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Lagrangian modeling of hydrodynamic-kinetic interactions in (bio)chemical reactors:
practical implementation and setup guidelines
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bDSM Biotechnology Center, Delft
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Abstract

Large substrate concentration gradients can exist in chemical or biochemical reactions, resulting from a large circulation
time compared to the turnover time of substrates. The influence of such gradients on the microbial metabolism can
significantly compromise optimal bioreactor performance. Lapin et al. [1] proposed an Euler-Lagrange CFD method
to study the impact of such gradients from the microbial point of view. The discrete representation of the biomass
phase yields an advantageous perspective for studying the impact of extra-cellular variations on the metabolism, but
at significant computational cost. In particular, the tracked number of particles, as well as the applied time resolution,
have a large impact on both the accuracy of the simulation and the runtime of the simulation. In this work we study
the influence of these parameters on both the simulation results and computation time, and provide guidelines for the
accurate Euler-Lagrange bioreactor simulations at minimal computational cost.
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1. Introduction

In many (bio)chemical reactors, reaction takes place
inside a discrete phase such as micro-organisms or cata-
lysts particles, with transport occurring in the bulk phase.
If the timescale of bulk mixing is in the range of or longer5

than the reaction timescale, the competition between re-
action and bulk mixing will result in spatial substrate het-
erogeneity. When the discrete phase is mobile, such as in a
slurry reactor or fermentor, micro-organisms/particles will
see continuous changes in their environment as they move10

around. The spatial substrate gradients inside the reac-
tor, translate to temporal substrate variations from the
organism or catalyst’s reference frame.

Focusing now on a bioreactor, the biomass specific pro-
duction rate qp of the desired component is typically gov-15

erned by a complex metabolic reaction network, with the
reaction rates depending both on the availability of extra-
cellular substrates (such as sugar and oxygen) and intra-
cellular components (such as amino acids and ATP). The
adaptation of organisms to their surroundings does not oc-20

cur instantaneously [2], meaning that the intra-cellular and
extra-cellular conditions will typically not be in equilib-
rium. Consequently, qp may vary in time, being a function
of the organism’s trajectory through space. As a result,
the observed production rate of the entire population may25
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differ considerably from an ideal mixing situation [3]. Sec-
ond, there may be considerable heterogeneity within the
population [4].

Substrate concentration gradients originate from the
fact that the bulk circulation time equals or exceeds the30

turnover time of metabolites [5]. Since the circulation
time is dependent on the reactor scale, but turnover times
are not, the extracellular conditions in a (typical ideally
mixed) laboratory scale fermentor will not reflect the non-
ideal industrial scale operation. This indicates that mi-35

croorganisms are tested and selected under conditions that
do not represent their future working environment [6]. For
a reliable process design, effects of substrate concentration
gradients on qp should be taken into consideration during
both process and organism development.40

Scale-down simulators offer the possibility to study micro-
organisms under industrially representative conditions by
deliberately introducing spatial concentration gradients us-
ing multi-compartment systems, or temporal concentra-
tion gradients via a fluctuating feed. [7, 5]. A recurring45

problem in scale-down simulation is to select the proper
setup to reasonably match the industrial environment. De-
tailed information about the industrial environment is of-
ten scarce, or unavailable. It has been proposed to use
computational fluid dynamics (CFD) coupled with reac-50

tion dynamics (RD) to gain insight in the industrial en-
vironment [6, 8]. In this way it is possible to study the
magnitude of gradients and their effect on microorganisms
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[1, 9, 10], providing valuable input for the design of scale-
down simulators. Although this communication focuses on55

bioreactor applications, the outlined methods are applica-
ble to any system dealing with similar dynamics.

1.1. CFD-RD coupling

Due to computational constraints, early CFD-RD work
related to bioreactors often remained limited to the appli-60

cation of unstructured kinetic models (i.e. [3]), simulating
only the uptake of substrate, or linking growth and pro-
duction rate directly to the substrate uptake rate via a
Herbert-Pirt equation. As such models assume an instan-
taneous adaptation of the metabolism to the extra-cellular65

conditions, such an approach is unsuitable to assess the ef-
fect of substrate concentration gradients.

More recently, the adaptation of the metabolism to en-
vironmental fluctuations has been included via two ap-
proaches: the Population-balance (PB) approach and Euler-70

Lagrange (EL) approach. In the PB approach, micro-
organisms are modeled as a component of the liquid phase.
The biomass specific growth rate µ is typically applied
to describe population heterogeneity [10, 11, 12]. This
method is suitable for situations where all relevant pro-75

cesses are coupled to µ. However, metabolic fluctuations
may take place on shorter timescales than growth rate
fluctuations, and may have complex mutual interactions.
To capture such processes PB-approaches are unsuitable,
as the biomass population heterogeneity is not described80

solely by µ.

In EL-approaches the biomass phase is represented by
a large number of virtual particles carrying an internal
parameter vector describing their state [1, 9]. These vir-
tual particles are further referred to as parcels to distin-85

guish between computational and physical biomass par-
ticles. A large number of intra-cellular components and
their mutual interactions can be tracked for each parti-
cle via a structured metabolic model. This makes the EL
method specifically suitable to study the effect of reactor90

heterogeneity on metabolic timescales, and to study how
the variations in multiple metabolites lead to heterogene-
ity in (among others) µ and qp [9]. In our opinion, coupling
complex metabolic models in which the intra-cellular re-
sponse is governed by more parameters than just µ, is more95

straightforward in the Euler-Lagrange approach.

Besides the easy coupling of complex metabolic models,
a second advantage is the viewpoint that the EL method
offers. The use of parcels makes it straightforward to
study the observed extracellular conditions over time for100

each parcel, and to monitor the intracellular response to
these conditions. From this viewpoint, it is straightfor-
ward to construct ‘parameter versus time’ series for each
parcel, for example the qs versus t series shown in fig-
ure 1. Statistical processing of these series, which we will105

discuss in future communications, provides direct insight
in the response of the metabolism to extra-cellular vari-
ations and distributions of the magnitude and duration
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Figure 1: Example of a temporal uptake rate signal as experienced
by a single parcel in an Euler-Lagrange simulation (scaled with max-
imum biomass specific substrate uptake rate ks,max. This timeseries
is a result of a spatial gradient as observed from the organism’s point
of view.

of extra-cellular variations can easily be collected. Since
experimental scale-down simulators should replicate such110

variations to test organisms under industrially represen-
tative conditions, these statistics are a valuable basis of
scale-down design. In our opinion, these advantages make
the EL-approach the preferred approach to study the im-
pact of substrate gradients on the microbial metabolism,115

and to provide a basis of design for scale-down simulators.

A major challenge of the EL method is the significant
computational burden. First, the large range of timescales
in the problem leads to the requirement to simulate a sig-120

nificant period of flow time at a high temporal resolution.
Second, a large number of parcels may be required to ob-
tain an accurate solution. In the EL-method the biomass
is distributed over the parcels. With the metabolic model
to the parcels, uptake of substrate from the liquid phase125

becomes an inter-phase exchange effect, only occurring at
locations where a parcel is present. Hence, the number
of parcels Np influences the homogeneity of the biomass
concentration in the reactor has a strong influence at the
quality of the solution. Due to the point-like nature of130

parcels, the amount of biomass in a given volume element
is directly proportional to the number of parcels in that
volume element. An insufficient number of parcels leads
to artificial spatial variations in the biomass concentra-
tion, CX , and consequently to artificial spatial variations135

in qs and Cs. As will be discussed in section 1.2, the com-
putation time depends strongly on the number of tracked
parcels Np, and on the required time resolution ∆t. In this
work, we consider what the minimum number of parcels
Np and maximum allowed timestep size ∆t is to provide a140

good trade-off between accuracy and computational costs.
Based on an evaluation of timescales involved in the prob-
lem, we present how these values can be predicted based
on simulation parameters. These guidelines provide a ba-
sis for the computationally efficient application of Euler-145

Lagrange CFD to study the effects of non-ideal mixing on
the performance of industrial scale bioreactors.
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1.2. Problem outline
With agitation speeds of > 1/s, the time resolution

∆t required to resolve the particle motion is in the order150

∆t ≈ 5 − 50 ms. A similar time resolution is necessary
to model the fast reactions such as substrate assimilation
and ATP consumption [2]. The mixing time is typically in
the order of one or several minutes [13], and several (ap-
prox. 10) mixing times should be simulated to properly re-155

solve the magnitude- and duration distributions for extra-
cellular substrate variations. This means in the order of
30 min flow time must be resolved for a typical industrial
case. Reactions related to (for example) enzyme produc-
tion may act on the timescales of hours [14]. If the goal is160

to study a fermentation including the influence of enzyme
dynamics on biomass specific growth, production and up-
take rates, the resolved flowtime requirement may be in the
order of hours to days. Clearly, such simulations will be
computationally demanding, mainly originating from the165

number of timesteps required to resolve all relevant dy-
namics. As such, the computational burden per timestep
must be kept to a minimum, and the maximum allowable
∆t should be used.

Efficient modeling of stirred tank flows in a fully Eu-170

lerian fashion already received considerable interest in lit-
erature. Hence, we focus here on the Lagrangian aspects
of the simulation. These aspects have received less inter-
est as, in the conventional applications of Euler-Lagrange
methods, the parcel computations are typically a minor175

contribution to the total computation time. In our partic-
ular application this is, however, not the case. Under the
simplification that the flowfield is in steady state, it is not
required to update the flowfield every timestep, leaving
operations related to parcel tracking as the major contrib-180

utor to the total computation time. It must be noted that
if this steady-flowfield simplification cannot be made, the
Eulerian updating is indeed the dominant factor in com-
putation time. This assumption, and other aspects related
to the Eulerian implementation, are presented in section185

3.1.

Computational demands of parcel tracking. Typically, the
Stokes number for a micro-organism St < 0.01 and mass-
less parcel tracking may be used. This means parcels im-
mediately adapt to the local flow velocity and no force190

balance has to be solved, reducing the computation time
considerably. As such, the massless tracking methodol-
ogy is relatively cheap. We will now briefly consider the
computational cost; a more in-depth assessment including
the background on the numbers presented here is found195

in Appendix A. Running parcel tracking only simulations
on one core of a 2.4GHz XEON E5-2665 established that
the computation time per parcel tcomp ≈ 5 − 10 · 10−6 s
without file output. Here, tcomp became roughly indepen-
dent of Np for Np > 105, meaning the total calculation200

time scales linearly with Np. In the case of file output,
tcomp ≈ 20 − 30 · 10−6 s when writing 5 tracking param-
eters to file for each parcel, each timestep. Clearly, file

output contributes significantly to the total computation
time. In many cases, writing data on only a subset of the205

total parcel population suffices for the study of metabolic
statistics, and it may not be necessary to write data with
the same temporal resolution as the simulation timestep-
ping. Taking this in consideration and writing only the
necessary data can save considerable computation time.210

The specifics will be highly case-dependent however, and
are therefore out of the scope of this paper.

Assuming an average computational demand of tcomp =
10 · 10−6 s/particle (including optimized file output) and
a fairly typical time resolution of ∆t = 30 ms/timestep,215

the total computation time is 67 h per hour flow-time for
2 · 105 parcels on a single processor; resolving one day of
flowtime on a 16-core machine, assuming perfect scala-
bility, would take around 4 days. As the runtime scales
(approximately) linearly with Np and inversely with ∆t,220

the benefit of optimizing these two parameters is clear.
This leads to the questions: What is the minimum re-

quired number of parcels Np and the maximum allowed
timestep size ∆t to achieve accurate results? In this case,
accurate means the results are independent of Np and ∆t225

and, for a simple reaction model, comparable to results for
an Eulerian simulation with a homogeneous biomass con-
centration CX , with the same mesh. Preferably, we want
to be able to determine the required Np and ∆t for a given
simulation problem a priori. Therefore, we first turn to a230

theoretical approach for the prediction of Np.

2. Predicting Np

2.1. Artificial concentration variations

A typical CFD mesh of a reactor containsNc = O(105−
106) grid cells where a factor 100 − 1000 difference in235

volume between cells is common due to local refinement.
When Np ≈ Nc, large grid cells at all times contain tens
of parcels while the smallest cells are rarely visited. This
leads to artificial spatial biomass variations, as the amount
of biomass in a grid cell is directly proportional to the240

amount of parcels in that cell. Taking Np >>> Nc gives
an approximately homogeneous biomass distribution, but
the large Np required will clearly lead to excessive compu-
tational demands in all but a few applications. Since the
uptake of substrate(s) is directly coupled to the biomass245

availability, artificial biomass variations inherently give rise
to artificial substrate concentration gradients in the vicin-
ity of the parcel, as indicated in figure 2 a. This need
not be a problem if mixing in the direct surrounding of
the parcel is sufficiently fast compared to reaction, such250

that the magnitude of artificial substrate gradients is kept
small. In order to estimate how many parcels are required
to make the effect of artificial substrate gradients negligi-
ble, we first need to estimate the magnitude of the gradient
around the particle as a function of process parameters.255
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Cs = Cs,b

Cs = Cs,p

Vp

Vc

ADTdC/dr = -RpVp

dC/dr = 0

r
dr

C s C s

r
2r2r

(c) dr
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Cs,b

(b) (d)

(a)

Figure 2: An outline of the computational problem: a) 1-D rep-
resentation of computational substrate gradients. The black line
represents the physical concentration profile. The dashed red line
illustrates the concentration profile that might be found with parcel-
coupled reactions. b) Hypothetical picture of a single parcel in a
fine 2-D grid, outlining the defined volumes and concentrations. c)
Enlarged view of the substrate concentration profile around a single
spherical parcel assuming radial symmetry. The dashed lines indi-
cate the grid cells. d) translation from the hypothetical image to the
numerical implementation, including boundary conditions.

2.2. Predicting artificial gradients

Consider a 3−D domain with volume VT containing
Np point-like biomass parcels with an equidistant parti-
cle spacing. Although the point parcels themselves have
no true volume, each parcel has an associated volume260

Vp = VT /Np; the parcel represents the biomass that is
distributed in this associated volume Vp. We study the
concentration field in this volume Vp which, for simplicity,
we assume as a spherical domain with radius r (figure 2
b). In reality spherical volumes cannot fill the entire do-265

main of course, but we ignore this fact for the sake of the
derivation. The background domain is discretized in grid
cells with Vc < Vp. Because all biomass inside the volume
Vp is concentrated in the central gridcell containing the
parcel, substrate uptake only occurs inside this gridcell.270

The substrate concentration at the edge of Vp is assumed
constant and homogeneous with a value Cs,b. Due to up-
take, the concentration in the center Cs,p < Cs,b, causing
a substrate flux from the domain edge to the center, even-
tually resulting in a steady concentration gradient within275

Vp. This is the artificial concentration gradient arising
from the point-like biomass distribution; the situation is
sketched in figure 2 c.

We relate concentrations at the edge and center of Vp
as Cs,b = (1 + β)Cs,p, and use β to quantify the magni-280

tude of the artificial gradient. Below, we will relate β to
hydrodynamic and metabolic parameters. Subsequently,
we consider that in reality the parcels are not stationary
and homogeneously distributed. The random fluctuation
of the number of parcels in a cell, Np,c, is accounted for by285

the standard deviation of the binomial distribution. Now,
we turn to predicting the value of β .

Predicting β. The substrate gradient around a parcel de-
pends on the balance between local mixing and reaction;
we assume β is a function of the timescales describing290

these phenomena. Assuming mixing within Vp is gov-
erned by turbulent diffusion, Dt, penetration theory dic-
tates rp =

√
πDtτm; rewriting in terms of Vp and solving

for τm gives eq. 1. The reaction timescale in gridcell c
containing Np,c parcels, with parcel-bound reaction rate295

Rs,p is given in eq. 2.

τm,p = (
3

4π
)2/3 1

πDt
V 2/3
p (1)

τr,c =
Cs,cVc

Np,cRs,pVp
(2)

Since we now study a single parcel, Np,c = 1. We ap-
ply Monod kinetics with CX being the biomass concentra-300

tion: Rs,p = ks,maxCX · [Cs,p/(Ks +Cs,p)]. These kinetics
are often encountered in biological systems [15]. When
Cs,p << Ks, these reduce to 1st order kinetics. Computa-
tions showed that β becomes independent of Cs,p in this
regime. For higher Cs,p, we find that β decreases as Cs,p305

increases, converging to β = 0 for Cs,p → ∞. Hence, we
only have to consider the 1st order regime where β reaches
a maximum (β = βm), as a worst case-scenario to de-
rive a criterion for Np. Any Np criterion that holds for
Cs,p << Ks also holds for higher values of Cs,p.310

To study how βm depends on the mentioned timescales,
we solve the 1-D diffusion equation in MATLAB (version
8.2); A schematic view of the implementation is shown
in figure 2d. Reaction takes place at the central node,
leading to a boundary condition ADt

dCs

dr (t, 0) = −Rp,cVp.315

Two different boundary conditions have been applied at
domain edge. Simulations were conducted with fixed Cs,b
- yielding a steady-state solution - or symmetry boundary
condition dCs

dr (t, rp) = 0. The latter gives a transient batch
process. As βm is independent of Cs, both yielded simi-320

lar results. Based on a large number of simulations with
varying domain volume, hydrodynamic parameters and ki-
netic parameters, we find the relation of eq. 3 from the
data shown in figure 3. The different symbols correspond
with different numbers of nodes between simulations, their325

relative offset is attributed to the crude discretization.

βm =
4π2

3

(
Vc
Vp

)2/3

· τm,p
τr,c

(3)

2.3. Distribution of parcels in a volume

Because of turbulent motion, the distribution of parcels
inside the volume VT is not equidistant, but more or less330

random and the probability of finding Np,c parcels in a
volume Vc follows from the binomial distribution. For the
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Figure 3: Calculated βm versus predicting equation for a variety of
settings. The different symbols indicate numerical resolution: ng = 3
(blue diamonds), 5 (red squares), 9 (green triangles), 13 (orange
circles). Black line: X = Y . Dashed lines: 20% deviation from the
proposed relation

magnitude of artificial gradients the absolute number Np,c
is not relevant; we have to consider the number of parcels
inside a cell, compared to neighboring cells. This will fluc-335

tuate as the parcels are in constant motion. Therefore
we use the the standard deviation of the binomial distri-
bution, eq. 4 to describe the effect of non-homogeneous
distribution and parcel motion.

σp,c =

(
Np

Vc
VT

(
1− Vc

VT

))1/2

(4)340

2.4. Quantifying artificial gradients in CFD simulations

In CFD software we cannot observe the artificial gra-
dients surrounding a parcel directly (unless Np is really
small). Due to these gradients, the concentration Cs in
any given gridcell c will be somewhat lower when it con-345

tains a parcel, then when it contains none. The artificial
concentration gradients near parcels will hence result in
temporal concentration fluctuations in each gridcell, which
are easily quantified. Such variations are absent when the
biomass phase is homogeneously distributed. To quan-350

tify these fluctuations we consider the concentration Cs
in every gridcell c as a function time. The Coefficient-
of-variation (COVc) of concentration variations in cell c
is defined as the ratio of the temporal standard deviation
σs,c over the temporal mean Cs,c. Subsequently, COVc is355

volume-averaged to yield a single number quantifying the
fluctuations in the simulation, shown in equation 5.

χ = < COVc >≡<
σs,c

Cs,c
> (5)

With χ describing artificial gradients in simulations, we
pose the proportionality χ ∝< βm,cσp,c > with a yet to360

be determined proportionality constant α. < βm,cσp,c >
is determined by solving eq. 3 and 4 for each gridcell, and
volume-averaging their product over all cells. The con-
stant α describes all effects that have not been accounted
for in < βm,cσp,c >, including the fact that all above com-365

putations assumed the artificial gradient around the parcel

was completly developed, while in reality it will be very
dynamic. Now combining χ = α < βm,cσp,c > with equa-
tions 1 - 4, we can solve for Np, yielding equation 6. For
convenience, the numerical constant 4π2/3 is absorbed in370

α in this equation and the rest of this work; accordingly,
βm is scaled to β∗m = βm/(4π

2/3). In eq. 6, the allow-
able artificial gradient magnitude is specified via χ (we
use χ = 0.05 as a default), and constant α has yet to be
determined.375

Np = α2

[
ks,maxX

Ksχ
√
VT

∑(
V

7/6
c

Dt,c

(
1−

(
Vc
VT

))1/2
)]2

(6)

3. CFD implementation

Simulations were performed in the commercial software
package ANSYS FLUENT 15.07, which includes Euler-
Lagrange modeling as the DPM model. FLUENT is equipped380

with a parcel-reaction model, but this model is not com-
patible with the desired massless tracking. Hence, reaction
routines were added as User-Defined Functions (UDFs).
To allow direct comparison with Eulerian simulations for
validation of the Euler-Lagrange implementation, the re-385

action rate used in this work is a function of a single ex-
ternal scalar only: Rs,p = f(Cs,c). Two different schemes
for inter-phase reaction coupling were tested. In Approach
I, the source term Ss,c(t + ∆tc) = ΣNp,cRs,p(t)∆tp with
Σ(∆tp) = ∆tc and ∆tp a flexible timestep size determined390

by FLUENT. The value of the Ss,c is determined at the be-
ginning of each timestep, and is not updated in subsequent
iterations of the Eulerian field. In essence, this makes ap-
proach I non-iterative. In Approach II, Ss,c(t + ∆tc) =
ΣNp,cRs,p(t + ∆tc)∆tc where Ss,c is recalculated per it-395

eration, possibly increasing accuracy but also calculation
time.

3.1. Computational setup

To keep computational demands to a minimum, a Reynolds
Average Navier Stokes (RANS) approach is favored over400

a more detailed, but more demanding Large Eddy Simu-
lation (LES) approach. Although RANS models require
several modeling assumptions and approximations, their
engineering accuracy is sufficient for providing insight in
reactor-scale substrate concentration gradients [3]. The405

standard k − ε model was used in all simulations. Al-
though this model is fundamentally weak for strongly ro-
tating flows [16], it has been well established that the k−e
model can reasonably the fluid flow [17], turbulence quan-
tities [18] and mixing time [19]. Our own simulations yield410

comparable results; a brief flow validation section is added
in Appendix B. While performance of the k − ε is suffi-
cient for our goals, the guidelines presented in this paper
are by no means limited to this turbulence model; they are
compatible with any eddy viscosity model.415

The steady state Multiple Reference Frame (MRF) model
for impeller simulation is favored over the inherently tran-
sient Sliding Mesh (SM) approach. In many stirred tank
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applications, the periodic velocity component arising from
rotor-stator interaction is small and the MRF method can420

be applied [18]. As the MRF method calculates a steady
state flowfield, there is no need to recalculate the flow ev-
ery timestep saving an order of magnitude in computa-
tion time. Spatial discretization was 2nd order upwind in
space [18] and 2nd order implicit in time. The SIMPLE425

algorithm was used for pressure-velocity coupling. Con-
vergence was assumed if all residuals were below 10−5 and
oscillations in the mean velocity magnitude were below
1%.

Reaction and parcel tracking. Species tracking was ini-430

tially enabled including a volumetric (Eulerian) reaction

term Rs,c = ks,maxCX · ( Cs,c

Ks+Cs,c
). The turbulent Schmidt

number was kept at the default value of 0.7. After the con-
centration field converged to a steady state, the solver was
switched to transient and massless parcels were added via435

the DPM model. The effect of turbulence was included us-
ing the discrete random walk model (DRW), where

√
u′2 =√

2k/3 and isotropic turbulence is assumed. During par-
cel tracking, the baffles and impeller boundary conditions
were switched from wall to interface. As k vanishes at440

these walls, parcels tend to get stuck when the wall bound-
ary condition is retained. Parcels were first distributed
for 30 impeller revolutions without particle-coupled reac-
tions. After this time, the volumetric reaction model was
switched off, and the particle-coupled reaction model was445

enabled.

Physical conditions. Water (ρ = 1000 kg/m3, µl = 1 mPa · s)
was used as a working fluid in all simulations. Glucose
(MW = 180 g/mol) was the substrate. It was assumed
that the dissolution of glucose did not influence µl and ρ450

of the continuous phase. The molecular diffusion coeffi-
cient Dm was arbitrarily set to 10−9; the exact value is
not of significant influence in turbulent simulations. Glu-
cose uptake by the filamentous fungus P. chrysogenum was
selected as a model reaction, described by Monod kinet-455

ics. De Jonge et al. determined the model parameters to
be ks,max = 1600 µmol/(gdw ·h) and Ks = 7.8 µmol/L
[20]. In our simulations the biomass concentration is set
to CX = 10g/L. Since we assume a continuous fluid with
the properties of water for model-development purposes460

here, mass transfer limitations towards the microorganism
will play a negligible role [21] and are not included in the
simulations.

As a hypothetical reactor, a flat bottomed tank with
H = T = 5m agitated by a 6-blade Rushton turbine (RT)465

with a clearance ∆C = T/4, diameter D = T/3 and baf-
fle width was T/10 was used. To reduce computational
effort 1/6th of the tank was modeled, containing a sin-
gle blade and baffle. The additional baffling was shown
to be of negligible influence [18]. Three hexahedral grids470

with respectively 51k, 166k and 341k gridcells, and one
tetrahedral grid with 147k cells were used. All internals
were modelled as thin surfaces. Substrate was fed to the

Case RPS No. Parcels ∆t(s) coupling
51kcI 1.026 5k - 2000k 0.001 - 5 I
51kcII 1.026 10k, 500k 0.01 - 3 II
51kcLP 0.750 10k - 100k 0.01 I
166kcI 1.026 10k, 500k 0.01 I
341kcI 1.026 10k, 500k 0.01 I
341kcII 1.026 10k, 500k 0.01 II
TET 1.026 10k, 500k 0.01 I
PBT 1.033 10k - 500k 0.01 I

Table 1: An overview of all conducted simulations. Several cases
were conducted in duplo. Case names are based on mesh (xxxkc)
and parameter variation (I = coupling approach I, II = coupling
approach II, LP = Low Power input, TET = tetrahedral, PBT =
Pitch Blade Turbine).

domain via a source term in a region near the impeller
top. In all simulations, the conditions were such that475

< Cs > << Ks. Additional simulations were performed
in a pitch blade tank (PBT), to test if the proportional-
ity constant α is influenced by the geometry. The used
dimensions are ∆C = T/2, D = 0.35T and T = 5m; the
impeller contained 4 blades with an angle of 45◦. For fur-480

ther geometric details, we refer to Bakker et al. [22]. The
mesh was fully hexahedral with 99k grid cells and covered
1/4th of the domain.

Monitoring. Each timestep, the mean concentration< Cs >,
total uptake rate ΣRs,pVp, concentration and parcels per485

gridcell (Cs,c, Np,c) and concentration observed by each
parcel (Cs,p) were monitored. To account for transients,
the first 15 impeller revolutions with Lagrangian reaction
were discarded - in all cases the concentration field was
statistically steady after this time. All properties were490

monitored for 60 − 300 impeller rotations to derive the
reported statistics.

Cases. Most simulations were conducted at an agitation
speed of Ns = 1.026 RPS; one series of simulations was
executed withNs = 0.75 RPS to test the influence of power495

input. The typical timestep was set to ∆t = 0.01s, but
other values have been applied to test the influence of ∆t.
An overview of cases is shown in table 1.

4. Results and discussion

We focus on four aspects of the simulations: 1) we500

compare χ against < β∗m,cσp,c > to study the value of α
under different conditions, 2) we compare mean concentra-
tion < Cs > between Eulerian and Lagrangian simulations
to validate the Lagrangian reaction approach, 3) we study
the effect of ∆t and 4) we check whether the interphase505

mass balance is closed.

4.1. Artificial gradients in FLUENT

Artificial gradients were quantified by monitoring σs,c/Cs,c
in each grid cell, and averaging them to yield χ. Data was
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Figure 4: Observed fluctuations versus predicted value for the Rush-
ton geometry and PBT geometry. The black lines show the obtained
fits used for determining α.

stored every timestep and post-processing was performed510

in MATLAB. In figure 4 χ is plotted against < β∗m,cσp >.
We observe a linear relation between < β∗m,cσp,c > and
χ, in line with our expectations. The proportionality con-
stant α is found to be 0.27 for the RT geometry and 0.19
for the PBT. This indicates α is dependent on the fer-515

mentor geometry. This is attributed to the difference in
global flow pattern and thereby global parcel motion. In
the RT case, runs with different meshes (hexa- and tetra-
hedral), different power input and different ∆t all collapse
on the same line. Also, we see no influence of the coupling520

mechanism on χ and thereby α.

Additional runs were conducted in a tank stirred by 2
Rushton turbines, using the geometry of [23]. Here, α is
also found to be 0.27, which is not surprising as the ge-
ometry can be seen as 2 single-RT tanks stacked together.525

Finally, sliding mesh simulations too yield α = 0.27. For
brevity, a detailed discussion of the sliding mesh results is
omitted.

4.2. Mean concentration

A second prerequisite for the successful application of530

parcel-based reactions, is that the time-average substrate
concentration field agrees with the steady state substrate
concentration field found in a fully Eulerian simulation, for
the simple kinetics applied here. To establish this, we com-
pare the volumetric mean substrate concentration for the535

Lagrangian and Eulerian reaction implementation. First
we consider how < Cs,c > (the Eulerian mean in EL sim-
ulations) develops with Np, by comparing < Cs,c > with
< β∗m,cσp > (figure 5). As can be expected, < Cs,c > con-

verges to a steady value for < β∗m,cσp >→ 0, with < Cs,c >540

nearly independent of Np for < β∗m,cσp > below 0.5.

In table 2 we compare < Cs,c > for an Eulerian sim-
ulation (first column), with the Lagrangian < Cs,p > and
< Cs,c > for the same mesh. The agreement between< Cs,c >
and < Cs,p > is expected; with the essentially 1st order545

kinetics, there is a unique < Cs,c > at which substrate

Case < Cs,c > < Cs,c > < Cs,p >
51kcE-100kp 1.31 0.522 1.27
166kcE-500kp 1.23 1.14 1.23
341kcE-500kp 1.23 1.31 1.23

Table 2: Mean concentration in the volumetric reaction case versus
Lagrangian reaction case for selected cases. For the Lagrangian case,
both the field mean, and mean observed by parcels is shown. For all
cases, ∆tc = 0.01.

uptake and feed balance. This is the average concentra-
tion in an Eulerian simulation, and must also be the aver-
age concentration observed by the parcels in a Lagrangian
simulation, regardless of Np. The small difference between550

the meshes shows the Eulerian solution is not yet mesh in-
dependent for the 51k grid - also observed in Appendix
B. More striking is the significant mesh dependency of
< Cs,c >. We attribute this effect to the DRW model
for turbulent parcel motion.555

As noted before, the turbulent kinetic energy k van-
ishes near walls, and the convective velocity is low con-
sequently parcels tend to have an unrealistically long res-
idence time in these zones [9]. The effect is most pro-
nounced in the crudest mesh, which has a relatively large560

ratio of boundary gridcells over bulk gridcells. The result
is a somewhat elevated average biomass concentration in
some wall regions, most notably the vessel top - near the
substrate feed. This leads to a comparatively large uptake
in this region and thereby lower < Cs > in the bulk of565

the vessel. Higher mesh densities result in fewer wall cells
compared to bulk gridcells and the offset decreases with
increasing mesh resolution. Improvements over the DRW
have been suggested, such as anisotropic-DRW or contin-
uous random walk (CRW)[24] and probabilistic methods570

such as explored by Lapin [9]. We consider the implemen-
tation of such methods outside the scope of this work. The
main message is that the agreement between < Cs,c > and
< Cs,c > should be checked, as an offset is not fixed by
simply increasing Np. If an offset is detected, it should be575

checked whether parcels accumulate in certain regions, and
measures (either mesh refinement or alternative tracking
models) should be implemented.

Turning back to figure 5, increase in < Cs,c > at high
< β∗m,cσp >, can be explained by the Np-independent580

value of < Cs,p >. Looking back at figure 2 b and c, the
concentration in the parcel-containing grid cell is lower
than in the surrounding cells as a result of uptake, an ef-
fect that becomes more pronounced with decreasing Np;
hence upon decreasing Np, < Cs,c > will increase. This585

notion still holds for the 51k grid.

4.3. Interphase mass balance

Having established the value of α, dependence of< Cs,c >
on Np we have established the minimum required Np for
an accurate Euler-Lagrange bioreactor simulation. A final590

important aspect is the closure of the inter-phase mass bal-
ance. The substrate uptake from the field ΣSs,cVc, must
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Figure 6: Signed inter-phase mass imbalance λ versus time for case
166kcI − 500kp. The variations between timesteps are mainly due
to numerical errors in the iterative solution procedure. Overall, λ is
slightly positive with mean offset is 2.8 · 10−2%. This offset occurs
when in some gridcells, substrate uptake exceeds availability and the
uptake must be clipped. The low offset magnitude indicates this
effect is of negligible.

be balanced by an equal accumulation term (ΣRpVp) in
the Lagrangian phase in order to properly study intracel-
lular reaction dynamics when more complex models are595

used. In practice, some imbalance will occur, due to nu-
merical errors in the iterative solution of the scalar field,
and due to uptake clipping. The latter occurs when the
uptake from a gridcell, Ss,cVc∆tc, exceeds the availability
in that cell, Cs,cVc.600

We quantify the instantaneous uptake imbalance as
λ(%) = 100 · Rp,c∆Vp∆t−Ss,c∆Vc

Rp,c∆Vp∆t . A typical λ versus time

plot is shown in figure 6. Both positive and negative imbal-
ances are observed, the average λ is slightly positive. This
is attributed to the two types of error mentioned above;605

the iteration error is distributed around 0, clipping errors
lead to a positive λ. In all cases where χ < 0.05, the
absolute time average mass imbalance |λ| was well below
1%, indicating the inter-phase mass balance is sufficiently
closed.610
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Figure 7: Uptake mass imbalance E (top) and artificial gradients χ
(bottom) as a function of time. Both parameters are shown to be
independent of ∆tc for θ < 1. All shown datapoints are for the 51kc
mesh. Black squares: Coupling approach I. Red triangles: Coupling
approach II.

4.4. Time step size

As noted in the introduction, the time resolution ∆tc
will significantly affect the computation time, given a cer-
tain flowtime; a higher ∆tc simply means less timesteps
are required for the same simulation. The influence of615

timestep size ∆tc has been studied in the 51kc Rush-
ton grid. First, the effect of ∆tc on the mass imbalance
|λ| is briefly considered. We scale ∆t with the reaction

timescale, θ =
∆tcks,maxX

Ks
; for θ > 1 significant clipping is

expected since the uptake per timestep is bigger than the620

substrate availability. The effect of clipping is clearly vis-
ible in figure 7 (top). The value of |λ| is sufficiently small
(consistently < 1%) for θ < 0.1. It is noteworthy that
coupling approach I (non-iterative) and II (iterative) yield
no significant difference in error, meaning the additional625

computational burden of recalculating uptake each field
iteration is not justified. These approaches are outlined in
section 3.

To conclude, the effect of timestep size on the χ is
checked. The data in figure 7 (top) clearly shows that for630

θ < 1 there is no effect of ∆t on χ. This is in line with
our expectations; the parcel timestep ∆tp (controlling up-
take and motion) is determined independent of the field
timestep ∆tc; as long as there is no significant change
in the external scalar field during ∆tc, no effect on χ is635

expected. Still, for a too large ∆tc parcel trajectories
could not be computed successfully - this occurred when
∆tc ≈ N−1

s . Hence, we advise a maximum timestep size

∆tc <
1

10Ns
and

∆tcks,maxX
Ks

< 0.1 to ensure successful tra-
jectory calculation, time-independent χ and an acceptably640

low imbalance in the inter-phase mass balance.

5. Conclusion

Due to the large number of timesteps required when
running an Euler-Lagrange simulation of a fermentation
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process Lagrangian reaction coupling, computational effi-645

ciency is essential. Inherently, the clustering of biomass in
Lagrangian parcels leads to artificial substrate concentra-
tion fluctuations in the substrate concentration field. A
sufficient number of parcels Np must be used to minimize
these effects, with higher Np inherently leading to a longer650

computation time. In this work, we set out to predict the
minimum value of Np, as well as the maximum allowable
timestep size ∆tc, necessary to acquire accurate simulation
results at minimal computational cost.

Artificial substrate concentration fluctuations, caused655

by non-homogeneous distribution of the biomass phase
in Euler-Lagrange(EL) simulations, scale linearly with <
β∗m,cσp,c > . Here, β∗m,c is derived from the substrate gra-
dient around a single, stationary parcel and σp,c is the
standard deviation of the binomial distribution, describ-660

ing the random distribution of parcels. The proportional-
ity constant α is found to depend solely on the geometry
of the system; no effect of mesh, power input or timestep
size was observed, provided the timestep size was below
Ks/ks,maxX. Knowing α, the number of parcels Np re-665

quired to keep the artificial substrate fluctuations below
a certain threshold can be calculated from equation 6,
where Np typically is of O(105) for a threshold χ = 0.05.
Because of the iterative nature of the method, there is a
mass-imbalance |λ| between the Eulerian and Langrangian670

uptake. This imbalance was found to be < 1% when α <
β∗m,cσp,c >< 0.05 and ∆t < 0.1Ks/ks,maxX, for all cases.
Both explicit and implicit uptake coupling were tested. No
consistent improvement in performance was found regard-
ing error or fluctuations for the implicit method, while675

a significant increase in calculation time was observed.
Hence, we provide the following primary guidelines for set-
ting up Euler-Lagrange fermentation simulations:

1. Calculate the minimum number of required parcels
using equation 6.680

2. A timestep size ∆t < min
(

0.1Ks

kmX
, 1

10Ns

)
is recom-

mended.

3. Calculation inter-phase exchange terms only during
the first iteration of a timestep is recommended to
reduce computation time.685

The size of microorganisms allows massless parcel tracking
to be used, with reaction models supplied via user-defined
functions, resulting in significant savings in computation
time. Furthermore, computation time can be reduced by
using the Multiple Reference Frame method for impeller690

simulation; the impeller and baffles have to be switched
from ’wall’ to ’interface’ boundary condition to prevent
parcels from getting stuck. Use of the discrete random
walk model for turbulence is not advised. Although its
drawbacks can be diminished by increasing mesh density,695

a more systematic solution is preferred.
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Roman Units Description
T m Tank diameter
A m2 Area
Cs mol/m3 Substrate concentration
CX kg/m3 Biomass concentration
Dt m2/s Turbulent diffusion coeff.
Dm m2/s Molecular diffusion coeff.
∆C m Off-bottom clearance
D m Impeller Diameter
H m Tank height
Ks mol/m3 Affinity constant for s
k m2/s2 Turbulent kinetic energy
ks,max − Max. reaction rate of s
M N ·m Impeller moment
Nc − Total no. grid cells
Np − Total no. parcels
Np,c − No parcels in cell c
Ns 1/s Impeller revolutions
n − Radial divisions
qs mol/g/h biomass specific glucose uptake rate
qp mol/g/h biomass specific production rate
Rs,c mol/m3/s Vol. reaction of s
Rs,p mol/m3/s Parcel-coupled reaction of s
r m Radius
Ss,c mol/m3 Source of s in cell c
t s Time
V m3 Volume
Re − Reynolds number
St − Stokes number
Sct − Turbulent Schmidt no.
Po − Power number
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Greek Units Description
α − Proportionalty parameter
β − Theoretical error
βm,c - Max. β in cell c
β∗m,c - βm,c/(4π

2/3)

χ − Mean fluctuations (< COVx >)
ε m3/s2 Turbulent energy dissipation
τr,c − Reaction time in cell c
τm,p − Parcel-mixing time
σx − St. dev. of parameter x
ρ kg/m3 Density
µl Pa · s Molecular viscosity
µ 1/s Biomass specific growth rate
λ % Interphase substrate imbalance

θ − Mean reaction time
∆tcks,maxX

Ks

Subsc. Units Description
t − Turbulent
T − Total
p − Particle
c − Gridcell
s − Substrate

Other Units Description
x − Time-average of x
< x > − Volume-average of x
COVx − Coeff. of variation of x, σx
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7. Appendix A: Computation times

7.1. Computation time

The computation time will be a strong function of855

used computing platform (specifically to the CPU, and the
speed of the mass storage system in cases where data is fre-
quently written to file). The computation times presented
here should therefore be used for relative comparison pur-
poses only.860

All presented simulations were executed on a desktop
8-core Intel Xeon E5-2665 system, clocked at 2.4GHz with
hyperthreading disabled. 32Gb DDR3 RAM , optionally
data was written to a Crucial BX100 SSD.

The following tracking cases were considered:865

• A: Massless tracking (movement) only

• B: Massless tracking + reaction (1-eq)

• C: Massless tracking + reaction (1-eq) + data output
(5-param)

• D: Massless tracking + reaction (10-eq) + data out-870

put (5-param)

• E: Massless tracking + reaction (1-eq) + data output
(10-param)

This led to the computation times presented in figure
3:875

The following observations are made:

Case Nc Np ∆t CPUs tcomp
A 51k 10k 0.01 1 23.85
A 51k 100k 0.01 1 8.79
A 51k 500k 0.01 1 7.54
A 51k 5000k 0.01 1 6.44
A 51k 500k 0.01 4 2.76
A 51k 500k 0.02 1 9.24
A 51k 500k 0.005 1 7.02
B 51k 10k 0.01 1 23.10
B 51k 100k 0.01 1 8.42
B 51k 500k 0.01 1 7.10
C 51k 10k 0.01 1 37.95
C 51k 100k 0.01 1 21.94
C 51k 500k 0.01 1 20.91
D 51k 10k 0.01 1 33.67
D 51k 100k 0.01 1 20.43
D 51k 500k 0.01 1 21.16
E 51k 500k 0.01 1 26.30
E 51k 500k 0.01 4 17.08
A 341k 10k 0.01 1 121.2
A 341k 100k 0.01 1 17.75
A 341k 500k 0.01 1 8.92
C 341k 100k 0.01 1 33.48
C 341k 500k 0.01 1 21.21

Table 3: Computation time tcomp in µs/parcel/ timestep for a variety
of cases

• The computation time per parcel, tcomp, asymptot-
ically approaches a minimum value upon increasing
Np. The minimum tcomp per parcel is estimated to
be 5µs for tracking only for this system. Every880

timestep, an approximately fixed amount of time is
required to update the Eulerian fields, and the FLU-
ENT solver itself. The contribution of this step be-
comes smaller as Np increases, hence the asymptotic
behaviour.885

• For the 51k mesh, the influence of the Eulerian up-
dating is hardly noticable for Np > 100k. With in-
creasing mesh size, the effect of the Eulerian step
becomes more pronounced. Crudely speaking, the
results indicate the Eulerian update has the most sig-890

nificant effect when Np < Nc, and vice versa. This
clearly indicates that a good mesh dependency study,
such that Nc too can be kept to a minimum, is ad-
visable. For the 341k grid, increasing Np from 105

to 5 · 105 still leads to a 2.5x longer computation -895

showing that also in this case optimizing Np may be
very beneficial.

• The effect of the metabolic model equations on total
computation time is negligible, both for a model in-
cluding 1 and 10 hyperbolic reaction equations. Of900

course, this observation will not hold for much larger
models, and will depend on the complexity of the
model equations.
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• File output has a very distinct influence on the com-
putation time. Minimizing the number of output905

occasions, depending on the goal of the simulation
and the statistical requirements is highly advised.
As these settings are very case-dependent, we do not
treat them here.

• The writing time increases somewhat when increas-910

ing the number of output parameters per parcel, but
not proportionally; this signifies that file lookup and
handling contribute significantly to the writing time.

• Increasing the number of CPUs with a factor 4 leads
to a factor 2.76 reduction in computation time; al-915

though this is based on only 1 run, scalability does
not seem to be perfect - but using multiple cores can
bring down computation time significantly.

• When writing files, the scalability becomes poorer,
as the communication with the SSD takes up a sig-920

nificant portion of the computation time.

8. Appendix B: Flow validation

We focused the flow validation on k and ε as they are
often underpredicted by the k − ε model. Results are
compared with LDA data by Wu and Patterson [25]. Al-925

though the employed scale in our simulation was much
larger (D = 5m versus D = 1m), the employed non-
dimensionalization allows direct comparison with the ex-
perimental value [18]. Figure 8 shows good agreement for
all hexahedral meshes. Similar agreement was found for930

the power numbers calculated from the impeller moment
(Po =

2πMyNs

ρN3
sD

5 ), shown in table 4. The Power number

based on energy dissipation, Poε =

∫
ρεdV

ρN3D5 , shows a greater
mesh dependency. These results are in agreement with the
observations of [18]. For the tetrahedral mesh, we do ob-935

serve a significant under-prediction of turbulence parame-
ters. This can lead to longer mixing times which influence
substrate concentration gradients, and must be taken into
account when studying real bioreactors. For our current
purposes, however, all Lagrangian results are compared940

only with Eulerian results of the same mesh. Hence, our
conclusions should not be influenced by such differences
between meshes.

For the PBT, no k and ε data was available in the
work of Bakker et al. [22]; only the observed power num-945

ber was compared, and we find decent agreement (table
4). We do observe a stronger axial and weaker radial flow
than Bakker et al. Since our interest is in testing reaction
methods, this difference is not of current concern, and was
not further addressed.950
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Figure 8: Dimensionless turbulence profiles in the impeller discharge
stream of a Rushton profile; results at different mesh densities com-
pared with LDA-data by Wu and Patterson.

Mesh Po Poε literature
51kc HEX 5.32 4.46 5.2
166kc HEX 5.47 4.92 5.2
341kc HEX 5.53 5.11 5.2
147kc TET 4.80 3.45 5.2
99kc PBT 1.16 0.98 1.27

Table 4: Power Numbers for various meshes, based on torque and
epsilon, compared with experimental value.
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