

Delft University of Technology

MirageManager
Enabling stateful migration for unikernels
Cozzolino, Vittorio; Flum, Oliver; Ding, Aaron Yi; Ott, Jörg

DOI
10.1145/3417310.3431400
Publication date
2020
Document Version
Final published version
Published in
CCIoT 2020 - Proceedings of the 2020 Cloud Continuum Services for Smart IoT Systems, Part of SenSys
2020

Citation (APA)
Cozzolino, V., Flum, O., Ding, A. Y., & Ott, J. (2020). MirageManager: Enabling stateful migration for
unikernels. In CCIoT 2020 - Proceedings of the 2020 Cloud Continuum Services for Smart IoT Systems,
Part of SenSys 2020 (pp. 13-19). (CCIoT 2020 - Proceedings of the 2020 Cloud Continuum Services for
Smart IoT Systems, Part of SenSys 2020). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3417310.3431400
Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3417310.3431400
https://doi.org/10.1145/3417310.3431400

MirageManager: Enabling Stateful Migration for Unikernels
Vittorio Cozzolino

Oliver Flum
vittorio.cozzolino@in.tum.de

oliverflum@gmail.com
Technische Universität München

Munich, Germany

Aaron Yi Ding
Delft University of Technology

Delft, Netherland
Aaron.Ding@tudelft.nl

Jörg Ott
Technische Universität München

Munich, Germany
ott@in.tum.de

ABSTRACT
Unikernels are a new lightweight virtualization technology born as
an alternative to virtual machines and containers. Geared towards
service provisioning for the Internet of Things (IoT) and edge com-
puting, they offer extremely small memory footprint and strong
isolation properties. However, the unikernels ecosystem is still in
its infancy and lacks quintessential functionalities found in more
well-established virtualization technologies. For example, stateful
migration is a highly desired feature for mobile edge services in
distributed environments which is not yet supported by unikernels.
This is one of the shortcomings preventing us from reaping the full
benefits of unikernels outside of stateless applications.

In this work, we aim bridging this gap with MirageManager:
a ready-to-deploy unikernel migration system enabling lossless
migration supported by a function-level, application logic check-
pointing library of our design. Our evaluation results show that
MirageManager is able to lower the service downtime by ∼80%,
and drastically reduce the state transfer data by almost ∼100%
when comparing against Podman. Additionally, MirageManager
also beats Podman, a container-based engine, in parallel service
migration across constrained edge networks reducing the overall
migration time by up to ∼6x.

CCS CONCEPTS
•Computer systems organization→Distributed architectures;
• Software and its engineering → Software architectures.

KEYWORDS
Edge computing, service migration, unikernel

ACM Reference Format:
Vittorio Cozzolino, Oliver Flum, Aaron Yi Ding, and Jörg Ott. 2020. Mirage-
Manager: Enabling Stateful Migration for Unikernels. In Cloud Continuum
Services for Smart IoT Systems (CCIoT ’20), November 16–19, 2020, Virtual
Event, Japan. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3417310.3431400

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CCIoT ’20, November 16–19, 2020, Virtual Event, Japan
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-8131-4/20/11. . . $15.00
https://doi.org/10.1145/3417310.3431400

1 INTRODUCTION
In edge computing environments, offloading computation to the
nearest edge node is key to cutting network latency and improving
user experience [1–5]. However, edge and IoT networks may be
unreliable [6] and composed of resource-constrained devices that
are more prone to failures. Ideally, the edge infrastructure should
be able to self-adapt in case of malfunctions and quickly move
the computation to a stable node in order to maintain high service
responsiveness and avoid data loss. Therefore, fast servicemigration
and recovery (e.g. reinstantiation) play a crucial role in reducing
the overall service downtime.

Migration based on VMs or containers in the edge computing
domain has been explored in numerous studies. VM handoff [7]
has been proposed to accelerate service handoff across offloading
edge nodes. It divided VM images into two stacked overlays based
on Virtual Machine (VM) synthesis [8] techniques. In contrast, the
wide deployment of containers platforms provides a base for high
speed service handover. The Docker storage driver employs layered
images inside containers, enabling fast packaging and shipping of
any application as a container. Many container platforms, such as
OpenVZ [9], LXC [10], and Docker [11], either completely or par-
tially support container migration, but none of them are suitable for
the edge computing environment [5]. In fact, LXC migration and
Docker migration are based on Checkpoint/Restore In Userspace
(CRIU) [12] and need to transfer the whole container file system dur-
ing the migration, resulting in inefficiency and increasing network
overhead as a function of the filesystem size.

To cope with future Internet architectural trends fueled by a
pressing need to support edge/fog computing environments, new
forms of service decomposition such as lambda functions [13] and
unikernels [14] have been developed. While both approaches are
designed for stateless applications, we argue that for specific use-
cases it is necessary to preserve the execution state. For example,
in security applications that collect network traffic data and trigger
events if suspicious behavior is detected [15], this data would be lost
in a simple image duplication of stateless migration. Time variant
computations, such as sensor fusion, would deliver different results
depending on when they start or how long they run. In addition,
services deployed in radio access networks that are tightly coupled
with their mobile user would have to preserve their data in order
to stay in sync with their users physically moving from one access
point to another [16]. However, unikernel migration has not yet
been explored in past research. Most approaches opted for fine-
tuned container-based solutions to reduce service downtime at the
edge. Meanwhile, we found no tool offering stateful migration for

13

https://doi.org/10.1145/3417310.3431400
https://doi.org/10.1145/3417310.3431400
https://doi.org/10.1145/3417310.3431400

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Cozzolino et al.

unikernels which, due to their properties (discussed in §2), are a
promising option for edge computing applications.

To fill this gap, we developed MirageManager: a checkpoint-
based, live migration solution for unikernels. Our contribution is
two-fold: (i) an architecture and workflow to manage the migration
of unikernels and (ii) a library called Unimem which can preserve
the unikernel state at function level during the migration. Our
prototype is based on MirageOS and we strive to abstract from any
platform-specific implementation details by handling the execution
state explicitly within the application itself before transferring it.
Initially geared towards MirageOS, MirageManager is designed
to be later ported to other unikernel implementations.

The remainder of this paper is structured as follows. We pro-
vide background information and review related work in §2. We
describe our system design and checkpointing technique in §3 and
§4, respectively. We discuss the details of our implementation in §5
followed by preliminary results in §6. Finally, we discuss pros and
cons of our approach in §7 and conclude the paper in §8.

2 MOTIVATION AND RELATED WORK
We begin by looking at the need for stateful unikernel migration in
respect to current trends in the edge computing and IoT domains.

With the rapid development of the edge computing model, many
researchers have developed applications exploiting the edge com-
puting paradigm. Machine learning, computer vision and signal
processing are just examples of classes of applications that bene-
fit from offloading intensive computation [17–19] to nearby edge
devices. Similarly, research exploring service migration for edge
computing followed [16, 20–22], highlighting pros and cons of the
different approaches adopted. Originally, the idea of shipping and
migrating computation was supported by code slicing or VM and
container migration [23, 24]. However, these mechanisms require
transmission of a considerable amount of data over the network
due to sheer size of the execution environment that needs to be
migrated, which also has energy consumption impact [25]. The
advantage is portability since less assumptions need to be made
regarding the destination machine.

Containers require less data to be transferred as the OS is not mi-
grated during the procedure and are overall more lightweight than
VMs [26]. On the other hand, containers depend on OS-specific
functions which makes the migration procedure difficult due to the
presence of external dependencies [27]. A sweet-spot between these
two approaches are unikernels: a new, emerging multi-purpose vir-
tualization technology tailored for resource-constrained devices
commonly found at the edge [28–30]. Due to their strong isolation
properties, reduced attack surface, and small memory footprint,
unikernels represent an intersection between containers and tradi-
tional VMs. Additionally, their compilation model enables whole-
system optimization across device drivers and application logic. In
particular, by being in the order of a few MBs in terms of image
size, the migration of an unikernel is more resilient to the unfavor-
able network conditions (e.g., unreliable, intermittent connectivity,
limited bandwidth) often found in edge and IoT networks [6]. For ex-
ample, operations like image or state retransmission are less costly
in terms of transmitted data when compared to other virtualization
techniques.

Unikernels are still in their infancy and do not offer the suite
of functionalities provided by other well-established virtualization
tools. This applies also to migration, which, to the best of our knowl-
edge, is still an unexplored path. In fact, unikernels are advertised
primarily as stateless appliances which, by definition, do not require
migration as no information should be preserved across subsequent
executions. However, unikernels have been recently used also in
stateful contexts as in [15, 31] where preserving the state of exe-
cution is necessary to maintain consistency and avoid gaps in the
collected data. Security applications, for example, collect data on
network traffic and trigger events if suspicious behavior is detected.
For example, in [15] a unikernel based intrusion detection system
(IDS) is proposed. In this case, loss of the data structures during
service re-instantiation could expose the network to attacks as
malicious connection could not be tracked anymore. Additionally,
time-variant computations such as sensor fusion will deliver dif-
ferent results depending on when they start or how long they run.
Another possible application is motion patterns detection in a video
stream, which requires to preserve information from past processed
video frames during a migration [32]. However, in this case the
unikernel would eventually require access to additional hardware
resources (e.g., GPU) for which support is yet not available. For the
use-cases mentioned above, stateful migration can help in increas-
ing the service reliability in case of faults and prevent data losses
in case of service reinstatiation.

3 SYSTEM DESIGN
Typically, service migration is achieved by dumping the content
of a virtual instance into a file and transferring it to a destination
host. Then, the hypervisor will take care of restoring the service.
However, this procedure also requires support by the guest operat-
ing system. While most hypervisors support migration, this is not
necessarily the case for all guest OSes. In fact, unikernels do not
support it for the reasons explained in §2.

We added the required migration logic directly at the applica-
tion layer instead of making any changes at the kernel level (e.g.,
MiniOS [33]) or in the hypervisor. This is a practice followed also
in past work for VM-independent migration of stateful applications
or to capture the application state at a high-level before migrating
it [32, 34]. Hence, we designed a set of functionality in the shape
of a library allowing the unikernel to keep track of its own state
internally. When the unikernel needs to suspend, it serializes its
state so it can be transferred to the migration target, which will
process the state before proceeding with the execution flow.

Aside from state tracking (discussed in §4), we require an addi-
tional component to support the migration process which we call
MirageManager, shown in Figure 1. It is a web service exposing an
interface to commission and manage unikernels on any registered
host and transfer the unikernel state using a repository. It is the
core of our system and it manages the life-cycle (e.g., creation, mi-
gration, destruction) of unikernels deployed on multiple hosts and
it provides a repository for writing and retrieving the unikernels
state before and after a migration. MirageManager is installed at
the edge and we assume that there will be multiple instances of it to
manage clusters of edge nodes. The representation of a unikernel
is populated before the hypervisor creates the guest domain and

14

MirageManager: Enabling Stateful Migration for Unikernels CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

will exist even after its destruction, regardless of whether it is the
result of a migration procedure or a regular shutdown. During the
guest lifetime, the representation will change to reflect changes in
its state.

Admin MirageManager
Hypervisor

VM VM VM VM

Hypervisor

VM VM VM VM

Host 1

Host 2

Figure 1: MirageManager.

When a unikernel is started, MirageManager will create a guest
domain of the corresponding image on the target host. Afterward, to
confirm a successful boot, the unikernel will query MirageManager
and start a lookup procedure for a previous state associated to it.
This procedure is required so that, even if no state is retrieved,
MirageManager will be aware of the current state of the unikernel
(specifically, started) and change it to connected.

At the moment of a migration, MirageManager will issue a sus-
pend command to the unikernel. Hence, the latter will transfer its
state to the repository and thereby confirm that the suspension
was successful. When resumed on the target machine, a state will
be retrieved from MirageManager and the guest will use it to up-
date itself before resuming its workflow exactly from where it was
interrupted before the migration. This process can be repeated in-
definitely until the unikernel is permanently stopped, completes
its intended task, or exits due to an error/fault. Potentially, the
unikernel could invoke by itself the migration procedure without
the need for an external trigger. However, this functionality is not
yet supported in the current version of our system.

4 STATE CHECKPOINTING
In order to manage the lifecycle of a unikernel, MirageManager
requires a complete representation of its execution state. Therefore,
we developed a module able to store and serialize the unikernel
application logic state so that execution can be resumed from it.
We call this procedure checkpointing, described below.

For the purpose of creating checkpoints, we implement a library
for MirageOS that defines a central state object representing the
unikernel’s state. Additionally, we defined a programming model
which allows to express the application logic routines in a serializ-
able format, so that the execution state can be written to the store
and transferred to the repository. Such store is called Unimem and

it is implemented as a key-value store using strings as keys and
a polymorphic data-type for the values. The currently supported
data-types are single element, list, or list of lists. The application
can decide to write either variables (e.g., intermediate execution
results) or details about its execution state into Unimem, depending
on the context. Additionally, Unimem also encapsulates the commu-
nication protocol semantics used to dialogue with MirageManager,
which are shown in Figure 5.

Started

Connected

Suspended

Stop or Terminate

Create

Query
Repository

Suspend

Resume

Figure 2: MirageManager — Unikernel lifecycle.

F1

F3F2

rand <= 5
&&

round < 250

rand >= 5
&&

round < 250

round >= 250

true true

Figure 3: Checkpointing execution graph.

To enable the application to write its execution state to Unimem,
we translate the unikernel into a series of atomic procedures, each
constituting a step. Hence, we define the application workflow as
a directed graph with labeled edges where each node is a compu-
tational step. Every step is identified by a unique string identifier
(ID) so that the currently active step can be dumped into the store
just by using its ID. Edges are guarded by expressions using the
variables present in the store that determine how the control flow
is directed from one step to the next.

In the case of multiple edges originating from the same compu-
tational step (e.g., execution logic branching), the program decides
which one to follow by evaluating what we call transition guards
which are conditional equations evaluated on variables stored in
Unimem. Therefore, the control flow can be expressed as an adja-
cency matrix where each entry 𝑎𝑖 𝑗 describes the transition from

15

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Cozzolino et al.

Mirage Manager
(server)

OS (GNU/Linux)

ServerNode
Mirage Manager (host

controller)

OS (GNU/Linux)

UniMem

domU

Application Logic

MirageOS

dom0

EdgeNode

Xen Hypervisor

Figure 4: MirageManager components.

step i-th to j-th and its value acts as a guard for the transition. The
truth condition of the transition guard is obtained from evaluating
specific functions on a set of variables in the store. The first condi-
tion evaluating to true in a row of the adjacency matrix determines
the next transition in the execution flow. One limitation is that
guard functions should be mutually exclusive to avoid ambiguities
in the process of selecting which transition to take at any given
moment. If no guard condition evaluates to true, the application
logic is considered to be completed and the unikernel terminates.

When the unikernel is requested to suspend or migrate, the
identifier of the currently executed function is written to Unimem.
As every variable used to evaluate the transition guards is stored as
well, Unimem’s content fully describes the application state. In fact,
the current position in the graph as well as the next transition to be
traversed can be inferred from the stores content only. To protect
against state corruption and potential information loss, all variables
belonging to an execution scope spanning multiple computational
steps must be stored. This is facilitated by not using return values
or parameters for the steps, but rather writing from and reading
to the store. As computational steps are atomic, the information
contained in Unimem is sufficient to recreate the application state
after a migration.

Finally, there is no specific structure imposed on the content
of Unimem by MirageManager as long as the state is serializable.
Therefore, also other state information, such as the state of an
object-oriented application, could theoretically be stored.

5 IMPLEMENTATION
MirageManager is implemented as a distributed system consisting
of an application server developed with Express [35] and written
in JavaScript. It exposes a REST API for the admin user to issue
migration commands, and for the unikernel to transfer its state
to the central repository. Additionally, each host wishing to use
MirageManager needs to run a controller so that the central applica-
tion server can communicate with the hypervisor on that machine.
In Figure 4, the ServerNode hosts the application server while the
EdgeNode is as device using the migration functionalities. In our
implementation, we used Xen as hypervisor [36] but other options
are possible, as discussed in §7.

The communication between application server and host con-
troller is performed by remote procedure calls using gRPC [37].
The controller programmatically issues commands to Xen via the
xl tool in order to create and destroy domains. Additionally, it uses
xenstore-write to communicate with the unikernel guest domains.
The application server API is invoked using HTTP requests for

issuing commands and transferring states which are encoded using
the JSON format.

Inside the unikernel, the state is stored in a Unimem object which
is a singleton instantiated from an object class in our library’s
store module. At the core of Unimem there is a key-value store
implemented using the OCaml Map module. We expressed the
adjacency matrix so that the keys are the origin compute step IDs
and the values are a list of records containing the tuple destination
node ID and transition guard. The OCaml code snippet in Listing 1
shows the implementation of the execution flow in Figure 3.

Unimem also embeds the communication protocol functions
to communicate with MirageManager and serialize the unikernel
state.

let get_adjacency store =

let g12 = (((Store.to_int

(store#get "rand" (Store.VInt 0))) >= 5)

&& ((Store.to_int

(store#get "round" (Store.VInt 0))) <=250)) in

let g13 = (((Store.to_int

(store#get "rand" (Store.VInt 0))) < 5)

&& ((Store.to_int

(store#get "round" (Store.VInt 0))) <=250)) in

let gt = ((Store.to_int

(store#get "round" (Store.VInt 0))) > 250) in

let assoc_adj_list = [

("f1", [

{step = "f2"; condition = f12};

{step = "f3"; condition = f13};

{step = "terminate"; condition = gt};

]);

("f2", [{step = "f1"; condition = true }]);

("f3", [{step = "f1"; condition = true }]);

] in

let amap = StringMap.of_seq (List.to_seq

assoc_adj_list) in

amap

Listing 1: Unimem code snippet.

In addition to the Unimem class, there are utility functions for
converting the store value types to normal OCaml types in the store
module. Finally, the library offers a control module providing a set
of functionalities allowing the unikernel to communicate with the
controller through Xenstore [38].

6 EVALUATION
For our evaluation, we selected Podman as candidate baseline to
compare against MirageManager. Podman is an engine for running
Open Container Initiative (OCI) containers with support for CRIU-
based migration for Docker. We embedded an application with
the same functionalities as our MirageOS unikernel inside an OCI
container and then performed the migration tests. The application
consisted of a simple numeric counter printing the current number
of iterations, at every second. As we focus on the IoT domain, we
decide to keep the application logic simple. At this stage, we did
not consider the possibility to run and embed complex applications
in an unikernel running on a contained device. We did not compare
MirageManager against Docker’s native container migration tool
because it is still in an experimental stage and required excessive
modifications and workarounds to use it in our tests. Therefore, we
excluded it from our evaluation.

16

MirageManager: Enabling Stateful Migration for Unikernels CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

Figure 5: MirageManager migration workflow.

The migrations operations were performed between two Intel
NUCs connected to the same subnet with a 100Mbps connection
and running Ubuntu 18.04 with a downgraded kernel version (due
to incompatibilities with CRIU). The hosts using MirageManager do
not necessarily need to be on the same subnet to use the migration
functionality. In this specific case, the choice was out of simplicity.
To provide a quantitative analysis of our solutions against Podman,
we selected four metrics:

Downtime. The time elapsed between service suspension and
restart. It is the most critical metric for evaluating the performance
of a live migration, as it shows for how long the service is not able
to perform its task. From a user perspective, only the downtime
is noticeable. As timestamps are logged for every iteration of the
unikernel application logic, we can precisely measure the downtime
by subtracting the two timestamps between suspension and restart.

Migration Time. It is the time required by MirageManager to
perform the state migration of a unikernel between source and tar-
get machine, including the resume operation. Compared to down-
time, it is a compound metric covering different steps of our mi-
gration workflow and it is calculated differently for Podman and
MirageManager. For the former, a timestamp is logged both when
the suspend command is issued and when Podman completes the
resume command. The difference between the two values amounts
to the migration time. For the latter, the first timestamp is generated
at suspension time, but the second is created by the unikernel after
successfully retrieving its state from the repository. We can break-
down this time interval even further. The init time tantamount to
the kernel boot plus the initialization of a TCP/IP network connec-
tion. During the wait time, the new unikernel awaits for the old one
to suspend and save its state. Finally, the retrieval time represents
the time interval to query the state from the repository. These three
phases show the proceeding in time of the migration workflow
shown in Figure 5.

State Size. Amounts to the data needed to be transferred be-
tween hosts in order to perform the migration. This metric is less
crucial for migrations happening in datacenters where bandwidth
is not an issue. However, as we focus on migration in edge net-
works, it assumes much more relevance as the available bandwidth
is limited. The state size is calculated in Bytes and for Podman is

the size of the state tarball while, for MirageManager, of the JSON
message embedding the state of the unikernel.

Image Size. The size of the image. Both, for Podman and Mi-
rageManager it is defined by the size of the image stored in the
filesystem.

Results
Table 1 shows the migration results as the average of 200 migrations
mapped to the respective steps shown in Figure 5. MirageManager
provides slightly worse performance, as it takes longer than a cold
migration with Podman. However, this is due to MirageManager al-
ready starting the target unikernel before transferring its state over
the network. This is a time consuming operation due to the time
required for MirageOS to successfully setup the network channel,
especially with DHCP enabled.

Table 1: MirageManager vs. Podman

MirageManager Podman

Migration
Time

Init [s] (Steps 1 and 2) 0.91 +/- 0.20 -
Wait [s] (Steps 2 and 2.1.1.1) 2.61 +/- 0.45 -
Retrieve [s] (Steps 4 and 4.1) 0.02 +/- 0.006 -
Total [s] 3.54 +/- 0.48 1.96 +/- 0.06
Downtime [s] (Steps 2.1 to 4.1) 0.33 +/- 0.02 1.80 +/- 0.05
State Size [B] 79.00 195175.28 +/- 113.39
Image Size [B] 27780862 70730752

The benefit of our approach can clearly be seen in terms of
downtime. In fact, MirageManager downtime is ∼80% shorter than
Podman’s. Regarding data usage, MirageManager is clearly in ad-
vantage. The container migration requires a full memory dump
transfer, while MirageManager only transfers the necessary vari-
ables to preserve the application logic state. As a consequence, the
amount of data needed to transfer the state between machines is
more than ∼2000x smaller with MirageManager, when compared
to Podman. This is also a function of the application logic which
can affect the state transfer cost.

0
5

10
15
20
25
30
35
40

M
ig

ra
tio

n
Ti

m
e[

s]

Bandwidth:
100Kbps
500Kbps

1Mbps
10Mbps

100Mbps

1 2 3 5 10
Migrated Services

0

50

100

150

200

Figure 6: Migration scaling performance. MirageManager
(top) vs. Podman (bottom).

17

CCIoT ’20, November 16–19, 2020, Virtual Event, Japan Cozzolino et al.

An important factor when evaluating service migration in dis-
tributed systems is scalability. Therefore, we evaluated how mi-
gration with MirageManager fares in comparison with Podman
when both tools perform multiple migrations simultaneously and
measured the overall migration time. Figure 6 shows the overall
time required to migrate multiple services in parallel. The top part
of the plot shows the results for MirageManager while the bot-
tom part shows those for Podman. In both cases, we measured
the overall migration time with four different bandwidth settings.
As we discussed previously, edge networks suffer from bandwidth
constraints which severely impact migration operations when the
transferred state is not small. This stresses the need not only to
follow best-practices of service decomposition but also to reduce
the state size as much as possible. For both, unikernels can be the
answer.

We can gain multiple insights from Figure 6. First, MirageM-
anager’s migration time is seemingly unaffected by the available
network bandwidth and it grows quasi-linearly with the amount
of services migrated in parallel. The transferred state is extremely
small, as we do not include the domains full memory. The same
cannot be said for Podman, which is definitely suffering in low band-
width conditions because it needs to transfer the complete memory
dump as part of its migration technique. This tendency is exacer-
bated with the network bandwidth capped at 100 and 500 Kbps. In
this case, MirageManager is up to ∼6x times faster than Podman.
On the other hand, Podman outshines MirageManager as the avail-
able bandwidth increases. In fact, the latter it heavily penalized by
the long wait time (as shown in Table 1) which is the major culprit
of the long migration time. However, this is a limitation of the
specific unikernel rather than our system which can be addressed
in the future to drastically improve MirageManager performance.

Finally, while migration with Podman is transparent to the mi-
grated application, MirageManager requires changes to the appli-
cation logic in order to work correctly. Based on this, we state
that MirageManager generally outperforms in downtime and data
transfer volume cold migration with containers while offering com-
petitive performance in terms of overall migration time.

7 DISCUSSION
In this section we discuss the limitation of our approach in relation
to the our implementation and design choices.

MirageOS & OCaml. Currently, MirageManager only supports
MirageOS unikernels. While MirageOS is a promising project, this
results in MirageManagers biggest limitation as it forces the devel-
oper to write all code in a specific programming language (OCaml).
Additionally, MirageOS unikernels compiled against Xen do not
support the full set of libraries available to POSIX processes. This
is due to the restricted set of libraries that have been ported to be
compatible with MiniOS. However, our system could be extended
and ported to work with other unikernels [39–42], which would
bring more freedom in terms of available programming languages.

Virtualization.MirageManager uses Xen as hypervisor. How-
ever, in recent years we noticed howmore flexible and user-friendly
solutions, such as KVM [43], have received increasing attention.
MirageOS is compatible with KVM and especially Solo5 [44]: a
sandboxed execution environment for unikernels based on KVM.

Our system could be adapted to run on top of this hypervisor, too,
which would also drop some stringent requirements inherited from
Xen in terms of, for example, hardware prerequisites.

Application Design. MirageManager imposes further design
and implementation restrictions on a newly developed unikernel.
The developer must build the application logic so that it can be
serialized for a migration. This adds complexity to the development
phase and requires specific knowledge of the underlying migration
system. On the other hand, MirageOS unikernels benefit from a
compile-time defined behavior which opens to the possibility of
programmatically generating the adjacency matrix representing
the execution flow. Formal proof management system like Coq [45]
are natively compatible with OCaml and can help in this regard.
Alternatively, we contemplate the possibility of using tools such
as pre-processors in order to cope with the code modifications and
language implications (e.g. return values) discussed earlier.

While these restrictions can rule out using MirageManager in
some cases —what we presented is an initial prototype. Still, it is the
first system enabling the migration of unikernels while managing
multiple Xen hosts and their guest domains. Our design allows to
easily extend the implementation to accommodate diverse hyper-
visors and library operating systems and, yet at an early stage, it
performs competitively when compared to more mature solutions.

8 CONCLUSION AND FUTUREWORK
In this paper, we presented MirageManager: a checkpoint-based,
live migration solution for unikernels. We discussed the motivation
and reasoning behind our design which stems by a surging interest
for service migration at the edge. In order for unikernels to keep
growing as a virtualization technology, functionalities like migra-
tion must be made available in order to extend their applicability
also to stateful services. MirageManager was developed on top of
MirageOS and Xen. Our evaluation showed the potential of our solu-
tion in comparison to a well established service migration approach.
Nevertheless, there are limitations which open to manifold explo-
ration paths for our future work. Improving scalability, reducing the
implementation effort by automatically extracting the execution
flow, testing our solution with other unikernel technologies are the
first challenges we plan on tackling.

REFERENCES
[1] Brandon Amos, Bartosz Ludwiczuk, Mahadev Satyanarayanan, et al. Openface:

A general-purpose face recognition library with mobile applications. CMU School
of Computer Science, 6:2, 2016.

[2] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman, Stefan
Saroiu, Ranveer Chandra, and Paramvir Bahl. MAUI: making smartphones last
longer with code offload. In Proceedings of the 8th international conference on
Mobile systems, applications, and services, pages 49–62, 2010.

[3] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao,
Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for low-power
deep learning inference on mobile devices. In 2016 15th ACM/IEEE International
Conference on Information Processing in Sensor Networks (IPSN), pages 1–12. IEEE,
2016.

[4] Peng Liu, Dale Willis, and Suman Banerjee. Paradrop: Enabling lightweight
multi-tenancy at the network’s extreme edge. In 2016 IEEE/ACM Symposium on
Edge Computing (SEC), pages 1–13. IEEE, 2016.

[5] Lele Ma, Shanhe Yi, and Qun Li. Efficient service handoff across edge servers via
docker container migration. In Proceedings of the Second ACM/IEEE Symposium
on Edge Computing, pages 1–13, 2017.

[6] Yuang Chen and Thomas Kunz. Performance evaluation of iot protocols under a
constrained wireless access network. In 2016 International Conference on Selected
Topics in Mobile & Wireless Networking (MoWNeT), pages 1–7. IEEE, 2016.

18

MirageManager: Enabling Stateful Migration for Unikernels CCIoT ’20, November 16–19, 2020, Virtual Event, Japan

[7] KiryongHa, Yoshihisa Abe, Zhuo Chen,Wenlu Hu, BrandonAmos, Padmanabhan
Pillai, and Mahadev Satyanarayanan. Adaptive VM handoff across cloudlets.
Technical Report CMU-CS-15-113, 2015.

[8] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The
case for vm-based cloudlets in mobile computing. IEEE pervasive Computing,
8(4):14–23, 2009.

[9] OpenVZ. https://wiki.openvz.org/Main_Page. Accessed: 2020-06-16.
[10] LXC. https://linuxcontainers.org/. Accessed: 2020-06-16.
[11] R Boucher. Live migration using CRIU, 2017. Accessed: 2020-06-16.
[12] CRIU. https://criu.org/Main_Page. Accessed: 2020-06-16.
[13] Aws lambda. https://aws.amazon.com/de/lambda/. Accessed: 2020-09-16.
[14] Michał Król and Ioannis Psaras. Nfaas: named function as a service. In Proceedings

of the 4th ACM Conference on Information-Centric Networking, pages 134–144,
2017.

[15] Vittorio Cozzolino, Nikolai Schwellnus, Jörg Ott, and Aaron Yi Ding. UIDS:
Unikernel-based Intrusion Detection System for the Internet of Things. In DISS
2020 - Workshop on Decentralized IoT Systems and Security, 2020.

[16] Shangguang Wang, Jinliang Xu, Ning Zhang, and Liu Yujiong. A survey on
service migration in mobile edge computing. IEEE Access, PP:1–1, 04 2018.

[17] Mahadev Satyanarayanan. The emergence of edge computing. Computer,
50(1):30–39, 2017.

[18] Shanhe Yi, Zijiang Hao, Zhengrui Qin, and Qun Li. Fog computing: Platform
and applications. In 2015 Third IEEE Workshop on Hot Topics in Web Systems and
Technologies (HotWeb), pages 73–78. IEEE, 2015.

[19] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: concepts, applica-
tions and issues. In Proceedings of the 2015 workshop on mobile big data, pages
37–42, 2015.

[20] Carlo Puliafito, Carlo Vallati, Enzo Mingozzi, Giovanni Merlino, Francesco Longo,
and Antonio Puliafito. Container migration in the fog: a performance evaluation.
Sensors, 19(7):1488, 2019.

[21] Carlo Puliafito, Enzo Mingozzi, Carlo Vallati, Francesco Longo, and Giovanni
Merlino. Virtualization and migration at the network edge: An overview. In
2018 IEEE International Conference on Smart Computing (SMARTCOMP), pages
368–374. IEEE, 2018.

[22] Paolo Bellavista, Alessandro Zanni, and Michele Solimando. A migration-
enhanced edge computing support for mobile devices in hostile environments.
In 2017 13th International Wireless Communications and Mobile Computing Con-
ference (IWCMC), pages 957–962. IEEE, 2017.

[23] Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Chris-
tian Limpach, Ian Pratt, and AndrewWarfield. Live migration of virtual machines.
In Proceedings of the 2nd conference on Symposium on Networked Systems Design
& Implementation-Volume 2, pages 273–286, 2005.

[24] Andrey Mirkin, Alexey Kuznetsov, and Kir Kolyshkin. Containers checkpointing
and live migration. In Proceedings of the Linux Symposium, volume 2, pages 85–90,
2008.

[25] Aaron Yi Ding, Bo Han, Yu Xiao, Pan Hui, Aravind Srinivasan, Markku Kojo, and
Sasu Tarkoma. Enabling energy-aware collaborative mobile data offloading for
smartphones. In 2013 IEEE International Conference on Sensing, Communications
and Networking (SECON), pages 487–495, June 2013.

[26] Flávio Ramalho and Augusto Neto. Virtualization at the network edge: A per-
formance comparison. In 2016 IEEE 17th International Symposium on A World of
Wireless, Mobile and Multimedia Networks (WoWMoM), pages 1–6. IEEE, 2016.

[27] Motoshi Horii, Yuji Kojima, and Kenichi Fukuda. Stateful process migration
for edge computing applications. In 2018 IEEE Wireless Communications and
Networking Conference (WCNC), pages 1–6. IEEE, 2018.

[28] Roberto Morabito, Vittorio Cozzolino, Aaron Yi Ding, Nicklas Beijar, and Jorg Ott.
Consolidate iot edge computing with lightweight virtualization. IEEE Network,
32(1):102–111, 2018.

[29] RichardMortier, Jianxin Zhao, Jon Crowcroft, LiangWang, Qi Li, Hamed Haddadi,
Yousef Amar, Andy Crabtree, James Colley, Tom Lodge, et al. Personal data
management with the databox: What’s inside the box? In Proceedings of the 2016
ACM Workshop on Cloud-Assisted Networking, pages 49–54, 2016.

[30] Anil Madhavapeddy and David J Scott. Unikernels: the rise of the virtual library
operating system. Communications of the ACM, 57(1):61–69, 2014.

[31] Vittorio Cozzolino, Jörg Ott, Aaron Yi Ding, and Richard Mortier. Ecco: Edge-
cloud chaining and orchestration framework for road context assessment. In
2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and
Implementation (IoTDI), pages 223–230. IEEE, 2020.

[32] Julien Gascon-Samson, Kumseok Jung, Shivanshu Goyal, Armin Rezaiean-Asel,
and Karthik Pattabiraman. Thingsmigrate: Platform-independent migration
of stateful javascript iot applications. In 32nd European Conference on Object-
Oriented Programming (ECOOP 2018). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik, 2018.

[33] MiniOS. https://wiki.xenproject.org/wiki/Mini-OS. Accessed: 2020-06-16.
[34] Enrique Saurez, Kirak Hong, Dave Lillethun, Umakishore Ramachandran, and

Beate Ottenwälder. Incremental deployment and migration of geo-distributed
situation awareness applications in the fog. In Proceedings of the 10th ACM
International Conference on Distributed and Event-based Systems, pages 258–269,

2016.
[35] Express framework. Accessed: 2020-06-16.
[36] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex Ho, Rolf

Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the art of virtualization.
ACM SIGOPS operating systems review, 37(5):164–177, 2003.

[37] GRPC framework. Accessed: 2020-06-16.
[38] Xenstore-write manual. Accessed: 2020-06-16.
[39] Alfred Bratterud, Alf-Andre Walla, Hårek Haugerud, Paal E Engelstad, and Kyrre

Begnum. Includeos: A minimal, resource efficient unikernel for cloud services. In
2015 IEEE 7th international conference on cloud computing technology and science
(cloudcom), pages 250–257. IEEE, 2015.

[40] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. Clickos and the art of network function
virtualization. In 11th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 14), pages 459–473, 2014.

[41] Avi Kivity, Dor Laor, Glauber Costa, Pekka Enberg, Nadav Har’El, Don Marti, and
Vlad Zolotarov. Osv—optimizing the operating system for virtual machines. In
2014 {USENIX} Annual Technical Conference ({USENIX}{ATC} 14), pages 61–72,
2014.

[42] rumprun. https://github.com/rumpkernel/rumprun. Accessed: 2020-06-16.
[43] Kernel Virtual Machine. https://www.linux-kvm.org/page/Main_Page. Accessed:

2020-06-22.
[44] Solo5. https://github.com/Solo5/solo5. Accessed: 2020-06-16.
[45] Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Jean-Christophe

Filliatre, Eduardo Gimenez, Hugo Herbelin, Gerard Huet, Cesar Munoz, Chetan
Murthy, et al. The coq proof assistant reference manual: Version 6.1. 1997.

19

https://wiki.openvz.org/Main_Page
https://linuxcontainers.org/
https://criu.org/Main_Page
https://aws.amazon.com/de/lambda/
https://wiki.xenproject.org/wiki/Mini-OS
https://github.com/rumpkernel/rumprun
https://www.linux-kvm.org/page/Main_Page
https://github.com/Solo5/solo5

	Abstract
	1 Introduction
	2 Motivation and Related Work
	3 System Design
	4 State Checkpointing
	5 Implementation
	6 Evaluation
	7 Discussion
	8 Conclusion and Future Work
	References

