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Abstract

Peer-to-peer networks are often large, collaborative networks where peers can join
openly. The essence of a collaborative, distributed system is that every node per-
forms tasks for other nodes. The peers often help in singular interactions and with-
out direct reciprocity. Malicious peers can abuse and freeride the public goods. The
network without countermeasures can fall into a tragedy of the commons where no
one helps another and everyone takes advantage of the generosity of peers. Only
when the reputation of a peer is publicly available at scale and peers trust this repu-
tation can the network escape the problems of freeriding and attain high utility for
all participants.

This thesis focuses on designing and implementing the first step of a tamper
proof reputation system within Tribler. Tribler is a peer-to-peer BitTorrent system
developed at the Delft University of Technology. This first step, made by this the-
sis, is to create MultiChain, a proof-of-concept bookkeeping system. MultiChain
tracks the upload and download amounts of peers to eliminate freeriding. Multi-
Chain is cryptographically protected and validated. The bookkeeping system has
to be scalable to be publicly available and be able to process enough transactions.
The system has to work in an asynchronous network.

A new design of a distributed data structure that can be used as a ledger is in-
troduced by this thesis. This first step with MultiChain is already more resilient
to tampering than previous work, like BarterCast. BarterCast has no security mea-
sures against tampering records. The design of MultiChain is to have a chain of
blocks for every peer as a ledger. Peers are participants of a peer-to-peer network.
A block contains a transaction between two peers. This block is shared and added
to both chains. This makes both chains of the peers intertwined and entangled at
a shared block. The proposed design abandons the typical global, full ledger. The
protocol of creating these blocks between peers is described. The problems faced
by MultiChain in an asynchronous network are explained. The thesis proposes how
the design can overcome these problems by only allowing atomic operations to be
performed on the chain and to introduce unfinished blocks in the chain.

The implementation of the design is tested and experimented with within this
thesis to validate it to work correctly. Furthermore, a number of weak points are
discussed. These weak points have to be addressed in the future to create a tamper
proof reputation system.
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Preface

The huge increase in Bitcoin adoption, due to the increase in uncertainty in the
security of traditional currency after the financial crisis in 2008, is only rivaled
by the speculation of the enormous possibilities of the underlying technology, the
block chain. The block chain is the first technology, seen with real world adoption,
that allows to register transactions without a trusted third party. The block chain has
several limitations in scalabillity that will limit Bitcoin in fully replacing traditional
currency. It also limits block chain as a scalable base for a large scale reputation
system, similar to a digital currency, with vast amounts of transactions. These
developments provide motivation to research the properties and possibilities of a
new distributed data structure: MultiChain.
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Chapter 1

Introduction

Tribler is peer-to-peer file sharing software developed at the Delft University of
Technology for research purposes. Tribler was started in 2001. Tribler expands the
BitTorrent protocol and has added multiple improvements on this protocol. The
focus of Tribler is two fold:

• Make secure and private use of the Internet the default for every user.

• Make it impossible to shut Tribler down without shutting down the infras-
tructure of the Internet itself down.

A fully distributed program, without relying on any central component, is only
able to achieve these goals. Tribler has been designed and build with this focus [1,
2]. A distributed network requires collaboration of it participants, called peers, to
achieve success. A screenshot of Tribler can be seen in Figure 1.1. This master’s
thesis was conducted as part of the research mission to improve the collaboration
of peers within Tribler.

1.1 Tribler

In peer-to-peer file sharing a node called a seeder uploads parts of a file to another
node, the downloader. The seeders and downloaders constantly change and a node
can be both at the same time for different, parallel connections. A seeder can
become a downloader when he wishes to download other files and downloaders can
become seeders, when they posses a different file someone else wants. The ratio
between the total data downloaded and uploaded is called the seeding ratio [3]. The
seeding ratio can be seen as an indication of the level of collaboration.

Uploading can be seen as an interaction of one node helping another node. Such
interactions come at the cost of consuming bandwidth for both parties. However,
there is only direct benefit for the downloader. The downloader receives a file he
wants. There is no direct barter between the seeder and downloader. Because the
seeder does not get anything in return for uploading the file. With only a very small
chance, can a downloader also be a seeder for the original seeder [4].
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Figure 1.1: Screenshot of Tribler v6.4.3.

Both high availability and high download speeds result in a higher utility for the
downloaders. If everyone contributes, files become more available and are down-
loaded at higher speed. This claim is supported by measurements taken in private
communities [5]. In private communities, high seeding ratios are enforced by a
tracker. Trackers are servers where nodes in a peer-to-peer network are introduced
to each other, so that they can upload and download from each other [6]. This
tracker can be seen as a central, third party.

But currently freeriding takes places in high quantities in public networks [7].
BitTorrent uses a Tit-for-Tat strategy [6] to stop freeriding, but this strategy does
not effectively stop abuse [1]. The Tit-for-Tat strategy is to only provide help to
peers to peers that return this help.

Tribler wants to achieve a high global seeding ratio by making it beneficial to
have such a ratio. Nodes can award each other with higher cooperation if a node
has a reputation of being cooperative, while malicious nodes are prevented from
tampering and freeriding. Within Tribler anonymous connections have been im-
plemented recently using onion routing [8, 9, 10]. This feature allows downloaders
to become indistinguishable from other users in the network save guarding their
privacy. Every data packet has to be forwarded by a number of intermediate hops
between the downloader and seeder [8, 10]. The total cost of bandwidth per file
is increased, because it has to be forwarded by multiple nodes. but also the num-
ber of nodes helping a single node downloading a file increases. The increase in
nodes working together increases the necessity of an incentive system to reward
collaboration.

Dispersy is middleware for data dissemination in a network. Dispersy is used
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heavily within Tribler and is maintained by the Tribler organisation. Our work
is build upon Dispersy. Dispersy is used to exchange data between two specific
nodes [11]. Functionality was added to Dispersy during the thesis. The additions
are described in chapter 4.

1.2 Document structure

In chapter 1 we give an overview of Tribler and the organization that develops
Tribler. Chapter 2 gives a description of what the problem is with collaboration in
peer-to-peer networks. Chapter 3 provides an overview of work related to solving
the described problem. The design of the thesis work is described in chapter 4. The
design is implemented, tested and experiments are run with the implementation in
chapter 5. The design has known vulnerabillities and these are explained in chapter
6. Finally, we discuss the results of our work in chapter 7.
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Chapter 2

Problem description

The essence of a collaborative, distributed system is that every node performs tasks
for other nodes. With open systems, where every one can join, an unsolved problem
is how to prevent nodes from only consuming and not contributing to the system.
Our work is an important first step forward in solving this problem without a central
component.

In this chapter, the problem will be described of how to decide to perform a task
for a peer or not. The goal is to prevent that peer from freeriding. The problem will
first be explained in a simplified form. Using this simplification, the problem will
be transformed gradually into the real world problem faced in distributed systems
today.

2.1 Freeriding public goods

One of the problems in collaborative distributed systems is nodes freeriding public
goods. Nodes are participants in the system and the public goods are the will-
ingness of these participants to help others. For decades the field of game the-
ory has studied the problem of how participants can decide to cooperate with a
peer or not [12]. Deciding not to help can prevent freeriding. The minimal form
of this problem is with only two participants. This form is called the Prisoner’s
Dilemma [13, 4] and we will explain this dilemma.

Participants can help each other at a cost, a negative utility, but the recipient
of the help will receive a beneficial utility from the help. The benefit received is
defined to be greater than the cost and is denoted by R for reward. If one participant
chooses to not help the other participant, he will still receive a beneficial utility and
at no cost, T for temptation. The participant that provided the aid will now receive
no benefit and only incur a cost C. If both participants choose to not help each
other, they will both receive a penalty P , which is higher than the cost of helping
each other. One participant will be called participant A and the other participant B.
The utility received by A and B based upon their decision can be seen in Table 2.1.

This dilemma can be repeated several times with the same participants and is
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A / B cooperate defect
cooperate RA/RB TA/CB

defect TA/CB PA/PB

Table 2.1: Prisoner’s Dilemma utility matrix

Figure 2.1: Direct Reciprocity between participants.

the Iterated Prisoner’s Dilemma. Each time both participants will have to decide
if they will help the other participant. A rational participant wants to receive max-
imum benefit at a minimal cost. The participant will follow a strategy that he be-
lieves will achieve this. At first it might seem that a participant will always choose
to defect and freeride, because it will never incur a cost and receive maximal ben-
efit. But the other participant will be reluctant to help a participant if the aid is
never returned. Simple strategies, like tit-for-tat or win-stay, lose-shift, suffice in
the Iterated Prisoner’s Dilemma and perform well [14].

The participants receive Direct Reciprocity from the other participant [14]. Di-
rect Reciprocity is displayed abstractly in Figure 2.1. Participant A helps partici-
pant B and in return receives help. This help will be extended in the future under
the assumption it is returned.

In a large scale, distributed system this dilemma occurs with every interaction
between nodes. The node can already be familiar with the peer, but more often the
peer will be a peer the node has not interacted with before and will interact with
in the future. A second complication is that help is almost always one way. Help
cannot be exchanged and help now cannot be exchanged for help in the future [4].
A third complication is that an uncooroperative node does not incur a penalty for
not helping. A node will not be incentivized to help. The performance of the
tit-for-tat or win-stay, lose-shift strategies quickly deteriorate in such a situation.

For a node it is easier to abuse the generosity of others in the more anonymous
situation of a large scale distributed system. Nodes can act irrational and against
the best interest of the network and this is seen in the real world [7]. Nodes that
help others will be penalized through the cost they incur and incentivized to adopt
the malicious behavior themselves. Nodes in general will become more reluctant
to help nodes [13]. In the end no node will help another and all nodes will receive
a penalty. This is called the Tragedy of the Commons in the literature [12]. The
whole network will actually receive more benefit if everyone would corporate, but
nodes have no way of knowing if the peer they encounter are also willing to help. A
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Figure 2.2: Indirect Reciprocity between nodes.

lack of altruism and selfishness will become a problem and will cause the network
to be susceptible to freeriding.

2.2 Recording of community contributions

In the Iterated Prisoner’s Dilemma the history of the previous transactions can be
used to see if a node helped others in the past. The simple strategies previously
mentioned use a history to improve performance and to prevent freeriding. If a
node knows that a history is kept of his previous transactions by a peer, the node
can be fearful of the consequences of his decision to freeride on public goods now.
This is known as the Shadow of the Future [15]. The Shadow of the Future can
overcome behavior to take advantage of the network.

But this private, individual kept history is not effective to achieve high overall
benefit in distributed systems [4], because peers are often interacted with once.
No history is known for these peers. A public history of a node is necessary to
prevent abuse. The network will be able to achieve high overall benefit of the
network [4]. This public history should contain every previous interaction. The
nodes then receive Indirect Reciprocity [14]. By helping nodes they will receive
help from other nodes in the future based upon their good behaviour. Indirect
Reciprocity is displayed abstractly in Figure 2.2. The help of node C to node A is
dependent on node A helping node B.

A history can be used to create a currency or a reputation system and can be seen
as a bookkeeping system. This history has to be trustworthy. Here trust is defined
as the expectation that the abillity to double spend reputation and being able to
claim a false reputation are highly unlikely.

The node providing help will receive a boost in currency or a beneficial repu-
tation. The currency or reputation can be used in the future to receive aid. In a
currency system, receiving help will transfer currency to the helper. In a reputation
system, only nodes with a sufficiently good reputation will be helped.

The currency or reputation has to be made publicly available to all nodes in the
network. A node publicizing to hold a certain reputation is not sufficient as it is

7



Figure 2.3: Network reciprocity between nodes.

not trustworthy. The reputation has to be verifiable and not self-constructed to be
trustworthy. So an interaction history, that contains every prior interaction a node
has conducted, is publicized. Nodes can calculate the amount of currency or the
reputation that a node has. Based upon this calculation, the node can decide to
perform a task or not.

2.3 Scalability

An interaction history has to be accessible by every peer in the network. The
interaction history has to be distributed among the nodes in the network to become
publicly available. The interaction history has to be distributable in an efficient
manner. The overhead introduced by distributing the data of the interaction history
should be minimal. Time to construct and commit a transaction should also be
small. Every peer in the network should be able to gain knowledge of the reputation
a peer holds and verify this reputation. The network will then be able to achieve
Network Reciprocity [14]. Helping peers in the network will ensure that peers
themselves receive help from other peers, because of their good reputation. This is
displayed abstractly in Figure 2.3.

2.4 Facilitating trust

Interaction histories only prevent direct abuse of the generosity of the nodes. A
malicious node can still try to tamper with the interaction history. An example of
a type of these attacks are double spending attacks [16], where an interaction is
altered. But a node can also try to deny an interaction. The interaction history
has to be resilient to attacks that tamper with the interaction history, or no one will
trust the history. A reputation or digital currency system requires a level of trust
in the system to function. The challenge of this thesis is to create a tamper-proof
interaction history.
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A system cannot be fully secure, but still achieve a reasonable certainty such
that no tampering of the interaction history can occur. Reasonable certainty can be
for example that no attack can happen if more than half of the network consists of
honest nodes.

2.5 Aim of this thesis

The overall aim of this thesis is to design, implement and conduct experiments with
a tamper-proof interaction history in a distributed environment. The interaction
history will store the history of the amount of data transferred between nodes in
the network. This interaction history is cryptographically protected and validated.
In the future this interaction history can be used to decide the level of cooperation
with another node in the network. An incremental approach is taken with this
thesis. This thesis is part of several more steps needed before a fully tamper-proof
interaction history is created. Several problems with the interaction history are not
solved. These problems are explained in chapter 6.
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Chapter 3

Related work

In 2007, the notion of bandwidth as a currency was introduced. In 2009, the first
Bitcoins were mined [17]. These events can be seen as the first steps in reputation
or currency systems. Currencies have more strict rules to work correctly than a
reputation system. In this chapter we will discuss related work on tamper-proof
interaction histories in currency or reputation systems. The block chain used in
Bitcoin is explained extensively, because there is much similairity between Multi-
Chain. Understanding the concepts in the block chain helps understanding Multi-
Chain. The differences between the block chain and MultiChain will be explained
in section 4.1.2. Bartercast is the current implemented reputation system used by
Tribler that will be replaced by MultiChain. Several other related systems are fi-
nally briefly discussed.

3.1 Block chain

Bitcoin is a digital currency that uses a global, full transaction history to keep track
of transactions made between nodes. It is called a global, full transaction history,
because the transaction history is shared between every peer and contains every
transaction. The transaction history is a datastructure called the block chain.

The block chain imposes limits on Bitcoin in several ways. These limitations
on Bitcoin can be seen as the initial motivation for our work. How Bitcoin uses
the block chain technology will be introduced first. In the following sections the
limitations imposed by the block chain will be explained.

We will only introduce how Bitcoins uses the block chain and why it does so.
The best starting point for a full explanation of Bitcoins is the original paper by
Nakamoto [16].

3.1.1 Transfer of ownership of a bitcoin

The core of the Bitcoin protocol is the block chain. The block chain contains
transactions of bitcoins. We will first describe how the transactions are build up
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Figure 3.1: Transfer of ownership of bitcoin in a transaction chain.

Figure 3.2: Block chain

and later how they are part of the block chain.
A transaction consists of three parts. The first part is the public key of the new

owner of the bitcoin. The hash of the whole, previous transaction and the public
key of the new owner is concatenated. This concatenation is hashed and this hash
is the second part of the transaction. The final part is the signature by the current
owner of this new hash. Inclusion of the hash of the previous transaction chains a
transaction to the previous transaction.

The previous transaction is a transaction of the same bitcoin. The ownership of
the bitcoin by the current owner can be verified by verifying the whole chain of
ownership of the bitcoin. A transaction is usually shortend to Tx in Bitcoin related
work and is used in images in this report. In Figure 3.1 a diagram can be seen of
how transactions are chained.

3.1.2 Block chain

Multiple transactions are aggregrated into a single block. Every block contains the
hash of the previous block. This creates the block chain. Transaction chains span
across several blocks inside the block chain. A diagram can be seen in Figure 3.2
of the block chain.
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These blocks in the block chain are created by nodes in the network, so called
miners. A miner receives transactions from other nodes in the Bitcoin network.
An attacker could malicously transmit transactions to double spend a bitcoin he
owns or does not have. So every transaction is verified on arrival at a node. Any
transaction that double spends a bitcoin is simply dropped by the node. No penalty
is awarded to the malicous attacker.

The transactions are received in a non deterministic way induced by network
characteristics. The non deterministic nature causes blocks to differ from miner to
miner. The order of transactions has to be agreed upon by the network to eliminate
this inconsistency.

Bitcoin uses election to pick the next block based upon a Proof-Of-Work system.
A nonce is added to every block. This nonce is just a number that can be varied,
but is only sound if the hash of the whole block starts with a certain number of
zeros. Miners have to find the correct nonce for their block and this is a proof of
work.

However, miners can still find a valid nonce at approximately the same time and
notify parts of the network of their newly found block. This also leaves the network
in an inconsisted state. Multiple versions of the next block attached to the previous
block can be seen as branches.

To solve this inconsistency, Bitcoin nodes save both branches and continue using
the longest branch. At some point one branch will become predominant in the
network. More nodes will dedicate compute power to extend this branch and the
growth rate will increase for this branch. The faster growth rate will ensure that the
branch will be adopted by the network as a whole. The smaller branch is abandoned
and the blocks are orphaned.

The amount of zeros, needed in the hash of the transaction, is adjusted to com-
pensate for the fluctuating speed of the network to be able to find nonces. The
speed of the network is called the hash rate and is the amount of hashes calculated
per second. The amount of zeros balances the probability of branches occuring
and the time before a new block is found, which in turn is how fast transactions are
processed. The amount of zeros can be seen as the difficulty [18] of finding the a
block. More zeros decreases the likelyhood a nonce will be valid. The estimated
hash rate over time can be seen in Figure 3.3 [19], and the difficulty in Figure
3.4 [20].

Another possible attack to double spend a bitcoin is by sending a transaction to
one part of the network, but to the other part of the network a transaction with a
different receipient. It is possible that both transactions will be introduced into the
block chain, but in different branches by two independend miners. Eventually one
branch will win and the attack is averted.

The behaviour just described causes that a transaction can never be confirmed
with full certainty. The possibility always exists that another branch over takes the
current longest branch. This makes the network vulnerable if the total compute
power is owned by a malicous attacker is more than the total compute power of the
honest nodes, even if the attacker only has control of 51% of the compute power.

13
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Figure 3.3: Estimated amount of hashes per second.
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Figure 3.4: The difficulty of finding blocks.

In the end the current branch can be overtaken by a new branch started by the
attacker. This new branch allows the whole transaction history to be rewritten by
the attacker.

3.1.3 Limitations

In this section we will discuss the several limitations of Bitcoins that originate from
the use of the block chain.

Size

To be able to prevent double spending and enable rightful spending by the owner,
the node verifying a transaction needs to be aware of the full history of a bitcoin.
This results in that a node needs the entire block chain.

The block chain is a data structure ever increasing in size. No block or data
contained in that block is removed. The block chain has been growing since its
inception in 2009. The size and growth can be seen in Figure 3.5.

The size of the block chain at time of writing already prevents less powerful
devices, like smartphones, to operate on the block chain. This problem is only
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going to become bigger with the continued creation of transactions and at a faster
pace due to increased adoption of Bitcoin. The growth of the size of the block
chain has already outpaced the growth of the power of a smartphone and will also
be relatively larger compared to other types of hardware.

This problem was already identified by Nakamoto in his original paper on Bit-
coin. The paper proposes Simplified Payment Verification (SPV). In SPV mode
a node only downloads the block headers of the longest chain. If a transaction is
to be verified, it requests from the network the specific transaction along with a
Merkle tree linking it to a block in the chain. The Merkle tree can be used to verify
that the transaction was included into the block chain. This allows to calculate with
some confidence that the transaction was accepted.

SVP only gives reasonable confidence and is not as secure as running a full node.
Trust has to be placed in the nodes that send the block headers and Merkle Trees.
Secondly, a transaction that is recorded in a more recent block is less difficult to
tamper with than a transaction deep down in the block chain. This is only an
acceptable solution for clients willing to accept more risk due to having a less
secure system. Therefor it is not a solution for the problem for every one.

Amount of transactions

The usability of a digital currency is in part determined by the time it takes to
process a transaction and how many transactions can be processed in a certain time
scale. The amount of transactions that can be handled by Bitcoins are determined
by two factors:

• Block size

• Block creation time

The block size is currently capped at a fixed maximum size. A block can be
smaller, but cannot exceed the maximum size. The current blocksize limit is 1MB.
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A block has a fixed part and the rest is filled up by transactions picked by the
miner. A transaction can vary in length. The number of transactions that can be
fitted inside a block is limited by the maximum size.

This maximum size has no clear documentation of why it was picked as such.
There are several implications of raising the size, aswell as lowering. Increasing
the block size will increase the number of transactions that can be processed. But
the increased block size will increase propogation time of the block in the network.
A longer propogation time will in turn result in a higher orphane rate of the miner.

Large clusters of hash power owned by a single miner or mine cluster can be
placed closer together reducing propogation time for this miner. This will benefit
this single miner in reducing his orphaned rate and will increase the chance of his
block being adopted. This will make the network as a whole more susptible to
attack by a single powerful miner and will reduce the power of other miners.

The difficulty of finding a new block roughly regulates how fast new blocks are
created. The difficulty is set according to the hash rate of the whole network to
equal roughly a new block every 10 minutes. If the time of finding a new block
is decreased, then more blocks are generated and obviously more transactions can
be fitted inside these blocks. The reverse is true if the time is increased. But the
time between blocks is a balance between the orphan rate of blocks and how fast
transactions are committed to the block chain.

These two factors currently result in a theoretical limit of 7 transactions per sec-
ond [21]. This can be calculated by dividing the maximum blocksize with the
minimal size of a transaction. The performance of Bitcoin can be changed by
changing the settings of these two factors. This limits the global usage of Bitcoins.
In comparison, Visanet, that handles transactions under Visa, is able to process
54.000 transactions per second [22]. To be a real replacement of the current tradi-
tional currencies a higher number of transactions per second have to be achieved
by a digital currency. There are at time of writing several competing proposals to
increase the block size [23, 24].

3.2 BarterCast

BarterCast is the system used by Tribler to incentivise good behaviour by keeping
track of reputations [25, 26, 27, 28]. It is fully decentralized, in contrast to previous
reputation systems in a peer-to-peer network. Private BitTorrent communities, for
example, depend on central servers to track reputation [26]. BarterCast was not
designed with the aim to be fully resistant to malicious nodes that want to falsify
their reputations. The initial version has been first deployed in June 2006 and
subsequently has been improved. BarterCast will be briefly explained as well as its
vulnerabilities.
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Figure 3.6: BuddyCast stack overview [25].

Figure 3.7: Format of initial messages in BuddyCast [25].

3.2.1 Epidemic protocol

At the base of BarterCast is BuddyCast. BuddyCast is an epidemic protocol stack
and BarterCast is part as a protocol of this stack. A overview of the BuddyCast
stack can be seen in Figure 3.6 and a more thorough introduction can be found in
the report on BuddyCast [25].

An epidemic protocol works in a very simple way relying on a receive-and-
forward primitive. Information is exchanged and forwarded between peers. This is
called gossiping. BarterCasts gossips on the donation of upload bandwidth and the
consumption of download bandwidth by other peers.

BuddyCasts spreads information of other peers with initial messages. This is
done every 15 seconds, but a peer is only contacted every 4 hours to avoid contact-
ing too often. These messages contain a prefered content list, a list of peers with
similair prefered content and a list of random peers. For each peer a public key, IP
adress, port number and last seen timestamp is provided. The peers with a similair
preference are called taste buddies. A format of the these messages can be seen in
Figure 3.7.

BuddyCasts uses several techniques to improve the peer selection efficiency.
Peer selection efficiency is the percentage of successfully delivered outgoing mes-
sages to peers. This metric measures how well BuddyCasts selects peers on avail-
ablity and connectablity. These are important because they determine how well
BuddyCasts is able to handle with peer failure and exit. Sending messages to an
unavailable peer is a complete waste of resources.

The most obvious improvement that has been made is not to forward any offline
peers. BuddyCast maintains a live overlay and continuously verify the online status
of 10 random peers and 10 taste buddies. The random peers are updated to ensure
they are in fact random peers.

Peers can detect their own connectivity issues. While they are able to connect
outbound, no incoming connections can be excepted. These peers can improve the
peer selection efficiency by broadcasting that they are having connectivity prob-
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Figure 3.8: A screenshot of BarterBrowser in 2008 [25].

lems and instructing others to not gossip their identity.
Each peer collects information on how much other peers have downloaded and

uploaded. This information is signed and a barter record is created. These barter
records are forwarded to 10 peers. A peer has a chance to be random peer or a taste
buddy. The records are forwarded by attaching them to BuddyCast messages.

The aggregrated information contains information about direct interactions with
other peers, but also information about interactions between other peers gossiped.
The information can be visualised using BarterBowser. A screenshot can be seen
in Figure 3.8. The center contains the local peer. Every circle contains peers for a
certain degree. The first circle from the centre contains peers that the local peer has
direct interactions with. The second circle contains peers that peers from the first
circle has direct interactions with and so forth. The figure shows how BarterCast
accumulates data through other peers.

The information can be used to in conjunction with the maxflow algorithm to
create a reputation metric [27]. The reputation metric measures how well or how
poorly a peer has helped the network. The calculation takes into account that the
difference between 0 and 100 MB is more significant then between 1000 MB and
1100 MB.

The calculation is done without relying on a third party. No authority verifies the
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validity of the received information. Also there is no insurance that the information
is complete.

Improvements have been done to improve the performance of BarterCast. A
bloom filter algorithm is implemented to decrease the amount of duplicate barter
records being sent to peers already having those records [29]. Bloom filters can
be used to quickly determine with some certainty if a database contains records in
limited space [30]. The bloom filter protocol works in the following way:

1. Peer A creates a specific Bloom filter for peer B.

2. Peer A sends the Bloom filter to peer B.

3. Peer B checks every record in its database using the Bloom filter.

4. Peer B sends any missing record to peer A.

The created bloom filters only contain relevant entries that have not yet been syn-
chronized to peer B. BarterCasts knows which entries are relevant by keeping
track of the last synchronization point and only using new barter records since that
point.

3.2.2 Limitation

The main limitation of Bartercast is that the reputation is self-reported. This as-
sumes the majority of nodes to be honest and to follow protocol. Barter records are
not signed by any one else. So Barter records can be created by any malicious node
without a limit. There is no way to verify these records and enforce truthfulness.
Finally, there is no way to punish malicious nodes and therefore they are free to lie.

3.3 Other related work

The topic of reputation system is currently a subject of research for other projects
as well and show the struggle to build a working reputation system. There are
two projects worth to briefly mention, because of similairity to the Tribler project.
These projects are not so thoroughly explained as the block chain as they were not
used as a starting point in designing MultiChain.

The Tor project is working on a implementation of a reputation system in an
effort to incentivize collaboration [31]. There are currently multiple proposals:
PAR [32], BRAIDS [33], LIRA [34], TEARS [35], TorCoin [36], and XPAY [37].
The amount of proposals demonstrate the complexity of creating a reputation sys-
tem in an anonymous system.

The InterPlanetary File System IPFS is a peer-to-peer distributed file system
with similairities to the Tribler project. IPFS uses an incentivized block exchange
to improve collaboration [38].
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Chapter 4

Design

This chapter presents the design of MultiChain and how it was implemented. The
first thing that will be introduced is how MultiChain is implemented within Tribler
to outline the context of the design and implementation. The contents of blocks
are presented and how they form chains in MultiChain. We will cover the creation
of blocks and the multiple implications of the chosen design. We will explain how
MultiChain adresses the freeriding problem. Additional pheripheral systems that
work with MultiChain are also explained.

Tribler uses communities to add functionalities to peers. New communities are
packaged into new Tribler versions. These versions are downloaded by peers. A
community provides a set of messages and endpoints for other peers. The commu-
nity can communicate with the endpoints of other peers as well and send a message
to these endpoints. Other peers are automatically discovered using Dispersy. Ex-
amples of communities are the TunnelCommunity that adds functionality to down-
load anonymously [8, 10] or the AllChannelCommunity to distribute torrent files.
Our system will be implemented by adding a new community to Tribler.

The MultiChain community can be run standalone, but its main use is to integrate
with Tribler and track up and download amounts for torrents. It aims to replace the
current reputation system Bartercast in the future.

4.1 Datastructure design

In this section we wil describe the design of the chains inside MultiChain. We
will first describe the contents of a single block. Next, we will explain how blocks
are chained together for a single peer. These chains are intertwined and we will
clarify this entanglement. Finally, we will describe how the blocks provide security
against tampering.
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Figure 4.1: A seeder sending a protocol message to request a block.

Figure 4.2: All 14 fields in a MultiChain block.

4.1.1 Bookkeeping

A peer will upload to and download from other peers in the network. Peer A is a
seeder and peer B is a downloader in the following text. A will want to increase
its reputation and have a transaction transcribing his contribution. A initiates the
process to create a block with peers that he has uploaded to. These peers will be
referred to as B. This process can be seen in Figure 4.1 Every block only contains
one transaction.

The contents of a block can be seen in Figure 4.2. The up and down represents
the amount that has been transferred between A and B directly for the current
transaction. Up means data uploaded by A to B and down the data downloaded
by A from B. Every peer in Dispersy has a public and private key and are unique
identifiers. A block contains both public keys of the peers, so it is possible to
verify to which peers the transaction belongs to. The total amounts of A and B is
added to the block. This is the amount summed across the whole chain of A and B
respectively.

The blocks are linked to previous blocks by adding the hashes of the previous
blocks of both peers. This creates a directed acyclic graph of blocks. An overview
of a chain of blocks is seen in Figure 4.3. In this overview the chain of B is
currently ignored. The first block references a special genesis hash identifying the
block as the first block. A block has two sequence numbers, one for A and for
B. These numbers allow blocks to be ordered without having to walk across the
hashes linking the blocks. Both peers add their signature to the block to announce
that they approve the contents of the block.

4.1.2 Scalable reciprocity

One of the main pillar of the design is to have a transaction history for every peer.
The reasoning behind the idea to abandon a global, full transaction history is that
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Figure 4.3: A chain of blocks with transaction data in MultiChain.

it will always become the bottleneck in the system. This will limit the amount of
interactions that can be processed. Before this limit is reached, less powerful ma-
chines are already excluded in participating. For example, a global, full transaction
history is the block chain of Bitcoins, discussed in section 3.1. The block chain
already shows these limitations. Commonly, this way of design is used to prevent
double spending. We believe that it is possible and much cheaper to detect and
punish double spending than prevent double spending. This will be described in
section 6.1

The reason for the limitation is that every interaction will have to be distributed
to every peer in the network. Every transaction has to be processed by every node
at the cost of bandwidth, computation power and storage. The cost might be very
limited for a single transaction, but with greater scale these costs will add up when
the amount of transactions are increased. The amount of these three resources
is limited and will limit the amount of transactions that can be processed. This
problem can be seen to affect Bitcoins and has been demonstrated in section 3.1.3.

Every node has its own transaction history and only needs the transaction his-
tory of the peers it interacts with. Within MultiChain peers can try to congregrate
the full transaction history or only a subset This flexibility provides MultiChain
with unbounded scalability for the network as a whole. Low-powered devices will
be able to keep participating as long as they have enough power to process the
transactions relevant to them.

4.1.3 Entanglement

Chains become entangled, because every block is shared between peers. Every
block is present in two chains and references the previous block of node A and
of node B. The chains quickly form a large graph with every node in the graph
representing a block. Every node has two outward directed edges and two incoming
directed edges except the nodes representing the genesis block and the most recent
block. The outward edges point to the previous blocks and the incoming edges
come from the next block in chronological ordering.

An simple example of three blocks can be seen in Figure 4.4. In this example
the first block contains a transaction between peer A and B. This block references
the previous block of both A and B. Peer A continues with a transaction with C
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and peer B transacts with D. Now the previous hash of A and B is the same as they
share a block on their chains. This hash is used in different transactions. Color has
been added to denote the direction of the chain of peers.

Figure 4.4: Entanglement of chains within MultiChain with four participants.

4.1.4 Protecting the blocks

The blocks have to be cryptographically protected and validated. Tampering with
the contents of blocks should be detectable and useless. In part this is already
done by using the hashes as pointers in subsequent blocks. If a block in a chain
is changed, then the subsequent hash pointers will become invalid [39]. The chain
becomes detached.

A second issue is that peers should not be able to deny conducting a transaction.
This will prevent a peer to be able to deny his freeriding if this is transcibed in his
chain. Both peers sign the block using their private keys to acknowledge that the
transaction has happened. This signature is added to the block.

In a transaction between peer A and peer B, the whole block is not signed by
every peer. Peer A can only make valid claims about, and have authority, over the
interaction between peers and his own total up and download amounts. So A does
not need to sign the data containing the previous hash and the total up and down
of the other peer B. These amounts can be verified using the chain of peer B. The
parts of what is signed by peer A and what is signed by B can be seen in Figure
4.5.

Digital signatures have the property to be non-repudiable of origin [39]. After
signing a block the signer cannot later deny providing his signature. Only with the
possesion of a secret key, a signature can be made; so only the signer could have
made the signature. This is assuming the secret key was not comprimised. The
blocks become durable records and are irrevokable and irrefutable. Because peers
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Figure 4.5: Fields protected by each of the two signatures.

cannot repudiate their own signature.

4.2 Block creation protocol

In this section we will explain how blocks can be created with a simple design
that will limit and expose freeriding. Afterwards, we will explain a fundamental
problem with creating blocks in an asynchronous system. This problem is present
in the simple design and we will describe how MultiChain deals with this problem.

4.2.1 Exchanging signatures

Two peers in a network will create their blocks together without having to rely on
a third party. Between the peers one is uploading to the other. The uploader is
traditionally called the seeder in BitTorrent and the receiver of this data the down-
loader [3]. The seeder will initiate the block creation. co the seeder can decide
how altruistic it wants to be towards the downloader regarding its collaboration.
We will explain how the block creation protocol works. A sequence diagram can
be seen in Figure 4.6(a).

The seeder, A, will create a packet that will be sent to the downloader, B. A will
add to this packet the data uploaded and downloaded data between the peers that
has not yet been added to the MultiChain. It will add these amounts to its total
uploaded and downloaded data and add these total amounts aswell to the packet.
Finally, it adds the public keys of both peers and its own hash pointer to the packet.
This packet is signed using its private key and sent to the downloader. The data
that A adds can be seen in Figure 4.6(b).

B will receive this packet and check if the amounts are correct, if the signature
is correct, and if A has not used the previous hash before. If this is all correct, then
B will add the amounts of uploaded and downloaded data to its own total amounts.
The data contained in the previous packet, the total amounts of B and the hash
of the previous block is inserted into a new packet. This packet is signed by the
private key of B and sent back to A. The data that B adds can be seen in Figure
4.6(b).

Both parties now have the data of the block and can add this to their chain and
continue forward. A does this upon receival of the block. B does this immediatly
after sending the return packet to A. At this point a new block is created.

25



(a) Sequence diagram for block creation.

(b) Data added by peer A and B for a new block.

Figure 4.6: Exchanging data with our cleaner design in Dispersy.
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Integrating with Dispersy

(a) Sequence diagram for block creation.

(b) Data added by peer A and B for a new block.

Figure 4.7: Exchanging data for block creation using the old design in Dispersy.

Within Dispersy functionality was already build to create a message, sign the
message and request multiple nodes to also provide their signature on this message.
This existing functionality could be used by MultiChain to exchange signatures
between A and B for the creation of a new block.

A would initiate a message, insert its data into this message, sign the message,
and send this message to B. The functionality would allow B to accept the message
and provide its signature or modify the message and then provide its signature.
Only B knows the hash of its head node, and the total up and total download met-
rics. So B will always modify the message and insert its own data in the message.
But this would invalidate the signature of A, because the signature of A was also
placed on the empty part of the message where the data of B is inserted. The
contents of the message and who signs what can be seen in Figure 4.7(b).

After B returns the message, A would have to resign the message. But B also
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needs this valid signature from A before it can add the block to its own chain.
So A would need to send a third message to with the new, valid signature back
to B. A sequence diagram can be seen in Figure 4.7(a) of how it would work in
Dispersy. Functionality was added to Dispersy that allows to append data in a
signature request. This allows the full signature exchange to be achieved within
two messages.

4.2.2 Synchronization problem

This design does have one major problem with synchronization. It can never be de-
cided in an asynchronous communication model if the other node will ever respond
and when it will respond. The proposed block by A only needs an interaction of B
to be finished and B can finish this transaction at anytime that B decides upon.

But the future block contains an immutable hash pointer to the previous block in
the chain of node A. So while this transaction for a potential block is outstanding,
node A cannot interact with any other node C to create a different block. If it
would, then B could ultimately respond and a branch with different blocks would
be created for the chain of A. This simple design introduces therefor an external
response dependency problem.

The to-be-designed system has to be fault tolerant to common problems in a
challenged network, such as node failure. A second design goal is to be able to
process transactions quickly and on a large scale. These design goals prevent the
adaption of a simple design that will halt until node B responds. This design would
also result in a deadlock situation, as explained in section 4.3 We will explain three
possible design solutions to this problem.

Fair exchange signature scheme

A fair exchange signature scheme (FESS) allows two players to exchange digital
signatures in a fair way. Fair constitutes that no player can take advantage of the
other. Either both players receive each others signature or no player receives the
other’s signature. It is infeasible for a node to acquire a signature without giving
up their own signature [40], a FESS could be implement for the fair creation of the
block.

But currently all known FESSs use a trusted third party (TTP) at some point [40].
Some schemes exist that are optimistic and will only need a TTP to resolve con-
flicts. But any TTP will not adhere to the Tribler philosophy of being a truly fully
distributed peer-to-peer system. The TTP will introduce a central point of trust and
a scalability bottleneck.

Reverse repairing of chain

Another potential solution would be to rework part of the chain. The creation of
block could be deemed to have failed by node A. If at a later point the block is
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still created by B, then the block could be reworked back into the chain. This
would require every hash pointer to be updated afterwards. If these hash pointers
are modified, then the signatures are invalid. Every signature would have to be
renewed and requested at every node. This is unscalable if nodes needs to rework
many blocks and can clog the system. These nodes can possibly no longer respond
and would result in new invalid blocks.

Half signed blocks

The chosen solution is to keep it simple and allow for inconsistencies between the
chains of A and B. It will be shown that when an inconsistency does occur, this is
in favor of A.

When node A sends a signature request to B, then A will be optimistic and will
wait for B for a timeout period. During this time, A will not interact with another
node C. But if A does not have to interact with node C after the timeout period,
then A will keepw waiting for a response of B and accept the response. There are
three potential scenario’s of what will happen to the message.

1. In the normal situation, node B will respond in time to the message. B will
send back the message and both A and B will have added the same block in
their own chains. This situation also occurs if A has timed out, but has not
yet interacted with another node C.

2. Node B can be malicious or simply have failed and B will never respond.
Node A will timeout, add a half signed block to the chain and can continue
interacting with other nodes C. A will have to decide how to react upon B
not responding. A possibility would be to stop helping B.

3. The response of B can also be late. After B has received the request by A, B
will create a block and adds this block to its chain. B will send its response
to A, but the message will arrive too late at A. A will have experienced a
timeout and will ignore the message. The block is not added to the chain of
A.

The last scenario is the most complex and requires additional clarification. A
initiates the signature request as a seeder and therefore the block will be favourable
for its reputation. Because this is a reputation system, this inconsistency is an
allowable comprimise. In a currency system, this comprimise would not be allow-
able.

The design is scalable as it will not force a node to wait too long for a failed node
and will try to interact as fast as possible with other nodes. A small grace period
can be used to allow node B to have enough time to respond in a normal manner.
No trusted third party is introduced so a distributed design is achieved.

The contents of a half signed block can be seen in Figure 4.8. The total up, total
down, previous hash, sequence number and signature of B are empty in an half
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Figure 4.8: The fields of a half signed block in MultiChain. Dotted fields are empty.

Figure 4.9: A chain of with a half signed block in MultiChain.

signed block. These are normally filled in by B and A does not have knowledge of
these fields.

An example of the chain with an half signed block can be seen in Figure 4.9.
In this example peer A initiates two block creations with B. The second block re-
sponse does not arrive on time at A and A has timed out. The block cannot be
processed as A has already interacted with C. The half signed block is never refer-
enced again by A. B does continue using this block. This is not double spending
because A does not reuse the same previous hash. The difference in block is only
the addition of the data of B. This changes the hash of the block and is why B and
A have a different hash.

4.3 Atomic operations on the chain

In a chain, only a single block of a peer is allowed to point to a previous block. No
side branches are allowed. A peer cannot have multiple blocks belonging to him
all pointing to the same previous block. As this is a potential attack as described

30



in section 6.1. The chain of a peer can only be moved forward by a single block at
any time. Only after a new block is created, will the new hash available to be used
in the next block.

To ensure this happens correctly, the MultiChain community contains mutual
exclusive code that excludes any new operations on the chain if an operation is
already pending. The mutual exclusion is achieved by having to acquire an atomic
token to allow to perform an operation on the code. The MultiChain community
will receive incoming signature requests or requests by other parts of Tribler to
send out an outgoing signature request. The community will decline this request
if the token is not available and return execution to other parts of Tribler. The
token can be unavailable while waiting on another peer in the network to finish
responding to a signature request.

When a MultiChain peer has a pending signature request, then the peer itself
will not respond to incoming signature requests from other peers. The requests are
dropped and we call this a drop event. These peers themselves will also not respond
as they have a pending signature request. This can create a circular dependency on
the availability of the token. If two peers send a request to each other at the same
time, they will wait on each other. This could result in a deadlock.

MultiChain prevents this deadlock to occur by allowing a transaction to fail as
explained in section 4.2.2. If MultiChain gets into this potential deadlock one of
the peers will eventually time out of their own signature request and process the
incoming request resolving the circular dependency. The deadlock is recovered
and both peers can continue operation. This situation has occured during experi-
mentation and it is explained in section 5.4. It is shown that MultiChain correctly
recovers the potential deadlock. A potential attack vector is explained in 6.3

4.4 Block storage

The blocks in the chain have to be persisted to be usable over a prolonged time.
A storage layer is added to the MultiChain community that provides all function-
ality to persist blocks and query blocks. This layer extends and uses functionality
of the Database class in Dispersy. An overview of the layering in the software
architecture can be seen in Figure 4.10.

The MultiChain Community calls functions in the storage layer that have im-
plicit knowledge about the model. The storage layer formats SQL queries and
passes these to the Dispersy layer. The Dispersy layer performs several sanitation
checks and passes these queries to the SQLite Library. The SQLite Library and
Dispersy layer both return the result of the SQL query. These results are trans-
formed by the storage layer into objects of the model usable by the MultiChain
Community.

The only information that is saved are blocks. The information all fits within one
table. A single block is saved as a single record called a row in a relation database.
Every attribute of a block is a single column in the row. All attributes are saved
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Figure 4.10: Storage layering in the software architecture

directly into the database, except for the public keys. These public keys are hashed
and these hashes are used as an identifier, called mid, in Dispersy. The public keys
are already saved in the Dispersy database. When a block is retrieved from the
database the public key is retrieved from Dispersy using the mid.

Every attribute is queryable in the database. A public key can be converted
to mid and is searched this way. Every attribute is queryable to make the sys-
tem extensible and usable when the next incremental steps are implemented. It is
presently unknown what information precisly will be needed, so every information
is now made available for the future.

4.4.1 Dispersy database

Dispersy keeps track of information on its own. A record is kept of any message
that can be retrieved using a message id. The message is saved in a converted
format and will be decoded when the message is retrieved.

Instead of storing information in a separate database, the information could
have been retrieved from the Dispersy database. But the Dispersy database is not
queryable. Because all the information is stored in a converted format that pre-
vents queries to search the message for its contents. For this reason, the dispersy
database is not used and a separate database is used.

A future, possible improvement to Dispersy would be to save messages queryable
in its database. This would eliminate the current need for separate databases that
contain aggregrated information. The information is stored in two places within
Tribler and this could be eliminated. It would reduce the disk footprint and the
amount of read/write transactions as only one database would have to be main-
tained. The I/O ineractions are a problem according to Tribler maintainers.
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Name Type Bytes Name Type Bytes
Uploaded MBytes unsigned integer 4 Downloaded MBytes unsigned integer 4
Total Up A unsigned integer 8 Total Up B unsigned integer 8
Total Down A unsigned integer 8 Total Down B unsigned integer 8
Prior Record A SHA1 digest 20 Prior Record B SHA1 digest 20
Sequence Number A signed integer 4 Sequence Number B signed integer 4
Public Key A EC key 64 Public Key B EC key 64
Signature A EC signature 40 Signature B EC signature 40
Total 148 Total 148

Table 4.1: Block subcomponents size.

Name Type Bytes Name Type Bytes
Uploaded MBytes unsigned integer 1,2,4 Downloaded MBytes unsigned integer 1,2,4
Total Up A unsigned integer 1,2,4,8 Total Up B unsigned integer 1,2,4,8
Total Down A unsigned integer 1,2,4,8 Total Down B unsigned integer 1,2,4,8
Prior Record A SHA1 digest 20 Prior Record B SHA1 digest 20
Sequence Number A signed integer 4 Sequence Number B signed integer 4
Mid A SHA1 digest 20 Mid B SHA1 digest 20
Signature A EC signature 40 Signature B EC signature 40
Total (min,max) 87,104 Total (min,max 87, 104

Table 4.2: Block subcomponents size inside the database.

4.5 Block size

The size of a block is important as it determines how fast the total size of a chain
will grow and the utilization of the bandwidth of network to transfer blocks. The
size is dependend on the size of the parts of the blocks and can be determined by
the choice of cryptographic primitives. Hashing function turn a variable message
string to a fixed size message digest [39]. The fixed size is dependend on the choice
of hashing function. Similair cryptographic signing functions deterimine the size
of a signature. An overview of the size of the parts of a block can be seen in Table:
4.1. The total size of a block is 296 bytes.

An overview of every attribute and the size of the attribute inside the database
can be seen in Table 4.2. SQLite can grow the size of integers in its database to fit
the required size and therefore it can be in the range of 1, 2, 3, 4 bytes. Because of
this dynamic allocation and because public keys are stored in the Dispersy database
the total size is smaller.

Upper limit uploaded and downloaded MB

The maximum integer size of the total up and total down impose an upper limit
on the total uploaded and downloaded MB that MultiChain can track. This limit is
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imposed by SQLite and is 262. Bigger numbers cannot be saved in SQLite using a
native datatype. The upper limit for MultiChain is therefore 4.612 ×109 petabytes.
This is clearly more than sufficient for now.

4.6 Integration with Tribler

For integration a scheduler is implemented between the MultiChain community
and other parts of Tribler. The scheduler tracks session upload and download
amounts and schedules a block to be created, when the amount of uploaded bytes is
above a certain threshold. The scheduler currently only tracks traffic of anonymous
downloads. Bartercast is not yet removed and currently MultiChain runs together
with Bartercast until MultiChain fully replaces Bartercast.

We recommend that the scheduler should be expanded to schedule blocks in a
more sophisticated way. The functionality of the scheduler is very limited and
is missing basic functionality. The most important improvement that should be
introduced is the punishment of not signing blocks. Currently, nodes can deny
to have their behaviour tracked. The next improvement is to actually determine
the level of cooperation a node receives based upon their previous behaviour. The
actual decision making based upon past behaviour is not part of the thesis. The
processes of actually making the descision is a complicated process that has to take
into account a lot of variables and requires extensive experimentation to validate.

4.7 Crawler

We implemented a crawler that visits other nodes and request the full chain of that
node. The crawler was built to be used for the experiments and is a first step in a
more sophisticated crawler that will help to solve the known vulnerabilities. These
vulnerabilities will be described in chapter 6.

4.7.1 Recursively request blocks

Dispersy provides a list of other nodes that were recently found and can report
when the node itself is found by another node. Both are sources of destinations
nodes that the crawler will visit and request the chain from.

The crawler will first request from a node the block with sequence number −1.
This denotes that he wants the latest block in his chain. The node returns this block
to the crawler. The crawler will persist the block if it is not yet know.

The newly retrieved block is chained to two blocks with the previous hashes.
The crawler will check if these blocks are present in the database. If any block is
not present, then the crawler will request that particulair block. The peer, to whom
the block belongs to, has to be known in Dispersy. If the peer is not known, the
block is ignored. This is done recursively until the crawler reaches the genesis
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Figure 4.11: Example of the crawler looking for unknown blocks. The crawler
retrieves the most recent block and crawls older blocks.

block of the chain. In this fashion a breadth first search is implemented for any
unknown block that is present in the chain before the latest block.

The crawl tries to aggregrate as much blocks as possible. But it gives no certainty
that the full MultiChain is collected. The crawler is able to crawl a disconnected
MultiChain, if for every disconnected partition a peer is known by Dispersy.

An example can be seen in Figure 4.11. In this example the line arrows denote
paths that the crawler follows, dotted lines are paths that the crawler ignores, half
dotted lines are paths that the crawler will not know about. Block 2 is already
known by the crawler. Block 5 is retrieved first by the crawler and the crawler sees
hash links to block 3 and 4. These are retrieved and the block finds links to block
1 and 2. Because block 2 is already known, it is ignored. Only block 1 is retrieved.
The crawler continues to follow the links further outside the displayed example.
The half dotted lines are not know by the crawler until a block is retrieved that
contains these paths. The crawler will retrieve these blocks if for example the most
recent block is requested.

4.7.2 Recreation over retransmission

An effort was made to try to reuse code of the community for the crawler and to
not introduce another payload type in the community. The attempt would reuse
payload classes and authentication classes already used in the community for the
creation of blocks. This effort failed, because Dispersy cannot handle recreation of
messages well and would invalidate blocks that were recreated.

As said before, Dispersy also keeps tracks of messages received. The messages
containing a block requested by the crawler could be retrieved and retransmis-
sioned forward instead of being retrieved from the MultiChain database itself. This
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would eliminate the need to construct a message and encode the message before it
could be send, because the encoded format is saved and can be retrieved and send
immediately. This was not used as it would be impossible to distinguish messages
received as an response to a signature request or a crawler request. The two types of
responses cannot be processed in the same way. A response to a signature requests
has to influence the way a node responds to interactions and a crawler response
should not.

In the end, the crawler uses recreation of a block from the local database and
uses a new payload type to forward blocks. The main reasons this implementation
was chosen is that implemenation was very simple and had none of the above
mentioned problems. Maintainabillity is also much easier this way as different
types of messages are not using the same functions to be received in the code. This
might not be known by a new programmer working with the code.

4.7.3 Improvements

The crawler is a first, simple step towards a more sophisticated crawler. Tribler has
implemented already more sophisticated crawlers for Bartercast and these tech-
niques can be reused for the MultiChain crawler. For example bloom filters can be
used in conjunction with the knowledge that every record is a part of the chain to
quickly request multiple blocks [30, 29]. Blocks could also be send in a more ef-
ficient way by sending multiple blocks per message. Secondly, blocks that belong
to a different node than the crawled node are requested, but the location of this dif-
ferent node is only known by chance. Dispersy only keeps track of 20 peers at any
time, so the chance is low that the node is among these nodes. The chance can be
improved by asking if the first contacted node knows the location of the different
node.

4.8 Privacy

Tribler has made an effort in providing a way for users to download anonymously
and privately [8, 9, 10]. There is privacy in the contents of what is downloaded
and anonimity in what is downloaded. MultiChain should not leak information to
break privacy and anonymity.

MultiChain only interacts with peers that are directly downloaded from or up-
loaded to. With these peers blocks are created and transferred. So anonymity is
not broken by MultiChain. An attacker could already analyse network traffic be-
tween these peers and conclude they are downloading and uploading to each other.
But Tribler does not guarantee anonymity for this. So MultiChain does not break
anonymity with its interactions with peers.

A block only transcribe the amount of data that has been transferred between
peers. The content of the actual data is not transcribed. The block also does not
leak information of how big a single, individual transfer is between peers. The
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amounts are aggregrated over all transfers. The blocks also does not break the
privacy. Network analysis can already measure the total amount of data transferred.
So the design and implementation of MultiChain does not break anonymity already
guaranteed by Tribler.

But MultiChain does make network analysis easier as measurement points be-
tween every node do not have to be introduced. The chain of every node can be
requested. The chain contains the data of every transaction of a peer and can be
used to analyse the network. The network analysis can now also be performed
retrospectively using data acquired from the MultiChain.

A reputation system can improve privacy. The reputation system can be used to
indentify nodes with high flow of data traffic. These nodes can be used as a hop
to send data to a destination. Because the nodes have more cover traffic, they will
provide more privacy[41]. In the absense of high traffic and high collaboration,
MultiChain should balance punishment of freeriding with the wish for using the
freeriding traffic as cover traffic to increase privacy[42].

In the future we recommend to be able to transfer reputation using cryptographic
functions in a new type of block: a transfer block. This transfer block identifies
a portion of reputation and transfers this from one entity to another. This makes
the reputation fungible and provide better safegaurds [41], like forward anonymity.
Reputation can be earned and spend in an other place. Reputation mining can be
performed by collaborating with other peers.
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Chapter 5

Implementation and experiments

The design of MultiChain in the previous chapter has been fully implemented. In
this chapter we test if MultiChain is correctly implemented according to the design
and we experiment the MultiChain in various scenarios. MultiChain is experi-
mented with to test if it can correctly create a chain tracking a download. Next,
MultiChain is experimented with tracking anonymous downloads. Finally, Multi-
Chain is experimented with in potential situations where a deadlock may occur to
test if it succesfully resolve these situations. We first introduce a several aspects of
our experimental setup.

Graph visualization

In this chapter multiple graphs are depicted. The graphs are the MultiChain gener-
ated by an experiment. The blocks are depicted as nodes and the previous hash
pointers are edges in the graph. These graphs are generated by reading every
database of every node. A graph exchange xml file is created and this is loaded
into Gephi. Gephi is a graph visualization tool.

The nodes have added colouring to indicate extra meaning. This can be seen in
Figure 5.1. Green nodes are a first block in a MultiChain of a peer, and as such have
no inbound arrows. Blue nodes are a sequential block between the same previous
peers, therefore they do not have two inbound arrows. Red nodes are half-signed
blocks, and therefore only have one inbound and one outbound arrow.

Synthetic setup

In this chapter we perform several synthetic experiments. In these experiments we
simulate downloads being run within Tribler using scenarios files. These files are
sometimes generated using a special script we implemented and can be over 20000
lines long. Every second the download is simulated to have progressed with a pre-
set speed. This progress is reported to every peer and their MultiChainScheduler.
In the real world the progress is updated more frequently but in much smaller in-
crements. The MultiChainScheduler waits for a certain amount of data transferred
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Figure 5.1: Example of coloring used in Figures with graphs.

before it schedules a block to be created. So the interval introduced by the sce-
nario files is realistic and does not influence the outcome of the experiments. In
subsection 5.1.2 we explain more about the experiment environment.

Connectability problem

Some experiments were also run multiple times because Dispersy does not always
connect to every peer. At the start of the experiment the peers are forced to be
introduced, but this does not always succeed. This is a problem in discoverability
and has been experienced by previous work aswell [9]. The final version is chosen
when Dispersy did connect all the peers. We recommend that Dispersy is changed
to allow a modified behaviour when experimenting where the pool of candidates is
not refreshed, as explained in section 3.2

5.1 Software engineering tests

MultiChain is tested in several ways to verify it is correctly working following
standard software engineering practices. The enforcement of these types of tests is
a policy recently introduced within Tribler.

5.1.1 Unit Tests & Integration tests

Tribler uses Python unit tests to validate small components of code. The tests can
be run locally and are automatically run on a Jenkins build server [43, 44]. Unit
tests were added to increase stability of MultiChain. Integration tests were added
to test multiple components of MultiChains working integrated together.

Tribler does prove to be hard to test using unit tests. This is due to high cou-
pling of code within Tribler. But mocking of classes helped in testing difficult to
test code. The separate unit tests for the conversion, payload and database were
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Filename LOC % covered Conditionals % covered
Community 187 81% 37 95%
Conversion 60 100% 6 100%
Database 100 100% 6 84%
Payload 89 100% 2 100%
Total 672 47

Table 5.1: Unit tests coverage of MultiChain.

the first of it types inside Tribler. Also Dispersy was expanded to introduce new
functionality to make it easier to create unit tests for communities in the future. An
overview of the coverage can be seen in Table 5.1 In the end a high level of testing
has been achieved, especially in comparison to the rest of Tribler. The total test
coverage of Tribler was only 16% at time of writing [44]. A decision using code
coverage tools was made that the untested code has little value to further test in
comparison to the work required. The code was tested in Gumby scenarios.

5.1.2 Gumby

Next to that, Tribler uses a homemade testing environment Gumby. Gumby can
start multiple instances of Tribler and follow test scenarios. Gumby can be used
to perform system tests and experiments. These system tests have to be manually
validated. Several scenarios have been written to validate MultiChain. These run
MultiChain either in a standalone version or integrated into the TunnelCommunity.

One of these scenarios can be found in Figure 5.2 In this example basic block
creation is tested. Normal situations are tested, but also situations where the signa-
ture requests are answered late and other requests arrive at the requesting peer at
the same time. Additionally, signature requests are controlled to not be answered
at all. During the whole test the crawler is active and scrapes the network for un-
known blocks. The notation in the scenario is the time an action has to be taken
place, the action that has to be taken, and by who if necessary. The ”@0:” can be
ignored, but is required in the Gumby format.

5.2 Tracking download and upload amounts

In this section we will experiment with MultiChain creating blocks and tracking
download and upload amounts of peers. We will first start with creating a simple
block in an experiment. The next experiment is to try to create a chain of blocks
with simulating a download of 10MB and a larger download of 10GB. Downloads
are done at different download speeds and an experiment was done to test Multi-
Chain in this environment.
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@0:0 set_master_member 3081a7301006072a8648ce ... 2b51
@0:0 set_community_class MultiChainNoResponseCommunity {4}
@0:0 set_community_class MultiChainDelayCommunity {5}
@0:0 set_community_class MultiChainCommunityCrawler {6}
@0:0 set_community_class {6}
@0:0 start_dispersy
@0:1 online
@0:5 reset_dispersy_statistics
@0:10 annotate start-experiment-1-peer
@0:15 introduce_candidates
@0:80 request_signature 2 {1}
@0:84 request_signature 1 {2}
@0:94 request_signature 4 {1}
@0:95 request_signature 1 {3}
@0:104 request_signature 5 {1}
@0:106 request_block 1 5 {6}
@0:110 close
@0:111 stop_dispersy
@0:112 stop

Figure 5.2: One of the Gumby definition files.

5.2.1 Single block creation

In this experiment we try to create a block between two nodes. This experiment
validates the MultiChain to be able to correctly create a block between nodes in
normal circumstances. The experiment is run using gumby with all nodes running
on a single computer. Only two instances of MultiChain communities are started
and between these two communities a block is created. The logging of the both
nodes is captured and recorded to verify the results of the experiment.

The output of the logging can be seen in Figure 5.3. First node 1 sends a sig-
nature request to node 2. This message is received and a block is persisted. The
hash of the block is displayed in the output. The block is sent back as a signature
response to node 1. The block is saved by node 1 and has the same hash as shown
in the output. So the block between node 1 and node 2 is the same and a block
was succesfully created. The result of the experiment were also validated using the
databases of both nodes.

The output also shows behaviour of MultiChain to correctly exclude any other
execution from entering mutual exclusive code. The lines related to the mutual
exclusion are prepended by ”Chain Exclusion”. The nodes check if it is possible
to enter the mutual exclusive part and correctly acquires and releases the mutual
exclusion token.
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1: Requesting Signature for candidate: 2
1: Chain Exclusion: signature request: False
1: Chain Exclusion: acquired, sending signature request.
1: Sending signature request.
2: Received signature request.
2: Chain Exclusion: process request: False
2: Chain Exclusion: acquired to process request.
2: Persisting sr: 2F7bTMxyJU7hZkvaBimT2bYm4bY=
2: Chain Exclusion: released after processing request.
2: Sending signature response.
1: Signature response received. Modified: True
1: Valid 1 signature response(s) received.
1: Persisting sr: 2F7bTMxyJU7hZkvaBimT2bYm4bY=
1: Chain exclusion: released received signature response.

Figure 5.3: Output of single block creation experiment

5.2.2 Chaining blocks

In the next synthetic experiments we show that MultiChain can create a chain of
blocks between two peers. The experiments are run using gumby. In the first
synthetic experiment we try to create 10 subsequent blocks simulate a download
of 10 MB with a speed of 1000 KB/s. The scheduler waits for 1 MB uploaded to
another peer before scheduling a block. The result of the experiment can be seen
in the graph in Figure 5.4. In this graph it can be clearly seen that MultiChain is
succesful in creating a chain of 10 blocks.

Figure 5.4: MultiChain chain graph of a single download of 10 MB.

The download amount stored in each block for the downloader is plotted in Fig-
ure 5.5. These datapoints are connected by a dotted line representing the link be-
tween these blocks. These plots show that MultiChain correctly tracks the down-
load of 10 MB. The slope of the figure corresponds with the speed of the download.
The upload amount of every seeder is identical to the amount of download of the
downloader.

We also experimented with MutliChain running much longer with a bigger down-
load. Our next synthetic experiment we simulate a download of 10 GB with a speed
of 1000 KB/s. The rest of the setup is the same as in the previous example and the
result is plotted in the same way in Figure 5.6. The individual points are obscured
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Figure 5.5: Total download amount when creating a chain of 10 blocks for a 10MB
download..

by the large amount of points in the figure. The graph of the MultiChain would
look identical to Figure 5.4, except it would be 10000 blocks long. It is not pic-
tured as it is impractical to picture a chain of this length. As can be seen in the
plots, MultiChain has no problem running for a longer period of time.

5.2.3 Tracking downloads with different speeds

In this synthetic experiment we measure if MultiChain can correctly track the up-
load and download amounts between two peers with different speeds. In this sce-
nario a file of 100 MB is downloaded repeatedly at different speeds, respectively
500 KB/s, 750 KB/s, 1000 KB/s, 1250 KB/s, 2000 KB/s, and 3000 KB/s. The
maximum speed of anonymous download was measured in experiments to be 1150
KB/s [9]. The upload and download of the file is done by different pairs of seeders
and downloaders.

The total download amount of every downloader is plotted in Figure 5.7. These
amounts are plotted in the same way as the previous experiment. The upload
amount of every seeder is identical to the amount of download of the corresponding
downloader. The plots show that MultiChain is able to correctly track the down-
load and upload amounts without a problem. The plots are smooth and the amounts
go up in fixed increments corresponding to the different speeds. Downloads at a
a faster speed result in higher download amounts in the blocks. This means that
MultiChain is fast enough to correctly track the amounts.

The download speeds below the threshold of 1000 MB of the scheduler are not
distinguishable from the download at the threshold speed. There are three overlap-
ping lines. We call this the scheduler effect. This is because the scheduler waits
until the threshold is reached before initiating the block. The amount is tracked in
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Figure 5.6: Total download amount when creating a chain of 10 000 blocks for a
10GB download.
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Figure 5.8: Block creation in an anonymous download.

the same amount of blocks, but the total time of the experiment is longer for these
experiments. If the speed goes above the threshold, then this is reflected in the
figure. The blocks tracks amounts in whole units of MB, this causes the download
at 750 KB/s to not grow faster than the download at 500 KB/s. Any leftover KBs
are saved for the next block.

This experiment was run several times before the final version in this report was
run. Earlier versions of the experiment resulted in two bugfix and two improve-
ments: the ability of the scheduler to create a block at the end of a download.

5.3 Tracking anonymous data transfer

In this section we will experiment with MultiChain tracking anonymous data trans-
fer. Anonymous data transfer is a more complicated environment, where multiple
peers work together to transfer data from the seeder to the downloader. We ex-
periment in a synthetic environment and in environment using real anonymous
downloads between peers.

5.3.1 Synthetic anonymous download

In an anonymous download scenario the data is downloaded through multiple hops.
A seeder uploads data to the first hop. This hop relays the data to the second hop.
The second hop sends the data to its destination at the downloader. This can be
seen as sequence of peers and is illustrated in Figure 5.8. More hops can be added
to better safegaurd the anonymity of the download.

The total download and upload amount is plotted, in the same way as the pre-
vious experiment, in Figure 5.9. The slopes of the figures are not representative
for the upload and download speeds of the peers. This is because the x-axis rep-
resents the sequence-number of the block and not time. The hops create blocks
that can be categorized in two types: a download validating block and an upload
validating block. The download validating block only contains information about
how much the hop has downloaded and is initiated by the peer in front of the peer
in the sequence. An upload validating block is initiated by the peer itself with the
peer next in the sequence. The seeder only has upload validating blocks and as
such has half the amount of blocks. The downloader has viceversa only download
validating blocks. The slope of his figure is much steeper as a result.
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In the plot a discontinuity can be found at 92% of the download in the figures of
the seeder and the first hop. This is the result of the first hop sending a signature
request to the second hop. The second hop was not able to process this request, be-
cause it was already working on creating another block. The second hop drop this
request. The first hop will still wait on the second hop to process its request until
it will timeout. In turn, the seeder sent a request to the first hop that will timeout,
because the first hop is not able to process this request aswell. During the timeouts
of the seeder and the first hop, the second hop continues to validates its own upload
amounts. No blocks are created that validate his download amount, so the slope
becomes steeper during that time and the download amount remains level. The
timeouted peers create no blocks. When the timeouts expires, the system returns to
function as normal. In section 5.4 we further experiment with the timeouts in the
system.

The seeder and downloader both only interact with one hop. These hops further-
more only interact with each other. This can be clearly seen in a part of the graph
magnified in Figure 5.10(b). The middle nodes represent the interaction between
the hops. The outer nodes are interactions between the seeder and the first hop
and between the second hop and downloader. The blocks are created alternating
resulting in the graph pictured.

In the graph the timeout period can be seen clearly in Figure 5.11. The two half-
signed block can be seen in red. The block with a reference coming from the outer
block is the half-signed block belonging to the seeder. The strain of blue nodes
are the blocks created between the second hop and the downloader. The red inner
block is referenced by the first block created between the first hop and second hop
after the timeout.

5.3.2 Integrated anonymous download

An substantial effort was made to integrated the tunnel community and hidden
services community with the MultiChain community. These communities work
together to provide functionality to transfer data anonymously. The tunnel com-
munity reports data transferred between peers and the MultiChain community add
these amounts to the chain. They are already integrated with BarterCast. The
method of integration of BarterCast was used to try to integrated MultiChain aswell.
Setting up the Gumby environment to run all communities took also considerable
time.

Experiments were conducted where an 100 MB file is transferred by the actual
anonymity communities, while MultiChain transcribes the transfer amounts in the
MultiChain. The first experiment we ran was to test the integration without any
hops. In this setup the integration does not report any data transferred between the
peers. As such the scheduler never sees a reason to schedule a signature request.
The whole MultiChain community is never active. MultiChain should also track
these downloads, but this requires MultiChain to be integrated in different places.

The second experiment was conducted with 2 hops. The result of the experiment
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Figure 5.9: Download and upload amounts during the anonymous download ex-
periment.
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(a) Partial example of expected MultiChain graph.

(b) Zoom of the actual intertwining in the MultiChain graph made with Gephi.

Figure 5.10: Intertwining of the seeder and hop 1, hop1 and hop 2, and hop 2 and
the downloader.
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Figure 5.11: Zoom of the timeout of the seeder and hop 1, while hop 2 and the
downloader continues.

can be seen in Figure 5.12. This shows that MultiChain does track the amount of
upload and download for all peers in the network. The hops roughly download and
upload the same amount of their data. This is what we expected as they just relay
the data. The seeder and downloader respectively only uploads and downloads.

Drop events can be seen in the plots where the plot discontinues and does not
grow steadily. A drop event is when a block request cannot be processed because
a node is busy. The requesting node will wait until a timeout occurs. The reason
these timeouts occur frequently is that thresholds of the scheduler of every node
is now reached at the same time resulting in a timeout. Our recommendation is to
have these thresholds to be shifted by a small amount randomly for every peer to
prevent them from overlapping. We performed some very preliminary experiments
that shows that our recommendation reduces the amount of timeouts.

The amount of data that is reported to be transferred is remarkable. The overhead
measures twice the actual download size. We therefore the conclusion that the
integration is not properly and too much data is reported. It is unclear where this
data originates from.

Integrating MultiChain into the anonymous download communities is difficult,
because those communities do not use the standard classes used by Tribler to send
messages. These are necessary to properly integrate MultiChain and a compli-
cated conversion was necessary. Our recommendation is to refactor the anony-
mous download communities to use the standard classes and to make it more clear
in the code where data is sent and where data is received. Also comments should
be added to clarify the code. Currently, there are no comments whatsoever. This
effort should atleast clarify why so much data is reported and will probaly fix the
problem.
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Figure 5.12: Download and upload amounts during the integrated anonymous
download experiment.
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5.4 Drop event recovery

MultiChain can run during normal operation into a situation where a multiple of
peers request to create blocks from each other as explained in section 4.3. A spe-
cific experiment was conducted that created the situation manually. This situation
was also encountered during experimentation and the experiment shows Multi-
Chain correctly recovering from this situation.

5.4.1 Forced drop event

In this experiment a MultiChain node 1 tries to send a request to node 2 to create
a block. Node 2 is specifically configured for the purpose of the experiment to
ignore and drop all requests. Node 1 now should wait for the response of the other
node for a specific time. During the time that node 1 is waiting a different request
is sent from a normal node 3 to node 1. This request will be dropped by node 1, as
it cannot process any incoming requests while node 1 has an outstanding request.
Node 1 and node 2 should timeout and continue operations. After that node 2 will
retransmit a request to node 1 and this should be completed correctly.

The experiment is locally run using gumby with all nodes running on a single
computer. Only three instances of MultiChain communities are started. One of
these instances never respond to a request to construct a block. The logging of the
every node is captured and recorded to verify the results of the experiment.

The output of the logging can be seen in Figure 5.13. First node 1 sends a
signature request to node 2. This message is ignored by node 2. During the waiting
period of node 1 a block request is sent to node 1 by node 3. This request is also
ignored, because node 1 cannot perform operations on the chain. After the timeout
period both node 1 and node 2 save an half-signed block to their chain and can
continue operations. This is validated by a block created between node 3 and node
1.

5.4.2 Naturally occuring drop events

In the experiment a 100 megabyte file was downloaded anonymously with 2 hops.
Anonymously downloading is described more in the thesis report of R. Ruigrok [9].
There are 2 Triblers instances with exit functionality and 18 instances without exit
functionality. All instances are run locally on one machine. The instances are run in
parallel, so the fact that all instances are run on a single machine does not cause the
drop event to occur. There is no packetloss in this experiment. The corresponding
graph of all the MultiChains of the experiment can be seen in Figure 5.14.

The potential scenario of two peers both waiting can be seen multiple times in
the graph and are encircled. The scenario generates a half-signed block at both
peers. Usually the peers continue collaboration and this continuation of a sequence
can be seen in subsequent blocks. In the graph a more complicated scenario can
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1: Requesting Signature for candidate: 2
1: Chain Exclusion: signature request: False
1: Chain Exclusion: acquired, sending signature request.
1: Sending signature request.
2: Received signature request that will be ignored.

3: Requesting Signature for candidate: 1
3: Chain Exclusion: signature request: False
3: Chain Exclusion: acquired, sending signature request.
3: Sending signature request.
1: Received signature request.
1: Chain Exclusion: process request: True
1: Chain Exclusion: not acquired. Dropping request.

1: Timeout received for signature request.
1: Persisting sr: bFOXhHT2ffSrtIn9tuMfEGGarGY=
3: Timeout received for signature request.
3: Persisting sr: l1O8UquXdxWdkg+KAYZ1FYocwjo=
3: Requesting Signature for candidate: 1

3: Chain Exclusion: signature request: False
3: Chain Exclusion: acquired, sending signature request.
3: Sending signature request.
1: Received signature request.
1: Chain Exclusion: process request: False
1: Chain Exclusion: acquired to process request.
1: Persisting sr: 7Y86Ck4duwTduP6j/aIRrWHAZqw=
1: Sending signature response.
3: Signature response received. Modified: True
3: Valid 1 signature response(s) received.
3: Persisting sr: 7Y86Ck4duwTduP6j/aIRrWHAZqw=
3: Chain exclusion: released received signature response.

Figure 5.13: Output of the manual drop event experiment
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also be seen where multiple peers timeout between each other. The graph shows
that MultiChain correctly recovers from all scenario’s.
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Figure 5.14: Mixing of double-signed blocks(blue/grey) and half-signed
blocks(red) in MultiChain.
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Chapter 6

Known vulnerabilities

There are several known security vulnerabilities with the current design. As said in
section 2.5, an incremental approach was taken and a lot of work is left. As such,
the design is part of a bigger system that as a whole is to be developed, before it can
be deployed in the real world. The current implementation is not yet ready to fully
replace BarterCast as a reputation system. It is too vulnerable for malicious nodes
to attack the system. In this section we will describe the known vulnerabilities and
explain the future work that is needed to limit these vulnerabilities.

6.1 Branch attack

In this section we will explain an attack that can be done by a malicious node M.
The attack consists of obscuring a part of his transaction history. M creates a new
branch of his transaction history that is more favourable to him. This is double
spending of reputation.

6.1.1 Alternating partial transaction history

A malicious node M has his own chain of transactions and he wants to falsify
his transactions after a certain point. He wants to rewrite his transaction history
from that point and create an alternate transaction history. M wants to do this to
whitewash his reputation. For example he could have downloaded large amounts
without contributing himself with uploading data. The node can simply choose
to forget and obscure blocks after that point. A new branch will be created by
chaining new blocks to the desired point in history.

In Figure 6.1 an example can be seen of a branch created by M. In this example
M tries to obscure block 2 and any subsequent blocks from C. When C requests
the transaction history of M, M will only send the transaction history up to block
1. When M and C create a block together, M will reuse the hash of block 1 in the
new block. For clarity of the diagram, the node interacting with M in block 1 is not
displayed.
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Figure 6.1: Example of a branch created by M.

Figure 6.2: Detectable fraud by C.

Now malicious node M does have the problem that not only he knows his trans-
action history. When M interacted with node A a block was created that M tries to
obscure. A has this block in his own chain and therefore knows about it being part
of the transaction history of M. This can be seen in the example in Figure 6.1.

M will want to reduce the likelyhood of the detection of his fraud. If his fraud
is detected, he might be punished and no longer to continue his abuse. The first
way to minimize detection is to choose to only interact with new nodes that do not
know about the alternate part of the transaction history. Nodes that have requested
an alternate part of the transaction history or that have been interacted directly with
are no longer interacted with. In a sufficiently healthy network this will result in
node M being able to find new nodes to help him.

There is another example that will expose the fraud of M. This example can be
seen in Figure 6.2. A node C might still exposes the cheating of M by chance. C
can have an interaction with node A by coincidence. Before creating block 3 C will
request the transaction history of node A containing an obscured block of M. Now
when M wants to interact with C, M will want to create block 5. When C requests
the full transaction history of M, it will detect that the transaction history of M no
longer contains block 2. This exposes the fraud of M.

But C will have no sure way of exposing this type of fraud by his own doing,
except for requesting every transaction history of every node in the system. This
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Figure 6.3: Example of multiple branches created by M.

is in a way a common, full transaction history and was chosen to be avoided by
the design to become more scalable. C can limited the possibility of the attack by
increasing his knowledge by collecting more transaction history of other nodes. If
node A or B stop participating and exit the network, then C will have no way of
detecting the fraud by M.

The second way M can limit the exposure of his cheating is in a more sophisti-
cated way. He can present several, different transaction history to different nodes.
M will continue keeping track of the unmodified transaction history. When M
wants to interact with A or B, both knowing this transaction history, he will present
this transaction history. So M can still interact with A and B. But when interacting
with C he will present his alternate transaction history. C will only expose the fraud
in the same way as previously.

This attack can always be done M and is not limited to circumstances. Also the
attack is not limited and M can try to fool any number of other nodes C. As shown
in Figure 6.3.

The likelyhood of exposing this attack depends on several factors and will be the
only factor to limit M in performing this fraud. The likelihood depends on:

• Size of the network

• Likelihood of interactions between A or B and C

These properties will influence the chance of C coming across an obscured
block.

6.1.2 Punishment of this attack

When the fraud is detected by C, then currently only C can punish M by no longer
interacting with him. There is currently no way of making it globally known to
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Figure 6.4: The sybil attack by M.

every node in the network that fraud was committed. So only M is punished by C
and can continue his abuse of other nodes in the network.

A proposal for the future, that is already currently worked on, is to construct an
additional network where the discovery of the fraud can be announced. Proof of
the fraud is easily to distribute and cannot be repudiated by the malicious node.
The proof of the fraud is two blocks containing the same previous hash. The proof
cannot be repudiated, because it contains two signatures by the malicious node.
See section 4.1.4 for more explanation. To increase the likelyhood of detection
every node will walk the network to look for fraud.

6.2 The Sybil attack

In this section we will explain the Sybil attack [45] and how it can be used in
the MultiChain system to create an artificial reputation. A universallly applicable
solution has not yet be found [46].

6.2.1 Using fake indentities

In large distributed systems convincingly distinct identities can be presented that
are infact all under the control of a single adversary M. Identities can be public
keys like in the Dispersy system or other abstractions of information without di-
rect physical knowledge. These identities can participate in the system acting like
normal agents, but they can also help each other malificiently to boost each other
towards a common goal.

In the MultiChain system the attack is done in the following way. M creates
several other identities besides his own. This involves generating several key pairs.
Now M controls several identities that can be presented convincingly. The key
pairs do not have to be linked to a node responding to requests. Failure of nodes
are typical in large distributed systems.

Using these key pairs M can now generate an artificial reputation. Transactions
between M and the fake identities are generated by M. These are signed using the
keys of the fake identities. Using a single transaction it cannot be determined if it
is between two distinct identities or a single distinct identity and a fake identity.

An example of the Sybil Attack can be seen in 6.4. In this example M is the
malificient node and F1 and F2 his fake identities. Block 1 and block 2 contain
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a transaction that is favourable to M, but M has done nothing to deserve these.
Similair blocks like block 3 can be generated between fake identities in an effort to
thwart efforts to analyse the network and detect fake identities.

In this way M is able to boost his reputation without much work. The more
sophisticated the generation is done by M, the harder it will be to detect that M
boosted his reputation using fake identities. M can then abuse his fake reputation
by solliciting cooperation from other nodes in the network. They will respond
positively on the request by M based upon the false reputation M claims to have.

6.2.2 Validating Identities

A node can have three potential sources of validation of distinct identities:

• Itself

• Other entitites

• A trusted, central authority

A node itself could try to directly validate two identities to be distinct. It would
challenge several identities to complete a task that only two entities could complete.
The task would require more resources than a single entity possesses and will be
issued simultaneously to all identities. If the identities complete the task, they have
proven to be distinct. Example of required resources are communication, storage
and computation. These challenges can scale to validate more entities at once.

Indirect validation can be used by a node by delegating validation to other en-
tities. A node could accept additional identities to be distinct when an accepted
identity vouches for it. The node has the delegated responsibility to challenge the
entity with a challenge. This would limit the total amount of challenges needed.
But an obvious pitfall of delegating this to other identities is that these can vouch
for fraudelent identities. Next to this, it involves an increase in complexity as the
challenges still have to be issued concurrently.

But these challenges are highly indesirable. These challenges require by defi-
nition to occupy between two nodes a limited resource to the maximum capacity
of a single node. While not providing any additional functionality beyond assert-
ing distinct identities. These challenges also prove inworkable when entities have
hugely different amount of resources available. No challenge can be constructed
that can be worked by less powerful devices, that could not be worked several times
by more powerful devices.

Next to this, these challenges are only usable with nodes that are active and
responding to challenges. If a node becomes inactive it cannot be ascertained if
the node is a fake identity. But this identity still makes claim about a reputation of
another entity. A choice has to be made between either not counting these claims
and allow for a drop in reputation of a node or allow claims that cannot be validated
to be taken into account. Both options lower the usability of the system.
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A trusted, central authority would be able to vouch for distinct indentities if it
has an other way outside the system of asserting that it indeed is a distinct identity.
Approaches exists that implicitly rely on the authority of a trusted agency. But a
central authority goes against the principles of a peer-to-peer network.

Several other defenses against the Sybil Attack have been proposed [47, 48] or
variants on the defenses stated here [46]. But these either have the same limitation
and are minor improvements or are non-applicable for MultiChain.

For M to conduct the Sybil Attack he will need to generate a set of key pairs.
This is trivial to do and Dispersy provides functionality to do this very easily. With
these keys M has to generate blocks.

Sybil Attack can have a wide range of sophistication. Ranging from a large
amount of fake identities with a large amount of transaction between them to a sin-
gle, fake identity boosting the reputation of M in a couple of transaction. Even the
simple Sybil Attack are hard to defend against if these are not done too obviously.
But Tribler will have to limit this attack in the future, but this will be a difficult
challenge.

6.3 Denial of service attack

The denial of service attack is a common attack seen on the internet that disables
a service by flooding it with requests of service. This is also a potential attack on
MultiChain particulairly because of a bottleneck within MultiChain.

6.3.1 Mutual exclusive code

A node can only perform a single operation at a time on its chain. If blocks would
be created in parallel, they would point to the same previous block. This can be
seen as a double spending attack and should be punished as described in section 6.1.
So safeguards have been implemented to ensure that this never occurs. Because
only a single operation can be handled at once makes a node very vulnerable to
a denial of service attack. A bottleneck is hereby introduced through design that
cannot be scaled.

If a node is flooded by sufficient bogus requests to create a new block, then it will
become overburdend with these requests to service real requests or to send send out
its own requests. The node is denied service and cannot create meaningful blocks.
Because the node becomes unresponsive to block creation requests other nodes
will not trust him to sign future blocks and will not be granted upload bandwidth.
The other node does not trust that in return for his collaboration he will receive a
boost in his reputation and will stop collaboration. The node under attack will also
be unable to transform his own collaboration into a boost in reputation because he
cannot send his own block creation requests.

The proposed denial of service attack is more sophisticated than typical denial
of service attacks. These typicaly involve simply flooding a server with requests,
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but for the proposed attack the requests have to be crafted with care. They need
to valid to be serviced by the attacked node and reach the mutual exclusive code
segment that is the vulnerable bottleneck. A request has to be a counterpart of a real
interaction or the request can be easily filtered. Any request that is not carefully
constructed in this way will still impose a computational and network burden on
the node, but this is always a risk and not a specific vulnerability of MultiChain.

6.3.2 Filtering requests

Detection can be implemented that will help in detecting fake requests. The detec-
tion can be run in parallel and does not have to enter the mutual exclusive part. Any
request that is fake will not reach the mutual exclusive part and will not drown out
the service of valid block creation. Effective analyses have to be researched and
implemented in future work to harden the system against this attack. Also priority
can be given to blocks initiated by the node itself. This will solve the problem of
the node not being able to construct blocks he wants to create.
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Chapter 7

Conclusion

A reputation system is a necessity in a collaborative network like peer-to-peer file-
sharing. But the creation of a tamper-proof interaction history is a difficult under-
taking, as seen as by several attempts in related work with varying success. This
first step, in an incremental approach to creating a new tamper-proof interaction
history, is further testimony to that statement. MultiChain is a proof-of-concept
that takes a different approach with multiple chains instead of a single chain can be
succesful in creating a reputation system

A scalable system has been introduced that can track interactions. The system
does not rely on any central component or a central data structure. This system has
been integrated with Tribler, but this requires more attention. MultiChain can be
released as a first version to start measuring the system in the real world. Improve-
ments can be implemented using these measurements.

MultiChain has been tested in software engineering tests and experiments. These
tests prove the system to be correctly working as designed. The experiments show
that MultiChain to behave as expected in a real world scenario. MultiChain shows
promise in tracking the interactions in a scalable way.

The current implementation is not yet ready to fully replace BarterCast as a rep-
utation system. It is too vulnerable for malicious nodes to attack the system. The
possibility and impact of these attacks have to be reduced before MultiChain can
be fully used as a reputation system with a reasonable amount of trust. Proposals
are already made and worked on to harden the system in the future.
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