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Abstract—Computation-In Memory (CIM) using RRAM cross-
bar array is a promising solution to realize energy-efficient
neuromorphic hardware, such as Binary Neural Networks (BNNs).
However, RRAM faults restrict the applicability of CIM for BNN
implementation. To address this issue, we propose a fault tolerance
framework to mitigate the impact of RRAM faults on the accuracy
of CIM-based BNN hardware. Evaluation results using MNIST,
Fashion-MNIST and CIFAR-10 datasets demonstrate that the
proposed framework outperforms the related works as it restores
more than 99% of the RRAM fault induced accuracy reduction
with relatively less overhead.

Index Terms—CIM, fault tolerance, RRAM, BNN

I. INTRODUCTION

Computation-In-Memory (CIM) with Resistive Random Ac-
cess Memories (RRAM), integrating computation and storage
in the same physical location, has emerged as a promising
solution to deploy deep neural networks (DNNs) on resource
constrained platforms [1]. However, RRAM devices may suffer
from non-idealities and manufacturing defects such as Stuck-at
Fault (SAF) [2], [3]. Thus, addressing these is of paramount
importance for reliable BNN operation on CIM hardware.

Several software and hardware-based fault tolerance ap-
proaches have been proposed to mitigate the impact of SAF
in RRAM-based CIM [4], [5], [6], [7], [8], [9]. Some of
them focus on optimal mapping [7], [4], while others rely
on retraining [5], [6]. However, these solutions have various
limitations, such as mapping complexity. Therefore, efficient
techniques are needed for a reliable CIM operation.

We propose a fault tolerance framework consisting of three
techniques addressing the impact of SAF on the accuracy of
DNNs with binary weights, Binary Neural Networks (BNNs),
mapped to RRAM-based CIM hardware. The first technique
investigates different activation functions in the presence of
SAF to choose a fault-tolerant activation function. The second
and third techniques further enhance the fault tolerance by
applying redundancy and retraining methods, respectively.

II. PROPOSED FAULT TOLERANCE FRAMEWORK

Figure 1 shows the proposed fault tolerance framework. First,
a fault-tolerant activation function is determined, by evaluating
different activation functions in the presence of SAF. Then, it
is used as a baseline redundancy and retraining techniques.

A. Fault-tolerant activation function

Activation functions introduce non-linearity on the neuron’s
output, making the network learn nonlinear behaviors [11],
[12]. There are several activation functions and among them

Fig. 1: Proposed fault tolerance framework.

three are widely used, namely Sigmoid, hyperbolic tangent
Tanh and Rectified Linear Unit ReLU . These functions have
their own pros and cons with respect to non-linearity, fault
tolerance etc. This fact is exploited to choose a fault-tolerant
activation function for reliable BNNs. As shown in Figure 1(a)
the fault tolerance capability of the three functions is evaluated
using RRAM crossbar. In both Sigmoid and Tanh functions
the neurons are mostly active, making them vulnerable to the
impact of SAF. On the other hand, the neurons under ReLU
are largely inactive, masking some of the SAFs. Thus, ReLU
is expected to be fault-tolerant than Sigmoid and Tanh.

B. Redundancy and weight range adjustment

Redundancy is utilized for fault tolerance not by remapping
the faulty weights to secondary devices, but by increasing the
range of the stored weights, thus minimizing the impact of
SAF (Figure 1(b)). This is realized by altering the crossbar
architecture from 1T1R into 1T2R (2 RRAMs in parallel),
where the weights are mapped into two RRAMs and the weight
range is changed to {-2, +2} as shown in Figure 2(a). When the
two RRAM devices have different resistance states (HRS/LRS
or LRS/HRS) due to SAF, the value of the mapped weight
becomes 0 instead of flipping from ± 2 to ∓2 (Figure 2(b)).
Thus, the weight may obtain three different values {-2, 0, 2}
and the extra state ’0’ enhances the fault tolerance. However,
when both RRAMs are faulty, the weight could flip from ± 2
to ∓2, which is equivalent to 1T1R.

C. Retraining for fault tolerance

Retraining is another technique which can improve the
accuracy significantly, when combined with other orthogonal

(a) Fault free case. (b) Faulty case.
Fig. 2: Proposed redundancy approach with weight range
adjustment [10], from {-1, +1} to {-2, +2}.
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(a) MNIST dataset
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(b) Fashion-MNIST dataset
Fig. 3: Fault tolerance capability of different activation func-
tions.

techniques [13]. The proposed framework exploits the potential
of retraining by combining it with the fault-tolerant activation
function and redundancy techniques. Retraining requires the
location of SAF in the RRAM crossbar in order to exclusively
retrain the fault free weights. This is realized by first extracting
the SAF distribution, and then a gradient mask is applied to
prevent the faulty weights from retraining.

III. RESULTS

A. Fault-tolerant activation function

The effectiveness of fault-tolerant activation function is
evaluated using MNIST and Fashion-MNIST datasets (see
Figure 3). Figure 3(a) shows that BNNs employing Tanh or
Sigmoid functions exhibit similar accuracy degradation for
MNIST dataset, whereas the BNN employing ReLU function
has relatively less accuracy drop, making it more fault-tolerant.
Figure 3(b) shows similar trend for Fashion-MNIST dataset.

B. Redundancy and weight range adjustment

The potential of redundancy and weight range adjustment
technique is evaluated using fault-tolerant activation function,
ReLU in this case, for MNIST and Fashion-MNIST datasets
as shown in Figure 4. For both datasets, redundancy and weight
range adjustment technique improves the accuracy by 5-10%.

C. Evaluation of retraining for fault tolerance

Table I presents the accuracy improvement of retraining
method combined with fault-tolerant activation function, ReLU ,
for different datasets. It is observed that retraining is able to
almost fully recover the accuracy in all cases.

D. Comparison with state-of-the-art techniques

The proposed approach is compared with three state-of-
the-art fault tolerance techniques [5], [4], [14], as shown in
Table II. The accuracy improvement comparison is conducted
using a 2-Layer BNN running MNIST dataset in the presence
of 20% SAFs. In the table, the term recovered accuracy is the
ratio obtained when the restored accuracy is divided by the

0 5 10 15 20 25 30
SAFs (%)

70
75
80
85
90
95
100

M
ea

n 
Ac

cu
ra
cy
 (
%
)

1RRAM
2RRAM

(a) MNIST dataset

0 5 10 15 20 25 30
SAFs (%)

20
30
40
50
60
70
80
90
100

M
ea

n 
Ac

cu
ra
cy
 (
%
)

1RRAM
2RRAM

(b) Fashion-MNIST dataset
Fig. 4: Accuracy improvement of redundancy technique

TABLE I: Retraining with SAFs
MNIST Fashion-MNIST CIFAR

SAF Accuracy (%) Accuracy (%) Accuracy (%)
distribution (%) Baseline Retrained Baseline Retrained Baseline Retrained
0 97.3 97.3 88.22 88.22 90.09 90.09
5 96 97.3 84 87.1 65 89.9
10 95.4 97 71 88 10 89.7
15 93 97.2 62 87.9 10 89.6
20 89 97.19 53 88 9 89

TABLE II: Comparison with related fault tolerance techniques,
using a 2-Layer NN for the MNIST dataset, with 20% SAFs.

Related Works Recovered Accuracy (%) Retraining Redundancy (R)
[5] 95.1 Yes 1

[4] 43 No 1
96 2

[14] 30.1 No 1
97.6 2

Our proposal 99.8 Yes 1

baseline accuracy, and the redundancy column (R) indicates
the redundant RRAM devices used for fault tolerance.

Authors in [5], use a modified retraining method to achieve
95.1% accuracy, while authors in [4] adopt a redundancy and
mapping technique to obtain 96% accuracy. Similarly, the
work in [14] uses redundancy and matrix transformations
to achieve an accuracy of 97.6%. Both techniques in [14]
and [4] add software and hardware overheads (R=2) to improve
the inference accuracy. Overall, the proposed fault tolerance
framework outperforms the related works as it achieves better
accuracy improvement with a comparatively less overhead.

IV. CONCLUSION

The paper investigated the impact of RRAM defects on CIM-
based BNNs and proposed mitigation techniques to reduce their
impact. Results showed that these techniques achieve significant
inference accuracy improvement with relatively less overhead.
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