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Abstract: In this paper, we present a method aiming at pattern prediction in networks of diffusively
coupled nonlinear systems. Interconnecting several globally asymptotical stable systems into a network
via diffusion can result in diffusion-driven instability phenomena, which may lead to pattern formation
in coupled systems. Some of the patterns may co-exist which implies the multi-stability of the network.
Multi-stability makes the application of common analysis methods, such as the direct Lyapunov method,
highly involved. We develop a numerically efficient method in order to analyze the oscillatory behavior
occurring in such networks. We show that the oscillations appear via a Hopf bifurcation and therefore
display sinusoidal-like behavior in the neighborhood of the bifurcation point. This allows to use the
describing function method in order to replace a nonlinearity by its linear approximation and then to
analyze the system of linear equations by means of the multivariable harmonic balance method. The
method cannot be directly applied to a network consisting of systems of any structure and here we
present the multivariable harmonic balance method for networks with a general system’s structure and
dynamics.

Keywords: Limit Cycles in Networks of Oscillators, Bifurcations in Chaotic or Complex Systems,
Theory and Applications of Complex Dynamical Networks.

1. INTRODUCTION

In recent years, the investigation of complex networks con-
sisting of coupled nonlinear dynamical systems has been an
important subject in mathematical biology, control theory, ap-
plied physics and interdisciplinary fields. Its relevance is due to
several factors: complex networks are prevalent in nature (e.g.
Neuroscience, Heart cells synchronization), these networks
possess a rich phenomenology and a large number of different
applications (see Pikovsky et al. (2001), Strogatz (2003) and
references therein). In particular, synchronization and pattern
formation in coupled systems are subjects of intense research.

Numerous situations in nature exhibit oscillatory behavior and
can be described by ensembles of coupled nonlinear oscillators.
Due to complex dynamics and different types of coupling, an
appearance of different phenomena in the nonlinear networks
is a logical consequence. An omnipresent form of interaction
is diffusive coupling (Hale (1997)), in which the feedback to
each (sub)system in the network is a local sum of differences
of variables with respect to the neighbors. Diffusively coupled
networks exhibit surprisingly rich phenomena, such as synchro-
nization (Pogromsky and Nijmeijer (2001)), partial synchro-
nization (Pogromsky et al. (2011)), waves (Iwasaki (2008)), and
patterns arising from a diffusion-driven instability discovered

� This paper was elaborated in the UCoCoS project which has received funding
from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 675080.

by Turing (1952). Moreover, some of these patterns may co-
exist. In his research, Turing (1952) ”suggests that a system
of chemical substances reacting together and diffusing through
a tissue, is adequate to account for the main phenomena of
morphogenesis”. He introduces several concepts related to the
chemical basis of morphogenesis (development of patterns),
spatial chemical patterns, and what is now called diffusion-
driven instability.

A nonlinear analysis of the diffusion-driven instability phenom-
ena is performed by Smale (1976). In this paper, he studies an
example of two systems which are diffusively coupled. Each
individual system represents a cell which is inert or dead in the
sense that it is globally asymptotically stable. However, when
the cells are coupled via diffusion, ”the cellular system pulses
(or expressed perhaps overdramatically, becomes alive!) in the
sense that the concentration of enzymes in each cell will oscil-
late infinitely”. He poses the problem of determining conditions
under which diffusive coupling leads to oscillatory behavior
in the network of initially globally asymptotically stable sys-
tems. Related results can be found in Yakubovich and Tomberg
(1989), Tomberg and Yakubovich (2000), and Pogromsky et al.
(1999), and references therein.

Another related result is obtained by Pogromsky et al. (2011).
In that research, the authors present conditions under which the
network of systems which are globally asymptotically stable
by themselves, being diffusively coupled can display a syn-
chronous state, such as synchronous and partial synchronous
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(oscillatory) behavior. These conditions are shown to be depen-
dent on a coupling strength of the network. When the coupling
strength exceeds a threshold, oscillatory behavior appears in
the network, which corresponds to a Hopf bifurcation in a
network. The Hopf bifurcations change the dynamics of the
network from a stable equilibrium to oscillatory patterns. How-
ever, there are some open questions that are not answered in
that paper. One of these is the prediction of oscillatory patterns
in the neighbourhood of the bifurcation point in the complex
networks. Another question arises from the fact that there may
exist different oscillatory patterns, which can occur in the net-
works with diffusive coupling, such as an in-phase and an anti-
phase synchronization, and some of patterns can even co-exist,
such as clockwise and counterclockwise waves in a ring-like
structure. This co-existence implies multi-stability of the net-
work. Considering the multi-stability, the application of com-
mon methods, such as the direct Lyapunov method, becomes
nontrivial.

To answer these questions, we propose an extension of the
multivariable harmonic balance (MHB) method developed by
Iwasaki (2008) for a neuronal circuits called the central pattern
generators (CPGs). The method allows to analyse behavior
of the complex networks near the bifurcation point and to
determine oscillation profiles that approximate the output of
the studied network without simulating ordinary differential
equations (ODEs). Despite these advantages, the MHB method
cannot be directly applied to a network with systems of any
structure and provides no information about system’s behavior
when the system is not in the neighborhood of the bifurcation
point. Being inspired by previous results of Pogromsky et al.
(2011) and Iwasaki (2008), we develop a new approach in order
to analyze oscillatory behavior and predict pattern formation in
the complex networks by means of the multivariable harmonic
balance method.

The MHB method provides accurate results near the bifurca-
tion point and numerical tools for bifurcation analysis require
accurate initial points for the continuation analysis, otherwise,
we cannot be sure which solution we follow. This implies that
the MHB method can be used as the first step of the contin-
uation analysis. In other words, possessing components of an
oscillation profile (i.e. frequency, amplitude and phase) allows
us to use these results as initial conditions for the numerical
continuation of found patterns in order to determine system
behavior when the system is out of the neighbourhood of the
bifurcation point.

This paper is organized as follows. The problem formulation
is given in section 2. In the third section, we describe the
challenges which we encountered during the deriving the MHB
equation. The fourth section provides the methodology of solv-
ing the derived MHB equation. We finish the paper with nu-
merical examples and a discussion of the results and the further
study.

Throughout the paper, the following notations are used. Ik
and In denote the identity matrices of the size k × k and n×
n, respectively. � stands for the transposition. i stands for
the imaginary unit. s = iω is a complex number frequency
parameter. The notation R is the field of the real numbers.
R+ stands for a vector space over the field of the positive real
numbers. Rn stands for the product of n copies of R, which is
an n-dimensional vector space. The notation C is the field of

the complex numbers. A function f : x → y is C1 function that
stands for a continuously differentiable function.

2. PROBLEM FORMULATION

Coupling several even globally asymptotically stable systems
into a network can result in the occurrence of unpredicted pat-
terns called emergent behavior. Moreover, these patterns may
co-exist. As mentioned above, the diffusion-driven instability
is studied by Smale (1976), who proposes a model of two 4th
order diffusively coupled identical cells, despite each indepen-
dent cell is globally asymptotically stable. Smale shows that
connecting the cells via diffusive coupling results in oscillatory
behavior.

In this paper we present a method to analyze the behavior of
the networks with diffusive coupling in a neighbourhood of the
bifurcation point. To do so, we consider a diffusive cellular
network which describes a network of identical diffusively
coupled (sub)systems that cannot be decomposed into two or
more uncoupled networks.

To turn the statements above into a mathematical description,
consider k identical systems of the following form

ẋ j = Ax j +Bu j,

u j = uc j −ψ(z j),

z j = Zx j,

y j =Cx j,

(1)

where j = 1, ...,k, x j(t) ∈ Rn is the state of the j-th system,
u j(t) ∈ R1 is the input of the j-th system, y j(t) ∈ R1 is the
output of the j-th system, ψ is a continuously differentiable
scalar nonlinear function, z j ∈ R1 and A, B, C, Z are constant
matrices of appropriate dimension. We assume that matrix CB
is a positive definite matrix and all subsystems are intercon-
nected through mutual linear output coupling

uc j =−γ j1(y j − y1)− γ j2(y j − y2)− ...− γ jk(y j − yk), (2)
where γ jl are non-negative constants. Moreover, γ jl > 0 if and
only if j-th and l-th nodes are connected.

Define the k× k matrix Γ as

Γ =




k

∑
l=2

γ1 j −γ12 . . . −γ1k

−γ21

k

∑
l=1,l �=2

γ2 j . . . −γ2k

...
...

. . .
...

−γk1 −γk2 . . .
k−1

∑
l=1

γk j




, (3)

where all row sums are zero.

The goal of this section is to present conditions that guarantee
that the network (1)-(2) exhibits oscillatory behavior in the
following sense:
Definition 1. (Yakubovich (1973)) A scalar function ζ : R1 →
R1 is called oscillatory in the sense of Yakubovich (or Y-
oscillatory) for t →+∞ if ζ (t) is bounded on R+ and

lim
t→+∞

ζ (t)≥ B, lim
t→+∞

ζ (t)≤ A

for some B > A .
Definition 2. The system (1)-(2) is called Y-oscillatory with
respect to a scalar output y j if each solution x j(t) is bounded
and for almost all initial conditions x j(0)
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(oscillatory) behavior. These conditions are shown to be depen-
dent on a coupling strength of the network. When the coupling
strength exceeds a threshold, oscillatory behavior appears in
the network, which corresponds to a Hopf bifurcation in a
network. The Hopf bifurcations change the dynamics of the
network from a stable equilibrium to oscillatory patterns. How-
ever, there are some open questions that are not answered in
that paper. One of these is the prediction of oscillatory patterns
in the neighbourhood of the bifurcation point in the complex
networks. Another question arises from the fact that there may
exist different oscillatory patterns, which can occur in the net-
works with diffusive coupling, such as an in-phase and an anti-
phase synchronization, and some of patterns can even co-exist,
such as clockwise and counterclockwise waves in a ring-like
structure. This co-existence implies multi-stability of the net-
work. Considering the multi-stability, the application of com-
mon methods, such as the direct Lyapunov method, becomes
nontrivial.

To answer these questions, we propose an extension of the
multivariable harmonic balance (MHB) method developed by
Iwasaki (2008) for a neuronal circuits called the central pattern
generators (CPGs). The method allows to analyse behavior
of the complex networks near the bifurcation point and to
determine oscillation profiles that approximate the output of
the studied network without simulating ordinary differential
equations (ODEs). Despite these advantages, the MHB method
cannot be directly applied to a network with systems of any
structure and provides no information about system’s behavior
when the system is not in the neighborhood of the bifurcation
point. Being inspired by previous results of Pogromsky et al.
(2011) and Iwasaki (2008), we develop a new approach in order
to analyze oscillatory behavior and predict pattern formation in
the complex networks by means of the multivariable harmonic
balance method.

The MHB method provides accurate results near the bifurca-
tion point and numerical tools for bifurcation analysis require
accurate initial points for the continuation analysis, otherwise,
we cannot be sure which solution we follow. This implies that
the MHB method can be used as the first step of the contin-
uation analysis. In other words, possessing components of an
oscillation profile (i.e. frequency, amplitude and phase) allows
us to use these results as initial conditions for the numerical
continuation of found patterns in order to determine system
behavior when the system is out of the neighbourhood of the
bifurcation point.

This paper is organized as follows. The problem formulation
is given in section 2. In the third section, we describe the
challenges which we encountered during the deriving the MHB
equation. The fourth section provides the methodology of solv-
ing the derived MHB equation. We finish the paper with nu-
merical examples and a discussion of the results and the further
study.

Throughout the paper, the following notations are used. Ik
and In denote the identity matrices of the size k × k and n×
n, respectively. � stands for the transposition. i stands for
the imaginary unit. s = iω is a complex number frequency
parameter. The notation R is the field of the real numbers.
R+ stands for a vector space over the field of the positive real
numbers. Rn stands for the product of n copies of R, which is
an n-dimensional vector space. The notation C is the field of

the complex numbers. A function f : x → y is C1 function that
stands for a continuously differentiable function.

2. PROBLEM FORMULATION

Coupling several even globally asymptotically stable systems
into a network can result in the occurrence of unpredicted pat-
terns called emergent behavior. Moreover, these patterns may
co-exist. As mentioned above, the diffusion-driven instability
is studied by Smale (1976), who proposes a model of two 4th
order diffusively coupled identical cells, despite each indepen-
dent cell is globally asymptotically stable. Smale shows that
connecting the cells via diffusive coupling results in oscillatory
behavior.

In this paper we present a method to analyze the behavior of
the networks with diffusive coupling in a neighbourhood of the
bifurcation point. To do so, we consider a diffusive cellular
network which describes a network of identical diffusively
coupled (sub)systems that cannot be decomposed into two or
more uncoupled networks.

To turn the statements above into a mathematical description,
consider k identical systems of the following form

ẋ j = Ax j +Bu j,

u j = uc j −ψ(z j),

z j = Zx j,

y j =Cx j,

(1)

where j = 1, ...,k, x j(t) ∈ Rn is the state of the j-th system,
u j(t) ∈ R1 is the input of the j-th system, y j(t) ∈ R1 is the
output of the j-th system, ψ is a continuously differentiable
scalar nonlinear function, z j ∈ R1 and A, B, C, Z are constant
matrices of appropriate dimension. We assume that matrix CB
is a positive definite matrix and all subsystems are intercon-
nected through mutual linear output coupling

uc j =−γ j1(y j − y1)− γ j2(y j − y2)− ...− γ jk(y j − yk), (2)
where γ jl are non-negative constants. Moreover, γ jl > 0 if and
only if j-th and l-th nodes are connected.

Define the k× k matrix Γ as

Γ =




k

∑
l=2

γ1 j −γ12 . . . −γ1k

−γ21

k

∑
l=1,l �=2

γ2 j . . . −γ2k

...
...

. . .
...

−γk1 −γk2 . . .
k−1

∑
l=1

γk j




, (3)

where all row sums are zero.

The goal of this section is to present conditions that guarantee
that the network (1)-(2) exhibits oscillatory behavior in the
following sense:
Definition 1. (Yakubovich (1973)) A scalar function ζ : R1 →
R1 is called oscillatory in the sense of Yakubovich (or Y-
oscillatory) for t →+∞ if ζ (t) is bounded on R+ and

lim
t→+∞

ζ (t)≥ B, lim
t→+∞

ζ (t)≤ A

for some B > A .
Definition 2. The system (1)-(2) is called Y-oscillatory with
respect to a scalar output y j if each solution x j(t) is bounded
and for almost all initial conditions x j(0)
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lim
t→+∞

y j(t)< lim
t→+∞

y j(t).

We call the system Y-oscillatory if it is Y-oscillatory with
respect to at least one component of the vector x j.

Define two transfer functions
Wy(s) =C(sI −A)−1B, (4)

Wz(s) = Z(sI −A)−1B, (5)
where Wy(s) is the transfer function from u j to y j = Cx taking
ψ(z j) = 0 and Wz(s) is the transfer function from u j to z j taking
uc j = 0.

Following Pogromsky et al. (2011), we impose a set of assump-
tions.
Assumption 1. The following conditions hold

i) The matrix A is Hurwitz, so there is a positive definite
matrix P = P�, so that A�P+PA =−Ik;

ii) z j = Zx j, where Z� = PB with matrix P as in i;
iii) ψ is an odd, strictly increasing C1 function with the fol-

lowing property
∀L > 0 ∃σ > 0 ∀z j > σ ψ(z j)> Lz j;

iv) The transfer function Wy(s) is nondegenerate, has an even
number of zeros with positive real part and Wy(0)> 0;

v) The transfer function Wz(s) is such that Wz(0)> 0.

The following theorem is presented in Pogromsky et al. (2011).
Theorem 1. Consider a network of diffusively coupled systems
of the form (1)-(2) with a symmetric Γ as in (3) that satisfy
Assumption 1.
There is a number λ̄ > 0 so that if the largest non-zero eigen-
value of Γ exceeds λ̄ then the network is oscillatory in the sense
of Yakubovich.

The proof of theorem captures three points:

i) The origin is the unique equilibrium point of the closed
loop system;

ii) The system is uniformly ultimately bounded (see Khalil
(1996));

iii) The origin is hyperbolically unstable if λmax > λ̄ , where
λmax is the largest eigenvalue of Γ.

It follows from the proof that a Hopf bifurcation occurs at
λmax = λ̄ in the network of given form (1)-(2). According to
normal form theory (see Han and Yu (2012) and references
therein), the oscillations are sinusoidal-like near the bifurcation
point. It allows to use the describing function method to replace
the nonlinearity by its linear approximation and then to analyze
the system of linear equations by means of the multivariable
harmonic balance method.

The MHB method is based on the approximation of a periodic
solution to the system by a sinusoidal signal, and nonlinearity
ψ by its describing function. Suppose a system has a periodic
solution. Then, by Fourier series expansion, we obtain

q j(t) =
∞

∑
m=0

am sin(ωmt)+bm cos(ωmt)

for some real vectors am and bm and frequency ω . The signal
q j(t) can then be rewritten as

q j(t)∼= α j sin(ωt +φ0 +φ j), (6)
where α j is the amplitude, ω is the frequency, φ0 is the initial
phase and φ j is the phase shift for the j-th subsystem of the

network. For the autonomous system we can take φ0 to be
equal to 0. Let us approximate nonlinearity ψ by its describing
function k

ψ(q j)∼= k(α j)q j, (7)

k(α j) :=
2

πα j

∫ π

0
ψ(α j sinθ)sinθ dθ . (8)

The describing function k(α j) stands for the gain of ψ when
the input is a sinusoidal signal of amplitude α j and the output
is approximated by its first harmonic (Khalil (1996)). In this pa-
per, we focus on determining the waves with equal amplitudes.
We thus look for α j = αe ∀ j, with αe ∈ R+.

The MHB method for networks of specific structure is de-
scribed by Iwasaki (2008), and here we present the multi-
variable harmonic balance method for networks with a more
general system’s structure and dynamics.

3. DERIVING THE MHB EQUATION

The multivariable harmonic balance (MHB) method turns the
problem of determining an oscillation profile (frequency ω ,
amplitudes α j, phases φ j) into an easily solvable eigenvalue
problem rather than doing a dynamical analysis by means of
the direct Lyapunov method. The network of identical intercon-
nected (sub)system can be described by a dynamical mapping
from the input u j to the output of interest q j:

v j = ψ(q j), u j =
k

∑
l=1

µ jl(s)vl , q j = f j(s)u j,

where f (s) is a complex valued rational transfer function which
represents the linear time-invariant part of each subsystem,
ψ(q j) is the continuously differentiable odd static nonlinear
function, q j ∈ C1 is the output and µ jk(s) is a transfer function
of connection from k-th system to j-th system. In a vector form,
the dynamics can be written as

v = Ψ(q), q = M (s)v, M (s) = F(s)M(s), (9)
where q := col[q1, ...,qk] M(s) is the transfer matrix of the
coupling whose ( j,k) entry is µ jk(s), F(s) := f (s)Ik and Ψ :=
col[ψ(q1), ...,ψ(qk)].

With approximations (6)-(8), the dynamical equations reduce
to the MHB equation

(M (s)K (α)− Ik)q = 0, q j := α jeiφ j , q ∈ Ck, (10)
where K (α) := k(α j)Ik is a diagonal matrix of the describ-
ing functions. The MHB equation characterizes the oscillation
profile for (9).

In general, the MHB equation does not have a unique solution
and we want to identify the stable oscillation. In order to
examine the stability of the determined oscillatory profile,
we can use an argument from Glad and Ljung (2000) as
follows. Consider the linear systems obtained by replacing the
nonlinearity Ψ with a constant gain K

q = M (s)v, v = Kq, (11)
with K := K (α). Name this linear system LK . The oscillation
with certain ω,α,φ is expected stable if LK is stable/unstable
when small perturbations in positive/negative direction (α ±
δα) are applied to α so that the perturbed orbit tends to the
original one.

The key ideas of the MHB analysis can be summarised as
follows:

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

76

• The oscillation profile can be obtained by solving equa-
tion (10) for frequency ω and eigenvector q containing
encoded amplitudes and phases.

• The predicted oscillatory pattern is expected to be stable if
the corresponding linear system LK which is given in (11)
with K := K (|q|) is marginally stable with poles on the
imaginary axis and with the rest poles located in the open
left half plane.

Iwasaki (2008) imposes an assumption that the interconnec-
tions between subsystems of the network are static which im-
plies that M(s) = M. That assumption puts restrictions on the
MHB method and we aim to extend the MHB method on the
networks that have non-static coupling. The system (1)-(2) does
not belong to the class of systems considered by Iwasaki, so the
previously developed MHB method cannot be directly applied.

The point of interest is to apply the MHB method to the network
of the form (1)-(2). The transfer function representation of
system (1) is given by

z j =Wz(s)u j,

y j =Wy(s)u j,

u j =−
k

∑
l=1

γ jly j −ν j,

ν j = ψ(z j),

(12)

with Wz(s) and Wy(s) given in (5) and (4), respectively. The
following manipulations are performed to turn system (12) into
the form of (9). Figure 1 displays how the loop transformation
reorders the structure of the system.

Fig. 1. Loop Transformation performed in order to apply the
MHB method

Write input u in a vector form as
u =−Wy(s)Γu−ν ,

Wy(s)
[

1
Wy(s)

Ik +Γ
]

u =−ν ,

with matrix Γ defined in (3). Defining the resolvent R(p) =
[pI +Γ]−1 and substituting p by W−1

y (s), we obtain

u =−pR(p)ν , p =W−1
y (s).

The network now has the form of (9) with
F(s) =Wz(s)Ik,

M(s) =−pR(p).
(13)

We now can investigate our network by means of the MHB
equation (10).

4. SOLVING THE MHB EQUATION

In the previous section the MHB equation for the coupled sys-
tems (1)-(2) was presented. One can see that solving the alge-
braic equation (10) can be time consuming that for networks of

a large number of nodes. This is due to that fact we present a
method which simplifies the algebraic problem by decoupling
the individual dynamics and the topology of the system.

Combining the second equation from (9) with (13) we arrive at
the following equation

M (iω) =− F(iω)

Wy(iω)

(
1

Wy(iω)
Ik +Γ

)−1

.

Define the scalar matrix

H(iω) :=
F(iω)

Wy(iω)
=

(
Wz(iω)

Wy(iω)

)
Ik

and substitute it in the previous equation in order to obtain

M (iω) =−H(iω)

(
1

Wy(iω)
Ik +Γ

)−1

.

Let us rewrite MHB equation (10) as follows

M (iω)(K (α)−M−1(iω))q = 0,
where M−1(iω) = −((1/Wy(iω))Ik +Γ)H(iω)−1 and expand
it in order to obtain

M−1(iω)

(
Wz(iω)

Wy(iω)

)
×

[
K (α)

(
Wz(iω)

Wy(iω)

)
+

1
Wy(iω)

Ik +Γ
]

q = 0.

Since we look for equal amplitudes α j = αe ∀ j, describing
function matrix now is defined as follows K (α) = diag[k(αe)]
and the equation above can be reduced to[

k(αe)Wz(iω)+1
Wy(iω)

Ik +Γ
]

q = 0. (14)

One can see that equation (14) has several solutions. The trivial
solution q = 0 corresponds to the equilibrium.

Consider the following equation

det
[

k(αe)Wz(iω)+1
Wy(iω)

In +Γ
]
= 0

After some manipulations, we arrive at
k(αe)Wz(iω)+1

Wy(iω)
+λ j = 0, (15)

where λ j is an eigenvalue of matrix Γ and q is the corresponding
right eigenvector.

By the presented procedure, multiple oscillatory patterns based
on the different eigenvectors of matrix Γ can be obtained.
However, since the MHB method is applied to the system
(12), Theorem 1 can be used. In the previous section we also
described that an oscillation is expected stable if linear system
(11) with K := k(αe)Ik is marginally stable. The system LK
given in (11) is marginally stable when poles ±iω are on
the imaginary axis and all of the other poles lie in the open
left half plane. Moreover, since Γ = Γ�, the poles located
on the imaginary axis have linear independent corresponding
eigenvectors which are the eigenvectors of matrix Γ. According
to that, a stable oscillation is characterized by an eigenvalue
λmax of matrix Γ with the largest real part.

Equation (15) now has the form
k(αe)Wz(iω)+1

Wy(iω)
+λmax = 0.

This equation can be rewritten as
k(αe)Wz(iω)+1+λmaxWy(iω) = 0,

IFAC CHAOS 2018
Eindhoven, The Netherlands, Oct 30 - Nov 1, 2018

77



	 K. Rogov  et al. / IFAC PapersOnLine 51-33 (2018) 62–67	 65

• The oscillation profile can be obtained by solving equa-
tion (10) for frequency ω and eigenvector q containing
encoded amplitudes and phases.

• The predicted oscillatory pattern is expected to be stable if
the corresponding linear system LK which is given in (11)
with K := K (|q|) is marginally stable with poles on the
imaginary axis and with the rest poles located in the open
left half plane.

Iwasaki (2008) imposes an assumption that the interconnec-
tions between subsystems of the network are static which im-
plies that M(s) = M. That assumption puts restrictions on the
MHB method and we aim to extend the MHB method on the
networks that have non-static coupling. The system (1)-(2) does
not belong to the class of systems considered by Iwasaki, so the
previously developed MHB method cannot be directly applied.

The point of interest is to apply the MHB method to the network
of the form (1)-(2). The transfer function representation of
system (1) is given by

z j =Wz(s)u j,

y j =Wy(s)u j,

u j =−
k

∑
l=1

γ jly j −ν j,

ν j = ψ(z j),

(12)

with Wz(s) and Wy(s) given in (5) and (4), respectively. The
following manipulations are performed to turn system (12) into
the form of (9). Figure 1 displays how the loop transformation
reorders the structure of the system.

Fig. 1. Loop Transformation performed in order to apply the
MHB method

Write input u in a vector form as
u =−Wy(s)Γu−ν ,

Wy(s)
[

1
Wy(s)

Ik +Γ
]

u =−ν ,

with matrix Γ defined in (3). Defining the resolvent R(p) =
[pI +Γ]−1 and substituting p by W−1

y (s), we obtain

u =−pR(p)ν , p =W−1
y (s).

The network now has the form of (9) with
F(s) =Wz(s)Ik,

M(s) =−pR(p).
(13)

We now can investigate our network by means of the MHB
equation (10).

4. SOLVING THE MHB EQUATION

In the previous section the MHB equation for the coupled sys-
tems (1)-(2) was presented. One can see that solving the alge-
braic equation (10) can be time consuming that for networks of

a large number of nodes. This is due to that fact we present a
method which simplifies the algebraic problem by decoupling
the individual dynamics and the topology of the system.

Combining the second equation from (9) with (13) we arrive at
the following equation

M (iω) =− F(iω)

Wy(iω)

(
1

Wy(iω)
Ik +Γ

)−1

.

Define the scalar matrix

H(iω) :=
F(iω)

Wy(iω)
=

(
Wz(iω)

Wy(iω)

)
Ik

and substitute it in the previous equation in order to obtain

M (iω) =−H(iω)

(
1

Wy(iω)
Ik +Γ

)−1

.

Let us rewrite MHB equation (10) as follows

M (iω)(K (α)−M−1(iω))q = 0,
where M−1(iω) = −((1/Wy(iω))Ik +Γ)H(iω)−1 and expand
it in order to obtain

M−1(iω)

(
Wz(iω)

Wy(iω)

)
×

[
K (α)

(
Wz(iω)

Wy(iω)

)
+

1
Wy(iω)

Ik +Γ
]

q = 0.

Since we look for equal amplitudes α j = αe ∀ j, describing
function matrix now is defined as follows K (α) = diag[k(αe)]
and the equation above can be reduced to[

k(αe)Wz(iω)+1
Wy(iω)

Ik +Γ
]

q = 0. (14)

One can see that equation (14) has several solutions. The trivial
solution q = 0 corresponds to the equilibrium.

Consider the following equation

det
[

k(αe)Wz(iω)+1
Wy(iω)

In +Γ
]
= 0

After some manipulations, we arrive at
k(αe)Wz(iω)+1

Wy(iω)
+λ j = 0, (15)

where λ j is an eigenvalue of matrix Γ and q is the corresponding
right eigenvector.

By the presented procedure, multiple oscillatory patterns based
on the different eigenvectors of matrix Γ can be obtained.
However, since the MHB method is applied to the system
(12), Theorem 1 can be used. In the previous section we also
described that an oscillation is expected stable if linear system
(11) with K := k(αe)Ik is marginally stable. The system LK
given in (11) is marginally stable when poles ±iω are on
the imaginary axis and all of the other poles lie in the open
left half plane. Moreover, since Γ = Γ�, the poles located
on the imaginary axis have linear independent corresponding
eigenvectors which are the eigenvectors of matrix Γ. According
to that, a stable oscillation is characterized by an eigenvalue
λmax of matrix Γ with the largest real part.

Equation (15) now has the form
k(αe)Wz(iω)+1

Wy(iω)
+λmax = 0.

This equation can be rewritten as
k(αe)Wz(iω)+1+λmaxWy(iω) = 0,
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Substituting (4) and (5) into the equation above, we obtain
k(αe)Z(iωIk −A)−1B+1+λmaxC(iωIn −A)−1B = 0,

1+(k(αe)Z +λmaxC)(iωIn −A)−1B = 0.
Since det(iωIn −A) �= 0, we have

det(iωIk −A)[1+(k(αe)Z +λmaxC)(iωIn −A)−1B] = 0.
Using Schur’s Lemma (see Dummit and Foote (1999)), we
arrive at

det[iωIn −A+B(k(αe)Z +λmaxC)] = 0.
Thus matrix of a relatively low order A−B(k(αe)Z + λmaxC)
has imaginary eigenvalues for ±iω , where ω stands for fre-
quency of the oscillations. In other words k(αe) and ω can be
derived from the Hopf bifurcation condition.

We now have two components of the oscillation profile αe
which is computed by (8) and ω . The phases φ j are encoded
in the eigenvector that corresponds to the largest eigenvalue
λmax of the topology matrix Γ. Substitute (k(αe)Wz(iω) +
1)/Wy(iω) =−λmax in (14) in order to obtain

[Γ−λkIk]q = 0.
Since we look for the equal amplitudes, we need such eigen-
vector q from Λ := span[q] that all entries of q have the same
modulus. In order to determine the phases from the eigenvector
the following equation is used

φ j = angle(q j).

We now have all components of the oscillation profile and
can construct the approximation of the output of the network
using (6). The equal amplitude case is fully investigated and
the oscillation profile is determined. In the next section the
numerical examples are presented.

5. NUMERICAL EXAMPLES

As examples we study ring networks of three and four diffu-
sively coupled identical (sub)systems.

Fig. 2. A ring-like structure of networks of identical diffusively
coupled systems

The individual dynamics of the nodes, as in Pogromsky et al.
(2011), is given in (1) with

A =

( 1 −1 1
1 0 0

−4 2 −3

)

B = (0 0 1)� , C = (0 0 1) , Z = B�P,
where P is the solution to the Lyapunov equation

A�P+PA =−I3.

This setting satisfies the conditions imposed in Assumption 1.

The topology of the network is given by matrices Γ3 and Γ4
where subscript denotes the number of nodes in the network

Γ3 = γ3

( 2 −1 −1
−1 2 −1
−1 −1 2

)
, Γ4 = γ4




2 −1 0 −1
−1 2 −1 0

0 −1 2 −1
−1 0 −1 2


 ,

where γ3,4 are positive parameters. One can also conclude that
there are positive numbers a3, a4 so that if a3 < γ3 and a4 < γ4
for the three node and four node systems, respectively, (a3, a4
can be calculated from the Hopf bifurcation condition: a3 =
0.4343 and a4 = 0.3257) the systems are Y-oscillatory.

The nonlinear function is given as follows

ψ(z j) = z3
j ;

and computing the describing function by (8), we obtain

k(αe) =
3
4

α2
e .

For the three node network, two wave-like oscillatory patterns
(clockwise and counterclockwise waves) are found and the os-
cillation parameters are successfully determined. The derived
oscillation profiles for coupling strength γ3 = 0.4386 are pre-
sented in the table below

Table 1. Oscillatory profiles for Γ3 structure

Wave ω αe φ1 φ2 φ3
Clockwise 0.8365 0.1296 0 -120 120

Counterclockwise 0.8365 0.1296 0 120 -120

For the four node network, the one wave-like solution is pre-
dicted. The solution predicts the partial synchronization. We
can observe synchronous behavior between pairs of nodes 1 and
3, and 2 and 4. Moreover, these pairs are in anti-phase synchro-
nization with respect to each other. The predicted oscillation
profile is provided in the following table

Table 2. Oscillatory profile for Γ4 structure

γ4 ω αe φ1 φ2 φ3 φ4

0.3290 0.8362 0.1159 0 180 0 180

Figures 3 and 4 display outputs y(t) and q(t) of the simulation
and the MHB method for the clockwise wave for the ring of
three nodes and for the ring of four nodes, respectively. Offsets
y j(t)+2( j−1) and q j(t)+2( j−1) are added for the visibility.

Fig. 3. Output of simulation and output of the MHB method for
the ring of three nodes

In the case of the four node network, the MHB method predicts
the result which was previously obtained by the direct Lya-
punov method in Pogromsky et al. (2011). For the three node
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Fig. 4. Output of simulation and output of the MHB method for
the ring of four nodes

case, the analysis by means of the direct Lyapunov method can
be nontrivial due to the co-existence of two stable solutions.

One can notice that in the beginning the output of simulation
and the output of the MHB method do not match because of
the transient process. After decay of transients the outputs are
almost identical which clarifies the accuracy of the approxima-
tions. For some initial conditions, the outputs of the simulation
and of the MHB method can mismatch in initial phase and in
order to avoid it, we did add initial phase offset φ0.

6. CONCLUSION

The paper addresses the problem of predicting oscillatory pat-
terns in a network. We developed the multivariable harmonic
balance method for the networks with a more general structure
and dynamics, which allows to predict the oscillatory patterns
appearing in such networks even if some of patterns co-exist.
Our approach determines the oscillation profile (i.e. frequency,
amplitudes, phases) which is encoded in the largest eigenvalue
and its corresponding eigenvector of the coupling matrix in
the equal amplitudes case. In this work, we show that the
MHB method provides a very accurate approximation of the
ODEs simulation in the neighborhood of the bifurcation point.
Moreover, the oscillation profile components obtained by the
approach can be used as initial points for the further numerical
continuation analysis.
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Fig. 4. Output of simulation and output of the MHB method for
the ring of four nodes

case, the analysis by means of the direct Lyapunov method can
be nontrivial due to the co-existence of two stable solutions.

One can notice that in the beginning the output of simulation
and the output of the MHB method do not match because of
the transient process. After decay of transients the outputs are
almost identical which clarifies the accuracy of the approxima-
tions. For some initial conditions, the outputs of the simulation
and of the MHB method can mismatch in initial phase and in
order to avoid it, we did add initial phase offset φ0.

6. CONCLUSION

The paper addresses the problem of predicting oscillatory pat-
terns in a network. We developed the multivariable harmonic
balance method for the networks with a more general structure
and dynamics, which allows to predict the oscillatory patterns
appearing in such networks even if some of patterns co-exist.
Our approach determines the oscillation profile (i.e. frequency,
amplitudes, phases) which is encoded in the largest eigenvalue
and its corresponding eigenvector of the coupling matrix in
the equal amplitudes case. In this work, we show that the
MHB method provides a very accurate approximation of the
ODEs simulation in the neighborhood of the bifurcation point.
Moreover, the oscillation profile components obtained by the
approach can be used as initial points for the further numerical
continuation analysis.
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