFRec!’NGH2 NET.CHNG’ 3,276 0.32% 3,686 0.02%
Intersection =Ending_Inventory Jan 304 0.03% 2,343 0.01%
MULTIPLE-SHEETS =SUM(Sheet1:Sheet20!I29) 173 0.02% 1,986 0.01%
External UDF =[1]!wbname() 332 0.03% 855 0.00%
HORIZONTAL-RANGE =MATCH(F3,Prices!2:2,0) 11 0.00% 836 0.00%
⟨Union⟩ =LARGE((F38,C38),1) 10 0.00% 385 0.00%
RESERVED_NAME =C23/_xlnm.Print_Area 70 0.01% 276 0.00%
FILE MULTIPLE-SHEETS =SUM([2]Section3A:formulas!B11) 4 0.00% 189 0.00%
⟨ConstantArray⟩ =FVSCHEDULE(1,0.09;0.11;0.1) 15 0.00% 19 0.00%

Table 6.1: Frequency of tokens and production rules in all parsed formulas



Chapter 7

Conclusion

While extending the BumbleBee spreadsheet refactoring tool it was found that the existing spreadsheet
formula parser was insufficient to support refactoring without the risk of introducing errors. To solve
this problem, the existing parser was improved, named XLParser and publicly released as open-source
with a binary1, online demo2, source code3 and EBNF grammar available. The parser is geared towards
spreadsheet research and therefore is highly compatible with the official language and produces parse
trees which are suitable for further analysis and manipulation. The parser was evaluated on over a million
formulas from two datasets and parsed 99.999%. BumbleBee was extended with six refactorings: ex-
tract formula, inline formula, introduce cell name, group references, introduce aggregate
and introduce conditional aggregate. inline formula, group references and introduce con-
ditional aggregate were not implemented before and extract formula and introduce cell name
improve upon previous implementations.

1https://github.com/spreadsheetlab/XLParser/releases
2http://xlparser.perfectxl.nl/demo
3https://github.com/spreadsheetlab/XLParser
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Appendix A

Code listings

Listing A.1: XLParser Print method (simplified)
public static string Print(this Node node) {

// Print token values
if(node is Terminal) return node.Token.Text;

// Select is C#’s map function
var ch = node.ChildNodes.Select(Print).ToList();

switch(node.Type()) {
case "ArrayFormula":
return "{=" + ch[0] + "}";

case "FunctionCall":
if(node.IsBinaryOperation()) {
return ch[0] + " " + ch[1] + " " + ch[2];

}
if(node.isNamedFunction()) {
return String.Join("", ch) + ")";

}
// some more conditions
break;

// More cases for every node type
}

}
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Listing A.2: Formula AST replacement (simplified)

/* Context contains the workbook and worksheet of a node */

public static Node Replace(Node subject, Node search, Node replace, Context csub,
Context csearch, Context crepl) {

// Check if the subject matches search
if(Equals(subject, search, csub, csearch)) {

// We can return the replacement.
// Moveto handles changing reference prefixes if necesarry
return MoveTo(replace, crepl, csub);

}

// No match, if we are at a leaf node, simply return the leaf node
if (subject.ChildNodes.Count == 0) return subject;

// Otherwise continue the replacement on the child nodes
return new Node() {

Type = subject.Type(),
// Select is C#’s map
ChildNodes = subject.ChildNodes.Select(child => Replace(child, search, replace,

csub, csearch, crepl))
};

}

public static bool Equals(Node p1, Node p2, Context c1, Context c2) {

// RemoveNonEqualityAffectingNodes removes things like brackets ,
// which do not affect the equality of nodes
p1 = RemoveNonEqualityAffectingNodes(p1);
p2 = RemoveNonEqualityAffectingNodes(p2);

// Qualify adds workbook and worksheet prefix to all references , so that
// equality isn’t affected by whether or not these are supplied in the original

formula
p1 = c1.Qualify(p1);
p2 = c2.Qualify(p2);

return p1.Type() == p2.Type()
// Compare the token values if these are tokens

&& (p1 is Terminal && p1.Token.ValueString == p2.Token.ValueString)
// Compare child count
&& p1.ChildNodes.Count == p2.ChildNodes.Count
// Check if all children are equal
&& p1.ChildNodes.Zip(p2.ChildNodes).All((ch1, ch2) => Equals(ch1, ch2, c1,

c2));
}
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Listing A.3: Extract formula refactoring (simplified)
public void ExtractFormula(Range applyto, Location moveto, Node subformula) {

/** Check if all applyto cells contain subformula **/

/** Check if target cell is empty **/

/** Check if subformula contains any non-absolute references **/

// Set the target cell to the subformula
moveto.Formula = subformula.Print();
// and get its parsed address reference
var replacementAST = moveto.Address().Parse();

// Apply the refactoring once per unique R1C1 formula
foreach (var uniqueR1C1 in applyto.Cells.GroupBy()(c => c.FormulaR1C1)) {
var prototype = uniqueR1C1.First();
var AST_or = prototype.Parse();

prototype.Formula = Replace(AST_or, subformula , replacementAST ,
/*...*/).Print();

foreach(var cell in uniqueR1C1) {
cell.FormulaR1C1 = prototype.FormulaR1C1;

}
}

}

public void ExtractFormula(Range applyto, Direction dir, Node subformula) {

/** Check if all applyto cells contain subformula **/

/** Insert new cells in the appropriate direction **/

/** Set all new cells to contain the subformula formula **/

// Apply the refactoring once per unique R1C1 formula
foreach (var uniqueR1C1 in applyto.Cells.GroupBy()(c => c.FormulaR1C1)) {

Cell prototype = uniqueR1C1.First();
Node AST_or = prototype.Parse();
Node replacementAST = prototype.Offset[dir].Address().Parse();

prototype.Formula = Replace(AST_or, subformula , replacementAST ,
/*...*/).Print();

foreach(var cell in uniqueR1C1) {
cell.FormulaR1C1 = prototype.FormulaR1C1;

}
}

}



52 Code listings

Listing A.4: Inline Formula Refactoring (simplified)
public void InlineFormula(Cell toInline) {

// Dependendants are gotten from Excel
var dependents = toInline.dependents;
if(dependents.Count == 0) {

// Abort, no dependants
}

Node AstToRepl = Parse(toInline.Address);
Node AstReplacement = Parse(toInline.Formula);

// Check if this cell is part of any named ranges with more than one cell
if(toInline.Names.Any(name => name.Cells.Count > 1)) {

// Abort
}

// AST representation of the names
var names = toInline.Names.Select(Parse);

foreach(var dependent in dependents) {
Node AstOriginal = Parse(dependent.Formula);

// Abort if to be inlined cell is references as part of a range
if(CellContainedInRanges(toInlineAddress , AstOriginal)) {

// Abort
}

// Replace references to the cell with the value
var AstNew = Replace(AstOriginal , AstToRepl , AstReplacement , /*...*/);
foreach(var name in names) {

AstNew = Replace(AstNew, name, AstReplacement , /*...*/);
}

dependent.Formula = AstNew.Print();
}

toInline.Delete();

}
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Listing A.5: Introduce Cell Name (simplified)
public void IntroduceName(Range toName, string name) {

// Check if name already exists
if(toName.Workbook.Names.Contains(name)) {

// Abort
}

toName.Name = name;

var dependents = toInline.dependents;
if(dependents.Count == 0) {

// Abort, no dependants
}

var AstToRepl = Parse(toName.Address);
var AstReplacement = Parse(name);

foreach(var dependent in dependents) {
var AstOriginal = Parse(dependent.Formula);

var AstNew = Replace(AstOriginal , AstToRepl , AstReplacement , /*...*/);

dependent.Formula = AstNew.Print();
}

}

Listing A.6: Group References Refactoring (simplified)
public Node GroupReferences(Node formula) {

// Get all nodes representing varargs functions
var targets = formula.AllNodes().Where(IsVarargsFunction);

foreach(Node function in targets) {
// split arguments that can be grouped from those than can’t
var toGroupArguments = function.arguments

.Where(node => node.IsCellOrRange());
var ignoredArguments = function.arguments

.Where(node => !node.isCellOrRange());

var grouped = new List<Node>();

// Several characteristics define whether references can be grouped
foreach(var sheetGroup in SplitByWorksheet(toGroupArguments)) {
foreach(var toGroup in SplitByAbsoluteMarkers(sheetGroup)) {

grouped.Add(GroupUsingExcel(toGroup));
}

}

function.arguments = ignoredArguments.Concat(grouped);
}

return formula;
}
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Listing A.7: Introduce Aggregate (simplified)
public Node IntroduceAggregate(Node formula) {

// Precondition: formula is a function
if(!formula.IsFunction()) {

// Abort
}

// Precondition: formula is an operator that has an aggregate equivalent
var op = formula.GetFunctionName();
if(!AggregateEquivalents.ContainsKey(op)) {

// Abort
}

var arguments = new List<Node>();
var current = formula;

// Gather arguments while the right subtree remains the same operator
while(current.GetFunctionName() == op){

arguments.Add(current.LeftArgument);
current = current.RightArgument;

}
arguments.Add(current.RightArgument);

return new Function(AggregateEquivalents[op], arguments);
}

private static Dictionary <string,string> AggregateEquivalents =
new Dictionary <string,string >() {

{ "+", "SUM" },
{ "*", "PRODUCT" },
{ "&", "CONCATENATE" }

};
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Listing A.8: Introduce Conditional Aggregate (simplified)
public void IntroduceConditionalAggregate(Cell subject) {

Node function = Parse(subject.Formula);

// Check if we can perform the refactoring
if(!IsTargetFunction(function)) {
if(function.IsFunction() && function.FunctionName == "+") {

// Rewrite + to SUM
function = IntroduceAggregate(Ast);

} else {
// Abort

}
}

// Check if all arguments are references to a single cell
var arguments = function.arguments;
if(argument.Any(arg => !IsSingleCellReference(arg))) {

// Abort
}

// Logic for all argument in a single row is ommited for brevity,
// it is identical but transposed.

// Check if all arguments are in a single column
var summedColumn = arguments.First().Select(cell => cell.Column);
if(arguments.Select(arg => arg.Column).Any(col => col != summedColumn)) {

// Abort
}

var summedRows = argument.Select(cell => cell.Row).ToList();

// Get all non-empty columns in the worksheet
var columns = GetNonEmptyColumns(subject.Worksheet);

// Find a functional determiner
// See the listing on the next page for the code of FindDeterminerColumn
var determiner = FindDeterminerColumn(columns, summedRows);

if(determiner == null) {
// Abort, there are no candidate columns

}

// Create the SUMIF(Column, Value, SummedColumn)
var AstNew = new Function(function.FunctionName + "IF", new List<Node>() {

new ColumnRange(determiner.Item1),
new AstString(determiner.Item2),
new ColumnRange(summedColumn)

}
);

subject.Formula = AstNew.Print();
}
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Listing A.9: FindDeterminerColumn method
private static Tuple<string,string> FindDeterminerColumn(IEnumerable <Column>

columns, IEnumerable <Row> summedRows) {
// Return the first column that is a determiner of the summed column
return columns.Select(column => {

// Check if there is a value that is the same in all
// the corresponding rows of the column
string candidateValue = column[summedRows.First()].Value;

if(summedRows.Any(row => column[row.ID].Value != candidateValue)) {
return null;

}

// Value is the same in all corresponding rows
// Now check if it is different in all other rows
if(column.rows.Except(summedRows)

.Any(cell => cell.Value == candidateValue)) {
return null;

}

// We found a candidate column
return Tuple.Create(column.ID, candidateValue);

})
.Where(found => found != null)
.FirstOrDefault();

}
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The following is a verbatim copy of the paper as it was published in the proceedings of SCAM 2015.
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Abstract—Spreadsheets are ubiquitous in the industrial world
and often perform a role similar to other computer programs,
which makes them interesting research targets. However, there
does not exist a reliable grammar that is concise enough to
facilitate formula parsing and analysis and to support research
on spreadsheet codebases.

This paper presents a grammar for spreadsheet formulas that
is compatible with the spreadsheet formula language, is compact
enough to feasibly implement with a parser generator, and
produces parse trees aimed at further manipulation and analysis.
We evaluate the grammar against more than one million unique
formulas extracted from the well known EUSES and Enron
spreadsheet datasets, successfully parsing 99.99%. Additionally,
we utilize the grammar to analyze these datasets and measure the
frequency of usage of language features in spreadsheet formulas.
Finally, we identify smelly constructs and uncommon cases in
the syntax of formulas.

I. INTRODUCTION

Spreadsheets are widely used in industry: Winston [1]
estimates that 90% of all analysts in industry perform cal-
culations in spreadsheets. Their use is diverse, ranging from
inventory administration to educational applications and from
scientific modeling to financial systems. It is estimated that
90% of desktops have Excel installed [2] and that the number
of spreadsheet programmers is bigger than that of software
programmers [3].

Because of their widespread use, spreadsheets have been
the topic of research since the nineties [4]. Recent research
has often focused on analyzing and visualizing spreadsheets
[5], [6]. More recently, researchers have attempted to define
spreadsheet smells: applications of Fowler’s code smells to
spreadsheets [7], [8], followed by approaches to refactor
spreadsheets [9], [10]. These research works analyze the for-
mulas within spreadsheets, and therefore often involve formula
parsing. This is done either by using simple grammars which
have not been evaluated ([10]), or through implied, undefined
grammars ([5], [7]–[9]).

The above analyses are our main motivation towards a
defined grammar. Having such a grammar will enable parsing
spreadsheet formulas into processable parse trees which can
in turn be used to analyze cell references, extract metrics,
find code smells and explore the structure of spreadsheets.
Essentially, a reliable and consistent grammar and its parser
implementation, available to the spreadsheet research commu-

nity, can support research on spreadsheet formula codebases
and can enhance the understanding and usability of research
results.

To make a grammar suitable for this goal, the requirements
that we set for it are (1) to be compatible with the official Excel
formula language, (2) to produce parse trees suited for further
manipulation and analysis, and (3) to be compact enough
to feasibly implement with a parser generator. The approach
that we took towards developing the grammar was gradual
enrichment through trial-and-error: we started from a simple
grammar containing only the most common and well known
formula structures and implemented it using a parser generator.
Then we repeatedly tested it against formulas extracted from
spreadsheet datasets, leading to further enrichments and refine-
ments, until all common and rare cases found in the datasets
were supported. We used two major datasets that are available
in the spreadsheet research community: The EUSES dataset
[11] and the Enron corpus [12], jointly containing over 20,000
spreadsheets.

The contributions of this paper are (1) a concise grammar
for spreadsheet formulas, (2) the evaluation of the compat-
ibility of the grammar using two major datasets, and (3) an
analysis of the common formula characteristics and of the rare
grammatical cases in the datasets.

II. BACKGROUND

Spreadsheets are cell-oriented dataflow programs which are
Turing complete [13]. A single spreadsheet file corresponds
to a single (work)book. A workbook can contain any number
of (work)sheets. A sheet consists of a two-dimensional grid
of cells. The grid consists of horizontal rows and vertical
columns. Rows are numbered sequentially top-to-bottom start-
ing at 1, while columns are numbered left-to-right alphabeti-
cally, i.e. base-26 using A to Z as digits, starting at ‘A’, making
column 27 ‘AA’.

A cell can be empty or contain a constant value, a formula
or an array formula. Formulas consist of expressions which
can contain constant values, arithmetic operators and function
calls such as SUM(...) and, most importantly, references to
other cells. Functions can be built-in or user-defined (UDFs).
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A. References

References are the core component of spreadsheets. The
value of any cell can be used in a formula by concatenating
its column and row number, producing a reference like B5. If
the value of a cell changes this new value will be propagated
to all formulas that use it.

When copying a cell to another cell by default references
will be adjusted by the offset, for example copying =A1 from
cell B1 to C2 will cause the copied formula to become =B2.
This can be prevented by prepending a $ to the column index,
row index or both. The formula =$A$1 will remain the same
on copy while =$A1 will still have its row number adjusted.

References can also be ranges, which are collections of
cells. Ranges can be constructed by three operators: the range
operator :, the union operator , (a comma) and the inter-
section operator (a single whitespace). The range operator
creates a rectangular range with the two cells as top-left and
bottom-right corners, so =SUM(A1:B10) will sum all cells in
columns A and B with row number 1 through 10. The range
operator is also used to construct ranges of whole rows or
columns, for example 3:5 is the range of the complete rows
three through five. The union operator, which is different from
the mathematical union as duplicates are allowed, combines
two references, so A1,C5 will be a range of two cells, A1
and C5. Lastly the intersection operator returns only the cells
which are occurring in both ranges, =A:A 5:5 will thus be
equivalent to =A5.

A user can also give a name to any collection of cells, thus
creating a named range which can be referenced in formulas
by name.

B. Sheet and External References and DDE

By default references point to cells or ranges in the same
sheet as the formula, but this can be modified with a prefix.
A prefix consists of an identifier, followed by an exclamation
mark, followed by the actual reference.

A reference to another sheet in the same workbook is
indicated using the sheetname as prefix: =Sheetname!A1.
References to external spreadsheet files are defined
by prepending the file name in between square
brackets: =[Filename]Sheetname!A1. A peculiar
type of prefix are those that indicate multiple sheets:
=Sheet1:Sheet10!A1 means cell A1 in Sheet1 through
Sheet10. Sheet names are enclosed in single quotes if they
contain special characters or spaces, e.g. =’Sheetname
with space’!A1.

C. Array Formulas and Arrays

In spreadsheet programs it is possible to work with one-
or two-dimensional matrices. When constructed from constant
values they are called array constants, e.g. {1,2;3,4}. They
are surrounded by curly brackets, columns are separated by
commas, and rows by semicolons. Several matrix operations
are available, for example =SUM({1,2,3}*10) will evalu-
ate to 60.

Array Formulas use the same syntax as normal formulas,
except that the user must signal that it is an array formula,
usually by pressing Ctrl + Shift + Enter. Marking a formula
as an array formula will enable one- or two-dimensional ranges
to be treated as arrays. For example, if A1,A3,A3 contain the
values 1,2,3, the array formula {=SUM(A1:A3*10)} will
evaluate to 60.

III. SPREADSHEET FORMULA GRAMMAR

For previous and ongoing research the authors needed a
grammar for Microsoft Excel spreadsheet formulas with the
following requirements:

1) Compatibility with the official language
2) Produce parse trees suited for further manipulation and

analysis with minimal post-processing required
3) Be compact enough to feasibly implement with a parser

generator
While an official grammar for Excel formulas is published

[14], it does not meet the above requirements for two reasons:
first, it is over 30 pages long and contains hundreds of pro-
duction rules and thus fails requirement 3. Second, because of
the detail of the grammar and the large number of production
rules, the resulting parse trees are very complex and thus
fail requirement 2. An example is given in Figure 1(a): the
relatively simple formula SUM(B2,5) results in a 37-node
tree with a depth of 18 nodes.

For these reasons the authors decided to construct a new
grammar with the above requirements as design goals.

A. Grammar Class

While the class of this grammar is not strictly LALR(1) due
to the ambiguity discussed in Section III-F, we implemented
this grammar using a LALR(1) parser generator. The present
ambiguity can be solved by defining operator precedence (sec-
tion III-D) and manually resolving conflicts (Section III-F).
These two features are supported by most LALR(1) parser
generators.

B. Lexical Analysis

Table I contains the lexical tokens of the grammar, along
with their identification patterns in the regular expression lan-
guage. All tokens are case-insensitive. Characters are defined
as unicode characters x9,xA,xD and x20 and upwards.

Lexical analysis requires the scanner to support token pri-
orities. Removing the necessity for token priorities is possible
by altering the tokens and production rules, but makes the
grammar more complicated and the resulting tree harder to
use, thus being detrimental to design goals 2 and 3.

Some simple tokens (e.g. ’%’, ’!’) are directly defined in the
production rules in Figure 2 in between quotes for readability
and compactness.

1) Dates: The appearance of date and time values in
spreadsheets depends on the presentation settings of cells.
Internally, date and time values are stored as positive float-
ing point numbers with the integer portion representing the



TABLE I: Lexical tokens used in the grammar

Token Name Description Contents Priority

BOOL Boolean literal TRUE | FALSE 0
CELL Cell reference $? [A-Z]+ $? [0-9]+ 2
DDECALL Dynamic Data Exchange link ’ ([^ ’] | ”)+ ’ 0

ERROR Error literal
#NULL! | #DIV/0! | #VALUE!
| #NAME? | #NUM! | #N/A

0

ERROR-REF Reference error literal #REF! 0
EXCEL-FUNCTION Excel built-in function (Any entry from the function list1) \( 5
FILE External file reference \[ [0-9]+ \] 5
HORIZONTAL-RANGE Range of rows $? [0-9]+ : $? [0-9]+ 0
MULTIPLE-SHEETS Multiple sheet references ((�2+ : �2+)|( ’ (�3 | ”)+ : (�3 | ”)+ ’ )) ! 1
NR Named range [A-Z_\\][A-Z0-9\\_.�1]* -2

NR-PREFIXED
Named range which starts with
a string that could be another token

(TRUE | FALSE | [A-Z]+[0-9]+) [A-Z0-9_.�1]+ 3

NUMBER
An integer, floating point
or scientific notation number literal

[0-9]+ ,? [0-9]* (e [0-9]+)? 0

QUOTED-FILE-SHEET A file reference within single quotes ’\[ [0-9]+ \] (�3 | ”)+ ’! 5
REF-FUNCTION Excel built-in reference function (INDEX | OFFSET | INDIRECT)\( 5
REF-FUNCTION-COND Excel built-in conditional reference function (IF | CHOOSE)\( 5
RESERVED-NAME An Excel reserved name _xlnm\. [A-Z_]+ -1
SHEET The name of a worksheet (�2+ | ’ (�3 | ”)+ ’) ! 5
STRING String literal " ([^ "] | "")* " 0
UDF User Defined Function (_xll\.)? [A-Z_\][A-Z0-9_\\.�1]* ( 4
VERTICAL-RANGE Range of columns $? [A-Z]+ : $? [A-Z]+ 0

Placeholder character Placeholder for Specification
�1 Extended characters Non-control Unicode characters x80 and up

�2 Sheet characters
Any character except
’ * [ ] \ : / ? ( ) ; { } # " = < > & + - * / ^ % ,

�3 Enclosed sheet characters Any character except ’ * [ ] \ : / ?
1 A function list is available as part of the reference implementation. Lists provided by Microsoft are also available in [15] and [14].

number of days since a Jan 0 1900 epoch and the fractional
portion representing the portion of the day passed.

For this reason, the grammar only parses numeric dates and
times and these are not distinguishable from other numbers.

2) External References: The file names of external ref-
erences in formulas, both to external files and DDE, are
not stored as part of the formula in the Microsoft Excel
storage format, but instead are replaced by a numeric index.
This index is then stored in a file level dictionary of exter-
nal references. A formula that is presented to the user as
=[C:\Path\Filename.xlxs]Sheet1!A1 is internally
stored as [X]Sheet1!A1, where X can be any number.

For this reason the presented grammar supports only nu-
meric file names in external references. Adding support for
full filenames can be achieved by introducing an additional
token or altering the FILE token. Note that external filenames
can be presented to and entered by the user in a number of
different formats, depending on conditions such as whether or
not the file is open in the spreadsheet program.

C. Syntactical Analysis

The complete production rules of our grammar in Extended
BNF syntax are listed in Figure 2. Patterns inside { and } can
be repeated zero or more times. The start symbol is Start.

An example parse tree produced using this grammar is drawn
in Figure 1(b).
〈Formula〉 and 〈Reference〉 are the two most important

production rules. These are also illustrated as syntax diagrams,
with most production rules expanded, in Figures 3 and 4.

The 〈Formula〉 rule covers all types of spreadsheet for-
mula expressions: they can be constants (=5), references
(=A3), function calls (=SUM(A1:A3)), array constants
(={1,2;3,4}, explained in Section II-C), or reserved
names (=_xlnm.Print_Area). Function calls invoke ac-
tual named (built-in or user defined) functions or operators
applied to one or more formulas.

The 〈Reference〉 rule covers all types of referencing expres-
sions, which are diverse. The simple case of a reference to a
cell range can be expressed in any of the following ways:

SUM(A1:A2)
= SUM(Sheet!A1:A2)
= SUM(Sheet!A1:(A2))
= SUM(’Sheet’!A1:A2)
= SUM(namedRangeA1A2)

= SUM(A1,A2)
= SUM((A1,A2))
= SUM(A1:A2:A1)
= SUM(A1:A2 A:A)

The 〈Reference〉 rule, as shown in Figure 4, supports internal
(in the same or in different sheets), or external single cell
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Fig. 1: Parse trees for formula SUM(B2,5)

references, cell ranges, horizontal and vertical ranges, named
ranges and reference-returning, built-in or user-defined, func-
tions.

D. Operator Precedence

All operators in Excel are left-associative, including the
exponentiation operator, which in most other languages is
right-associative. In order to resolve ambiguities, a LALR
parser generator needs the operator precedence to be defined
as listed in Table II.

E. Intersection Operator

The intersection binary operator in Excel formulas is a
single space. While this is straightforward to define in EBNF,
it can be challenging to implement using a parser generator.

The parser generator we used for implementing the grammar
supports a feature called implicit operators which was used
to implement this operator. Implicit operators are operators
which are left out and only implied, for example in calculus
the multiplication operator is often omitted: 5a is equivalent
to 5 · a.

F. Ambiguity

Due to trade-offs on parsing references (see section III-G1)
and on parsing unions (see section III-G2) our grammar is not
fully unambiguous. Ambiguity exists between the following
production rules:

1) 〈Reference〉 ::= ‘(’ 〈Reference〉 ‘)’
2) 〈Union〉 ::= ‘(’ 〈Reference〉 { ‘,’ 〈Reference〉 } ‘)’
3) 〈Formula〉 ::= ‘(’ 〈Formula〉 ‘)’

A formula like =(A1) can be interpreted as either a
bracketed reference, a union of one reference, or a reference
within a bracketed formula.

In a LALR(1) parser the ambiguity manifests in a state
where, on a ’)’ token, shifting on rule 1 and reducing on
either rule 2 or 3 are possibilities, causing a shift-reduce
conflict. This was solved by instructing the parser generator to
shift on Rule 1 (bracketed 〈Reference〉) in case of this conflict,
because this always is a correct interpretation and thus results
in correct parse trees.

G. Trade-offs

1) References: References are of great importance in
spreadsheet formulas, and thus of interest for analysis. To sup-
port easier analysis (Design goal 2) references have different
production rules than other expressions. This causes references
to be easily identified and isolated, but has the downside of
increasing ambiguity, as explained in Section III-F.

Another approach would be to parse all formulas similarly
and implement a type system, however this would be detri-
mental to ease of implementation (Design goal 3).



〈Start〉 ::= 〈Constant〉
| ’=’ 〈Formula〉
| ‘{=’ 〈Formula〉 ‘}’

〈Formula〉 ::= 〈Constant〉
| 〈Reference〉
| 〈FunctionCall〉
| ‘(’ 〈Formula〉 ‘)’
| 〈ConstantArray〉
| RESERVED-NAME

〈Constant〉 ::= NUMBER | STRING | BOOL | ERROR

〈FunctionCall〉 ::= EXCEL-FUNCTION 〈Arguments〉 ‘)’
| 〈UnOpPrefix〉 〈Formula〉
| 〈Formula〉 ‘%’
| 〈Formula〉 〈BinOp〉 〈Formula〉
〈UnOpPrefix〉 ::= ‘+’ | ‘-’

〈BinOp〉 ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’
| ‘<’ | ‘>’ | ‘=’ | ‘<=’ | ‘>=’ | ‘<>’

〈Arguments〉 ::= 〈Argument〉 { ‘,’ 〈Argument〉 } | ε

〈Argument〉 ::= 〈Formula〉 | ε

〈Reference〉 ::= 〈ReferenceItem〉
| 〈RefFunctionCall〉
| ‘(’ 〈Reference〉 ‘)’
| 〈Prefix〉 〈ReferenceItem〉
| FILE ‘!’ DDECALL

〈RefFunctionCall〉 ::= 〈Union〉
| 〈RefFunctionName〉 〈Arguments〉 ‘)’
| 〈Reference〉 ‘:’ 〈Reference〉
| 〈Reference〉 ‘ ’ 〈Reference〉
〈ReferenceItem〉 ::= CELL

| 〈NamedRange〉
| VERTICAL-RANGE
| HORIZONTAL-RANGE
| UDF 〈Arguments〉 ‘)’
| ERROR-REF

〈Prefix〉 ::= SHEET
| FILE SHEET
| FILE ‘!’
| QUOTED-FILE-SHEET
| MULTIPLE-SHEETS
| FILE MULTIPLE-SHEETS

〈RefFunctionName〉 ::= REF-FUNCTION
| REF-FUNCTION-COND

〈NamedRange〉 ::= NR | NR-PREFIXED

〈Union〉 ::= ‘(’ 〈Reference〉 { ‘,’ 〈Reference〉 } ‘)’

〈ConstantArray〉 ::= ‘{’ 〈ArrayColumns〉 ‘}’

〈ArrayColumns〉 ::= 〈ArrayRows〉 { ‘;’ 〈ArrayRows〉 }

〈ArrayRows〉 ::= 〈ArrayConst〉 { ‘,’ 〈ArrayConst〉 }

〈ArrayConst〉 ::= 〈Constant〉
| 〈UnOpPrefix〉 NUMBER
| ERROR-REF

Fig. 2: Production rules

TABLE II: Operator precedence in formulas

Precedence Operator(s)
(higher is greater)

1 = < > <= >= <>
2 &
3 + - (binary)
4 ∗ /
5 ^
6 %
7 + - (unary)
8 ,
9
10 :

〈Formula〉 ::=-- � �EXCEL-FUNCTION 〈Arguments〉 ’)’� ��’+’ ��’−’ ��〈Formula〉 ��’%’ �� �
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� �
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�’{’

� ’;’ ��� ’,’ ������’+’ ��’−’ ��NUMBER

� STRING �� BOOL �� ERROR �
�

� ERROR-REF �

���’}’ �
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Fig. 3: Syntax diagram of the 〈Formula〉 production rule with most
production rules expanded
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Fig. 4: Syntax diagram of the 〈Reference〉 production rule with most
production rules expanded



2) Unions: The comma serves both as an union operator
and a function argument separator. This proves challenging to
correctly implement in a LALR(1) grammar.

A straightforward implementation would use production
rules similar to this:
〈Union〉 ::= 〈Reference〉 { ‘,’ 〈Reference〉 }

〈Arguments〉 ::= 〈Argument〉 { ‘,’ 〈Argument〉 } | ε
However, this will cause a reduce-reduce conflict because

the parser will have a state wherein it can reduce to both a
〈Union〉 or an 〈Argument〉 on a , token. Unfortunately there
is no correct choice: in a formula like =SUM(A1,1) the
parser must reduce on the 〈Argument〉 nonterminal, while in a
formula like =A1,A1 the parser must reduce to the 〈Union〉
nonterminal. With the above production rules a LALR(1)
parser could not correctly parse the language.

The presented grammar only parses unions in between
parentheses, e.g. =SMALL((A1,A2),1). This is a trade-off
between a lower compatibility (Design goal 1) and an easier
implementation (Design goal 3). We deem this decreased
compatibility to be acceptable since unions are very rare
(discussed in Section IV-B) and, in the datasets we used, all
but two were with parentheses (Section IV-A).

IV. EVALUATION

In this section we explain how we implemented and evalu-
ated the grammar using two large datasets and we discuss the
obtained results and formula parse failures. In the grammar
analysis in Section IV-B we examine how frequently language
features occur in the formulas of the datasets.

The grammar is implemented using the Irony parser gener-
ator framework2 and the resulting parser, named XLParser, is
available for download3. An online demo is also available.4

To extract unique formulas from spreadsheets and use them
as input to the parser we built a tool that opens spreadsheets
using a third-party library called Gembox5. This tool reads
all cells and identifies the formulas that are unique when
adjusted for cell location (R1C1 representation), thus rejecting
the formulas with adjusted references due to cell copying (e.g.
formulas =C1 and =C2 are considered the same if contained in
cells A1 and A2 respectively). The tool then uses each unique
formula string as input to the parser.

To evaluate the grammar we use it for parsing a total of
1,035,586 unique formulas. These originate from the two ma-
jor datasets available in the spreadsheet research community:
The EUSES dataset [11], comprising of 4,498 spreadsheets
and the Enron email corpus [12], which became available after
the Enron company declared bankruptcy, comprising of 16,190
spreadsheets. We were not able to process 1087 (5.25%) of
these spreadsheets, either because they are password protected,
or because of read failures in the Gembox library. In total,
the 19,601 spreadsheets that were processed from the two

2https://irony.codeplex.com/
3https://github.com/PerfectXL/XLParser
4http://xlparser.perfectxl.nl/demo
5http://www.gemboxsoftware.com/

datasets include 22,310,406 formula cells with 1,035,586
unique formulas —89,266 from the EUSES and 946,320 from
the Enron dataset.

To give a rough indication, processing these two datasets
and extracting these results takes around 4 hours on a computer
with an Intel Core i7 processor, 16GB of RAM and a SSD.

Out of the 1,035,586 unique formulas from the two datasets
that were used as input to the parser, 1,035,558 (99.99%)
were parsed successfully. This satisfies our first design goal of
compatibility with the official language. Regarding the second
and third design goals, the implementation of the parser proved
feasible and the resulting parse trees are suited for analysis and
manipulation, having only 19 types of non-terminal nodes.

A. Unparsable Formulas

The 28 formulas that were not parsed using the grammar
defined in Section III are:

• =-NOX, Regi and =-_SO2, Regi, found in two dif-
ferent workbooks in the Enron dataset. These are cases of
an union operations without parentheses that the grammar
does not parse as explained in Section III-G2.

• =+Ë% was included in an Enron file that we assume to
be either corrupt or another type of binary file, as the file
is indecipherable.

• 25 formulas that are not returned correctly from the
Gembox library. For example our tool reads and at-
tempts to parse the formula IF(=7,AVERAGE(C4:C1
1),0) and fails, but in reality the formula is
IF(B8=7,AVERAGE(C4:C11),0) which can be
parsed. All these 25 cases are parsed successfully when
we manually provide them as input to the parser.

B. Grammar Analysis

In this section we describe an analysis of the formulas in
the datasets and measure the frequency of their characteristics.
We also identify potentially smelly grammatical constructs and
rare syntactical cases.

1) Formulas and Functions: Table III shows how fre-
quently each of the production rules occurs in the formulas
of the two datasets. Jointly, 84.91% of the formulas include
a function call. Built-in value-returning functions are invoked
by 35.82% of the formulas. A significant amount of formu-
las (286,210 or 1.28%) invoke user-defined functions—e.g.,
=[1]!erUserEmail(User_Id). A special case of user
defined functions are the ones created using an Excel add-in.
These are invoked as _xll.functionName in 0.57% of
the formulas.

Operators are used in 66.74% of the formulas, with binary
operators being the most common ones, appearing in 59.77%
of the formulas. Analyzing the utilization of constants, we
find that 39.14% of the formulas contain at least one; more
than one third (35.18%) of the formulas contain a number and
11.60% are formulas that contain text. Reserved names are
uncommon, with 271 occurrences of the _xlnm.Print_-
Area and 5 occurrences of _xlnm.Database.



TABLE III: Frequency of spreadsheet formulas with specific grammatical structures in the combined EUSES and Enron datasets

Syntax Example Unique formulas Total formulas
〈Formula〉 =1+2 1,035,586 22,310,406
〈Reference〉 =E9/E10 962,783 92.97% 22,131,002 99.20%
CELL =A5 951,521 91.88% 22,021,833 98.71%
〈FunctionCall〉 =SUM(A5:A22) 701,626 67.75% 18,944,204 84.91%
〈BinOp〉 =H10-H8 397,580 38.39% 13,333,844 59.77%
〈Constant〉 =A5+134 271,585 26.23% 8,731,489 39.14%
EXCEL-FUNCTION =SUM(A5:A22) 264,673 25.56% 7,991,329 35.82%
NUMBER =(B8/48)*15 250,085 24.15% 7,849,495 35.18%
〈Prefix〉 =Sheet1!B1 337,727 32.61% 5,599,011 25.10%
〈RefFunctionName〉 =SUM(J9:INDEX(J9:J41,B43)) 55,680 5.38% 5,349,237 23.98%
SHEET =Sheet1!B1 303,981 29.35% 5,282,386 23.68%
REF-FUNCTION-COND =IF(A1<0,0,1) 50,171 4.84% 4,872,661 21.84%
〈Reference〉 ’:’ 〈Reference〉 =SUM(A5:A22) 184,451 17.81% 3,735,005 16.74%
〈UnOpPrefix〉 =+B11+1 218,397 21.09% 3,289,326 14.74%
STRING =IF(AD3<0,"buy","sell") 56,635 5.47% 2,587,971 11.60%
〈NamedRange〉 =SUM(freq) 20,686 2.00% 1,645,120 7.37%
BOOL =IF(AND(R11=1,R14=TRUE),G19,0) 7,532 0.73% 1,183,798 5.31%
FILE =[11]Sheet1!C5 104,892 10.13% 1,135,185 5.09%
REF-FUNCTION =SUM(J9:INDEX(J9:J41,B43)) 9,907 0.96% 778,056 3.49%
QUOTED-FILE-SHEET =(’[2]Detail I&E’!D62)/1000 33,781 3.26% 325,498 1.46%
UDF =SQRT(_eoq2(C5,C4,C6,C7)) 21,352 2.06% 286,210 1.28%
(’ 〈Reference〉 ’)’ =(2*(B29))/(1+B29) 6,394 0.62% 266,420 1.19%
_xll. =_xll.RiskTriang(F9,F7,F8) 11,922 1.15% 127,348 0.57%
ERROR-REF =AVERAGE(#REF!) 3,477 0.34% 123,447 0.55%
VERTICAL-RANGE =COUNT(A:A) 851 0.08% 55,254 0.25%
FILE ’!’ =[1]!today 2,040 0.20% 28,448 0.13%
ERROR =IF(R14=TRUE,G19,#N/A) 379 0.04% 27,237 0.12%
’%’ =IF(E5>I8,3%,0%) 858 0.08% 16,606 0.07%
Empty argument =DCOUNT(Lettergrades„I80:I81) 1,343 0.13% 10,512 0.05%
Complex ranges =SUM(I8:K8:M8) 367 0.04% 8,581 0.04%
DDECALL =TWINDDE|RSFRec!’NGH2 NET.CHNG’ 3,276 0.32% 3,686 0.02%
Intersection =Ending_Inventory Jan 304 0.03% 2,343 0.01%
MULTIPLE-SHEETS =SUM(Sheet1:Sheet20!I29) 173 0.02% 1,986 0.01%
Prefixed right ref. limit =SUM(’Tot-1’!$B8:’Tot-1’!B8) 147 0.01% 1,501 0.01%
UDF reference =[1]!wbname() 332 0.03% 855 0.00%
HORIZONTAL-RANGE =MATCH(F3,Prices!2:2,0) 11 0.00% 836 0.00%
〈Union〉 =LARGE((F38,C38),1) 10 0.00% 385 0.00%
RESERVED_NAME =C23/_xlnm.Print_Area 70 0.01% 276 0.00%
FILE MULTIPLE-SHEETS =SUM([2]Section3A:formulas!B11) 4 0.00% 189 0.00%
〈ConstantArray〉 =FVSCHEDULE(1,0.09;0.11;0.1) 15 0.00% 19 0.00%

Regarding function arguments, spreadsheet systems allow
empty arguments (e.g. =SUM(,E35,E37)) but this is rarely
done—in only 0.05% of the formulas. Unions are found
in only 385 formulas, e.g. =LARGE((F38,C38),1). All
occurrences were arguments of the LARGE and SMALL
functions—these two functions require a range of cells to be
declared as a single argument, necessitating a union if the
cells are not in a single range. In the EUSES dataset we
also found 19 cases of constant arrays used as arguments, e.g.
=FVSCHEDULE(1,{0.09;0.11;0.1}).

The array formulas rule, covering 〈Formula〉s surrounded by
brackets, is the only part of the grammar that is not evaluated.
The Gembox library that we use for reading spreadsheets does
not support array formulas—it reads them as regular formulas,

without the surrounding brackets. For this reason, we cannot
we extract information on their frequency in the two datasets.

2) References: 99.2% of the formulas in the two datasets
contain at least one 〈Reference〉, and 25.10% of these contain a
reference that is not local, since it includes a 〈Prefix〉. External
file references exist in almost 5.09% of the formulas. 16.74%
of the formulas include a reference to a ’:’ separated cell
range. Named ranges exist in 7.37% of formulas. Interestingly,
horizontal and vertical ranges are rarely used (jointly, in 0.25%
of the formulas). 0.55% of formulas include references to
errors, e.g. =#REF!E3. These reference errors are more than
four times as common as all other types of errors combined—
the ERROR token exists in 0.12% of the formulas.

Moving to the edge cases of the grammar, the structures
that are less common in the datasets include:



File-only external references
External references are normally in the form
[File]Sheet!Cell. In 28,448 formulas
(0.13%), however, the sheet is not specified, e.g.
=[2]!LastTrade. These are cases of references
to either external named ranges or external UDFs.

Multiple sheet references
1,986 formulas (0.01%) contain this complex case of
reference, which spans across multiple sheets. An ex-
ample formula is =SUM(Sheet1:Sheet10!A5),
evaluated by summing all cells in position A5 from
Sheet1 to Sheet10. In 189 formulas, the reference is
to external files.

References to external UDFs
855 formulas (0.004%) contain references to external
UDFs, for example =[1]!SheetName().

Prefixed right limits
1,501 formulas (0.01%) include a reference
with a prefix in the right limit, e.g.
=SUM(’Deals’!F9:’Deals’!F16). In all
cases this prefix is identical to the first one, as
continuous ranges spanning across multiple sheets
are not supported by Excel. Still, this syntax is
supported.

A special case in the grammar are the functions that
always return references, namely the INDEX, OFFSET and
INDIRECT functions and the conditional functions that some-
times return references, namely IF and CHOOSE. For ex-
ample, INDEX returns the reference of the cell at the in-
tersection of a particular row and, optionally, column, so
INDEX(B1:B10,3) returns a reference to cell B3 and can
be used in a formula as =SUM(A1:INDEX(B1:B10,3))
being equivalent to =SUM(A1:B3). These reference re-
turning functions are relatively common: they are found in
3.49% of the formulas, with the most common one being
the INDEX (in 2.51% of formulas) and the least common
one being the INDIRECT (in 0.2%). While the IF and
CHOOSE functions can be part of reference expressions,
there were no formulas in the datasets using them as such.
An example of using those functions like this would be
=SUM(IF(A1=1,A2,A5):A10), which is equivalent to
=SUM(A2:A10) if A1 is 1 and to =SUM(A5:A10) oth-
erwise.

Another rare case of references are the dynamic data ex-
change links, which were found in 3,686 formulas. These
take the form of =Program|Topic!Arguments, e.g.
=Database|TableA!Column1, and are used in Windows
versions of Microsoft Excel to receive data from other appli-
cations.

3) Smelly Grammar Constructs: There are two constructs
in the spreadsheet formula grammar that we consider to be
smelly, i.e. counterintuitive or inconsistent to the rest of the
grammar and error-prone: complex ranges and the intersect
operator.

By complex ranges we mean 〈Reference〉s that include more
than two or different types of ’:’ separated 〈ReferenceItem〉s.

(a) A range with four limits B2:D4:C1:C5, equivalent
to the area marked gray B1:D5

(b) A range with a named range rangeC2D3:B1,
equivalent to the area marked gray A1:C3

Fig. 5: Examples of references to complex ranges

An example is range B2:D4:C1:C5, illustrated in Figure 5a.
The smelly aspect of complex ranges is their evaluation. Sim-
ple cell ranges are in the form top-left:bottom-right,
including all cells in between the two limits. However, the
limits in complex ranges are not the ones specified in the
formula: they are calculated as the upper leftmost and lower
rightmost cell in the square that includes all defined cells. For
example, range B2:D4:C1:C5 is equivalent to B1:D5. Un-
derstanding the limits of the range becomes even less intuitive
when vertical or horizontal ranges or named ranges are used,
like in Figure 5b. This syntax does not add to expressiveness
of the grammar: each range is still calculated as the cells
within a single square, but without clearly user-defined limits.
Complex ranges are rare: 8,581 formulas (0.04%) include
complex ranges in the Enron dataset, and they are all defined
using three cell locations.

The intersect operator is included in this discussion because
it is , a single whitespace. An advantage of this approach
is that it enables more natural language definition of inter-
sections, e.g. =SUM((Total_Cost Jan):(Total_Cost
Apr.)). However, we find this representation inconsistent to
the grammar, because whitespace does not carry meaning in
the rest of the language. Other spreadsheet systems do not use
whitespace for this operator, either by using an alternative like
LibreOffice which uses ! or simply not supporting it. In the
two datasets intersection operations are rare, as they are found
in only 2,343 formulas (0.01%).

V. DISCUSSION AND LIMITATIONS

The currently defined formula grammar is able to parse
99,99% of the 1,035,586 unique formulas in the EUSES and
the Enron datasets. In this section, we discuss a variety of
issues that affect its applicability and suitability.



Fig. 6: A natural language formula in Excel 2003

A. Dialects

While other spreadsheet programs (e.g. Numbers, LibreOf-
fice, Google Sheets) have generally adopted the Excel formula
syntax, there are slight differences between programs and
even Excel versions. The grammar has been designed as a
generically as possible and has been enriched to include all
syntactical features found in the two datasets. Both datasets,
however, contain spreadsheets created in, or converted to,
the Excel 2007 format. This limits the grammar support for
language elements that are spreadsheet system-dependent or
even version-dependent. The built-in functions list for example
might change across versions, which would make the parser
mistakenly recognize built-in functions as user-defined func-
tions. Another example is found in LibreOffice, which uses ˜
as the union operator instead of ,. The presented grammar will
need to be modified to account for these differences before it
can be used on other dialects.

Syntactical features have also been deprecated between
Excel versions. An example is regular expressions in
formulas. Excel allows defining formulas that include
regular expressions, for example =SUM(’S*’!A1) or
=SUM(’Sheet?’!A1). However, in Excel 2010 and up,
regular expressions are instantly resolved—in the example,
to =SUM(Sheet2:Sheet3!A1), summing up all A1 cells
between Sheet2 and Sheet3, where the sheets are all sheets
matching the regular expression, except the one that the
formula is on. This way, in Excel versions 2010 and up, saved
spreadsheets never contain regular expressions.

The use of labels in formulas (referred to as natural language
formulas) is another feature that was discontinued in Excel
2007. Labels were the headings that were typed above columns
and before rows, and they could be used in formulas instead
of defined names or cell ranges. Figure 6 shows an example in
Excel 2003, where formula =Product A Store 2 returns
the intersection between the cell range with heading Product
A and the one with heading Store 2. This feature is re-
placed in newer versions of Excel with the less error-prone
named ranges feature. When processing spreadsheets with
newer versions of Excel, the references that include labels
are automatically converted to cell-only references—in the
example, the formula is converted to =C2. The grammar does
not support labels, and it would mistakenly parse them as
named ranges.

B. Internationalization

Excel formulas differ depending on the language of the
software. For example function arguments are separated by
a semicolon instead of a comma in locales that use the
comma as a decimal separator: the formula =SUM(1.5,A1)
in the English version would be shown as =SOM(1,5;A1)
in the Dutch version. Our grammar supports only the English
locale. Grammars for other locales can be derived by replacing
delimiters, error values and function names with their localized
versions.

It is worth noting that Excel will always save formulas
in either a locale-independent form (Excel 2003 and earlier
format) or in its English version (Excel 2007 and later format).
When interacting with Excel through its API two versions
of the formula can be read or written: the English version
and the version in the current locale. This makes a grammar
for the English version useful, since the parser can process
all spreadsheets as long as their formulas are read using the
always available English locale.

C. Rejection of Invalid Formulas

As stated in the design goals in Section III, the goal of this
grammar is to facilitate analysis of formulas, which means
correctly parsing valid spreadsheet formulas. Rejecting invalid
formulas is not among the primary goals of this grammar,
as the parser will normally not encounter invalid formulas in
Excel files. Furthermore, while there exist two big datasets of
valid formulas, no such datasets of invalid formulas exist. As
such we expect that the presented grammar will parse formulas
which are not valid. Using this grammar to parse possibly-
invalid formulas like user-input might thus require additional
safeguards.

On one point we know the grammar to be too broad:
Excel places several limitation on formulas like the number
of arguments of a function (255), nested function calls (64),
row number (220), column number (214) and total formula
length (213), with lower numbers in older file formats. Our
grammar does not incorporate any of these limits.

D. Parse Tree Correctness

While we have empirically shown a high compatibility
in terms of successful parse rate, we do not have as much
evidence that the produced parse trees are correct as this is
only tested by usage and unit tests in the reference implemen-
tation. We have manually sampled numerous parse trees and
we have found them to be correct. We believe it is unlikely
that a formula parsed with the presented grammar would be
interpreted differently by Excel, but we do seek additional
feedback on possible erroneous parse trees from the research
community.

VI. RELATED WORK

Efforts to reverse-engineer language characteristics based
on existing artifacts have been successful for other languages,
including COBOL [16] and C, C++, C# and Java [17].



Most related to our research on the spreadsheet formula
language is the work of Badame and Dig [10] who, as part
of their proposed spreadsheet refactoring approach, presented
a grammar for spreadsheet formulas. However, they do not
evaluate their grammar, and upon inspection one can see
that key ingredients are missing: e.g. external references,
intersections, unions, named ranges and operator precedence.
An extension of the same grammar was used to refactor
formulas by Hermans and Dig [9].

There is a large body of related work that relies on parsing
spreadsheet formulas to analyze spreadsheets. This includes
our own work in which we have created an algorithm to visual-
ize spreadsheets as dataflow diagrams [5], and subsequently on
detecting smells in spreadsheets [7], [8]. Related approaches
exist, for example the work of Cunha that have worked on
code smells [18] and smell-based fault localization [19]. These
papers also analyze spreadsheet formulas but do not detail
which grammar or analysis method they use.

VII. CONCLUSION

In this paper we (1) present a grammar for spreadsheet
formulas, (2) evaluate it against over one million unique
formulas, successfully parsing 99.99%, and (3) use it to
analyze the formulas in the dataset, measure the frequency of
their characteristics and find uncommon grammatical cases.

The grammar is compact and produces processable parse
trees, suited for further manipulation and analysis. We believe
that the grammar is reliable and concise enough to facilitate
further research on spreadsheet formula codebases. It has
already been applied in other works for analyzing formula
characteristics, calculation chains and code smells and for
applying formula transformations. The XLParser6 is published
as open-source software and an online demo is also available.7

A point of improvement for the grammar is that its exact
compatibility with the official Excel grammar is unknown. A
comparison to the official specification could lead to either
improving compatibility, or extending the number of known
limitations. In general, the problem of determining whether
two context-free grammars are equivalent is undecidable, but
in practice several techniques have been successfully used for
this purpose [20], [21].
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