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Abstract

In the recent past, real-time video processing using state-of-the-art deep neural networks
(DNN) has achieved human-like accuracy but at the cost of high energy consumption, mak-
ing them infeasible for edge device deployment. The energy consumed by running DNNs
on hardware accelerators is dominated by the number of memory read/writes and multiply-
accumulate (MAC) operations required. As a potential solution, this work explores the role
of activation sparsity in efficient DNN inference. As the predominant operation in DNNs
is matrix-vector multiplication of weights with activations, skipping operations and mem-
ory fetches where (at least) one of them is zero can make inference more energy efficient.
Although spatial sparsification of activations is researched extensively, introducing and ex-
ploiting temporal sparsity is much less explored in DNN literature. This work presents a
new DNN layer (called temporal delta layer) whose primary objective is to induce temporal
activation sparsity during training. The temporal delta layer promotes activation sparsity by
performing delta operation facilitated by activation quantization and l1 norm based penalty
to the cost function. During inference, the resulting model acts as a conventional quantized
DNN with high temporal activation sparsity. The new layer was incorporated as a part of
the standard ResNet50 architecture to be trained and tested on the popular human action
recognition dataset (UCF101). The method caused 2x improvement in activation sparsity,
with 5% accuracy loss.
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Introduction 1
Video processing in real-time is still a challenging task. However, the domain has garnered
interest in a wide variety of real-world applications like medical diagnostics, video surveil-
lance, robotics, agriculture, and driver assistance systems. In recent years, the algorithms
for video processing has shifted to machine learning based multi-layered, complex, trained
feature extractors called deep neural networks (DNNs) [1]. DNNs have lately managed to
successfully analyze video data to perform action recognition [2], object tracking [3], object
detection [4], etc., with human-like accuracy and robustness.

Unfortunately, the high accuracy of DNNs comes with high compute and memory costs,
making them highly costly in terms of energy consumption. This makes them infeasible for
always-on edge devices. Thus, to combat this, algorithms has been developed to design tailor-
made hardware architectures [5] [6] [7], as well as to adapt the neural network itself to avoid
expensive arithmetic operations by reducing bit precision, exploiting sparsity, and developing
more compact architectures [8] [9]. However, they either (a) do not result in high enough
energy cost reduction, (b) are inflexible to be integrated to existing networks or (c) suffer a
considerable accuracy loss.

This work attempts to propose a new method to efficiently perform inference on DNNs
for video-based applications.

1.1 Motivation

Over the years, several methods has been considered to reduce the computations and memory
accesses required while executing a DNN. Techniques like network pruning, quantization,
regularization using sparsity inducing priors and knowledge distillation [10] [11] [12] has helped
in reducing the model size resulting in lesser computation and memory consumption. These
methods are particularly popular not only because they are efficient but also due to their
inconsequential accuracy loss.

In all the above-mentioned solutions, sparsity is an underlying feature. This is notable as
sparse tensors provides the potential to skip computations that involve multiplication with
zeroes. Also, they are easier to store and access in memory.

Interestingly, the research involving sparsity induction in DNNs is facilitated by corre-
sponding accelerators and architectures that can exploit the available sparsity in memory
and compute operations on the hardware side, e.g. [13] [14] [15]. Besides academic research,
several start-ups are also developing commercial versions of sparsity exploiting neural network
inference processors [16] [17].

1.2 Problem Description

Structural sparsity (of weights) and spatial sparsity (of activations), are well-researched topics
in DNN literature [18]. However, temporal activation sparsity is comparatively less explored
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in the context of DNN, although it is a popular concept in neuromorphic computing. Funda-
mentally, temporal sparsity exists in a signal which is stable over time.

As conventional sensors capture signals with a fixed sampling rate, natural data (e.g.
video, audio) contains a great deal of temporal redundancy. In 1991, arguably for the first
time, [19] demonstrated that by mimicking the human retina, a silicon retina can reduce
acquisition bandwidth by reporting only the spatial and temporal changes. This thesis takes
the concept mentioned above of change based processing from data acquisition to the training
and inference phases of deep neural networks. As shown in Figure 1.1.(a), DNN inference
which process each frame separately with no regard to the temporal correlation is dense
and obscenely wasteful. Whereas processing only the changes in the network (see Figure
1.1.(b)) can lead to zero-skipping in sparse tensor operations reducing redundant operations
and memory accesses.

Additionally, in practice, performing sparse operations on DNN accelerators with parallel
cores often sustain an extra cost per operation because the computations involving irregular
or non-structured sparse tensors is difficult to be optimally distributed across the cores. In
this case, if the sparsity level is not sufficiently high, most of the off-the-shelf accelerators
performing sparse operations cannot decrease the energy cost [20].

(a)

(b)

Figure 1.1: (a) Standard DNN performing frame based processing, and (b) delta based model
that processes only data that has changed between frames [21]

1.3 Objective

The main objectives of this work are,

1. To induce sufficiently high temporal sparsity without suffering too much accuracy loss.

2. To make the method flexible enough to be integrated with existing architectures.

3. To study whether spatial sparsification methods can facilitate the induction of temporal
sparsity.

4. To investigate the consequences of the method.

2



1.4 Contributions

The main contributions of this thesis are as follows:

• A methodology which induces temporal sparsity to potentially any DNN, by means of
a new layer (called Temporal Delta Layer), which can be introduced in a DNN at any
phase (training, refinement, or inference only).

• The new layer can be integrated into an existing architecture by placing it after all or
some of the ReLU activation layer as deemed beneficial. The inclusion of this layer does
not require any change to the preceding and following layers (see Figure 1.2).

Input Output

Input Output

(a) Standard DNN

(b) Proposed methodology

Conv layer with ReLU
activation Temporal delta layer

Figure 1.2: (a) Standard DNN, and (b) DNN with temporal delta layer

• During the training phase, the new layer adds a novel sparsity penalty to the overall
cost function of the DNN. This l1 norm based penalty minimizes the activation density
of the delta maps (i.e., temporal difference between two consecutive feature maps).

• Two activation quantization methods, namely fixed-point quantization (FXP) and
learned step-size quantization (LSQ), are compared in conjunction with the new layer.
Insights are provided regarding the consequence of both the methods.

3



• During training, in the case where the new layer is combined with LSQ, the method
considers quantization step-size as a trainable parameter and is optimized by the sparsity
penalty. The trainable step-size helps the optimizer to converge with the highest possible
sparsity (minimizing the sparsity penalty) and the highest possible accuracy (minimizing
the accuracy loss).

• At the end of training, the method results in a conventional quantized DNN. This means
that during inference, the activations are already quantized, and the layer only does the
delta operation.

• The new layer can be trained using two different input modalities: RGB and RGB
difference, both of which were found to be compatible with the layer.

1.5 Outline

2
Energy Efficient Deep Neural Networks: 
Discusses basics of DNN, causes of high 

 energy consumption in DNN, and  
existing solutions for the same.

3

Neuromorphic DNN: 
Explains the importance of sparsity in 

biological brain, how exploiting sparsity  
can lead to energy-efficient DNNs, and  
recent works on weight and activation  

sparsity.

Chapters

4

Proposed Methodology: 
Introduces a novel general-purpose DNN layer 
 (called temporal delta layer) which can induce  

temporal sparsity facilitated by activation 
 quantization and sparsity inducing 

penalty term. 

5

6

Experiments and Results: 
Establishes the experimental setup  

and analyzes the results to study how the  
proposed method helps in achieving the 

objectives of the thesis. 

Conclusion: 
Specifies the consequences and drawbacks  

of the method, along with recommendations for 
future. 

Figure 1.3: Outline of the thesis
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Literature Review
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Energy Efficient Deep Neural
Networks 2
2.1 Introduction

This chapter can be conceptually divided into three parts: (a) basics of deep neural network
(DNN) and convolutional neural networks (CNN) as a subset of DNN, (b) what causes high
energy consumption during DNN inference, and (c) what are the existing solutions which
combat this problem.

2.2 Neural Networks - Basics

2.2.1 Perceptron

Perceptron is the fundamental building block of a neural network, and it represents an abstract
model of the biological neuron [22]. As shown in Figure 2.1, (x1, x2, ...xn) are the inputs,
(w1j , w2j , ...wnj) are the weights that can be learned during training, and oj is the output.
Mathematically, netj is the scalar product between the weight vector and input vector (Eq.
2.1). Then, the value of netj is passed through an activation function, ϕ, which activates
the input if a threshold, θj , is fulfilled (Eq. 2.2). Basically, the perceptron can linearly
split the solution space. Unfortunately, this indicates that a basic perceptron cannot learn
problems that are not linearly separable. However, multi-layer perceptrons can solve non-
linear problems if the activation, ϕ, is non-linear.

netj =

n∑
i=0

xi.wi (2.1)

oj = ϕ(netj) =

{
0, if netj < θj

1, if netj ≥ θj
(2.2)

Figure 2.1: Structure of a perceptron [22]
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2.2.2 Multi Layer Perceptrons

Multi-layer perceptron (MLP), also known as feedforward networks, consists of networks of
perceptrons connected in series [23]. As shown in Figure 2.2, the first layer is the input layer,
the last layer is the output layer, and the layers in between are the hidden layers. The number
of hidden layers in a network represents its depth, and the number of perceptrons (or units)
within a layer represents the width of that layer.

The units are fully connected between the layers. The output of every unit in layer l is
connected to the input of every unit in layer l + 1, and the input of every unit in layer l is
connected to the output of every unit in layer l − 1. Unlike a single perceptron, MLP can
solve non-linear problems because of its multi-layered structure, given the activation function
used is non-linear.

Figure 2.2: Multi-layer perceptron with input layer, output layer and 3 hidden layers [24]

Theoretically, a single-layered network can mathematically represent any function. How-
ever, practically, the training algorithm might not find the right weight parameters for the
network, or generalise well. Nevertheless, it was empirically proved that deeper neural net-
works have a better chance at finding the right parameters and reducing the generalisation
error.

The next section (2.3) mainly references the book by Ian Goodfellow [1].

2.3 Deep Neural Networks

A multi-layered network with more than three hidden layers can be termed a deep neural
network. Similar to the biological brain, deep neural networks use hierarchical learning [25].
For example, in face recognition, lower layers of a DNN learn edges, curves, and corners.
Middle layers compose these low-level features to form complex structures like eyes, nose,
lips, etc., and the top layers learn the actual faces (see Figure 2.3).
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Lower layers Middle layers Top layers

Figure 2.3: Hierarchical feature learning in DNN [26]

2.3.1 Training

Note: For explanation, only supervised learning is considered. This means that every ex-
ample in the training set is a pair of input data and labelled output data. The objective is to
find a function that approximately maps the input to the output and is generalizable enough
to map unseen data to the correct output label.

Consider a training set with input vectors, xn and output vector, yn where n = 1, 2, ...N .
The goal is to train the function, f(x; Θ) = y, where Θ is the learnable parameter. In most
networks, Θ is trained to minimize the error between predicted y and true y. This loss
function is decided according to the learning problem. For simplicity, let loss function, J(Θ),
be mean square error, the squared difference between f(x; Θ) and y. Furthermore, the loss
function is calculated as the average over the complete training set (Eq. 2.3).

J(Θ) =
1

2N

N∑
n=1

||f(xn; Θ)− yn||2 (2.3)

The loss function is optimized using the gradient descent method [27]. It is an iterative
optimization algorithm that updates the weights with the help of the gradient of J(Θ) with
respect to Θ and tries to find the global minima of the loss function. The gradient provides
two crucial pieces of information. One is the direction in which Θ is to be moved to find the
global minima, and the other is how big of a step to take to reach that minimum. Gradient
descent can be expressed as,

Θ← Θ− η∂J(Θ)

∂Θ
(2.4)

The partial derivatives of the gradient are computed using backpropagation. Backpropa-
gation is a computation method based on the chain rule of calculus and operates by passing
values backwards through the network to compute how each weight affects the loss. Also, in
Eq. 2.4, η represents the learning rate, which intuitively describes the step size to take in
the steepest descent direction. If η is too small, the convergence of the network to a global
minimum tends to take a long time, and if η is too large, the algorithm might jump over
the best solution. Therefore, η is an important hyperparameter to consider while training a
network.

Furthermore, DNN optimization has been an active research field. Stochastic gradient de-
scent, Nesterov accelerated gradient, Adagrad, Adam, RMSprop are a few popular optimizers
in use [28].

9



2.3.2 Inference

Inference is the process of inferring or predicting against unseen data while using the trained
DNN model. Unlike training, inference does not include a backward pass to compute the
error and update weights (see Figure 2.4).

Figure 2.4: Training v/s inference [29]

2.3.3 Activation Functions

The activation function is an essential component of the DNN as it gives the network the
capability to solve non-linear problems. In a linear activation or no activation, the network
can only solve linearly separable problems, no matter how deep the network is. Apart from
the non-linearity, activation functions must be continuously differentiable to compute useful
gradients.

Traditionally, saturated activation functions, like sigmoid and tanh were mostly used.
They were limited to (0, 1) or (-1, 1). This led to the vanishing gradient problem. For
example, as shown in Figure 2.5, the maximum value of the sigmoid derivative is 0.25 (i.e.
less than 1). Therefore, the gradients of the lower layer weights will involve the product of
many numbers less than 1, leading to the gradient itself becoming very small (close to zero).
This leads to the stagnation of learning and the delaying of convergence of the network.

In the recent past, new activations have replaced the saturated ones [31]. Two of them,
ReLU and Softmax, which are used in this thesis, are explained below.

ReLU - Rectified Linear Unit ReLU, as shown in Figure 2.6, is arguably the most
popular activation function in use for DNN. It can be expressed as,

σ(x) = max(0, x) =

{
0, x < 0

x, x ≥ 0
(2.5)
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Figure 2.5: Sigmoid function and its derivative. Sigmoid ranges between 0 and 1. The
maximum value of its derivative is 0.25. [30]

Eq. 2.5 indicates that if x < 0, the activation output is 0 otherwise, the output is x. An
interesting property of the ReLU function is its derivative, which is either 0 (for negative x)
or 1 (for positive x). This speeds up the backpropagation and solves the vanishing gradient
problem because multiplication with one would not change the gradient. Also, [32] [33] has
proved that using ReLU as the activation function in DNN leads to better results and faster
convergence than using the saturated activation function.

Figure 2.6: ReLU function [33]

Softmax The softmax function converts a real-valued vector with K elements into a real-
valued vector that sums to 1. The input vector can have positive, negative or zero values,
but the softmax turns it into a value between 0 and 1, so that the output can be interpreted
as a probability. These probabilities can be considered as the network’s ”confidence score”
indicating how sure it is about the input. If the softmax input is small or negative, it translates
to low probability, and if the input is large, it turns into high probability (see Figure 2.7).
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Softmax is also called multi-class logistic regression as it can represent the probability
distribution of input over K classes. Therefore, it is mainly used in the last layer of the
network [34].

Figure 2.7: Softmax function - largest value in the output layer has the largest probability
[35]

2.3.4 Convolutional Neural Networks

Convolutional neural networks (CNN) are a subset of DNN that is popularly used to process
visual imagery-based applications (although not limited to it). These applications include
image classification [36], image segmentation [37], pose estimation [38], face recognition [39],
etc. CNN mainly consists of a convolutional layer, pooling layer, and fully connected layer
[40].

2.3.4.1 Convolution Layer

The convolution operation is the fundamental building block of a CNN. The kernels or filters
are the learnable parameters of this layer. Filters are composed of synapses or weights.
Kernels are spatially small compared to their inputs but extends depth-wise through the
input volume. Typically used kernel sizes are 3x3, 5x5, and 7x7. The third dimension of the
kernel corresponds to the number of input channels.

During the forward pass, the entries of each filter are convoluted with the input volume.
This involves computing the dot products between the kernel and the input at any position,
as shown in Figure 2.8. Convolution is typically succeeded by a non-linear activation function
(e.g. ReLU). The resulting outputs are called activation maps or feature maps. Then, these
activation maps are stacked depth-wise to produce output volume. The output size of these
maps depends on three hyperparameters: padding, stride and depth.

• The convolution operation on an input matrix reduces the output size, which leads to
information loss. To avoid that, the input volume is padded with zeros around the
border. The two most common choices for padding are valid and same. The valid
convolution means no padding, and the same convolution means that the output size
and input size are the same.

• The stride indicates the number of pixels that the filter is slid on the input image/feature
map. Larger strides reduce the size of output volumes spatially.

• The depth represents the number of filters that are used in the convolution operation.
Each filter is learning a different aspect in the input like edges, blobs, colours, etc.
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Figure 2.8: Demonstration of convolution operation [41]

2.3.4.2 Pooling Layer

The pooling layer is often placed after the convolution layer, and its function is to reduce the
spatial dimension of the incoming matrix. The process is also referred to as sub-sampling
or down-sampling. The main parameters of the pooling layer are the stride and kernel size.
Two common types of pooling are average pooling and maximum pooling, where the average
and maximum value within a kernel is chosen to be propagated to further layers, respectively
(see Figure 2.9). Max pooling is usually preferred over average pooling. The intuition for
this preference is that the maximum or large number indicates that an important feature has
been detected.

Figure 2.9: Average and Maximum pooling [42]
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2.3.4.3 Fully Connected Layer

The fully connected layers are multi-layer perceptron (generally a two or three-layer MLP)
that aims to cast the activation maps generated by the feature extractor into a class proba-
bility distribution, usually with the help of softmax function.

Note: There are other layers typically used in a CNN, like batch normalization layer and
dropout layer. Interested reader can refer [43] [44].

2.4 Energy Consumption in DNN

Typically, a DNN accelerator has the following components [45]:

• An off-chip memory or DRAM to store the feature maps and weights of the DNN
network. This component can contain several GBs of data. Using DRAM is an economic
strategy to extend memory hierarchy as they are cost-effective.

• An on-chip global buffer (GLB), which holds the inputs and weights before it is fed into
all the processing elements (PEs). The energy cost of accessing GLB is two orders of
magnitude lower than that of the off-chip memory [46].

• A collection of processing elements (PEs), each with its own ALU, to simultaneously
perform multiply-and-accumulate (MAC) operations. The PEs also contain register files
(RFs) to store parameters locally, and these registers have lower energy costs than that
of the on-chip buffer.

• A Network-on-Chip (NoC) that connects the PEs with each other and to the GLB. The
NoC can assume various configurations depending on how the operations are spatially
distributed and temporally scheduled on the PEs.

The computations carried out in the DNNs are mostly MACs, but typically they are
performed on a large set of weights and inputs. Therefore, the bottleneck is not caused by
the arithmetic computations but by the memory accesses. Every MAC requires three reads
from memory, i.e. RF, SRAM or DRAM (input pixel, weight and partial sum) and one
write (updated partial sum). As shown in Figure 2.10, memory access from DRAM has an
energy cost ∼ 2 orders of magnitude higher than a MAC operation [47]. Therefore, to achieve
energy-efficient DNN processing without compromising performance: (a) the hardware design
should develop data-flows that support parallel processing with minimal data movement,
and (b) algorithm design should strive to decrease the computations and memory accesses
significantly.

2.5 Energy Efficient Solutions

2.5.1 Quantization

As shown in Figure 2.11, energy cost can be reduced by lowering the precision of arithmetic
operations, making it computationally efficient and compressing the size of DNNs, decreasing
the memory accesses. One of the methods to accomplish this is quantization. It refers
to the method of mapping values from a higher bit precision to a lower precision format.
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Figure 2.10: Energy consumption of multiply-accumulations in 45nm 0.9V [48]

The quantization technique can be broadly categorised into post-training quantization, where
a full precision model is quantized after training, and quantization aware training, where
quantization is a part of training, with the effect of it taken into consideration within the
main training loop.

Figure 2.11: Pareto analysis accessing the effect of quantization on DNNs classifying MNIST
dataset [49]

Post-training quantization schemes are relatively simple in terms of implementation. For
example, ACIQ [50] calculates the best clipping value by analysing the weight distribution,
which is typically Laplacian or Gaussian. Nvidia’s TensorRT [51] measures the relative en-
tropy between quantized and full-precision weights using KL divergence to find the optimum
clipping value. However, these methods fail to reach baseline accuracy because of the lack of
re-training.

Another set of approaches involve quantization aware training where the objective is to
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minimize the quantization error. For instance, BNN [52] quantizes the weights and activations
of the network to binary values of -1 and +1. XNOR-net [8] extends this idea by quantizing
them into binary converting a convolution operation to an XNOR shift operation. Later,
WRPN [53] and DoReFa [54] used multiple bits to represent weights and activations unlike
bipolar quantization. PACT [55] suggest learning the clipping value during training itself for
each layer. Techniques, so, far, use uniform quantization step size. However, QIL [56] and
APoT [57] propose that non-uniform quantization during training provides better accuracy.

Furthermore, there have been improvements aiming for mixed-precision quantization
where each network layer has a different bitwidth. HAQ [58] and ReLeQ [59] use reinforce-
ment learning to learn different bit precision for different layers. Another work, HAWQ [60],
uses the second order hessian to decide which layers to quantize and how much to quantize.

Advantages

• Quantization helps reduce the circuit area, memory footprint, memory access, and en-
ergy requirement.

• Active research on non-uniform and mixed-precision quantization is helping in achieving
lower bit precision while maintaining accuracy.

Limitations

• Most of the quantization techniques mentioned above, which results in at par baseline
accuracy, works under the condition that the first and last layer remains unquantized
(or quantized to a higher precision). It remains an unsolved problem.

• In most cases, special hardware is required to resourcefully tap into the benefits of
quantization, like dynamic precision architectures.

2.5.2 Pruning

Removing or pruning the unimportant connections and parameters from DNNs, as shown in
Figure 2.12, can reduce the computations and the number of memory accesses. Research in
pruning mainly focuses on two objectives: identifying the least promising neurons or param-
eters that can be pruned and training / fine-tuning the pruned model to recover the baseline
accuracy [61].

Earlier works in this field centred around data-agnostic criteria to identify the unimportant
weights. [62] used second order Hessian matrix to analyse the weights to be pruned without
compromising model accuracy. As an extension, [63] suggested that pruning harmless weights
iteratively could be more beneficial than pruning them all at once. [64] considered the l1-norm
of filters as the pruning criteria. [65] used the scaling factor of the batch normalization layer
as the threshold. Apart from the data-agnostic methods, another approach is to exploit the
training data to measure saliency, which can be termed data-aware pruning. [66] proposed
to activation entropy to identify the channels to be pruned. [67] argued the use of gradient
magnitude to prune the model during training. [10] performs pruning, quantization, and
encoding to reduce the model size by 95%.
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Advantages

• Pruning leverages the redundant information carried in a DNN model thus reducing
model size.

• Pruning methods are typically model agnostic and can be applied to any given network
with minor modifications.

Limitations

• A typical pruning algorithm requires iterative model training, significantly increasing
the time required to build these models. [49] surveys that using quantization and
pruning together can increase the training time up to 600%.

• Taking advantage of pruning requires custom hardware or special compression tech-
niques to represent sparse matrices [18].

Figure 2.12: Neurons and synapses pruning [68]

2.5.3 Neural Architecture Search

Manually finding the best network or architecture for a particular application is difficult
with many architectural possibilities. Network Architecture Search (NAS) is a method that
automates the DNN architecture design without manual efforts. NAS suggests candidate
architectures from the search space, which are then trained and validated. The validation
accuracy is used for reinforcement learning to propose the next candidate architecture (see
Figure 2.13). NASNet [69], AmoebaNet [70] and MNasNet [71] are examples of NAS which
obtain state-of-the-art accuracy. MNasNet especially uses a multi-objective reward mecha-
nism to search for a DNN architecture that matches both latency and accuracy requirements.
NAS algorithms are extremely time and resource consuming. A more recent algorithm called
Single-Path-NAS [72] reduces the architecture search time on ImageNet but comes at the cost
of lesser accuracy.
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Advantages

• NAS systematically finds the balance between accuracy, latency, and memory by search-
ing through the solution space of all the candidate architectures without any human
intervention.

Limitations

• The computational and resource demands of most of the NAS algorithms are pro-
hibitively intensive, making it difficult to find trained and tested architectures for large
datasets.

Figure 2.13: Neural Architecture Search [73]

2.5.4 Knowledge Distillation

Typically, larger, more complex DNN models which are computationally intensive leads to
better performances. To leverage this, [74] proposed a model ”compression” method where a
pre-trained larger complex network is used to train a smaller DNN model. Larger networks
have more capacity, thus enabling them to learn complex training data features, which are
difficult for a smaller network to learn from scratch. In this method, the larger network is
called the teacher and the smaller network is called the student.

Knowledge is transferred to the student model by learning the class distribution of the
softmax layer outputs (soft labels) from the teacher model. To tap better into the ’dark
knowledge’ available in trained teacher models, [12] introduced the softmax temperature (T ).
As T increases, the target probabilities of the teacher and student are softened, providing
more information as to which classes the teacher found more similar to the predicted class
(see Figure 2.14). A recent work [75] also discusses the idea of distilling knowledge from
feature maps of the teacher model directly.

Advantages

• It is computationally efficient to use the distilled smaller network for inference.

• Training is faster.

• It can be combined with other energy-efficient methods like quantization [76] [77] and
neural architecture search [78].
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Limitations

• There is no method to quantify the quality of the knowledge obtained from the teacher,
which makes the generalisability of the approach questionable.

• Highly dependent on the structure of teacher and student.
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Figure 2.14: Knowledge distillation

2.6 Conclusion

The chapter discussed the basics of DNN architecture including its most commonly used lay-
ers. Then, the main causes of energy consumption in DNN processing were explained. Finally,
existing techniques from the recent literature were discussed along with their advantages and
disadvantages, which pursues the concept of energy efficient DNNs.
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Neuromorphic Deep Neural
Networks 3
Firstly, this chapter discusses the importance of sparsity in the biological brain and how it
contributes to making the brain an energy-efficient system. Then, it is explained how sparsity
translates to less energy consumption in the case of a DNN. Finally, recent works dealing with
both weight and activation sparsity are surveyed.

3.1 Sparsity in the Biological Neural Network

Although DNNs, as mentioned in Section 2.3, are bio-inspired, they have not been able to
find the balance between power consumption and accuracy yet, especially while dealing with
computationally heavy streaming signals. On the other hand, the brain’s neocortex handles
complex tasks like sensory perception, planning, attention, and motor control while consuming
less than 20 W [79]. Therefore, the brain’s functioning can be reverse engineered to bridge
the energy consumption gap between the brain and DNNs.

Scalable architecture, in-memory computation, parallel processing, communication using
spikes, low precision computation, sparse distributed representation, asynchronous execution,
and fault tolerance are some of the characteristics of the biological neural networks that can
be leveraged [80]. Among these, the thesis focuses on the viability of using sparsity within
DNNs to achieve energy efficiency. A sparse vector indicates that most of its elements are
zero. The human brain is considered a sparse model because approximately out of the 86
billion neurons available, only 1% to 10% of neurons are active at any given time [81] [82].

Specifically, while processing streaming signals, neurons detect the changes in their input
and let it accumulates past some threshold, upon which they send a discrete “spike” signal no-
tifying the downstream neurons of this detected change. Therefore, when extracting features
from temporally correlated signals like videos, the biological brain opts for a change based
(or event-based) processing approach rather than a frame-based one. This spatio-temporal
sparse representation within the neurons also contributes to making the system noise resilient
and robust.

3.2 Sparsity and Energy Consumption

Sparsity in weights or activations of DNNs is a feature that can be used to achieve energy
efficiency. During a matrix-vector multiplication between a weight matrix and an activation
vector, zero elements in the tensor can be skipped as they do not contribute to the final result.
Therefore, the multiplications between zero-valued activations and their corresponding weight
columns can be skipped, leading to computational as well as memory access reduction (see
Figure 3.1). Moreover, it is also possible to skip multiplications between zero-valued weight
elements and non-zero input activation elements as well to reduce energy cost, though this
aspect has not been considered in this work. [20] approximates the theoretical computation
and memory access reduction (in delta based networks) to be the inverse of activation density,
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which is the ratio of non-zero elements to all elements in an activation vector (Eq. 3.1 and
3.2).

Computation reduction =
Costcomp,dense

Costcomp,sparse
≈ 1

activation density
(3.1)

Memory access reduction =
Costmem,dense

Costmem,sparse
≈ 1

activation density
(3.2)

Although sparsity has the potential to decrease energy consumption, there are two main
pitfalls to consider. (a) If the sparsity is non-structured, it might not contribute to an energy-
efficient system due to the overhead of irregular execution paths and memory access, (b) the
non-structured sparsity needs to be significantly high to see a realistic decrease in energy cost
[83].

Figure 3.1: Sparsity in ∆x can save multiplications between ∆x and columns of W that
correspond to zero [20]

3.3 Sparsity - Related Works

There are broadly two types of sparsity available in DNNs: weight sparsity (related to the
interconnect between neurons) and activation sparsity (related to the number of neurons).
Furthermore, activation sparsity can be categorised into spatial and temporal sparsity, which
exploits the spatial and temporal correlation within the activations, respectively, [16] as shown
in Figure 3.2.

Weight sparsity: The concept of weight sparsity in the biological brain indicates that if
a group or layer of cells projects to another layer, only 1% - 5% of the possible neuron to
neuron connections exist [84]. [85] takes this idea and hypothesises that every DNN contains
sub-networks (called winning tickets) that, when trained in isolation can reach test accuracy
comparable to the original network.
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Sparsity in DNN
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Figure 3.2: Types of sparsity available in DNNs

In this effort, inspired by the Hoyer measure [86] used in traditional compressed sensing
problems (see Figure 3.3), [87] present DeepHoyer, a set of sparsity-inducing weight regu-
larizers that leads to sparser solutions than traditional regularization methods like LASSO
and Ridge. [88] uses Taylor score to remove more than 98% of weights and quantizes the
remaining weights into powers of two to enable the use of shifters instead of multipliers on
the hardware level, dramatically reducing hardware complexity. Similarly, [89] introduce a
novel penalty called Hierarchical Adaptive Lasso (HALO), which adaptively learns to spar-
sify over-parameterized networks through adaptive shrinkage. Furthermore, [90] proposes Soft
Threshold Reparameterization (STR), which in turn obtains a non-uniform sparsity budget
across layers. Whereas, [91] suggests an energy-aware pruning algorithm for DNNs that di-
rectly uses the energy consumption of a DNN to guide the sparsification process.

Figure 3.3: Contours of l1 norm and the Hoyer (the ratio between l1 and l2 norms) regulariser
of a 2D vector [10]

Spatial sparsity: As a natural consequence of ReLU function (Section 2.3.3), a non-trivial
portion of the activations in a DNN are already sparse, as shown in Figure 3.4. [92] observes
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that AlexNet exhibits an average of 49.4% activation sparsity across the entire network. To
further this, [93] explored l1 regularization to induce sparsity in the activation maps, showing
that sparsity can be increased by up to 60% for image classification models. [94] provides an
activation density (or the number of non-zero activations) driven pruning approach that pro-
vides a heuristic way of obtaining the optimal number of neurons for each layer of a network
during training. [95] proves that spatial sparsity can be significantly increased via Hoyer regu-
larization and thresholding, with acceptable accuracy loss, beyond l1 regularization. Similarly,
to take advantage of the spatial correlation in activation maps, [96] introduces differential con-
volution, which uses the differences (or the deltas) between the columns of activation maps
rather than on their absolute values. This also reduces the effectual bits, directly reducing the
DRAM memory access. [97] explores a dynamic winners-take-all (WTA) dropout mechanism
where only those activations with high magnitude are allowed to propagate to the following
layers, thus inducing structured spatial sparsity.

Figure 3.4: Natural spatial sparsity within the activation maps due to ReLU [98]

Temporal sparsity: Unlike weight and spatial sparsity, exploiting the temporal redun-
dancy of DNNs while processing streaming data as a means to reduce energy consumption
is a relatively less explored idea. Exploiting temporal sparsity translates to skipping re-
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calculation of a function when its input remains unchanged since the last update (see Figure
3.5).

Figure 3.5: A sample video sequence demonstrating the fact that moving objects make up
only a small part of the overall scene. [99]

Few methods exploited the compressed representation (like H.264, MPEG-4, etc.) of
videos at the input stage itself as an approach. These compression techniques only retain a
few key-frames completely and reconstruct others using motion vectors and residual error,
thus using temporal redundancy. Considering this, [100] proposes using multiple CNNs that
directly operate on the motion vectors and residuals, in addition to a small number of complete
images. Similarly, [101] introduces activation motion compensation (AMC), which is based
on video compression coding. AMC reduces the size of CNN layers enough for them to be
stored on-chip, reducing the chances of off-chip memory access, which costs more energy.

Another path includes finding a neuron model which is somewhere in between “frame-
based DNN” and “event-based spiking neural networks”. This thesis is an attempt in the
aforementioned direction. A similar work, CBInfer [99], proposes replacing all spatial convo-
lution layers in a network with change-based temporal convolution layers (or CBconv layers).
In this, a signal change is propagated forward only when a certain threshold is exceeded.
Likewise, [102] tapped into temporal sparsity by introducing Sigma-Delta Networks, where
neurons in one layer communicated with neurons in the next layer through discretized delta
activations. An issue when it comes to CBInfer [99] is the potential error accumulation over
time as the method is threshold-based. If the neuron states are not reset periodically, this
threshold can cause drift in the approximation of the activation signal and degrade the ac-
curacy. Whereas, sigma-delta [102] scheme experiments on smaller datasets like temporal
MNIST, which might not be a reliable confirmation of the method’s effectiveness.

One of the arguable downsides of change based processing is that temporally sparse com-
putations need remembering the states from the last update and re-using them efficiently.
Therefore, it requires more memory than frame-based processing. However, it can be coun-
tered with the fact that in the biological brain as well, there is an evident well-proved trade
for less power consumption with the help of more memory [80]. Therefore, it can be argued
that brain-inspired DNN inference has to be supported with new memory technologies as
well.
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3.4 Conclusion

This chapter, firstly, discussed how the biological neural networks uses features like sparse
representation to maintain an energy conservative system. Then, it is explained how sparsity
helps in reducing the energy consumption in DNNs. Finally, after establishing the merit of
sparsity in DNNs, existing works spanning weight and activation sparsity are surveyed.
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Part II

Proposed Methodology
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Temporal Delta Layer 4
In this chapter, a general-purpose novel DNN layer is introduced, called temporal delta layer,
which can increase the temporal activation sparsity of the model by exploiting the temporal
redundancy within the network. This is achieved by applying delta operator and sparsity
inducing penalty on layer activations during training. The chapter also explains how existing
techniques like quantization helps the new layer in promoting temporal sparsity.

4.1 Temporal Redundancy in Feature Maps

In video-based applications, traditional deep neural networks rely on frame-based processing.
That is, each frame is processed entirely through all the layers of the model. However, there is
very little change in going from one frame to the next through time, which is called temporal
locality. Therefore, it is wasteful to perform computations to extract the features of the
non-changing parts of the individual frame. Taking that concept deeper into the network, if
feature maps of two consecutive frames are inspected after every activation layer throughout
the model, this temporal overlap can be observed (see Figure 4.1). Therefore, this work
postulates that temporal sparsity can be significantly increased by focusing the inference of
the model only on the changing pixels of the feature maps (or deltas). The obtained temporal
sparsity reduces the energy cost of the inference by skipping the computations and memory
accesses corresponding to the zero-valued delta activations.

4.2 Temporal Delta Layer

4.2.1 Delta Inference

As seen in Figure 4.1, there is untapped potential in processing only the changing pixels of
temporally continuous feature maps and still not losing any (or very little) of the critical
information in the scene. This work introduces a new layer that calculates the delta (or
difference) between two temporally consecutive feature maps and quantifies the degree of
these changes at only relevant locations in the frame. Since zero changes are not propagated
through the layer, the role of this layer may be perceived as ”analog event propagation”. It is
considered an ”analog event” as it is not the presence of change, but the magnitude of change
that is propagated through.

To better understand it mathematically, in a standard DNN layer, the output activation
is related to its weights and input vector through Eq. 4.1 and 4.2.

Yt = WXt +B (4.1)

Zt = σ(Yt) (4.2)
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Figure 4.1: Evidence of temporal redundancy in video inputs and consequent feature maps.

where W and B represents the weights and bias parameters, Xt represents the input
vector, and Yt represents the transitional state. Then, Zt is the output vector which is the
result of σ(.) - a non-linear activation function. t indicates that the tensor has a temporal
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dimension. However, in the temporal delta layer, weight-input multiplication transforms into,

∆Yt = W∆Xt = W (Xt −Xt−1) (4.3)

Yt = ∆Yt + Yt−1

= W (Xt −Xt−1) +W (Xt−1 −Xt−2) + ...+ Y0, where Y0 = B

= WXt +B,

(4.4)

∆Zt = Zt − Zt−1 = σ(Yt)− σ(Yt−1), where σ(Y0) = 0 (4.5)

In Eq. 4.3, instead of using Xt directly, only changes or ∆Xt are multiplied with W. Using
the resulting ∆Yt, the corresponding Yt can be recursively calculated with Eq. 4.4, where
Yt−1 is the transitional state obtained from the previous calculation. Eq. 4.5 is the final delta
activation output that is passed onto the next layer.

Another notable difference between the standard DNN layer and proposed layer is the
role of bias. In delta based inference, bias is only used as an initialization for the transitional
state, Y0 in Eq. 4.4. However, since bias tensors do not change over time, their temporal
difference is zero and is removed from Eq. 4.3.

Now, as the input video is considered temporally correlated, the expectation is that ∆Xt

and by association ∆Zt are also temporally sparse. In essence, the temporal sparsity between
consecutive feature maps is cast on the spatial sparsity of the delta map that is propagated.
Additionally, Yt in Eq. 4.1 and 4.4 are always equal. This indicates that as long as the input
is the same, both standard DNN and temporal delta layer based DNN provide the same result
at any time step.

4.2.2 Activation Quantization to Induce Sparsity

Note: Quantization in the context of this thesis refers to activation quantization only.
Weight quantization is not within the scope.

4.2.2.1 How Does Quantization Affect Temporal Sparsity?

The temporal redundancy in feature maps of two consecutive frames is explained in section
4.1. However, if looked closely, it can be observed that these feature maps are similar but
not identical as shown in Figure 4.2a and 4.2b. Therefore, if two such consecutive feature
maps are subtracted, the resulting delta map has many near zero values, thus restricting
the potential increase in temporal sparsity (Figure 4.2c). This is mainly due to the higher
precision available in the floating point representation (FP32) of the activations. A plausible
solution to decrease the precision of the activations is to use quantization.

Quantization, as mentioned in Section 2.5.1, refers to the method of mapping values
from higher precision values (FP32) to a lower precision format. Typical DNNs consider
quantization as a means to induce spatial sparsity and to reduce memory footprint. The
temporal delta layer proposes to quantize the input activations before delta operation as a
means to induce temporal sparsity. The effect of quantization on temporal sparsity has been
illustrated with an example in Figure 4.3. The figure explains that the difference between two
similar vectors with higher precision tends to hover around zero but not converge to absolute
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(a) (b)

(c)

Figure 4.2: Demonstration of two consecutive activation maps leading to near zero deltas

zero in most cases. However, if these vectors are quantized, the probability of two similar
nearby values being quantized to the same number increases, leading to their difference going
to absolute zero.

In this work, a post-training quantization method (fixed point quantization [103]) and a
quantization aware training method (learnable step size quantization [104]) are considered for
comparison as a temporal sparsity facilitator for the new layer.

4.2.2.2 Fixed Point Quantization

In this method, the floating point numbers are quantized to integer or fixed point repre-
sentation [103]. A floating point representation consists of three components: the sign, the
significant and the exponent. For example, in IEEE 754 representation, a single-precision
32-bit floating point number has 1 bit for sign, 8 bits for the exponent and 23 bits for the
significant. It leads to a very high dynamic range, roughly [=10−38, 1038], far beyond the
values usually seen in DNN inference, and increases the resolution or precision for numbers
close to 0. The number nearest to 0 is about ±1.4 x 10−45. Therefore, due to high resolution,
two similar floating point values have difficulty going to absolute zero when subtracted.
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Figure 4.3: (left) Unquantized delta calculation of two similar vectors causing near zero values,
(middle) a uniform quantizer, (right) quantized delta calculation leading to absolute zeroes.

On the other hand, in fixed point representation, the integer and the fractional part have
fixed length. This limits both range and precision. That is, if more bits are used to represent
the integer part, it subsequently decreases the precision and vice versa. For example, in a 32
bit fixed point representation with 16 bits for integer and 16 for fraction, the range is [-32768,
32768], and the resolution is 1.52 x 10−5.

Method: Firstly, a bitwidth is defined to which the 32-bit floating parameter is to be
quantized, BW. Then, the number of bits required to represent the unsigned integer part of
the parameter (x) is calculated as shown in Eq. 4.6.

I = 1 + blog2 ( max
1<i<N

|x| )c (4.6)

A positive value of I means that I bits are required to represent the absolute value of the
integer part, while a negative value of I means that the fractional part has I leading unused
bits. Now, it is known that 1 bit is for sign, so the number of fractional bits, F , is given by
Eq. 4.7.

F = BW − I − 1 (4.7)

Considering the parameters, BW - bitwidth, F - fractional bits, I - integer bits, and S -
sign bit, Eq. 4.8 maps the floating point parameter x to the fixed point by,

Q(x) =
C(R(x.2F ),−t, t)

2F
(4.8)

where R(.) is the round function, C(x, a, b) is the clipping function, and t is defined as,

t =

{
2BW−S , BW > 1

0 BW ≤ 1
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4.2.2.3 Demonstration of Fixed Point Quantization Influencing Temporal Spar-
sity

Consider frame 1 has an activation value a1 = 83.5625 and frame 2 has an activation value
a2 = 84.3750. Without quantization, the delta calculation leads to a non zero value. They
require BW = 12 bits and 11 bits, respectively, for their precise representation. However, if
both values are mapped into lower precision fixed point representation with BW = 4 bits,
their quantized value becomes 84, and their difference is driven to zero (See Figure 4.4).

83.5625 84.3750Activation
maps

Frame 1 Frame 2

0 1 0 1 0 0 1 1 1 0 0 1

(BW = 12, S = 1, I = 7, F = 4)

0 1 0 1 0 1 0 1 0 1 1

(BW = 11, S = 1, I = 7, F = 3)

0 1 0 1 0 1 0 0 0 0 0 0

(BW = 4, S = 1, I = 5, F = -2)

0 1 0 1 0 1 0 0 0 0 0

(BW = 4, S = 1, I = 5, F = -2)

84 84

Frame 2 - Frame 1

Delta
map 0

Binary
format

After
converting to

fixed point

Quantized
activation

maps

Figure 4.4: Demonstration of fixed point quantization inducing temporal sparsity. Bits stored
in memory are shown in yellow and green. Sign bit is shown in blue. Unused bits are shown
in gray.

Therefore, in this work, the hypothesis is that, mapping the activations from 32-bit floating
point to lower bitwidth fixed point representation can potentially lead to significant temporal
sparsity without compromising accuracy.

4.2.2.4 Possible Drawback of Fixed Point Quantization

Fixed point quantization, as shown in 4.2.2.2, is a fairly straightforward mapping scheme
and is easy to be included in the model training process during the forward pass before
the actual delta calculation. However, it poses a limitation to the extent of quantization
possible without sacrificing accuracy. Typically, an 8-bit quantization can sustain floating
point accuracy with this method, but if the bitwidth goes below 8 bits, the accuracy starts
to deteriorate significantly. This is because, unlike (static) weights, activations are dynamic
and activation patterns change from input to input making them more sensitive to harsh
quantization [105].
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Especially considering the objective of the thesis, where the quantization is proposed as
a means to facilitate temporal sparsity while maintaining accuracy, quantizing all layers to a
fixed bitwidth of ∼ 8 is not an optimal solution. This is because quantizing the layers of a
network to the same bitwidth can mean that the inter-channel behaviour of the feature maps
are not captured properly. Since the number of fractional bits is usually selected depending
on the maximum activation value in a layer, this type of quantization tends to cause excessive
information loss in channels with a smaller range.

4.2.2.5 Learned Step-Size Quantization

Quantization aware training is the most logical solution to the drawback mentioned in 4.2.2.4
as it can potentially recover the accuracy in low bit tasks given enough time to train.

Raw data

0

0

Step size - Too small

Quantized data

0

0

Step size - Optimum

Step size - Too large

Raw value

Quantized value

Figure 4.5: Importance of step size in quantization: on the right side, in all three cases, the
data is quantized to five bins with different uniform step sizes, but without optimum step size
value, the quantization can alter the range and resolution of the original data

Therefore, a symmetric uniform quantization scheme is considered called Learned Step
size Quantization (LSQ) [104]. This method considers the quantizer itself as a trainable
parameter which is trying to minimize the task loss using backpropagation and stochastic
gradient descent. This serves two purposes: (a) step size, which is the width of quantization
bins, gets to be adaptive through the training according to the activation distribution. It is
vital to find an optimum step size because, as shown in Figure 4.5, if the step size is too small
or too large, it can lead to the quantized data being a poor representation of the raw data.
(b) as the step size is a model parameter, it is also directly seeking to improve the metric of
interest, i.e. accuracy.
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Method Given: x - the parameter to be quantized, s - step size, QN and QP - number
of negative and positive quantization levels respectively, x̄ - integer scaled and quantized
representation of x, x̂ - quantized representation with the same scale as x,

x̄ = bclip (x/s,−QN , QP )e (4.9)

x̂ = x̄.s (4.10)

where, clip(a, r1, r2) clips any value of a below r1 to r1 and above r2 to r2, and, bae rounds
the value to the nearest integer. Considering the number of bits, b, to which the data is to
be quantized, QN = 0 for unsigned and QN = 2b−1 for signed data. Similarly, QP = 2b−1 for
unsigned and 2b−1 − 1 for signed data.

Eq. 4.9 and 4.10 can be re-written as,

q(x; s) =


bxs e.s, if −QN ≤ x

s ≤ QP

−QN .s, if x
s ≤ −QN

QP .s, if x
s ≥ QP

(4.11)

Step size gradient: LSQ provides an opportunity to train the step size, s, by including
the gradient of Eq. 4.11 with respect to s in the training loss during back-propagation.

∇sq(x; s) =


bxs e −

x
s , if −QN ≤ x

s ≤ QP

−QN , if x
s ≤ −QN

QP , if x
s ≥ QP

(4.12)

The gradient in Eq. 4.12 is derived by considering the differentiation of the round function
as a Straight Through Estimator (STE). Intuitively, if step size, s, is small compared to the
activation x, the width of the quantization bin is more, and thus, the number of quantization
levels is less. Similarly, if s is large compared to x, the quantization bin width is small, and
thus, the number of quantization levels is more.

4.2.2.6 Modified LSQ

In this work, the LSQ method is slightly modified to remove the clipping function from the
equations as (a) the bitwidth, b, required to calculate QN and QP is not known. This is
because the bitwidth is not pre-defined and is determined using the activation statistics of
each layer while training which leads to a mixed precision model, which is more advantageous,
and (b) clipping leads to accuracy drop as it alters the range of the activation. That is, if
activations are clipped during training, there could be a significant difference between the
real-valued activation value and the quantized activation value, which in turn affects the
gradient calculations and, therefore the SGD optimization.

Thus, in temporal delta layer, the forward pass of the quantization includes only scaling,
rounding and de-scaling as shown in Figure 4.6 and can be mathematically expressed as,

q(x; s) = bx
s
e.s (4.13)
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The gradient of the Eq. 4.13 for backpropagation is given by Eq. 4.14.

∇sq(x; s) = bx
s
e − x

s
(4.14)

2.827 0 0

0 0 0.159

0.012 0.482 0.685

x

s = 2.263

1.249 0 0

0 0 0.070

0.005 0.213 0.302

x/s

1 0 0

0 0 0

0 0 0

round (x/s)

2.263 0 0

0 0 0

0 0 0

[round (x/s)] . s

Raw Activations Scaling

RoundingDe-scaling

Figure 4.6: Modified LSQ - forward pass including scaling, rounding and de-scaling. Quanti-
zation step-size considered is 2.263

4.2.3 Sparsity Penalty

Quantized delta maps, created using the above-mentioned method, in itself has a fair number
of absolute zeroes (or sparsity) available. However, like the biological brain, learning can
help in increasing this sparsity further. The inspiration for this came from an elegant set of
experiments performed by Y. Yu et al. [106]. The experiment showed a particular 30 seconds
video to rodent specimens and tracked their activation density during each presentation. As
shown in Figure 4.7, activation density decreased as the number of trials increased, i.e as the
learning increased, the active neurons required for inference decreases.

Adapting the said concept to this work, the model (including temporal delta layer) is
fine-tuned by training over epochs to minimize the total number of non-zero activations
in delta maps while maintaining the model accuracy. Decreasing the density of activations
inadvertently leads to more sparsity. For this purpose, a l1 norm based constraint is introduced
to the loss function. This is termed as the sparsity penalty. Therefore, the new cost function
can be mathematically expressed as cost function = task loss + sparsity penalty, i.e,

Cost function = Task loss+ λ (
l1 norm of active neurons in delta map

total number of neurons in delta map
) (4.15)

where task loss minimizes the error between the true value and the predicted value and,
sparsity penalty minimizes the overall temporal activation density. The λ mentioned in Eq.
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Figure 4.7: Activation density v/s number of trials [107]. As the learning increases, the num-
ber of active neurons decreases. V1 represents the primary visual cortex and AL represents
the anterolateral region of the specimen’s visual processing system.

4.15 refers to the penalty co-efficient of the cost function. If λ is too small, the sparsity
penalty takes little effect and model accuracy is given more priority and if λ is too large,
sparsity becomes the priority leading to very sparse models but with unacceptable accuracy.
The key is to find the balance between task loss and sparsity penalty.

4.2.3.1 Why l1 Norm?

The purpose of the sparsity penalty is to minimize the number of non-zero activations in the
temporal delta layer, yet Eq. 4.15 uses l1 norm instead of l0 norm. This is because although
l0 norm represents the cardinality of the delta maps directly, it is a non-convex problem, so
is not preferred as the constraint. The other popular penalties include l1 , l2 norm and their
combinations. Here, l1 norm is the sum of absolute delta values (Eq. 4.16) and l2 norm is
the square root of the squared sum of delta values (Eq. 4.17).

Now, the question remains, why does l1 norm induce more sparsity than l2 norm? In
Figure 4.8, H0 represents the task, H0: y = Wx, which is a straight line, where y is the true
label, W is the weight matrix, and x is the activation vector. Then, the disc represents the
norm ball of l2 in 2D, and the diamond represents the norm ball of l1 in 2D. They are the
constraints to the H0 task.

||x||1 = |x1|+ |x2| (4.16)

||x||2 =
√
x21 + x22 (4.17)

Then, the objective is to find the minimum point (x1, x2) between the line and constraint
while maintaining feasibility. In most cases, l2 tends to find a solution that is tangential to
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Figure 4.8: l1 norm generating sparser solution better than l2. Line H0 represents the task,
disc (pink) represents the l2 ball, diamond (blue) represents the l1 ball.

H0, i.e x1 and x2 are non-zero. However, l1, due to its nature, finds a solution where one of
the x values is on the axis. In Figure 4.8, l1 has removed the relevance of x1. Extending this
explanation to higher dimensional cases, it can be justified how l1 penalty induces sparsity.

4.3 Proposed Algorithms

Putting it all together, two algorithms are presented in this work. One uses delta calculations
and sparsity penalty concepts with fixed point quantization, and the other uses modified
learned step size quantization. The flowcharts of the methodology is given in Figure 4.9 and
4.10.

4.3.1 Temporal Delta Layer with Fixed Point Quantization

1. The output from the activation layer is fed into the quant layer along with the bitwidth
to which the activations are to be quantized.

2. Given the activations and bitwidth, required integer bits and fractional bits are calcu-
lated using Eq. 4.6 and 4.7.

3. Using the parameters bitwidth, fractional bits, and sign bit, activations are quantized
using Eq. 4.8.

4. These quantized activations are then passed onto the temporal delta layer along with
the penalty co-efficient, λ.

5. Then delta maps are calculated considering whether the activations are a part of con-
volutional layer (5 dimensional) or fully connected layer (3 dimensional).
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6. The l0 and l1 norm of delta maps for each batch is calculated along with the total
number of neurons. Then, l1 norm of the delta map is normalized with the number of
neurons, i.e. delta l1 normalized.

7. Sparsity penalty is introduced to minimize delta l1 normalized. λ is used to control
the weight of this penalty or constraint.

8. The outputs of the temporal delta layer are quantized delta activations, the total num-
ber of neurons and the activation density of the delta maps, which are passed onto the
next layer.

quant_layer 
 

Required: pre-trained floating
point model

Input:  
floating point activations (act),  

bitwidth (BW) 
 

Given BW and act, find required
integer bits and fractional bits 

Quantize activations using
parameters BW, I and F 

 
Output:  

fixed point quantized  
activations, Qact

temporal_delta_layer 
 

Required: pre-trained floating
point model

Input:  
quantized activations (Qact),  
penalty coefficient (lambda) 

 

If Qact shape == 5, (batch, time, x, y, channel),  
delta = Qact [:, :-1, :, :, :] - Qact [:, 1:, :, :, :], and  

if Qact shape == 3, (batch, time, unit), 
delta = Qact [:, :-1, :] - Qact [:, 1:, :] 

Calculate, 
delta_l0 = number of non-zero delta values,  

delta_l1 = sum of absolute delta values,  
num_of_neurons = product of dimensions of delta maps,  

delta_l1_normalized = (delta_l1 / num_of_neurons) 

Add sparsity penalty 
cost = task loss + (lambda x delta_l1_normalized) 

 
Output:  

quantized delta 
activations, delta_l0,

num_of_neurons

Figure 4.9: Methodology flow of temporal delta layer with fixed point quantization

4.3.2 Temporal Delta Layer with Learned Step Size Quantization

1. The output from the activation layer is fed into the temporal delta layer as an in-
put along with penalty coefficient (λ), quantization granularity (q level) and step size
initialization (step init).
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2. The parameter step size is initialized with step init according to the quantization gran-
ularity, q level. It could be channel-wise or layer-wise.

3. Then, the activations and step size is passed to the quantize lsq function.

4. Within the function, activations are quantized using the method mentioned in Section
4.2.2.6.

5. Steps 5 to 7 from Section 4.3.1 are repeated.

6. The outputs of the temporal delta layer are quantized delta activations, the total num-
ber of neurons and the activation density of the delta maps, which are passed onto the
next layer.

4.4 Conclusion

The chapter explains the proposed methodology of this thesis in detail. A new layer is
introduced which exploits the concept of temporal redundancy with the network to reduce
the computations and memory accesses. Two types of quantization methods are considered to
facilitate this layer. Also, the layer consists of a new penalty function which exclusively tries
to minimize the temporal activation density. The results of adding this layer to a network
are detailed in chapter 5.
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quantizer_lsq_function 
 

Input:  
floating point activations (act),  

step size (s) 
 

Forward pass : (round (act / s) . s) 
Backward pass : round (act / s) - (act / s)

 
Output: quantized  
activations (Qact)

temporal_delta_layer 
 

Required: pre-trained floating
point model

Input:  
floating point activations, (act),  

penalty coefficient (lambda), 
quantization granularity (q_level), 
step size initialization (step_init) 

 

If Qact shape == 5, (batch, time, x, y, channel),  
delta = Qact [:, :-1, :, :, :] - Qact [:, 1:, :, :, :], and  

if Qact shape == 3, (batch, time, unit), 
delta = Qact [:, :-1, :] - Qact [:, 1:, :] 

Calculate, 
delta_l0 = number of non-zero delta values,  

delta_l1 = sum of absolute delta values,  
num_of_neurons = product of dimensions of delta maps,  

delta_l1_normalized = (delta_l1 / num_of_neurons) 

Add sparsity penalty 
cost = task loss + (lambda x delta_l1_normalized) 

 
Output: 

quantized delta 
activations, delta_l0,

num_of_neurons

Step size is initialized according to granularity, q_level.
q_level could be layer-wise or channel-wise  

 quantizer_lsq_function (act, step size)

Figure 4.10: Methodology flow of temporal delta layer with learned step size quantization
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Experiments and Results 5
In this section, the proposed methodology explained in Chapter 4 is analyzed to study how
it helps achieve the key objectives of this thesis.

5.1 Experiment Setup

5.1.1 Application: Human Action Recognition

The quantity of video data available is explosively increasing due to the easy access to digital
recording devices and the popularity of video sharing websites. Among the video related
applications, human action recognition (HAR) is one of the most relevant research topics in
the computer vision community. Action recognition is the process of understanding high-level
human behaviour by labelling video frames with corresponding action labels. Video-based
action recognition has garnered immense interest in recent years due to its wide range of
applications, such as video surveillance, human-computer interaction, autonomous driving,
and health care [108].

Video-based action recognition involves various challenges [109]. First, the video data
can have intra-class variations (for example, walking can differ in speed and stride length)
and inter-class variations (for example, floating and swimming can appear similar). Second,
environments and camera settings can vary significantly. For instance, human localization
becomes much harder in a dynamic, cluttered environment. Finally, obtaining and labelling
the training/testing video data is difficult.

Therefore, this work analyses the effectiveness of the proposed methodology against the
backdrop of human action recognition.

5.1.2 Dataset - UCF101

UCF101 is a widely used human action recognition dataset of ’in-the-wild’ action videos,
obtained from YouTube, having 101 action categories. The dataset consists of 13320 videos
with considerable variety in camera motions, illumination conditions, background, object
scale, etc. (see Figure 5.1).

The videos in UCF101 are broadly grouped into 25 groups based on similar backgrounds,
similar viewpoints, etc. Each group consists of 4-7 videos of an action. These actions can be
divided into five macro-classes: 1) human-object interaction, 2) body-motion only, 3) human-
human Interaction, and 4) group activity. All the videos have a fixed frame rate of 25 FPS
and a resolution of 320×240 [110]. Thus, UCF101 is chosen as the benchmarking dataset for
this work.

5.1.3 Architecture

The architectural approaches to perform human activity recognition can be divided into two
major categories. (a) The classical image processing based approach, which is based on feature
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Figure 5.1: Samples of action categories from UCF101 dataset [110]

detectors and descriptors such as Hessian3D, Histogram of Oriented Gradients (HOG), Scale-
Invariant Feature Transform (SIFT), etc. (b) The end-to-end learning-based approach with
the ability to learn features automatically from the dataset [111]. This rules out the need
for handcrafted feature detectors and descriptors. A trainable classifier follows the feature
extraction process in both approaches. This thesis uses the deep learning based approach.

5.1.3.1 Two Stream Network

Unlike still image-based recognition, video-based processing involves a temporal component
that provides additional and important information for recognition. Theoretically, most of
the actions can be reliably recognized based on temporal information. [112] was the first to
explore the architecture based on two separate recognition streams (spatial and temporal),
which are then combined by average fusion. The spatial stream performs action recognition
from still video frames, whilst the temporal stream recognizes action from motion in the
form of dense optical flow as shown in Figure 5.2. Both streams consist of CNNs. This two-
stream architecture is also bio-inspired, considering the human visual cortex also contains
two pathways: the ventral stream (which performs object recognition) and the dorsal stream
(which recognizes motion).

In the original two-stream network, RGB images were used for the spatial stream and
stacked optical flow fields were used for the temporal stream. However, inspired by [2], this
work replaces stacked optical flow fields with stacked RGB temporal difference frames. RGB
difference between two consecutive frames characterize the appearance change, which in turn
correspond to the motion salient region (see Figure 5.3). Moreover, RGB difference is easier
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Figure 5.2: Two stream architecture for action recognition - original [112]

to compute. On the other hand, in an online scenario, computing the optical flow fields on
the go require heavy computational resources and may lead to high latency.

Figure 5.3: Possible input modalities for action recognition: (from left to right) RGB, RGB
temporal difference, optical flow - U channel, optical flow - V channel [2]

5.1.3.2 ResNet50

Residual Network or ResNet [113] was initially developed by Microsoft Research and was
implemented mainly to solve the vanishing gradient problem in deeper CNNs during back
propagation. The residual block is the core of a ResNet. It introduces a skip connection or a
”shortcut”, which allows the gradient of a layer to be directly backpropagated to an earlier
layer (skipping two or three layers in between). This architecture enables the construction of
deeper networks without degrading the accuracy.

There are two types of residual blocks used in a ResNet, depending on whether the input
and output dimensions are equal [114].

Identity block: The identity block is one of the standard blocks used in ResNet and corre-
sponds to the scenario where the dimensions of the input activation match that of the output
activation. Figure 5.4.(a) depicts an identity block, where the lower one is the main path and
the upper one is the shortcut path.
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Convolutional block: The convolutional (or conv) block is used in scenarios where the
input and output dimensions do not match. The difference between identity block and conv
block is that in the latter, there is a convolutional layer in the shortcut path (see Figure
5.4.(b)). This layer resizes the input x such that the shortcut path’s dimension match the
dimensions in the main path.

The ResNet-50 model is a variety of ResNet where convolution and identity blocks are
stacked, as shown in Figure 5.4.(c). This thesis uses ResNet50 in both spatial and temporal
streams as feature extractors.

(c)

(b)

(a)

Figure 5.4: ResNet architecture: (a) Identity block, (b) convolution block, and (c) ResNet50
block diagram [114]

5.1.4 Pre-processing - Frame Generation

The video inputs from the UCF101 dataset are converted to their corresponding frames using
Keras video generators [115]. The package contains three types of generators:

• V ideoFrameGenerator, which provides a pre-determined number of consecutive frames
from the entire video.

• SlidingFrameGenerator, which provide several sequences of the same ”action” by slid-
ing the video’s cursor.
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• OpticalF lowGenerator, which provides an optical flow sequence from frames using dif-
ferent methods including absolute difference between two frames and Farneback method.

An additional module was created during this work which enabled the vertical stacking
of frames of form 3D video cubes.

5.1.5 Evaluation Metrics

• Classification accuracy: The ratio of the number of correct predictions made by the
model over the total number of predictions. The predictions are averaged over all test
frames.

• Spatial activation sparsity: The ratio of zero activations within a feature map to
the total number of activation neurons in the feature map. This is often termed as
activation sparsity.

• Temporal activation sparsity: The ratio of zero activations within a delta map (or
the difference of two consecutive feature maps) to the total number of activation neurons
in the delta map.

Note: The cost function of the model, which is the combination of a task loss term and
a weighted penalty term, is a minimization problem. Therefore, it is to be noted that the
task loss term is trying to minimize the classification error and, the penalty term is trying
to minimize the activation density of the model. Activation density represents the ratio of
non-zero activations over the total number of activations, i.e. activation density = 1 −
activation sparsity. This work, within context, uses both density and sparsity to explain the
results.

5.1.6 Baseline

For baseline, the two-stream architecture (with ResNet50 on both streams) was fine-tuned
with UCF-101 as the input, without the sparsity penalty. The spatial stream used single-
frame RGB images of size (224, 224, 3) as the input, while the temporal stream used stacks
of 10 RGB difference frames of size (224, 224, 10 × 3) as the input. Also, both these inputs
were time distributed to apply the same layer to multiple frames simultaneously and produce
output that has time as the fourth dimension. Both the streams were initialized with pre-
trained ImageNet weights and fine-tuned with an SGD optimizer.

As shown in Figure 5.5, under the above-mentioned setup, spatial and temporal streams
achieved an accuracy of 75% and 70%, respectively. Then, both streams were average fused
to achieve a final classification accuracy of 82%. Also, in this scenario, both streams were
found to have an activation sparsity of ∼ 47%.

5.2 Experiments

Scenario 1: A l1 regularization based penalty was placed on the activation layer of the
baseline to induce spatial sparsity to the network. This setup essentially tries to reduce
the number of non-zero activations within a feature map spatially by explicitly encoding the
sparsity inducing l1 prior to the cost function. In this setup, the model starts with the baseline
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(224, 224, 3)

(224, 224, 30)

ResNet50

ResNet50

Single frame

Stack of absolute
differences of

frames

Spatial stream

Temporal stream

Average Fusion

val_accuracy - 75%

val_accuracy - 70%

val_accuracy - 82%

Figure 5.5: Baseline: two stream network with single frame RGB images for spatial stream
and stack of RGB difference frames for temporal stream. The model achieved 82% validation
accuracy.

weights from Section 5.1.6. All the layers are fine-tuned to induce spatial activation sparsity
while maintaining the baseline accuracy.

This scenario is considered for a fair comparison of the proposed (temporal sparsity based)
method with the conventional spatially regularized method. As spatial sparsity in feature
maps is not a focus of this work, the results from the aforementioned scenario are not analyzed
in detail.

Scenario 2: The setup consecutively places the fixed point based quantization layer and
temporal delta layer after every activation layer in the network (as explained in Section 4.3.1).
The temporal delta layer here also includes a l1 norm based penalty. What differentiates this
from the previous scenario is that the regularization is applied to sparsify the delta map rather
than the feature map itself. Fixed point quantization, in this setup, is used as a means to
decrease the precision of input activation maps. Both of these techniques promote temporal
sparsification.

Again, the baseline weights were used as a starting point, and all the layers including the
temporal delta layer is fine-tuned until acceptable convergence. The hyper-parameters specif-
ically required for this setup were bitwidth (to which the activations were to be quantized)
and penalty co-efficient to balance the tussle between task loss and sparsity penalty.

Scenario 3: The setup is similar to the previous scenario except for the activation quan-
tization method used. The previous experiment used fixed precision quantization where all
the activation layers in the network were quantized to the same bitwidth. However, this
experiment uses learnable step-size quantization (LSQ), which performs channel-wise quan-
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tization depending on the activation distribution resulting in mixed-precision quantization of
the activation maps (as explained in Section 4.3.2).

The layer also introduces a hyperparameter during training (apart from the penalty co-
efficient mentioned earlier) for the step size initialization. These step sizes are initialized
stage-wise for the ResNet50 used. The concept of stages in ResNet50 is shown in Figure 5.4.
According to the initialization, if stage 3 is initialized with a step-size of 4, every channel in
every layer of stage 3 (layer 11 - 22) is initialized with 4. Then, during training, the step size
increases or decreases depending on the activation distribution in each channel.

5.2.1 Accuracy v/s Activation Sparsity

Model setup
(Spatial stream)

Accuracy Activation sparsity

Baseline 75% 48%

Spatial L1 regularisation 60% 70%

Temporal delta layer with
fixed point quantization

73% 74%

Temporal delta layer with
learned step-size quantization

69% 86%

Table 5.1: Spatial stream - comparison of accuracy and activation sparsity obtained through
the proposed scenarios against the benchmark. In the case of fixed point quantization, the
reported results are for a bitwidth of 6 bits.

Model setup
(Temporal stream)

Accuracy Activation sparsity

Baseline 70% 47%

Spatial L1 regularisation 56% 64%

Temporal delta layer with
fixed point quantization

68% 67%

Temporal delta layer with
learned step-size quantization

65% 89%

Table 5.2: Temporal stream - comparison of accuracy and activation sparsity obtained through
the proposed scenarios against the benchmark. In the case of fixed point quantization, the
reported results are for a bitwidth of 7 bits.

Table 5.1 and 5.2 show the baseline accuracy and activation sparsity compared against the
three scenarios mentioned1. An aspect to take note is, although temporal sparsity between
two feature maps is a metric of interest, it can also be interpreted as the spatial sparsity
of the delta map itself. Moreover, in the proposed methodology, the delta maps are the
ones propagated to the next layer and lead to the skipping of computations. That is why,
colloquially, ’activation sparsity’ is used as the metric to analyse the results.

1The training and inference for all experiments were performed on NVIDIA Quadro RTX 5000 with CuDNN
10.1

51



Firstly, it can be seen that in the case of spatial l1 regularization (in both streams), the
activation sparsity increases in comparison to the baseline, but at the cost of losing accuracy.
The reason for this could be that the complexity of the task is beyond the capacity of the
sparse model, considering 67% of the activations are zero. Moreover, as explained in Section
3.2, in the case of irregular sparse tensors, very high sparsity is required for the model to see
gains in terms of energy consumption.

Secondly, when the temporal delta layers with fixed point quantized activations are in-
cluded in the baseline model, it can be observed that the activation sparsity increases con-
siderably with a lower loss in accuracy. This method clearly do better both in terms of
accuracy and sparsity than the spatial regularization method. One interesting observation is
that, although the sparsity penalty in the temporal delta layer does a good job of decreasing
the activation density, quantizing the activations from floating to fixed point representation
pushes the activation sparsity of the model even higher. From the experiments, the temporal
delta layer without any activation quantization managed to increase the activation sparsity
only by 10% in comparison to the baseline, even after exhaustive training. However, the
temporal delta layer with sparsity penalty and fixed point quantization managed to increase
the activation sparsity by ∼ 25%. This is because lowering the precision from 32 bits to 8
bits (or less) leads to temporal differences of activations going to absolute zero as explained
in Section 4.2.2.1.

Additionally, the reason for close-to baseline accuracy in the method involving fixed point
quantization can be attributed to fractional bit allocation flexibility. That is, as the bitwidth
is fixed, the number of integer bits required is decided depending on the activation distribution
within the layer, and the rest of the bits are assigned as fractional bits. This makes sure that
the precision of the activation is compromised for range. For instance, Figure 5.6 shows that
when the model is quantized to 8 bits, in most layers of the network, the majority of the
bits are used to represent the integer part. Also, another contributing factor for accuracy
sustenance is that the first and the last layers of the model are not quantized, similar to
works like [55] [54] [116]. This is because the first and last layer has a lot of information
density. Those are the layers where input pixels turn into features and features turn into
output probabilities, respectively, which makes them more sensitive to quantization.

Although the activation sparsity gain in the case of the temporal delta layer with fixed
point quantization is better than the activation sparsity obtained due to l1 regularization,
it is still not sufficiently high as required. In this effort, the bitwidth of the activations are
decreased in the expectation of increasing sparsity. However, as the bitwidth goes below a
certain value (6 bits for spatial and 7 bits for temporal stream), sparsity increases, but accu-
racy starts to deteriorate beyond recovery, as shown in Table 5.3. This is because quantizing
all layers of a network to the same bitwidth can mean that the inter-channel variations of
the feature maps are not fully accounted for. Since the number of fractional bits is usually
selected to cover the maximum activation value in a layer, the fixed bitwidth quantization
tends to cause excessive information loss in channels with a smaller dynamic range. There-
fore, it can be inferred that mixed-precision quantization of activations is a better approach
to obtain good sparsity without compromising accuracy.

Finally, using the temporal delta layer where incoming activations are quantized using
learnable step-size quantization (LSQ) gives the best results for both spatial and temporal
streams. As the step size is a learnable parameter, it gives the model enough flexibility to
result in a mixed precision model, where each channel in a layer has a bitwidth that suits
its activation distribution. This kind of channel-wise quantization minimizes the impact of
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Figure 5.6: The distribution of fractional bits required over all the layers of ResNet50. The
activations in all layers is quantized to 8 bits (blue). However, each layer selects its number
of fractional bits (red) depending on the maximum value in the layer to maintain the range.

Spatial stream Temporal stream

Activation
bitwidth

Accuracy
(%)

Activation
sparsity (%)

Accuracy
(%)

Activation
sparsity (%)

32 75 50 70 47

8 75 68 70 65

7 75 71 68 70

6 73 75 61 73

5 65 80 - -

Table 5.3: Result of decreasing activation bitwidth in an attempt to increase activation spar-
sity while maintaining accuracy. For spatial stream, decreasing below 6 bits caused the
accuracy to drop considerably. For temporal stream, the same happened below 7 bits.

low-precision rounding. Figure 5.7 shows how the implementation of LSQ on floating point
activations zeroes out the near zero activations and lead to more discrete feature maps.

The weights generated using this method was then average fused to find the final two-
stream network accuracy and activation sparsity (Table 5.4). Finally, the proposed method
can achieve 88% activation sparsity with a 5% accuracy loss.

5.3 Result Analysis

The last section concluded that fine-tuning the model with the temporal delta layer supported
by learned step-size quantization gives the best results amongst the three scenarios considered.
This section elaborates on the results from the said method by analyzing the hyperparameters
required. Also, an estimate of the potential computation and memory access reduction is
calculated.
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(a)

(f)(e)

(d)(c)

(b)

Figure 5.7: Effect of quantization on sparsity: in (a), and (c), the unquantized feature maps
has a lot of near zero values, which in turn leads to near zero values in their delta map - (e),
deterring the increase of sparsity. Whereas, quantizing the corresponding activations, (b) and
(d), causes its delta map, (f), to have more sparsity.
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Baseline Proposed method

Model
type

Accuracy
(%)

Activation
sparsity (%)

Accuracy
(%)

Activation
sparsity (%)

Spatial
stream

75 50 69 86

Temporal
stream

70 46 65 89

Two-stream
(Average

fused)
82 47 77 88

Table 5.4: Final results on 2 stream network after average fusing the spatial and temporal
stream weights. With 5% accuracy loss, the proposed method almost doubles the activation
sparsity available in comparison to the baseline.

5.3.1 Importance of Step Size Initialization

In the context of quantization, step size indicates the distance between two quantization
transition points. Lesser values of step size lead to more quantization levels within the range,
which implies more bitwidth. Similarly, larger values of step size result in lower bitwidth. As
it is a learnable parameter like weight, it must be initialized properly.

Figure 5.8 depicts the effect of stage-wise step size initialization on accuracy and activation
sparsity. For clarity, ’2-2-3-3-3-2’ indicates that stage 2 temporal delta layers are initialized
with a step size of 2, stage 3 delta layers also with 2, and so on till the end of the network
(refer to Figure 5.4.(c) to understand the concept of stages better). The last stage is the
fully connected layer itself. It can be observed that if the step size is initialized with a lower
value, it leads to more bitwidth, and therefore, the accuracy corresponding to that is the
highest. However, as the bitwidth is high, the activation sparsity obtained is less than ideal.
On the contrary, if the step sizes are initialized with larger values, all layers are quantized
aggressively, resulting in high activation sparsity. But, the accuracy suffers due to the overall
low bitwidth representation. Thus, a ’middle-ground’ value was finalized, which gave high
sparsity with comparatively high accuracy.

Additionally, Figure 5.9 explains the evolution of step sizes during training. The stages
were initialized with ’3-3-4-4-4-3’, but when it nears convergence, the final values differ ac-
cording to the activation distribution and bitwidth required to represent each layer. This
flexibility is the very reason LSQ results in a mixed-precision model. Also, consistent with
the literature [8], the first and last layers during training opts for smaller step sizes implying
they need more bitwidth for their representation.

5.3.2 Importance of Penalty Co-efficient

Penalty co-efficient (or λ), in this work, represents the weight of the l1 norm applied to the
delta maps against the task loss. This hyper parameter can range between zero and one. If
λ = 0, the sparsity penalty has no impact and if λ = 1, the sparsity term takes over the
optimization, heavily compromising the accuracy.

As shown in Figure 5.10, a lower penalty co-efficient leads to near baseline accuracy,
but the activation sparsity is not high enough. In comparison, larger co-efficient leads to
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Figure 5.8: Effect of step size initialisation on accuracy and activation sparsity: ’3-3-4-4-4-3’
gives a balanced result of accuracy and sparsity.

Figure 5.9: Evolution of step size from initialization to convergence. As step-size is a learnable
parameter, it gets re-adjusted during training to cause minimum information loss in each layer.

> 90% sparsity but suffers unacceptable accuracy loss. Through experiment, it was found
that λ = 1e−4 resulted in an acceptable balance of both accuracy and sparsity, leading to
the final results mentioned in Table 5.4. As an improvement, penalty co-efficient can also be
found using grid search or Bayesian optimization rather than searching for it heuristically.
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(a) (b)

Figure 5.10: Effect of penalty co-efficient: (a) accuracy v/s epoch and (b) activation sparsity
v/s epoch. Based on these, a penalty co-efficient of 1e−4 (red) was chosen for this work.

5.3.3 Layer-wise Sparsity Pattern

Figure 5.11 and 5.12 depicts the distribution of sparsity in each activation layer of ResNet50
for spatial and temporal stream respectively. One of the observations was that in the first ∼
25 layers, the activation sparsity has almost doubled under the proposed method. However, as
the baseline sparsity itself is high in the later layers, drastic gain is not visible. One exception
is the fully connected layer, which has less than 50% sparsity in both cases. This is because
the number of neurons in the fully connected layer is very low compared to other layers,
so sparsifying that layer beyond a threshold can adversely affect the performance. Also, as
expected, the layers where the skip connections meet the layers in the main path of a block
(i.e layer 4, 7, 10, ... 46), have less activation sparsity than their neighbouring layers.

Figure 5.11: Comparison between layer-wise activation sparsity of baseline and proposed
model - spatial stream. The proposed method results in > 90% sparsity in more than half of
the layers.

One of the overheads of the proposed method is its memory cost. To calculate the temporal
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Figure 5.12: Comparison between layer-wise activation sparsity of baseline and proposed
model - temporal stream.

difference between two feature maps in the delta layer, it needs to keep track of the previous
neuron state. This increases the overall memory footprint of the algorithm. This memory
overhead is not present in the traditional ResNet50. However, interestingly, as seen in Figure
5.11 and 5.12, more than half of the layers (spread throughout the network) gains > 90%
activation sparsity. Therefore, the author proposes using temporal delta layers selectively,
only at places where it can significantly improve the activation sparsity. This way, the gain
in activation sparsity can potentially compensate for the memory cost.

5.3.4 Static v/s Moving Camera Input

UCF-101 has input videos shot with static as well as moving cameras. The hypothesis that
static camera-based videos have more temporal sparsity than moving camera-based ones is
tested in this experiment. Figure 5.13 shows the layer-wise sparsity pattern for two classes
of the dataset, ’TaiChi’ - shot with static camera and ’Rafting’ - shot with moving camera,
are compared against the average sparsity of all classes. In general, the effect of movement in
the input videos has little effect on the later layers of the model where high-level features are
extracted. However, it should also be noted that the average activation sparsity of ’TaiChi’
class is 90%, whereas that of ’Rafting’ is 80%. As the activation sparsity directly affect the
reduction of computation and memory access, it can be posited that the proposed method
works best to save the energy cost in applications where the camera is fixed.

5.3.5 Estimated Reduction in Computation and Memory Access

Estimating energy savings is challenging as it depends on the mapping and hardware memory
hierarchy. In this work, the activation sparsity achieved is used to calculate the potential
reduction in multiplication cost and memory access, which influences the energy consumption,
as explained in Section 3.2.

As [20] argues that in delta based networks, the estimated computational speedup and
memory access reduction is the inverse of activation density achieved, under the assumption
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Figure 5.13: Activation sparsity of ’TaiChi’ (green) and ’Rafting’ (yellow) class in spatial
stream. Blue dashed line is the average sparsity over all 101 classes.

that the total number of neurons is infinite.

Computation reduction =
Costcomp,dense

Costcomp,sparse
≈ 1

activation density

=
1

1− activation sparsity
=

1

1− 0.88
≈ 8.3

(5.1)

Memory access reduction =
Costmem,dense

Costmem,sparse
≈ 1

activation density

=
1

1− activation sparsity
=

1

1− 0.88
≈ 8.3

(5.2)

Therefore, the proposed method has the potential to reduce computations and memory
access by a factor of 8. However, in practice, it will always be less than 8x because,

• the memory requirement is higher than the baseline as the algorithm needs to keep
track of the previous state of the neurons to do delta calculations.

• on-chip memory is costly, causing the size of SRAM to be limited in the hardware. So,
to accommodate the memory requirement, off-chip memory has to be used, which has
two orders more energy cost than SRAM.
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5.4 Conclusion

With this analysis, it can be observed that the new temporal delta layer proposed in this
work achieves the objective of increasing sparsity with acceptable loss in accuracy. It is
also estimated that the sparsity gain obtained has the potential to reduce computations and
memory access by a factor of 8.
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Conclusions and Future Work 6
6.1 Conclusion

After the analysis of the results, it can be concluded that the proposed methodology satisfies
the key objectives of the thesis mentioned in Section 1.3.

1. To induce sufficiently high temporal sparsity without suffering too much
accuracy loss: Intuitively, the new temporal delta layer casts the temporal activation
sparsity between two consecutive feature maps into spatial activation sparsity of their
delta map. This spatial sparsity is then exploited to reduce computations and memory
access when performing sparse tensor multiplications in hardware. As shown in Table
5.4, the proposed method resulted in 88% activation sparsity with an accuracy drop
of 5% on UCF-101 dataset for human action recognition. However, according to the
experiments, input videos shot with a fixed camera showed more sparsity than those
shot with a moving camera. So, it can be extrapolated that the temporal delta layer
performs better in applications, like video surveillance, patient monitoring, etc., where
the camera is fixed.

2. To make the method flexible enough to be integrated with existing archi-
tectures: The proposed layer can be deployed after any activation layer, and its incor-
poration does not require any adjustment to the preceding or following layer. However,
the layer does add two hyperparameters during training; one for the quantization step-
size initialization and the other to determine the weight of the sparsity penalty. Also,
the experiments were performed exclusively on ResNet50. Therefore, to confirm the
effectiveness of the method, it will be experimented on different network architectures
and datasets as a follow-up to this work. Moreover, the new layer can be introduced
during training, fine-tuning or inference.

3. To study whether existing spatial sparsification methods (like quantization)
can facilitate temporal sparsity: The proposed mechanism compares the ability of
two different quantization methods - fixed point quantization and learned step size quan-
tization, to increase the temporal sparsity. Although fixed point quantization maintains
the accuracy, the temporal sparsity obtained is not sufficiently high. Whereas learned
step-size maintains acceptable accuracy along with high temporal sparsity. However,
even though the quantization step-size is learnable in LSQ, similar to weights, the ini-
tialization of step-size is important and is found heuristically in this work which can be
a ”nuisance”.

4. To investigate the consequence of the method:

• The collateral advantage of temporal sparsity is that the computations does not
increase linearly with the increase in frame rate. In standard DNN, doubling the
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frame rate naturally would require double the computations. However, in the
case of temporal delta layer based model, increasing the frame rate would not
only increase the temporal precision of the network but also increase the temporal
sparsity limiting the computations required [117].

• The drawback of using temporal delta layer derives from its requirement to keep
track of the previous activations to perform delta operations. This increases the
overall memory footprint which in turn increases the reliance on off-chip memory.
For instance, external DRAM memory consumes two orders of magnitude more
energy than SRAM [40]. Due to this, although according to Section 5.3.5, the
proposed method can reduce the compute and memory cost by 8x, but in practice
the amount of energy savings is less than 8x. However, the increasing popularity
of new memory technologies (like resistive RAM [118], embedded Flash memory
[119], etc.) may improve the aforementioned cost calculations in the near future.

6.2 Future Work

A few of the interesting directions to explore as an extension to this work are:

• The proposed architecture can be implemented on hardware that can exploit the avail-
able activation sparsity to obtain more accurate energy/time measurements.

• Instead of l1 regularization, which results in non-structured sparsity, methods like group
LASSO [120] or group Hoyer [87] can be considered for the sparsity penalty term.
The latter methods result in structured sparsity, which can help the distribution of
computations in parallel cores.

• As the result of training with temporal delta layer is a quantized DNN, knowledge
distillation can be used to improve the accuracy of that model [121]. In this setup, the
baseline model can be the teacher, and the temporally sparse delta model developed
from this work can be the student.

• To increase efficiency at the input side, compressed videos can be considered as inputs
[100]. The spatial stream can use keyframes (I-frames), and the temporal stream can
use motion vectors (P-frames).

• In this work, weight related optimizations are not considered. But efficient storing and
accessing of weights is also important in reducing energy consumption in DNN. So,
weight quantization can be combined with the method. As it will increase the static
sparsity of the model, it will add to the computation and memory access reductions
from the proposed method.

• Instead of ReLU, new activation functions like Swish [122] and Mish [123] can also be
considered to confirm the effectiveness of the new layer.

62



63



64



Bibliography

[1] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning, vol. 1. MIT press
Cambridge, 2016.

[2] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool, “Temporal
segment networks: Towards good practices for deep action recognition,” in European
conference on computer vision, pp. 20–36, Springer, 2016.

[3] K. Chen and W. Tao, “Once for all: a two-flow convolutional neural network for visual
tracking,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 28,
no. 12, pp. 3377–3386, 2017.

[4] K. Kang, H. Li, J. Yan, X. Zeng, B. Yang, T. Xiao, C. Zhang, Z. Wang, R. Wang,
X. Wang, et al., “T-cnn: Tubelets with convolutional neural networks for object detec-
tion from videos,” IEEE Transactions on Circuits and Systems for Video Technology,
vol. 28, no. 10, pp. 2896–2907, 2017.

[5] L. Cavigelli and L. Benini, “Origami: A 803-gop/s/w convolutional network accelera-
tor,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 27, no. 11,
pp. 2461–2475, 2016.

[6] Y.-H. Chen, J. Emer, and V. Sze, “Eyeriss: A spatial architecture for energy-efficient
dataflow for convolutional neural networks,” ACM SIGARCH Computer Architecture
News, vol. 44, no. 3, pp. 367–379, 2016.

[7] C. Farabet, B. Martini, B. Corda, P. Akselrod, E. Culurciello, and Y. LeCun, “Neu-
flow: A runtime reconfigurable dataflow processor for vision,” in Cvpr 2011 Workshops,
pp. 109–116, IEEE, 2011.

[8] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi, “Xnor-net: Imagenet classifica-
tion using binary convolutional neural networks,” in European conference on computer
vision, pp. 525–542, Springer, 2016.

[9] C. Zhang, G. Sun, Z. Fang, P. Zhou, P. Pan, and J. Cong, “Caffeine: Toward uniformed
representation and acceleration for deep convolutional neural networks,” IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, vol. 38, no. 11,
pp. 2072–2085, 2018.

[10] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing deep neural
networks with pruning, trained quantization and huffman coding,” arXiv preprint
arXiv:1510.00149, 2015.

[11] T. Gale, E. Elsen, and S. Hooker, “The state of sparsity in deep neural networks,” arXiv
preprint arXiv:1902.09574, 2019.

[12] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural network,”
arXiv preprint arXiv:1503.02531, 2015.

65



[13] J. Albericio, P. Judd, T. Hetherington, T. Aamodt, N. E. Jerger, and A. Moshovos,
“Cnvlutin: Ineffectual-neuron-free deep neural network computing,” ACM SIGARCH
Computer Architecture News, vol. 44, no. 3, pp. 1–13, 2016.

[14] S. Han, X. Liu, H. Mao, J. Pu, A. Pedram, M. A. Horowitz, and W. J. Dally, “Eie: Effi-
cient inference engine on compressed deep neural network,” ACM SIGARCH Computer
Architecture News, vol. 44, no. 3, pp. 243–254, 2016.

[15] A. Aimar, H. Mostafa, E. Calabrese, A. Rios-Navarro, R. Tapiador-Morales, I.-A.
Lungu, M. B. Milde, F. Corradi, A. Linares-Barranco, S.-C. Liu, et al., “Nullhop:
A flexible convolutional neural network accelerator based on sparse representations of
feature maps,” IEEE transactions on neural networks and learning systems, vol. 30,
no. 3, pp. 644–656, 2018.

[16] O. Moreira, A. Yousefzadeh, F. Chersi, G. Cinserin, R.-J. Zwartenkot, A. Kapoor,
P. Qiao, P. Kievits, M. Khoei, L. Rouillard, et al., “Neuronflow: a neuromorphic pro-
cessor architecture for live ai applications,” in 2020 Design, Automation & Test in
Europe Conference & Exhibition (DATE), pp. 840–845, IEEE, 2020.

[17] J. Choquette, W. Gandhi, O. Giroux, N. Stam, and R. Krashinsky, “Nvidia a100 tensor
core gpu: Performance and innovation,” IEEE Micro, vol. 41, no. 2, pp. 29–35, 2021.

[18] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured sparsity in deep
neural networks,” arXiv preprint arXiv:1608.03665, 2016.

[19] M. Mahowald, “The silicon retina,” in An Analog VLSI System for Stereoscopic Vision,
pp. 4–65, Springer, 1994.

[20] C. Gao, D. Neil, E. Ceolini, S.-C. Liu, and T. Delbruck, “Deltarnn: A power-efficient
recurrent neural network accelerator,” in Proceedings of the 2018 ACM/SIGDA Inter-
national Symposium on Field-Programmable Gate Arrays, pp. 21–30, 2018.

[21] “GrAI Matter Raises 14M dollar for Sparsity-Driven AI SoC.” https://www.eetimes.

com/grai-matter-raises-14m-for-sparsity-driven-ai-soc/. Accessed: 2021-08-
10.

[22] F. Rosenblatt, “The perceptron: a probabilistic model for information storage and
organization in the brain.,” Psychological review, vol. 65, no. 6, p. 386, 1958.

[23] A. Pinkus, “Approximation theory of the mlp model,” Acta Numerica 1999: Volume 8,
vol. 8, pp. 143–195, 1999.

[24] C. Münker, “Using convolutional neural networks to distinguish vehicle pose and vehicle
class,” Master’s thesis, TU Darmstadt, Nov. 2016.

[25] M. A. Nielsen, Neural networks and deep learning, vol. 25. Determination press San
Francisco, CA, 2015.

[26] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Unsupervised learning of hierarchical
representations with convolutional deep belief networks,” Communications of the ACM,
vol. 54, no. 10, pp. 95–103, 2011.

66

https://www.eetimes.com/grai-matter-raises-14m-for-sparsity-driven-ai-soc/
https://www.eetimes.com/grai-matter-raises-14m-for-sparsity-driven-ai-soc/


[27] P. Baldi, “Gradient descent learning algorithm overview: A general dynamical systems
perspective,” IEEE Transactions on neural networks, vol. 6, no. 1, pp. 182–195, 1995.

[28] S. Ruder, “An overview of gradient descent optimization algorithms,” arXiv preprint
arXiv:1609.04747, 2016.

[29] “The Difference Between Deep Learning Training and Inference.” https://www.intel.

in/content/www/in/en/artificial-intelligence/blog.html. Accessed: 2021-06-
24.

[30] “Why so sigmoid??.” https://alexander-schiendorfer.github.io/2020/02/17/

why-so.sigmoid.html. Accessed: 2021-06-24.

[31] C. Nwankpa, W. Ijomah, A. Gachagan, and S. Marshall, “Activation functions:
Comparison of trends in practice and research for deep learning,” arXiv preprint
arXiv:1811.03378, 2018.

[32] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep con-
volutional neural networks,” Advances in neural information processing systems, vol. 25,
pp. 1097–1105, 2012.

[33] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural networks,” in Proceed-
ings of the fourteenth international conference on artificial intelligence and statistics,
pp. 315–323, JMLR Workshop and Conference Proceedings, 2011.

[34] “What is the Softmax Function?.” https://deepai.org/

machine-learning-glossary-and-terms/softmax-layer. Accessed: 2021-06-25.

[35] “Softmax Activation Function Explained.” https://towardsdatascience.com/

softmax-activation-function-explained-a7e1bc3ad60. Accessed: 2021-06-25.

[36] Y. LeCun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, and L. Jackel,
“Handwritten digit recognition with a back-propagation network,” Advances in neural
information processing systems, vol. 2, 1989.

[37] C. Farabet, C. Couprie, L. Najman, and Y. LeCun, “Learning hierarchical features
for scene labeling,” IEEE transactions on pattern analysis and machine intelligence,
vol. 35, no. 8, pp. 1915–1929, 2012.

[38] A. Toshev and C. Szegedy, “Deeppose: Human pose estimation via deep neural net-
works,” in Proceedings of the IEEE conference on computer vision and pattern recogni-
tion, pp. 1653–1660, 2014.

[39] Y. Taigman, M. Yang, M. Ranzato, and L. Wolf, “Deepface: Closing the gap to human-
level performance in face verification,” in Proceedings of the IEEE conference on com-
puter vision and pattern recognition, pp. 1701–1708, 2014.

[40] V. Sze, Y.-H. Chen, T.-J. Yang, and J. S. Emer, “Efficient processing of deep neural
networks: A tutorial and survey,” Proceedings of the IEEE, vol. 105, no. 12, pp. 2295–
2329, 2017.

67

https://www.intel.in/content/www/in/en/artificial-intelligence/blog.html
https://www.intel.in/content/www/in/en/artificial-intelligence/blog.html
https://alexander-schiendorfer.github.io/2020/02/17/why-so.sigmoid.html
https://alexander-schiendorfer.github.io/2020/02/17/why-so.sigmoid.html
https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://deepai.org/machine-learning-glossary-and-terms/softmax-layer
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60
https://towardsdatascience.com/softmax-activation-function-explained-a7e1bc3ad60


[41] “Understanding Deep Self-attention Mechanism in Convo-
lution Neural Networks.” https://medium.com/ai-salon/

understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251.
Accessed: 2021-08-17.

[42] “Predictive Neural Network Applications for Insurance Processes.” https:

//www.researchgate.net/publication/335609766_Predictive_Neural_Network_

Applications_for_Insurance_Processes. Accessed: 2021-06-25.

[43] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, PMLR, 2015.

[44] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout:
a simple way to prevent neural networks from overfitting,” The journal of machine
learning research, vol. 15, no. 1, pp. 1929–1958, 2014.

[45] M. Capra, B. Bussolino, A. Marchisio, G. Masera, M. Martina, and M. Shafique, “Hard-
ware and software optimizations for accelerating deep neural networks: Survey of cur-
rent trends, challenges, and the road ahead,” IEEE Access, vol. 8, pp. 225134–225180,
2020.

[46] Y.-H. Chen, J. Emer, and V. Sze, “Using dataflow to optimize energy efficiency of deep
neural network accelerators,” IEEE Micro, vol. 37, no. 3, pp. 12–21, 2017.

[47] M. Horowitz, “Energy table for 45nm process,” in Stanford VLSI wiki, 2014.

[48] M. Horowitz, “1.1 computing’s energy problem (and what we can do about it),” in
2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers
(ISSCC), pp. 10–14, IEEE, 2014.

[49] A. Goel, C. Tung, Y.-H. Lu, and G. K. Thiruvathukal, “A survey of methods for low-
power deep learning and computer vision,” in 2020 IEEE 6th World Forum on Internet
of Things (WF-IoT), pp. 1–6, IEEE, 2020.

[50] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry, “Aciq: Analytical clipping for integer
quantization of neural networks,” 2018.

[51] S. Migacz, “8-bit inference with tensorrt,” in GPU technology conference, vol. 2, p. 5,
2017.

[52] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and Y. Bengio, “Binarized neural
networks: Training deep neural networks with weights and activations constrained to+
1 or-1,” arXiv preprint arXiv:1602.02830, 2016.

[53] A. Mishra, E. Nurvitadhi, J. J. Cook, and D. Marr, “Wrpn: Wide reduced-precision
networks,” arXiv preprint arXiv:1709.01134, 2017.

[54] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

68

https://medium.com/ai-salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251
https://medium.com/ai-salon/understanding-deep-self-attention-mechanism-in-convolution-neural-networks-e8f9c01cb251
https://www.researchgate.net/publication/335609766_Predictive_Neural_Network_Applications_for_Insurance_Processes
https://www.researchgate.net/publication/335609766_Predictive_Neural_Network_Applications_for_Insurance_Processes
https://www.researchgate.net/publication/335609766_Predictive_Neural_Network_Applications_for_Insurance_Processes


[55] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan, and K. Gopalakr-
ishnan, “Pact: Parameterized clipping activation for quantized neural networks,” arXiv
preprint arXiv:1805.06085, 2018.

[56] S. Jung, C. Son, S. Lee, J. Son, J.-J. Han, Y. Kwak, S. J. Hwang, and C. Choi,
“Learning to quantize deep networks by optimizing quantization intervals with task
loss,” in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pp. 4350–4359, 2019.

[57] Y. Li, X. Dong, and W. Wang, “Additive powers-of-two quantization: An efficient non-
uniform discretization for neural networks,” arXiv preprint arXiv:1909.13144, 2019.

[58] K. Wang, Z. Liu, Y. Lin, J. Lin, and S. Han, “Haq: Hardware-aware automated quanti-
zation with mixed precision,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8612–8620, 2019.

[59] A. Elthakeb, P. Pilligundla, F. Mireshghallah, A. Yazdanbakhsh, S. Gao, and H. Es-
maeilzadeh, “Releq: An automatic reinforcement learning approach for deep quantiza-
tion of neural networks,” in NeurIPS ML for Systems workshop, 2018, 2019.

[60] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer, “Hawq: Hessian aware
quantization of neural networks with mixed-precision,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 293–302, 2019.

[61] J. Liu, S. Tripathi, U. Kurup, and M. Shah, “Pruning algorithms to acceler-
ate convolutional neural networks for edge applications: A survey,” arXiv preprint
arXiv:2005.04275, 2020.

[62] B. Hassibi and D. G. Stork, Second order derivatives for network pruning: Optimal
brain surgeon. Morgan Kaufmann, 1993.

[63] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for
efficient neural networks,” arXiv preprint arXiv:1506.02626, 2015.

[64] V. Lebedev and V. Lempitsky, “Fast convnets using group-wise brain damage,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 2554–2564, 2016.

[65] C. Zhao, B. Ni, J. Zhang, Q. Zhao, W. Zhang, and Q. Tian, “Variational convolutional
neural network pruning,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 2780–2789, 2019.

[66] J.-H. Luo and J. Wu, “An entropy-based pruning method for cnn compression,” arXiv
preprint arXiv:1706.05791, 2017.

[67] M. Golub, G. Lemieux, and M. Lis, “Full deep neural network training on a pruned
weight budget,” arXiv preprint arXiv:1806.06949, 2018.

[68] S. Han, J. Pool, J. Tran, and W. J. Dally, “Learning both weights and connections for
efficient neural networks,” arXiv preprint arXiv:1506.02626, 2015.

69



[69] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable architectures
for scalable image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 8697–8710, 2018.

[70] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolution for image classi-
fier architecture search,” in Proceedings of the aaai conference on artificial intelligence,
vol. 33, pp. 4780–4789, 2019.

[71] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard, and Q. V. Le,
“Mnasnet: Platform-aware neural architecture search for mobile,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2820–2828,
2019.

[72] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, and
D. Marculescu, “Single-path nas: Designing hardware-efficient convnets in less than
4 hours,” in Joint European Conference on Machine Learning and Knowledge Discov-
ery in Databases, pp. 481–497, Springer, 2019.

[73] “Neural Architecture Search — The Foundations.” https://medium.com/

digital-catapult/neural-architecture-search-the-foundations-a6cc85f7562.
Accessed: 2021-06-25.
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[111] P. T. Biliński, Human action recognition in videos. PhD thesis, Université Nice Sophia
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