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Abstract

For many shipbuilders, the majority of a vessel’s lifecycle greenhouse gas emissions occurs during
its operational phase, commonly referred to as downstream emissions. For Feadship, this challenge

is particularly pronounced, with downstream emissions accounting for 94% of a superyacht’s carbon
footprint. Addressing this majority requires accurate and efficient methods to predict propulsion energy
use during the design stage - a task hindered by the limitations of existing prediction methods, which
are either time-intensive or prone to significant errors. This is affecting the design process in two ways:
an increased risk of incorrectly proportioned energy and power systems, and limited exploration of
design space. Data-driven methods, based on machine learning algorithms, have been proposed in the
literature. However, these methods expose two key gaps in the literature: their performance under
extrapolation conditions and their limitations when applied to small datasets.

This thesis addresses these challenges by developing hybrid modeling approaches that combine
physical insights through a physical model with data-driven techniques, enabling improved predictive
accuracy under extrapolation scenarios and with small datasets. Three modeling approaches are tested -
physical models (PMs), data-driven models (DDMs), and a combination of the two that forms hybrid
models (HMs) - with a shared prediction target, namely calm-water ship resistance. Four datasets were
assessed: Dataset 1 (CFD resistance), Dataset 2 (CFD power), Dataset 3 (towing tank tests), and Dataset
4 (speed-power trials), resulting in the selection of computational fluid dynamics (CFD) resistance data
as the basis for training the models.

Instead of directly learning from the CFD resistance data, it appears more effective when the data-
driven model learns to apply corrections to the output of a PM. Where traditionally these corrections
were based on the naval architect’s experience, they are now driven by data, offering fast and accurate
alternative to existing methods. This philosophy is embodied in this study through a newly developed
parallel HM, which achieves superior performance by learning how to apply these corrections to the
PM’s output automatically. During interpolation, the new HM demonstrates a mean average percentage
error (MAPE) of 3.8%, outperforming the best available PM (6.7%) and the best DDM (8.9%). For
extrapolation, standalone DDMs, including the best interpolator, failed dramatically, with MAPE values
exceeding 180% in some cases. The new HM maintains average errors within 12% across scenarios. And
with less data, the new HM consistently outperformed the best DDM, with its competitive edge most
pronounced at low data availability (10% of CFD observations). By advancing these methodologies,
the study not only enhances early-stage design confidence but also contributes to future steps towards
automated design optimization.
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Background - Shipping is increasingly governed by stringent sustainability policies, with
the International Maritime Organization (IMO) leading efforts through the implemen-

tation of energy efficiency standards like the Energy Efficiency Design Index (EEDI) and
the Carbon Intensity Indicator (CII). These standards have become essential for evaluating
the energy efficiency of commercial vessels but are less applicable to pleasure craft, such as
yachts, which have more varied usage patterns and lower annual mileage than commercial
ships. Introduced in 2011, the EEDI assesses CO2 emissions per ton shipped over a nautical
mile, serving as a valuable metric for commercial shipping efficiency. Likewise, the CII,
implemented in 2023, measures total CO2 emissions based on the cargo carried and the
distance traveled over a year. However, since yachts are neither designed for transporting
goods nor typically used for purely extensive travel, both the EEDI and CII have limited
applicability in the yachting sector.

The appetite amongst yachting clients to accelerate the technology developments is in-
creasingly there, but encouragement from regulatory bodies remains essential. And this
shift is already underway. In 2021, the IMO introduced Tier III requirements, setting strict
𝑁𝑂𝑥 emission limits for superyachts over 500 gross tons in Emission Control Areas (ECAs).
Building on this momentum, At the 82nd session of the International Maritime Organization’s
Marine Environment Protection Committee (MEPC) in October 2024, superyachts’ environ-
mental impact was addressed, with SYBAss proposing revised fuel reporting and EEDI/CII
calculations - advancing regulations tailored to the sector.

These developments underscore the IMO’s expanding commitment to emissions reduction
beyond commercial shipping, marking a pivotal shift toward sustainable yachting.

1.1 Motivation
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Figure 1.1: Upstream, core-process and
downstream share of total company emissions,

assuming a ship life cycle of 30 years (Loeff, 2024).

The greenhouse gas (GHG) emissions over the entire lifecy-
cle of a Feadship vessel can be divided into three primary
categories: upstream emissions, core emissions, and down-
stream emissions. Downstream emissions encompass all
emissions directly resulting from the ship’s operational use
occurring post-sale or delivery. Internal research (Loeff,
2024) reveals that this category dominates the vessel’s car-
bon footprint, representing a substantial 94% of total lifecycle
emissions (Fig. 1.1).

For many shipbuilders, who observe similar trends
(Jacquet et al., 2024) in their ship lifecycle analysis (LCAs),
tackling downstream emissions is essential. This can be
achieved through two routes: reducing emissions for con-
stant energy use (e.g. by adopting alternative fuels or after-
treatment), or reducing energy use itself (through efficiency
improvements). Feadship aims to pursue both pathways;
however, challenges arise in accurately estimating propul-
sion energy use during the design process, which is critical
for achieving these goals. An analysis of the discrepancies

(Section 2.1) between (time-intensive) high-fidelity approaches and sea trial measurements revealed
substantial average errors: over 60% for computational fluid dynamics (CFD) simulations and 26% for
towing tank model tests.

This lack of confidence in estimations affects the design process in two key ways: increased risk of
incorrectly proportioned energy and power systems and limited exploration of design space. A very
illustrative example of the first are the energy densities of future shipping fuels like methanol and liquid
hydrogen. In yacht design, methanol requires 2.3 times more storage volume than diesel, while liquid
hydrogen demands 36.9 times more (Loeff, 2024). Similar issues arise with the power densities of future
power systems (Van Veldhuizen et al., 2024), where solid oxide fuel cells (SOFCs) require 2.8 times
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more volume than ICEs in a cruise ship scenario. These examples clearly underscore the growing risks
associated with energy use predictions.

The second consequence of either inaccurate or time-intensive prediction methods is the inability
to effectively explore the design space in the early stages of development, where reliable and fast
predictions are crucial. At Feadship, experienced naval architects have been conducting hull and
propulsion optimization studies for years but are constrained by high-fidelity CFD-based methods
for these purposes, which require substantial preparation and computational time for each run. This
limitation is particularly critical, as in shipbuilding, the first design choice is often the most critical,
shaping everything that follows (J. Harvey Evans, 1959).

Data-driven approaches, leveraging machine learning algorithms, present a promising solution to
these challenges. They offer the potential to improve propulsion energy use predictions by providing
fast and highly tailored insights specifically for twin-screwed superyachts. Moreover, they enable
more effective exploration of the design space, facilitating the optimization of hull and propulsion
characteristics for future designs.

1.2 Problem statement
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Figure 1.2: Propulsion share with respect to the
total energy use of the Feadship fleet, studied by

(Loeff, 2024).

The literature review posed two gaps that are currently faced
by data-driven models, including the limited performance
in extrapolation scenarios and when working with small
datasets.

Extrapolation - The ability to make predictions that ex-
tend beyond one’s experience, is a hallmark of human intel-
ligence. However, data-driven methods frequently struggle
with extrapolation, the task of making predictions outside
the boundaries of their training data. Numerous of studies
(Coraddu et al., 2015; Kalikatzarakis et al., 2023; Leifsson
et al., 2008; Mei et al., 2019; Skulstad et al., 2021) under-
score the promising potential of hybrid models to boost
extrapolation capabilities in domain-specific prediction chal-
lenges. However, despite these advancements, most studies
fall short in quantifying this performance in real extrapola-
tion scenarios. While this capability is acknowledged, few
studies demonstrate substantial improvements under these
conditions, even though the potential clearly exists.

Small datasets - In ship design, access to high-volume,
high-velocity, and high-variety data - collectively known as Big Data - is often limited. Beyond their
potential to improve extrapolation, the previously mentioned literature also emphasize the benefit
of hybrid models in reducing data requirements. While this advantage is noted in the literature,
quantifying its impact is often overlooked, highlighting a need for further research to address this gap.

As mentioned earlier, the critical focus for this study is propulsion energy use. Typically, energy
use is categorized into (i) propulsive and (ii) auxiliary energy use, which together constitute a vessel’s
total energy consumption. Analysis of the Feadship fleet (Fig. 1.2) reveals that propulsion dominates
energy consumption in vessels over approximately 2700 GT. Combined with the errors highlighted in
Section 1.1, this underscores the critical need for improved predictions in this area.

1.3 Scope and research questions
The scope of this study is to address gaps in data-driven approaches by developing, testing, and
evaluating promising hybrid modeling techniques. These approaches aim to improve propulsion energy
use predictions through accurate calm-water resistance estimations, even in extrapolation scenarios with
limited data. Each hybrid model combines a physical model (PM) to provide a physically grounded
baseline with a data-driven model (DDM) that applies corrections to enhance predictions on unseen
data. By integrating PMs and DDMs, the hybrid models leverage both physical understanding and data
insights. These models are rigorously tested and compared against state-of-the-art PMs and DDMs to
quantify improvements in extrapolation and data efficiency.
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Thus, the master thesis centres around the following main research question:

“How can hybrid models improve early-stage predictions for calm-water ship resistance in
extrapolation scenarios, while using small datasets with limited design variability?”

Answering the research question necessitates conducting several experiments, as the true model
performance of the PMs, DDMs and HMs is unknown for this application. To guide this process, the
study is dissected into the following sub-questions:

1. What specific challenges persist within the Feadship design and engineering process, and what are their
main causes?

2. What knowledge gaps exist in data-driven methods, and which modeling approaches could address these
challenges?

3. What datasets are available relating to propulsion use, and which dataset offers the best suitability for this
study?

4. What methodologies ensure comprehensive training, testing, and evaluation of the models?
5. Which of the tested exhibited superior performance in interpolation and extrapolation scenarios?
6. How does a reduction in dataset size impact the performance of various models?
7. What is the most optimal features set for twin-screwed superyachts, and what are the best methods to do this

feature selection?

1.3.1 Hypotheses
When averaged across all possible problems, no algorithm performs better than another. This idea
fundamentally challenges the assumption that a "best" universal algorithm exists for all problem types.
Instead, the no-free-lunch theorem from (Adam et al., 2019) suggests that an algorithm’s success is
context-dependent, performing well on some problems and poorly on others. This context-dependence
raises essential questions about how algorithms might be tailored or adapted to achieve optimal results
within specific domains, such as calm-water resistance. The following hypotheses are defined:

1. Challenges - Feadship aims to reduce downstream emissions but faces two challenges: dis-
proportioned energy and power systems and limited design exploration, driven by inaccurate,
time-intensive prediction methods, especially for propulsion energy use (Section 2.1.4).

2. Modeling approaches - Suitable approaches for this study fall into three main categories: physical
models (PMs), data-driven models (DDMs), and hybrid models (HMs).

3. Best dataset - The sea trial dataset is considered the most suitable, as it features the largest data
size and the highest design variance among all available datasets.

4. Training, testing and evaluation - K-fold cross-validation is appropriate for interpolation tests,
whereas extrapolation tests require the exclusion of specific geometries to ensure validity.

5. Models for interpolation and extrapolation - For interpolation condition, data-driven models
(DDMs), as they can directly learn from the data. For extrapolation condition, parallel hybrid
models (HMs) as a slight advantage is presented in literature compared to DDMs and serial HMs.

6. Less data - Less data is required for any HM to match the performance of the best DDM, though
the reduced requirement is moderate.

7. Other features - Add features, add complexity. It is expected that a low number of features will
achieve the best model performance.

1.4 Limitations
In advanced analytics, four (or sometimes five) distinct types are commonly recognized, each representing
an increasing level of complexity (Section 2.2): descriptive, diagnostic, predictive, prescriptive, and
occasionally, visual analytics. While opportunities exist in prescriptive analytics - a category that
addresses the question "What should happen?" - this master’s thesis deliberately focuses on predictive
analytics, which aims to determine focus on the question "What will happen?". Specifically, in the
context of calm-water resistance, predictive analytics involves making predictions and identifying key
design factors, without explicitly optimizing for the best design choices. Although future steps toward
design optimization (prescriptive analytics) are briefly explored in Chapter 6 and Chapter 7, the models
developed in this thesis are limited to prediction rather than optimization.
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1.5 Thesis structure
This thesis is organised in eight chapters, each focusing on different aspects of the research on developing
and testing all prediction models for twin-screwed superyachts. The chapters can be clustered into
different sections of this report:

• Technical overview: Chapters 1-3
• Methodology and results: Chapters 4-5
• Reflection: Chapter 6-8

The Technical overview (Chapters 1-3) introduces the study’s context and data foundation. Chapter
1 outlines the motivation, research questions, and scope. Chapter 2 reviews relevant literature on data
analytics and predictive modeling for ship resistance, and Chapter 3 describes the datasets, focusing on
selection and enrichment for modeling suitability.

The Methodology and results (Chapters 4-5) details model development and testing. Chapter 4
introduces the physical, data-driven, and hybrid models, along with the evaluation and testing pipelines
used to assess model performance in interpolation, extrapolation, and limited-data scenarios. Chapter 5
presents test results, comparing model strengths and limitations.

The Reflection section (Chapters 6-8) provides a critical analysis of findings and practical applications.
Chapter 6 discusses results in light of data and model limitations. Chapter 7 addresses real-world
adoption strategies for hybrid modeling, proposing dedicated teams and exploring broader applications.
Chapter 8 concludes with recommendations for future research, emphasizing improvements in model
accuracy and scalability.
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In this chapter, several key findings from the literature are synthesized to establish the
foundation of this study. The initial problem analysis is included in Section 2.1 addresses

the design and engineering process, the methods used for propulsion estimations, and the
challenges in predicting ship resistance accurately. This analysis informs the exploration of
different forms of analytics in Section 2.2, from descriptive to prescriptive, and their roles
in ship performance assessment. The chapter then provides a detailed review of predictive
modeling approaches (Section 2.3), covering three main frameworks: Physical Models (PMs),
Data-Driven Models (DDMs), and Hybrid Models (HMs). A review summary is provided in
Section 2.4.

2.1 Problem analysis
This section explores the company and current design and engineering process at Feadship. By
examining the company’s design processes, existing methods, and their limitations, this analysis lays
the foundation for this study.

2.1.1 Company

Figure 2.1: Ventura’s launch in 1953 at the C. van Lent en Zonen
shipyard, which was located in Kaag, Netherlands.

Feadship’s story begins in 1849, when the Aker-
boom family acquired a modest shipyard along
the Dutch coast, focusing on boat construction
and repair. This early venture laid the ground-
work for future partnerships, including a notable
alliance with the Van Lent family in 1927. In 1949,
these two family businesses joined forces with
the De Vries shipyard - another highly regarded
family-run operation - to formally establish the
First Export Association of Dutch Shipbuilders
(Feadship). This collaboration led to the shared
technical office of De Voogt Naval Architecture
(DVNA), which became central to Feadship’s de-
sign excellence. Founded by Henri de Voogt in
1913, DVNA quickly earned respect, with Henri
himself winning races in boats he had designed and built. As De Voogt shifted its focus solely to naval
architecture, it began close collaborations with the De Vries and Van Lent yards, cementing Feadship’s
legacy in the yacht-building industry. The launch of the Ventura in 1953 (see Fig. 2.1) is a notable
example from this era.

Figure 2.2: Project 821, the world’s first hydrogen fuel-cell superyacht (118.8 meter), launched by Feadship in May 2024, which
uses hydrogen to power its auxiliary loads at anchor.

Today, Feadship operates four shipyards: two owned by Koninklĳke De Vries, located in Aalsmeer
and Makkum, and two under Royal Van Lent, based in Amsterdam and on the island of Kaag. Each
year, Feadship produces around 5 to 7 yachts, emphasizing its commitment to highly customized and
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intricate vessels. In recent years, Feadship has become renowned for building yachts of increasing size
and complexity, with several recent projects exceeding 100 meters. A notable example is Project 821,
depicted in Fig. 2.2.

2.1.2 Design and engineering process
In new build projects, engineering activities must be executed to support the main project activities of
customer acceptance, class approval, procurement, construction, testing, final delivery and after sales of
the contracted product. A considerable portion of these tasks is devoted to DVNA, where the design
and engineering process is segmented into five stages: (i) concept design, (i) technical/contract design,
(iii) basic design and (iv) design monitoring, shown in Fig. 2.3.

Technical / 
Contract Design

Prepare 
Basic Design

Basic Design
Design 

Monitoring
Concept Design

DVNA 
Contract

Figure 2.3: Design stages of De Voogt Naval Architects (2024)

• Concept design - The main purpose of the Concept Design stage is to create client interest through
a concept with preliminary main parameters. Studio De Voogt works, in consultation with the
Sales department, on the portfolio of Design Prospects for Feadship. A Design Number generally
requires an initial assessment conducted by Studio De Voogt, which is considered as a first iteration
of the engineering department to identify bottlenecks or to confirm that the associated risks are
manageable. This stage investigates the preliminary vessel calculations, such as weight, stability,
general arrangements (GEs), powering and additional unique features.

• Technical / Contract design - Upon a customer showing interest in a design prospect, the Technical
or Contract Design starts and the design number transitions into a project number. This design
stage ends with a signed and contracted new build project and aims to develop a feasible design
according to the client and yard requirements, without any risks that may invoke major changes
at a later stage. During this design stage, the design department supports the sales department
in providing the necessary plans, sketches, and renderings to reflect the customer’s dreams in
both form and sketch. Clients can also bring forth their ideas, designers, and/or architects who
have already produced plans. This stage is highly flexible and allows for various possibilities that
lead to a final sale. Generally, this early phase of design takes, on average, between four and five
months. However, due to the importance of the process, there are no time restrictions.

• Basic design - In Basic Design, the design is defined in final parameters according to the client,
yard and both global and local statutory approval. The purpose of this stage is to engineer a
design until it reaches a Class approval level.

• Design monitoring - After Basic Design, the project slowly transitions into detail engineering,
where the design monitoring starts. During this stage, a reduced team will be responsible for
closely overseeing the detailed engineering and refinement of the design, from the point of initial
development until the yacht’s delivery. The purpose is to verify and validate engineering and the
finished yacht against design intent and performance requirements. Once successfully delivered,
the project will be closed and the departments start to draw up their lessons learned.

Despite the appearance of linearity in the process, depicted in Fig. 2.3, a shipbuilding processes is
often far from linear. DVNA uses the design spiral approach, illustrated in Fig. 2.4, in their design and
engineering process. The purpose of this optimization approach (J. Harvey Evans, 1959), is to assist
in organizing the thought process, enabling ship design problems to be solved most effectively. This
sequential or point-based approach involves a refinement and iteration cycles until it converges to an
optimal or at least single design. Some have argued the effectiveness of the design spiral approach since
every iteration takes considerable effort, limiting the number of designs explored in the design space.
For this reason, efforts are taken by the company to introduce concurrent design sessions (originating
from NASA), which are organized in specially designed meeting rooms to promote interdisciplinary
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communication. With the numerous cross-disciplinary interfaces in yacht design, these collaborative
sessions facilitate improved decision-making, leading to faster development and higher quality design.

Figure 2.4: Traditional Design Spiral approach used by De Voogt Naval Architects, based on (J. Harvey Evans, 1959)

2.1.3 Methods relating to propulsion use
Typically, energy use is categorized into (i) propulsive and (ii) auxiliary energy use, which together
constitute a vessel’s total energy consumption. The decision to focus this study on propulsion energy
use was driven by its substantial contribution to the yacht’s overall energy demand - and, consequently,
to downstream emissions - as outlined in Chapter 1 at Fig. 1.2, combined with the availability of relevant
data.

Throughout the DVNA design process, propulsion energy use, or ship resistance predictions are
typically made in four ways: statistical vessel comparisons, semi-empirical calculations, computational
fluid dynamics (CFD) simulations and model tests in towing tanks by MARIN. Table 2.1 clarifies the
placement of each prediction method within the design stages of DVNA, as illustrated in, shown in
Fig. 2.3.

Table 2.1: Focus of every design and engineering stage, including a brief description and the fidelity level.

Design Stage Description Fidelity

Concept Design Semi-empirical estimations and statistical ves-
sel comparisons (admiralty or heickel coeffi-
cients) based on the existing fleet are used to
evaluate the 1𝑠𝑡 approximation of thrust power
demand.

Low

Technical/Contract Design As soon as a hull lines plan of the design
prospect is available, preliminary CFD eval-
uations are performed to determine the initial
bare-hull and appendage resistance. These
evaluations consider ideal calm water condi-
tion assumptions.

Low-
Medium

Basic Design If the design prospect meets the preliminary
specification, a CFD iteration process is started.
These evaluations provide detailed resistance
estimations, including trim and shaft line op-
timizations, a final wake-field analysis, and, if
required, third-party model tests in conjunction
with internal CFD analysis.

Medium-
High

Design Monitoring Once the basic design is considered final, pa-
rameters can be defined for validation during
sea trials as input for the yard sea-trial protocol,
including speed/shaft power, fuel consump-
tion, vibration performance, and others. Sea
trials are witnessed with potential troubleshoot-
ing. Validated results are reported and used
for future analysis.

High
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While each Feadship is highly customized, its main dimensions sometimes align with those of
previously built Feadship yachts. In such cases, direct database comparisons are used for initial estimates.
An internal resistance curve database is developed and is continually maintained within Studio De
Voogt. The platform collects existing powering and resistance curves from all previous Feadship model
tests and sea trials. This database is used to compare and analyse similar vessel trends as seen from
collected data. Ultimately, it is a tool to provide designers and naval architects with an initial baseline
of how similar a vessel may behave. Coupled to that, the Admiralty (𝐴𝐶) or Heickel coefficients (𝐻𝐶)
are employed to provide a first estimate of the propulsion efficiency. While this is the intended use,
sometimes these simple formulae, depicted in Eq. (2.1) and Eq. (2.2), are used to provide an estimate for
similar-shaped vessels with differing displacement. In this case, an assumption is made for either the
(𝐴𝐶) or (𝐻𝐶). Notably, the 𝐻𝐶 tends to provide better estimates for superyachts, making it particularly
useful in preliminary design stages.

𝐴𝐶 =
𝐷2/3 ·𝑉3

𝑃
(2.1)

𝐻𝐶 =
𝑃

𝐷 ·𝑉3 (2.2)

where 𝐷 is the displacement (tons or m3),𝑉 is the ship speed (knots), and 𝑃 is the power required (kW).
YACHT is an internally based software that uses the Marine Research Institute Netherlands (MARIN)

DESP method, commonly known as the (Holtrop & Mennen, 1984) method, correlated on Feadships.
This method provides a relatively good approximation for Feadships because the fleet is primarily
composed of displacement vessels to which the approach is centred. Ultimately, this tool provides a
quick estimation method with a relatively moderate accuracy for new vessel which fall within the data
coverage range.

Figure 2.5: Example output from a computational fluid dynamics (CFD) simulation, illustrating the normalized pressure
coefficient distribution across the yacht’s entire wetted surface.

Computational fluid dynamics (CFD) or numerical simulation is employed to estimate total ship
resistance, which comprises frictional and pressure resistance. Advances in computational power have
made these calculations feasible even in the early stages of design. CFD allows for relatively efficient
assessments, including bare-hull resistance, propeller-hull interactions, and the optimization of added
appendage resistance. While the simulations, depicted in Fig. 2.5, themselves are relatively fast (e.g.,
approximately 2 hours for a bare-hull analysis), it is important to note that this does not account for the
time required for geometry preparation, simulation setup, or post-processing of results. This process
still remains time-intensive.

Finally, model testing, which is reserved for Feadship yachts with designs that push beyond existing
parameter limits, involve unique parameter combinations, or introduce novel features, such as alternative
propulsion configurations, appendages, or the addition of a bulbous bow.

Table 2.2 provides a detailed comparison of the existing methods, highlighting significant variations
in their preparation and computational requirements. Additionally, each method has specific limitations
that need to be addressed.
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Table 2.2: Efforts and limitations associated with each existing method for estimating propulsion power.

Method Preparation time
(per geometry)

Simulation time
(per run)

Limitations

Statistical vessel com-
parisons

Minutes Instant Limited to similar designs; low
accuracy for hulls with novel fea-
tures or unconventional propor-
tions; allows for implicit margins
by user, which compromise con-
sistency across predictions.

YACHT simulation Minutes Instant Regression method for the "av-
erage" displacement hull, with
moderate accuracy on yacht ge-
ometries; estimations required
for propulsion efficiencies; al-
lows for implicit margins by user.

CFD simulation Days 2 hours Computationally expensive; re-
quires high level of expertise to
set up simulation; susceptible
to discretization and numerical
errors; estimations required for
some propulsion efficiencies.

Model test Weeks 1–2 days Extremely time- and resource-
intensive; scale effects can distort
full-scale predictions; dependent
on external expertise and time-
planning; highly-restrict further
geometry development after sim-
ulation.

2.1.4 Quantification of challenges
The scatter plots in Fig. 2.6 highlight the discrepancies between predicted and actual propulsion power
values for sea trial conditions. It should be pointed out that the results for both the CFD and model tests
had to be matched with the same speed at which the shaft power was measured during sea trials. The
interpolation method (linear) inevitably introduces errors, and this should be taken into account when
interpreting the results below. Additionally, discrepancies exist between draught estimations during
design stages and actual draught at delivery. This obviously introduces errors in resistance predictions
as well.

Also, the accuracy and consistency of these trials can be questioned, done in (Insel, 2008; Seo &
Oh, 2021), as uncertainties are introduced by either the trial measurements itself or by post-correction
methods. Industry standards like ISO 15016: 2015 present guidelines, but these have changed
significantly over the last decades, leading to inconsistency across data.
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Figure 2.6: Current challenges with making predictions for required propulsion (shaft) power at sea trials conditions. These
scatter plots both show clear discrepancies between estimations and real-world measurements.
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Despite the inherent error sources, discrepancies can be analyzed by plotting the predicted propulsion
power (𝑃𝑠) against the actual sea trial values, as shown in Fig. 2.6(a) and Fig. 2.6(b). These plots offer a
clear visual comparison of prediction accuracy by highlighting deviations from the ideal agreement
line, enabling the identification of systematic biases or errors. Notably, this analysis is independent of
the input parameters used, focusing exclusively on the relationship between predictions and observed
values.

Figure 2.6(a) highlights substantial deviations from the ideal agreement line, accompanied by
a remarkably high mean absolute percentage error (MAPE) of 60.57%, underscoring significant
inaccuracies. Excluding the aforementioned sources of error, the remaining discrepancies could stem
from two primary factors: (i) inaccuracies within the CFD simulation itself - modelling, discretization,
iteration and programming/user errors (Ferziger & Peric, 2012) - or (ii) errors introduced during
the conversion from effective power (𝑃𝑒) to shaft power (𝑃𝑠) via empirical propeller efficiencies.
Understanding and estimating the magnitude of all errors is considered very challenging.

Figure 2.6(b) illustrates the discrepancies of model tests values and the actual sea trial values. In this
case, the data points show closer alignment with the ideal agreement line, indicating better predictive
performance. The reduced MAPE of 25.99% underscores the improved accuracy of the model test-based
predictions compared to those derived from CFD simulations.

Overall, these results emphasize the challenges of current predictive methods for estimating
propulsion power, even for high-fidelity methods like CFD-based methods and model tests, highlighting
the need for improved modeling approaches.

2.2 Advanced data analytics

Figure 2.7: Types of data analytics in ship energy systems
(Coraddu, Kalikatzarakis, et al., 2022).

Data analytics is the field of research that studies
how to exploit data to derive new, meaningful, and
actionable information (Coraddu, Kalikatzarakis,
et al., 2022). Given the numerous sub-areas within
this field, it’s essential to clarify the specific scope
and focus of each one. In particular, data analytics
enables answers to four fundamental questions,
which are illustrated in Fig. 2.7, highlighting the
unique contributions and distinctions between
these areas.

Descriptive Analytics - This approach ad-
dresses the question, "What happened?" by sum-
marizing historical data to provide an overview of
past events and performance metrics. Descriptive
analytics offers valuable insights into the status of

systems or processes over time. By organizing raw data into accessible information, it aids in the initial
stages of analysis and understanding of system behaviour.

Diagnostic Analytics - The diagnostic approach seeks to answer "Why did it happen?" by examining
historical data to uncover the underlying causes of specific events or patterns. This type of analytics
uses statistical techniques to investigate relationships within data, helping identify root causes and
contributing factors. Diagnostic insights are essential for understanding deviations from expected
performance, whether due to inefficiencies, anomalies, or external influences.

Predictive Analytics - Focusing on "What will happen?", predictive analytics uses statistical and
machine learning models to anticipate future events and trends. By identifying patterns within
historical data, predictive models estimate likely outcomes and forecast future conditions. This approach
helps anticipate issues before they arise, enabling proactive planning and decision-making based on
data-driven predictions.

Prescriptive Analytics - Prescriptive analytics addresses the question "What should be done?" by
providing recommendations for future actions to achieve specific goals. Through the integration of data
insights, optimization algorithms, and simulations, this approach suggests actionable steps to enhance
performance, efficiency, or outcomes. Prescriptive analytics not only anticipates possible scenarios but
also prescribes actions to achieve desired objectives within given constraints.
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2.3 Predictive modeling approaches
State-of-the-art computational tools for predictive purposes are based on three main approaches:
Physical Models (PMs), Data Driven Models (DDMs), and Hybrid Models (HMs). A brief summary is
given here, but in Section 2.3.1, Section 2.3.2 and Section 2.3.3, a thorough review is presented:

• PMs rely on the knowledge of the phenomena and can be further subdivided into two main
families:

– Empirical and semi-empirical models (see Section 2.3.1) utilize empirical formulas to ap-
proximate with different levels of accuracy the physical phenomena, fine-tuned by means
of measurement data. These models are computationally efficient, but usually not enough
accurate to be exploited at design stage.

– Computational Fluid Dynamics (CFD) models simulate fluid flow around geometry by
numerically solving fluid dynamics equations, using advanced turbulence and multiphase
models to predict complex interactions, such as resistance and propulsion. While able to
analyse flow patterns, wave formation, and boundary layers, CFD models are computationally
intensive, often limiting their use to later design stages.

• DDMs (see Section 2.3.2) rely on Machine Learning (ML) and historical observations to build
models of the phenomena with no prior physical knowledge about them (Coraddu et al., 2017).
While DDMs can be quite computationally expensive during the model creation phase, they can
be highly accurate and computationally inexpensive during the prediction phase. DDMs main
limitation lies on their accuracy, which is high on average but not pointwise. Therefore, in some
cases, DDMs can provide physically inconsistent predictions (Coraddu, Oneto, et al., 2022).

– Supervised DDMs require implicit or explicit handcrafting of the features to be able to achieve
good recognition performance.

– Unsupervised DDMs are able to automatically learn features directly from the data, without
any labeling.

• HMs (see Section 2.3.3) leverage both PMs and DDMs. By combining them, they take advantage
of their strengths while limiting their weaknesses (Kalikatzarakis et al., 2023). Specifically, HMs
can achieve the same or higher accuracy with respect to DDMs (fully leveraging historical data),
but they also leverage prior physical knowledge by exploiting computationally efficient outputs or
partial computations behind PMs) to deliver physically plausible results (Coraddu et al., 2018).

– Serial approaches include both a DDM and PM, where the prediction of the DDM is dependent
on the PM’s output.

– Parallel configuration include a DDM and PM, where the PM and DDM make independent
predictions, which are later aggregated by means of fusion techniques (summation, averaging
or recursion).

2.3.1 Physical models
Previously, two potential approaches for utilizing physical models were outlined: (semi-) empirical
models and computational fluid dynamics (CFD)-based models. This study focuses on the former,
examining the application of (semi-) empirical models in detail. These methods always incorporate
physical principles for key components such as viscous and wave-making resistance, while using
empirical results of model tests on methodical series of hull forms, random model tests or data collected
from full scale speed trials.

It will be no surprise to see that, in general, at the very first stages of the design process, statisti-
cal/empirical methods are the most appropriate tools to be used for the prediction of still or calm-water
resistance. At this early stage of the design, the hull form is not yet defined and even main particulars
and shape coefficients are not always at their final value. The methods concerned are usually fully
computerised and able to study effects of changes of main dimensions and hull form coefficients can
quickly be surveyed.

There are many of such methods available. By their nature, each method will have its balance
between general applicability and accuracy. Dedicated methods for restricted class of ships may have a
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somewhat higher accuracy for one specific category, but near the bounds of the parameter ranges, these
methods are inclined to become progressively inaccurate.

One of these earlier methods by (De Groot, 1955) was employed more than half a century ago at the
"Nederlandsch Scheepsbouwkundig Proefstation" (NSMB), which later became MARIN, netherland’s
biggest maritime research institute as of today. The method has been published in the periodical "Schip
en Werf" of March 2 and 16 in 1951 and is a very simple procedure for the prediction of the resistance of
fast ships. In De Groot’s method, the distinction is made between "round-bilge" (depicted in Fig. 2.8)
and "hard-chine" craft. Depending on the design speed and main dimensions, a certain preference for
either of the two types can be indicated. In De Groot’s method, ship resistance is determined using
only three key parameters - speed, length, and displacement - which, while clearly limited in scope,
represent an ingenious, simple and effective approach for the period.

Figure 2.8: Lines drawing of the model series of U-form motor-boats of the NSMB, which are based on the body-plan of the
Nordström series. Four U-forms are tested at the Delft University of Technology (De Groot, 1955).

While De Groot’s method provided a practical and accessible empirical model, mainly for motorboats,
the work of (Van Oortmerssen, 1971) advances this by creating a mathematically derived power prediction
model that can be computerized. This model distinguishes between viscous and wave-making resistance
and includes parameters such as the Froude and Reynolds numbers. Van Oortmerssen’s method
not only improves prediction accuracy for small ships like tugs and trawlers but also accommodates
programming, by using a polynomial-based structure, allowing for efficient computational use.

The (Guldhammer & Harvald, 1974) method enhances Van Oortmerssen’s polynomial-based model,
which required coefficients to be manually input and tailored for each application, while Guldhammer
and Harvald refined this by developing a set of regression-based formulas. Their method was applicable
to a wider range of hull types and incorporating specific corrections for features like bulbous bows,
appendages (e.g., rudders, bilge keels), and longitudinal center of buoyancy variations.

The Delft Systematic Yacht Hull Series (DSYHS) by (Gerritsma et al., 1981) introduces critical
advancements tailored to yacht design, in particular commercial sailing yachts. The systematic
model tests offered a specialized dataset for predicting resistance and stability under both upright
and heeled conditions. Additionally, the method captured the impact of critical design parameters
length-displacement ratio and beam-draught ratio. This unique focus enables accurate speed-power
predictions and stability assessments essential for performance optimization in competitive yacht design,
filling a gap in existing resistance prediction methods. Table 2.3 shows a systematic review of existing
literature on PMs.

(Holtrop & Mennen, 1984; Holtrop & Mennen, 1982) further advanced the field by decomposing
resistance into separate components, such as wave-making, frictional, appendage resistance and
more. This detailed breakdown allows for precise adjustments based on specific hull features and
configurations, such as bulbous bows and stern shapes, improving prediction accuracy across various
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Table 2.3: Overview of PMs review.

Ref. Scope(s) Data Inputs Outputs ID Unit Permissible range

(De Groot,
1955)

V-shaped and
U-shaped mo-
torboats

Model tests at
N.S.M.B (unknown),
Delft University
(4 U-forms) and
Stevens Institute (20
V-forms)

Appendix A Appendix A
𝑉𝑠/

√
𝐿

𝐶𝑝
𝐵/𝑇

-
-
-

≤ 2.5 for U-form
0.576 ... 0.756
1.5 ... 3.5

(Van Oort-
merssen, 1971) Small ships

Model tests at
N.S.M.B of 93
tugs/trawlers for
resistance analy-
sis, 66 models for
propulsion analysis

Appendix A Appendix A

𝐹𝑛
𝐿𝑤𝑙
𝑉
𝐿/𝐵
𝐵/𝑇
𝐶𝑝
𝐶𝑚
ℓ𝐶𝐵
𝑖𝑒

-
m
m3

-
-
-
-
%
◦

≤ 0.5
8 ... 80
5 ... 3000
3 ... 6.2
1.9 ... 4.0
0.5 ... 0.73
0.70 ... 0.97
-7.0 ... +2.8
10 ... 46

(Guldhammer
& Harvald,
1974)

Single and
twin screw
displacement
vessels

Model tests and
full-scale trials
(unknown)

Appendix A Appendix A

𝐹𝑛
𝐶𝑏
𝐿/𝐵
𝐿/ 3√

𝑉

-
-
-
-

≤ 0.36
0.55 ... 0.85
5.0 ... 8.0
4.0 ... 8.0

(Gerritsma et
al., 1981)

Commercial
sailing yachts

Model tests at Delft
University with 22
hull variations

Appendix A Appendix A
𝐶𝑝
𝐿/𝐵
𝐿/ 3√

Δ

-
-
-

0.54 ... 0.60
2.5 ... 3.5
4.5 ... 6.0

(Holtrop &
Mennen, 1982)

Single and
twin screw
displacement
vessels

Model tests at
MARIN and full-
scale trials

Appendix A Appendix A
𝐹𝑛
𝐶𝑝
𝐿/𝐵

-
-
-

≤ 0.45
0.55 ... 0.85
3.9 ... 9.5

(Holtrop &
Mennen, 1984)

Single and
twin screw
displacement
vessels

Model tests of 334
models at MARIN
and full-scale trials

Appendix A Appendix A
𝐹𝑛
𝐶𝑝
𝐿/𝐵

-
-
-

≤ 0.55
0.55 ... 0.85
3.9 ... 9.5

(Hollenbach,
1998)

Single and
twin screw
displacement
vessels

Model tests of 433
models at Vienna
Model Basin

Appendix A Appendix A

𝐹𝑛
𝐿𝑝𝑝
𝐿𝑝𝑝/𝐵
𝐵/𝑇
𝐷/𝑇𝑎
𝐶𝑏
𝐿𝑝𝑝/ 3√

𝑉

-
m
-
-
-
-
-

≤ 0.5
30.6 ... 206.8
3.96 ... 7.11
2.31 ... 6.11
0.5 ... 0.86
0.51 ... 0.83
4.41 ... 7.27

vessel types. The method’s adaptability extends to high-block coefficient ships, slender naval vessels,
and unconventional hull forms, offering a broader applicability than earlier models. Moreover, with
refinements in Code 7, such as enhanced treatment of air resistance and hull roughness, the method
achieved greater versatility and accuracy, especially for higher-speed designs, making it one of the most
respected ship performance approximation methods till this day.

The (Hollenbach, 1998) method was developed from a comprehensive dataset of over 700 resistance
and propulsion tests, primarily sourced from the Vienna Model Basin. Building on earlier methods like
those of Holtrop and Mennen, Hollenbach’s model is particularly valued for its reliability in predicting
resistance for twin-screw vessels, offering both upper and lower bounds for resistance estimates. This
feature provides designers with a more robust framework for accurately assessing resistance under
varied operational conditions.

2.3.2 Data-driven models
While all the PMs discussed in Section 2.3.1 rely fundamentally on essential physical principles, it’s
important to highlight that they also incorporate data-driven techniques to a significant extent. Though,
since these foundational studies (De Groot, 1955; Gerritsma et al., 1981; Guldhammer & Harvald,
1974; Hollenbach, 1998; Holtrop & Mennen, 1984; Holtrop & Mennen, 1982; Van Oortmerssen, 1971),
substantial advancements have been made in the field of data-driven approaches. These developments
have expanded the potential of predictive modeling by improving accuracy, enhancing computational
efficiency, and broadening applicability across a wider array of domain-specific problems.

In regression problems, where one likes to forecast a numerical value for a new set of input values,
data-driven approaches can be categorized in two paradigms: supervised learning and unsupervised
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learning. (Shalev-Shwartz & Ben-David, 2014) (Goodfellow et al., 2016). Supervised DDMs usually
require implicit or explicit handcrafting of the features to be able to achieve good recognition performance
(Shalev-Shwartz & Ben-David, 2014) (Duboue, 2020). Usually, this feature set is designed based on
either domain knowledge or classical signal processing techniques.

Unsupervised DDMs instead, are able to automatically learn features directly from the data
(Goodfellow et al., 2016) and over-perform state-of-the-art supervised models (and in some cases
also humans) in terms of recognition performance in many different applications. Unfortunately,
unsupervised DDMs have also three main weaknesses. First, they require a huge number of samples
to be trained on. In this thesis, the datasets have less than 500 samples in the simplest scenarios,
namely interpolation, and much fewer samples in complex scenarios, namely extrapolation. The second
problem is that unsupervised DDMs are very hard to interpret. It is complex to understand what they
actually learned from the data, resulting in models not useful for practical applications, where insights
on the problem need to be extracted (Molnar, 2020). Finally, unsupervised DDMs are seldom able to
give physically plausible prediction, see for example, the well-known problem of the adversial samples
(Biggio & Roli, 2018), where specially crafted inputs are designed to cause a machine learning model to
make a mistake.

This study focuses on regression techniques in the supervised learning paradigm. Table 2.4
summarizes the latest applications of supervised DDMs in the field. A fairly limited amount of literature
work is reviewed here as most state-of-the-art DDMs are already being utilized in the third modeling
approach, hybrid models (see next Section 2.3.3).

Table 2.4 shows a systematic review of existing literature on DDMs.

Table 2.4: Overview of DDMs review.

Ref. Scope(s) Data Method(s) Parametrization Performance Validation Takeovers

(Mittendorf
et al., 2022)

Added-wave
resistance
prediction in
oblique waves

Dataset de-
rived from
potential flow
methods, cov-
ering 18 hull
forms

RF,
XGB,
MLP

5 wave and
geometric vari-
ables

Errors are
approximately
0.75–3.1%
across all
scenarios

Cross-
validation
with synthetic
data

Tree-based methods
show strong perfor-
mance for capturing
non-linear patterns
but require carefully
designed datasets for
generalization.

(Walker et
al., 2024)

Yacht hull re-
sistance and
optimization

Delft System-
atic Yacht Hull
Series, 54 dif-
ferent yacht ge-
ometries

RF,
XGB,
KRR,
ELM

13 hydrostatic
variables

Errors approx.
0.11-0.89% for
all scenarios

Leave-one-out
testing (LOVO,
LOGO, LOSO)
and CFD simu-
lations

Best performing sur-
rogate is the KRR
method.

2.3.3 Hybrid models
A significant challenge remains in constructing a model that effectively integrates the physical knowledge
embedded in the PMs (Section 2.3.1) with hidden insights in available data, as captured by the DDMs
(Section 2.3.2). This challenge is extensively highlighted in existing literature; however, many techniques
aiming to fuse physical and data-driven models tend to remain relatively simplistic in their approach.
Many variations exist, but most can be dissected into two buckets: either a serial configuration (Fig. 2.9a),
where the prediction of the DDM is dependent on the PM’s output, or a parallel configuration (Fig. 2.9b),
where the PM and DDM make independent predictions, which are later aggregated by means of the
following fusion techniques:

• Option 1 - Summation: The DDM learns to predict the residual (difference between the PM
output and the actual value), which is then summed with the PM’s prediction to improve accuracy.

• Option 2 - Averaging: The DDM learns to predict the absolute target value, and the final prediction
is obtained by averaging the DDM and PM outputs (summing them and dividing by 2).

• Option 3 - Recursion: The DDM learns to predict the absolute target value, with the fusion
process involving multiple recursive steps to minimize the disagreement between the DDM and
PM, thereby reducing the prediction error.

One of the first to apply a hybrid model (Fig. 2.9) into the naval architecture domain is (Leifsson
et al., 2008), with his study aiming to predict ship speed and/or fuel consumption with operational data
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from a container vessel. This work was not extensive enough to fully assess the potential of HMs, nor
was the underlying reason for the effectiveness of this approach completely understood. Though, a
significant error reduction was achieved for the fuel consumption prediction of almost 65% compared
to the used PM.

A novel approach was introduced by (Coraddu et al., 2015) as the PM tries to tune the regularization
process of the DDM. Regularization is a technique used in machine learning and statistical modeling
to prevent overfitting, which occurs when a model learns the training data too well, capturing noise
or random fluctuations instead of the underlying patterns. The results showed improvements for fuel
consumption and shaft power predictions, while the HM was capable of achieving similar performance
with less data. Two years later, this approach was successfully applied to a different Handymax
operational dataset in (Coraddu et al., 2017), alongside a serial approach (Fig. 2.9a). In the majority of
experimental scenarios, the former approach demonstrated superior performance.

Other applications are found by (Mei et al., 2019) and (Skulstad et al., 2021), where hybrid models
are being used for ship motion (surge, sway and yaw) and ship position predictions respectively. Again,
better performance is found for both serial and parallel hybrid models compared to pure PM or DDM
predictions.

The most recent studies utilizing hybrid architectures include (Odendaal et al., 2023), which focuses
on predicting energy consumption under operational conditions, and (Kalikatzarakis et al., 2023), which
aims to improve underwater radiated propeller noise predictions. The latter introduced an innovative
fusion approach, the parallel configuration with recursions. In this setup, the PM and DDM operate
in parallel, with a recursive process that minimizes the disagreement between the two outputs until
convergence.

Table 2.5 shows a systematic review of existing literature on HMs.

PM output is new
input for DDM

Physical model
(PM)

Input

Data-driven
model (DDM)

Historical 
data

Output

(a) Serial hybrid model configuration

Physical model
(PM)

Input

Data-driven
model (DDM)

Historical 
data

Output

Fuse
Aggregation techniques

(b) Parallel hybrid model configuration

Figure 2.9: Visual representations of hybrid model (HM) configuration posed by review.

2.4 Review Summary
This chapter provided a comprehensive review of the key elements that underpin this study. The
design and engineering process at De Voogt Naval Architects was detailed, highlighting the distinct
stages - Concept Design, Technical/Contract Design, Basic Design, and Design Monitoring - each with
increasing levels of fidelity and reliance on computational methods. Within this context, propulsion
power predictions emerge as a critical challenge, as current methods (CFD, and model testing)
demonstrate varying levels of accuracy and applicability, particularly in early-stage designs (Section 2.1).

A brief note on advanced data analytics (Section 2.2) was included to establish the appropriate focus
for this study, resulting in the adoption of predictive analytics, with an aspiration for future integration
of prescriptive analytics.

A review of predictive modeling approaches (Section 2.3) was presented, examining physical models
(PMs), data-driven Models (DDMs), and hybrid models (HMs). PMs, such as semi-empirical methods
and CFD, offer robustness and physical insight but often lack flexibility and accuracy in novel scenarios.
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Table 2.5: Overview of HMs review.

Ref. Scope(s) Data Method(s) Configuration and fusion
technique

Performance
HM

Takeovers

(Leifsson et
al., 2008)

Fuel consump-
tion and vessel
speed prediction

Operational
data of Detti-
foss container
vessel

NN Serial approach (Fig. 2.9a) and
parallel approach (Fig. 2.9b)
using residual summation

RMSE reduc-
tion between
approx. 2.5-
65% for all
quantities

HMs over-performs
DDM for both quanti-
ties. Greater variance
in data is required for
DDM.

(Coraddu et
al., 2015)

Fuel consump-
tion and shaft
power predic-
tion

Operational
data of Pana-
max chemi-
cal/product
tanker

RLS PM tunes the regularization
term during DDM’s learning
process

Errors approx.
between 0.57-
1.71% for all
quantities

HM achieves good
results using almost
half of the data re-
quired by the DDM to
reach a similar level of
accuracy.

(Coraddu et
al., 2017)

Fuel consump-
tion prediction

Operational
data of
Handy-
max chemi-
cal/product
tanker

RLS,
LAR, RF

Serial approach (Fig. 2.9a) and
novel approach with adapted
regularization term

Errors approx.
equal to 1.90%
for best HM
(RF)

Both HMs over-
perform the best PM
and DDMs and help
mitigate reliability
issues with data
log/processing.

(Mei et al.,
2019)

Surge, sway and
yaw motions pre-
diction

Free-running
(time-series)
model tests

RF Serial approach (Fig. 2.9a) Errors ap-
prox. 0.12-0.18
(nRMSE) for all
quantities

HM shows high cor-
relation with experi-
mental data. RF algo-
rithm and integration
with HM could be en-
hanced.

(Skulstad et
al., 2021)

Ship’s position
prediction

Operational
docking data
of RV Gun-
nerus

LSTM Parallel approach (Fig. 2.9b)
with residual summation

Errors approx.
0.9-4.6 metres
ship position

Addition of LSTM
algorithm improved
PM significantly
for time-series data.
Methodology can be
extended to other
domains.

(Odendaal
et al., 2023)

Propulsion and
auxiliary predic-
tion power

Operational
measure-
ments of
Feadship
yachting fleet

NN In the serial approach
(Fig. 2.9a), output of the PM is
used as a new feature for the
DDM

Errors approx.
61.6-835.7
RMSE for all
quantities

The HM is more ef-
fective for extrapola-
tion, showing 20% im-
provement.

(Kalikatzarakis
et al., 2023)

Underwater ra-
diated propeller
noise prediction

Cavitation
tunnel tests

RF, XGB,
KRR,
SNN

Parallel approach (Fig. 2.9b)
with recursion strategy

Errors approx.
2.8-7.2% for all
quantities/ex-
trapolation
scenarios

Feature importance
and test prior knowl-
edge proofs physical
plausibility of HM.

DDMs leverage machine learning to uncover complex data patterns but face limitations in extrapolation
and physical plausibility. HMs aim to combine the strengths of both approaches, blending physical
consistency with data-driven adaptability. Serial and parallel configurations of HMs show significant
promise.
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In this chapter four datasets (presented in Table 3.1) are assessed central to modeling
ship resistance and propulsion performance, each offering unique attributes essential for

predictive methods of current practices. Dataset 1, derived from CFD simulations, provides
high-precision numerical data on hull resistance components. Dataset 2 builds on this with
synthesized speed-power data, which translates CFD resistance to ship power by means of
empirical propeller efficiencies. Dataset 3 includes physical modeltest data from deep-water
tank (DT) tests, while Dataset 4 consists of real-world measurements from sea trials.

To identify the optimal dataset, each is evaluated based on sample size, design variance,
feature richness, and data precision, as summarized in Table 3.2. Dataset 1 is selected
for its balanced sample size, moderate design variance, and high data precision, making
it well-suited for further analysis. This dataset will be enriched with additional features,
according to Fig. 3.2, to support physical, data-driven, and hybrid modeling approaches in
this study.

3.1 Current state of datasets
Table 3.1: List of four available and propulsion-related datasets in their current state, without any dataset enrichment.

Tag and speed information ID Unit Set 1 Set 2 Set 3 Set 4

build number 𝑏𝑛 - • • • •
design revision 𝑟𝑒𝑣 - • •
ship’s speed 𝑉𝑠 kn • • • •
Hydrostatic information

length overall 𝐿𝑜𝑎 m • • •
length waterline 𝐿𝑤𝑙 m •
length between perpendiculars 𝑙𝑝𝑝 m • •
beam moulded 𝐵𝑚𝑙𝑑 m • • •
beam waterline 𝐵𝑤𝑙 m
ship draft (forward) 𝑇𝑓 m • • • •
ship draft (aft) 𝑇𝑎 m • • • •
displacement 𝑉 m3 • • • •
wetted surface area bare hull 𝑆 m2 •
wetted surface area appended 𝑆 m2 • •
longitudinal centre of gravity 𝐿𝑐𝐺 m •
vertical centre of gravity 𝑉𝑐𝐺 m •
longitudinal centre of buoyancy 𝐿𝑐𝐵 m •
block coefficient 𝐶𝑏 - •
midship section coefficient 𝐶𝑚 - •
prismatic coefficient 𝐶𝑝 - •
water plane coefficient 𝐶𝑤𝑝 - •
area exposed to wind 𝐴𝑣 m2 •
Result information

thrust deduction fraction 𝑡 - •
wake fraction 𝑤 - • •
hull efficiency 𝜂ℎ - •
open-water efficiency 𝜂𝑜 - •
relative rotative efficiency 𝜂𝑟 - •
propulsive efficiency 𝜂𝑑 - •
resistance bare hull 𝑅𝑡𝑜𝑡,𝑏𝑎𝑟𝑒 kn • •
resistance appended 𝑅𝑡𝑜𝑡,𝑎𝑝𝑝 kn • • •
thrust force 𝑇 kn •
effective power 𝑃𝑒 kw • •
delivered power 𝑃𝑑 kw • •
propeller shaft power 𝑃𝑠 kw • • •
Data size (after pre-processing)

ships - 27 23 15 51
samples - 220 594 385 350

To evaluate the proposed modeling approaches, we utilize datasets provided by Feadship, which are
thoroughly detailed in this section to ensure the reproducibility of the work. The following datasets
relating to resistance and propulsion power are available:

• Set 1 (numerical) – This dataset is derived from structured computational fluid dynamics
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(CFD) datasheets. These sheets report the frictional and pressure components, which, along
with additional contributions (such as appendages and wind), comprise the total resistance for
appended hulls in calm-water conditions. The numerical analyses are conducted using the
commercial STAR-CCM+ software with a Reynolds-Averaged Navier-Stokes (RANS) solver and
are typically performed for two draughts per geometry.

• Set 2 (numerical) – This dataset is derived from structured tables in speed-power reports. These
tables perform the conversion of the calm-water appended resistance data (set 1), incorporating
the necessary propulsion factors and efficiencies. These factors account for the relationship
between resistance and the power required to propel the vessel, offering a detailed view of
vessel performance under propulsion. An in-house developed software package automates this
conversion as much as possible to ensure consistency.

• Set 3 (model tests) – This dataset is derived from the deep-water tank (DT) reports from Maritiem
Research Instituut Nederland (MARIN), conducted for a significant portion of the existing Feadship
fleet. In these reports, the experimental results are presented for resistance and (quasi-steady)
self-propulsion tests in calm-water. For many decades, the experimental results are presented in
similar format.

• Set 4 (speed-power trials) – Typically, after a ship is built in a shipyard, various tests are conducted
until the ship is delivered to the owner. The tests are broadly divided into on board tests and sea
trials. The purpose of these tests is to provide a confirmation to the ship owner and classification
society that the ship has been constructed in accordance with the contract and regulations.
This dataset is derived from these trials, conducted by a third-party entity conform ISO 15016:
2015. These reports include tables that detail speed and fuel consumption measurements for a
given total shaft power, covering the entire Feadship fleet. The majority of the speed trial reports
are available.

Table 3.1 lists all datasets including common, hydrostatic and results-related information. Not all
information is uniformly present in all datasets, and therefore the bullet-point indicators are highlighted
when a specific variable is included in each set. At the bottom, information is included on the amount
of sample size (amount of data points) and amount of design variance (unique ships).

3.2 Dataset selection
A systematic assessment can be applied to these four datasets to make a choice for the superior dataset
to be used for the experimental tests. Specific criteria are applied:

• Sample size - Refers to the number of unique data points in each dataset. A larger sample size
typically provides better statistical reliability and helps ensure that findings are representative
and robust.

• Design variance - Measures the diversity within the dataset, in this case the amount of unique
ships. Higher design variance means the dataset covers a wide range of situations, enhancing the
ability to new, unseen data.

• Feature richness - Indicates the number and relevance of features (variables included in the
dataset, giving an impression on the amount of information included in the set. If low, limited
informational depth is present, often requiring feature enrichment techniques to augment the
dataset, increasing efforts required in preparing the data for model application.

• Data precision - Provides a reflection on the expected exactness and reliability of the data, mainly
based domain knowledge and observations during model development. High data precision
minimizes uncertainty, making the dataset more reliable for experimental use.

Each dataset is evaluated based on scores categorized as low, moderate, or high, or through specific
numerical values where applicable. The outcomes of this assessment are presented in Table 3.2.

Set 1 (Table 3.1) has a sample size of 220 data instances, resulting from two draught conditions and 4
different speeds (on average) per ship. In total, 27 different ship geometries have been counted, which
represents the 2nd best design variance of all four sets. The feature richness is moderate, as a limited
amount of hydrostatics and results is directly present on the CFD datasheets. The data precision is high,
as the CFD experiments are conducted under controlled, relatively controlled conditions. Also, the
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Table 3.2: Dataset assessment.

Criterion Dataset 1 Dataset 2 Dataset 3 Dataset 4 Best

Sample size 220 594 385 350 Dataset 2
Design variance (ships) 27 23 15 51 Dataset 4
Feature richness Moderate Moderate High Low Dataset 3
Data precision High Moderate High Low Dataset 1

hydrostatic information in set 1 is derived from the exact same 3D CAD file that is used for the CFD
simulations. These characteristics make set 1 a good option for this study.

Set 2 (Table 3.1) has the largest sample size, with over 594 data points, but exhibits fairly low design
variance. This is due to the software used for generating speed-power reports, which enables naval
architects to create synthetic (non-existent) resistance-propulsion data at user-defined intervals, relying
primarily on a minimal set of actual CFD measurements. Given that the precision of these interpolation
(and potentially extrapolation) techniques is relatively uncertain, the data precision is rated as moderate.
The feature richness is scored moderate, as minimal hydrostatic and result related features are included
in set 2. Since most of the output results represent estimations, rather than direct measurements, the
data precision is also scored moderate. Overall, this dataset does include more propulsion characteristics
and for more ship speeds, compared to set 1. However, a majority of the data in this set is not stemming
from direct measurements, making set 1 superior.

Set 3 (Table 3.1) has the second-largest sample size, as model tests are conducted across a wide range
of speeds in the towing tank. However, model testing for Feadship yachts is reserved for designs that
push beyond existing parameter limits, involve unique parameter combinations, or introduce novel
features, such as alternative propulsion configurations, appendages, or the addition of a bulbous bow.
Consequently, this set exhibits the lowest design variance among all four datasets but the highest feature
richness and data precision. Each "diepwater tank" (DT) report provides results of highly-standardized
model experiments, showing detailed tables including multiple outputs measured during the calm-water
resistance and propulsion tests. A list of hydrostatics for two draught/trim conditions is included as
well.

Due to its standardized and precise nature, set 3 is an excellent candidate for this study, but there
is an issue as the exact design revision (𝑟𝑒𝑣) cannot be matched to the model tests. Each project (𝑏𝑛)
evolves through time, and thereby new 𝑟𝑒𝑣 are introduced, causing potential misalignment between the
geometrical data and resistance data (see Fig. 3.1). These differences might be minor for the majority of
the set, while significant for some cases. This is an issue, as highly-precise data is of high importance in
small datasets with low design variance.

Yacht A
Rev. A1 Rev. A3Rev. A2

Yacht B
Rev. B1 Rev. B3Rev. B2

Yacht C
Rev. C1 Rev. C3Rev. C2

Geometry data

Resistance data Rev. A1 Rev. A3Rev. A2

Geometry data

Resistance data Rev. B3Rev. B2Rev. B1

Geometry data

Resistance data Rev. C1 Rev. C3Rev. C2

begin endproject duration

Figure 3.1: Illustrating the issue of potential misalignment between geometrical and resistance data in set 3, due to unmatched
design revisions (𝑟𝑒𝑣).

Set 4 (Table 3.1) has by far the highest design variance and second-best sample size, as speed and
power trials are mandatory for all Feadship deliveries. However, the accuracy and consistency of these
trials have been questioned (Insel, 2008; Seo & Oh, 2021) as uncertainties are introduced by either the
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trial measurements itself or by post-correction methods. Although the high design variance is a valuable
feature of this set, the precision required for reliable data is considered lacking.

When testing different models, it is important to rule out the possibility that uncertainties or noise in
the data are influencing the results. Set 1 is chosen for the proceedings of this study, as this set is
characterized by fairly-good sample size and design variance, while including high-precision data.

3.3 Dataset enrichment
An essential part in the development of the DDMs and HMs is the selection of features to be used
for training. The proposed PMs will not require any training, but they are build upon certain input
variables (features), so to ensure consistent across the modeling approaches (PM, DDM, and HM), all
DDMs and HMs use a feature set based on the (Holtrop & Mennen, 1984) method, detailed in Table 3.3.
For this, it is necessary to add certain features, since the CFD set 1 (see Table 3.1) does not include all of
them originally. This process is known as feature or data enrichment, and it will be done according to
the database creation pipeline depicted in Fig. 3.2.

Table 3.3: (Holtrop & Mennen, 1982) based feature set that is used for the experimental tests (unless mentioned otherwise). For
all these features, data is gathered from either the original dataset 1 (Table 3.1), or through the enrichment process (Fig. 3.2) to

add missing features.

Feature name ID Units From set 1 Added to set 1

Ship speed 𝑉𝑠 kn •
Length waterline 𝐿𝑤𝑙 m •
Moulded beam 𝐵𝑚𝑙𝑑 m •
Moulded mean draft 𝑇 m •
Volumetric displacement ∇ m3 •
Longitudinal centre of buoyancy ℓ𝑐𝐵 m •
Longitudinal centre of floatation ℓ𝑐𝐹 m •
Wetted surface hull and appendages 𝑆𝑡𝑜𝑡 m2 •
Wetted surface of (individual) appendages 𝑆𝑎𝑖 m2 •
Transom wetted surface 𝐴𝑡 m2 •
Bulbous bow transverse area 𝐴𝑏𝑡 m2 •
Height of centroid 𝐴𝑏𝑡 above keel ℎ𝑏𝑡 m •
Bow half angle of waterline entrance 𝑖𝐸 deg •
Block coefficient 𝐶𝑏 - •
Prismatic coefficient 𝐶𝑝 - •
Midship section coefficient 𝐶𝑚 - •
Water plane area coefficient 𝐶𝑤𝑝 - •

Dataset creation
(new set)

Feadship Fleet

Siemens NX

STARCCM+ Paramarine

3D geometries

Frictional
resistance 

Pressure
resistance 

Total resistance Hydrostatics

Draught 1 Draught 2

Software

Efforts of this study

Figure 3.2: Process for dataset enrichment through 3D geometry utilization. Existing 3D geometries from the Feadship fleet serve
a dual purpose: providing inputs for CFD simulations in STARCCM+ (completed by CFD engineers for resistance data) and

enabling the generation of hydrostatic data (conducted in this study) using Paramarine software.
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Fig. 3.3 presents a bottom view of a representative 3D geometry from the Feadship fleet, which serves
as input for both STARCCM+ software (for CFD simulations) and Paramarine software (for hydrostatics
generation). Since STARCCM+ typically processes only half of the geometry for CFD simulations, most
3D geometries required additional preparation. In Paramarine, these geometries were mirrored and
merged to form complete solid models, ensuring the software could accurately compute hydrostatics.
Additionally, since CFD simulations are performed for at least two draught conditions, these draughts
were used as input to Paramarine to generate the corresponding hydrostatic data.

Figure 3.3: Bottom view of a representative Siemens NX geometry, showcasing the bare hull with appendages (e.g., bow thrusters,
stabilizer fins, bilge keels, skeg, rudders, shaftlines, and brackets). This geometry is used for CFD simulations and dataset

enrichment via Paramarine software.
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In this chapter, all the proposed models will be outlined for early-stage prediction of
calm-water ship resistance for twin-screwed superyachts.
The PMs section (Section 4.1.1) introduces established hydrodynamic models for capturing

core resistance phenomena, providing a solid, industry-recognized baseline. The DDMs
(Section 4.1.2) use machine learning algorithms, trained and validated with k-fold cross-
validation, to model resistance directly from empirical data. Performance metrics such as
MAE, MAPE, and 𝑅2 evaluate each model’s accuracy and robustness. The HMs (Section 4.1.3)
combine PMs with DDM corrections in three configurations: serial, parallel-residual, and
parallel-correction. These hybrids leverage PM predictions while integrating data-driven
adjustments to improve accuracy and adaptability.

Finally, the testing framework is presented in Section 4.2 for interpolation condition,
resistance curve construction for a specific ship, with less data, with other features and finally
under extrapolation condition.

4.1 Proposed models
This section presents the proposed PMs, DDMs, and HMs that are going to be used for the experimental
tests. All these models share the same prediction target; calm-water ship resistance.

4.1.1 Physical models
In the review (Section 2.3.1), several physical models (PMs) are proposed to computationally model the
calm-water resistance for given ship speed and characteristics. In the context of the hybrid architecture,
the central purpose of the PM is to provide a physically grounded baseline that captures fundamental
resistance phenomena. For this reason, it is crucial that the proposed PM aligns with the problem
at hand, which is the calm-water resistance for displacement yachts with a twin-screw propulsion
configuration. The following models are proposed:

• PM-a: Code 6 - (Holtrop & Mennen, 1982)
• PM-b: Code 7 - (Holtrop & Mennen, 1984)

Both methods are internationally recognized methods and currently favoured by Feadship for
the early-stage predictions. Thus, they are suitable PMs, but in order to improve predictions in the
extrapolation scenario, the PM must have permissible ranges (see Table 4.1) that at least extend beyond
the boundaries of set 1. For this purpose, a brief check is done on the Feadship numerical set 1 (Table 3.1)
to see if the proposed PMs fulfil this requirement. Both models comply, as can be seen in Fig. 4.1.

Table 4.1: Proposed PMs, with corresponding permissible ranges within which the model is deemed to remain accurate.

Ref. Inputs Outputs ID Unit Permissible range

(Holtrop &
Mennen, 1982) Appendix A Appendix A

𝐹𝑛
𝐶𝑝
𝐿/𝐵

–
–
–

≤ 0.45
0.55 – 0.85
3.9 – 9.5

(Holtrop &
Mennen, 1984) Appendix A Appendix A

𝐹𝑛
𝐶𝑝
𝐿/𝐵

–
–
–

≤ 0.55
0.55 – 0.85
3.9 – 9.5

4.1.2 Data-driven models
Unlike the PMs, each data-driven model has to be trained and tested. A possibility is to create a train-test
split with an 80-20 ratio, meaning that the model is being trained on 80% of the data, while being tested
on 20%. However, in practice this could potentially result in misleading test results as 20% of the total
dataset does not represent the true characteristics of the data. Therefore, a certain randomness has to be
introduced into the train and testing process, and this is achieved through k-fold cross-validation (KCV).
Here, the total dataset is dissected in 𝑘 folds, where 𝑘 is usually equal to five or ten. In case of 5-fold
cross-validation, the entire dataset is split into five folds where the first fold 𝑘 represents the test set 𝑇𝑡 ,
and the four remaining folds 𝑘 − 1 the training set 𝐷𝑛 . The model is then trained on 𝐷𝑛 and tested on 𝑇𝑡 .
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Figure 4.1: Compliance check of Feadship fleet characteristics (dataset 1) against permissible ranges of proposed PMs.

It is here where all kinds of error metrics can be applied to assess the model’s performance, which is
better known as the error estimation (EE). Other measures of error exist, however, from a physical point
of view, these three measures give a complete description of the quality of the model. Adding more
measures would make the results more difficult to interpret, while not adding any new insights:

• Mean Absolute Error (MAE): The Mean Absolute Error quantifies the average magnitude of
errors between predicted values ℎ(𝑥𝑡

𝑖
) and actual values 𝑦𝑡

𝑖
over all 𝑚 test samples 𝒯𝑚 . This metric

is favoured for its straightforward interpretability and robustness against outliers, as it measures
the average absolute deviation without emphasizing extreme errors. MAE is calculated as follows:

MAE(ℎ) = 1
𝑚

𝑚∑
𝑖=1

|ℎ(𝑥𝑡𝑖 ) − 𝑦𝑡𝑖 | (4.1)

In some cases, outliers must be penalized more heavily, and squared error metrics (e.g., MSE,
RMSE) may be more appropriate. However, this is not necessary for this study, as the dataset is
not expected to contain any outliers. In such scenarios, MAE offers a robust and stable measure of
prediction accuracy, as noted in (Bishop, 1995) and (Hastie et al., 2009).

• Mean Absolute Percentage Error (MAPE): The Mean Absolute Percentage Error expresses
prediction accuracy as a percentage, by computing the average of the absolute differences between
predictions and actual values, normalized by the actual values. MAPE is scale-independent,
making it especially useful for data with varying scales (e.g. ship speed or physical dimensions).
It is considered as the most relevant error metric for this study’s context, and is calculated by:

MAPE(ℎ) = 100%
𝑚

𝑚∑
𝑖=1

����� ℎ(𝑥𝑡𝑖 ) − 𝑦𝑡𝑖𝑦𝑡
𝑖

����� (4.2)

However, MAPE can be sensitive to small values in 𝑦, which can lead to disproportionately large
percentage errors, a point commonly noted in (Hyndman & Athanasopoulos, 2014).

• Coefficient of Determination (R2): Also known as 𝑅2, the coefficient of determination measures
the proportion of variance in the actual values 𝑦 explained by the predictions ℎ. It ranges from 1
(perfect prediction) to negative values, where a negative 𝑅2 indicates that the model performs
worse than using the mean of the actual values (�̄�) as the predictor. It is defined as:

𝑅2(ℎ) = 1 −
∑𝑚
𝑖=1(𝑦𝑡𝑖 − ℎ(𝑥𝑡𝑖 ))2∑𝑚
𝑖=1(𝑦𝑡𝑖 − �̄�)2

(4.3)

where �̄� is the mean of 𝑦 values. An 𝑅2 value close to 1 indicates a strong fit, while values close to
0 suggest the model performs similarly to the mean prediction. Negative values imply the model
performs worse than the mean prediction, as discussed in (Hastie et al., 2009).
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Back to the k-fold cross-validation (KCV). The model is tested on the first fold 𝑘, the test set 𝑇𝑡 , trained
on the remaining folds 𝑘 − 1 that represent the training set 𝐷𝑛 , and evaluated through the error metrics
(MAE, MAPE, and R2). Still, no randomness is introduced here, as this remains a regular train-test
split. Therefore, the KCV method includes multiple iterations (see blue-grey folds in Fig. 4.2), where
the test fold 𝑘 constantly swaps position with every iteration. For example, in the second iteration, the
second fold becomes the test set 𝑇𝑡 , and the remaining folds (1, 3, 4, and 5) form the training set 𝐷𝑛 . The
model is trained and tested again on these different fold combinations, presumably performing slightly
differently compared to iteration 1. This process is repeated until the number of iterations equals the
number of folds, in this case five. In this way, KCV provides a more reliable and stable EE by accounting
for different data partitions.

Inner Loop

Model 1

Test fold Training folds

Inner split 1

Inner split 2

Inner split 3

Inner split 4

Inner split 5

Combined training foldsOuter Loop

Validation fold Learning folds

Validation errors
(split with lowest validation error have best hyperparameters)

Model 2

Model 3

Model 4

Model 5

Test errors
(for model selection)

Figure 4.2: Visualization of the training and testing scheme of every data-driven model (DDM). Here, one outer loop of the nested
k-fold cross validation is shown with 5-folds (k=5).
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Figure 4.3: Model architecture of the data-driven
models (DDM).

An equally important aspect of developing data-driven
models is model selection (MS), which focuses on identi-
fying the most optimal set of hyperparameters for a given
application. Hyperparameters are like adjustable knobs that
define the model’s architecture and behaviour, such as the
learning rate, regularization strength, number of leaves, or
layers in a neural network. Unlike model parameters, which
are learned during training, hyperparameters must be set
before training begins, and their optimal values are often
unknown initially. Since hyperparameters have a significant
impact on model performance, the goal of model selection is
to determine the configuration that minimizes the model’s
(validation) error. To better understand how this is achieved,
it’s necessary to introduce a new concept: nested k-fold
cross-validation.

Nested k-fold cross-validation builds on standard k-fold
cross-validation by introducing an inner loop. The outer
loop (blue and grey folds) splits the dataset into 𝑘 folds,
where each fold serves as the test set 𝑇𝑡 once, while the
remaining 𝑘 − 1 folds form the training set 𝐷𝑛 . Within
each outer loop, an inner loop (orange and red folds) fur-
ther splits 𝐷𝑛 into training and validation sets to fine-tune
hyperparameters. This nested structure ensures that hyper-
parameter tuning is performed independently of the test
evaluation, preventing data leakage and overfitting. By
iteratively training and validating across these folds, nested
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k-fold cross-validation provides a robust framework for both model selection and unbiased error
estimation. The model architecture for each DDM is illustrated in Fig. 4.3.

In the review (Section 2.3.2), several data-driven models (DDMs) are proposed to computationally
model the ship resistance for a given input. This study builds on state-of-the-art shallow DDMs
by applying a series of top learning algorithms for regression. Rigorous testing is essential, as the
no-free-lunch theorem (Adam et al., 2019) emphasizes that no single algorithm works best for every
problem, making it necessary to evaluate multiple algorithms to identify the most suitable one for
this specific application. Furthermore, each algorithm requires careful tuning of its hyperparameters
(summarized in Table 4.2). More elaborate information is included in Appendix B on the learning
algorithms, but the proposed DDMs are:

• DDM-a/DDM-b: Linear Ridge (LR) - A linear model, for example an ordinary least squares
(OLS) method, is one of the simplest machine learning algorithms. During training, it tunes
its coefficients by minimizing a loss function, typically the sum of squared errors, to achieve
the best possible fit to the data. However, linear models can suffer from overfitting, where the
model captures noise instead of the underlying patterns. To address overfitting, regularization
techniques such as 𝐿1 (lasso) and 𝐿2 (ridge) are used to constrain the model’s complexity. Ridge
regression, which applies 𝐿2 regularization, penalizes large coefficients by adding a penalty term
to the loss function. This penalty helps stabilize the model, balancing fit and generalization, and
is controlled by the regularization strength 𝜆, which adjusts the trade-off between higher bias
(stronger regularization) and lower variance (weaker regularization).

• DDM-c: Random Forest (RF) - Random forest is a robust ensemble learning method that
aggregates predictions from multiple decision trees to reduce overfitting and improve accuracy.
Each tree is trained on a random subset of features and samples, enhancing model diversity. Key
hyperparameters include the number of trees 𝑛𝑡 , which controls the size of the ensemble; the
number of features sampled at each split 𝑛 𝑓 , which determines feature randomness; the maximum
depth 𝑛𝑑 of each tree, which limits the model complexity; and the minimum number of samples
per leaf 𝑛𝑙 , impacting leaf granularity. Carefully tuning these parameters helps in achieving a
balance between computational efficiency and predictive performance.

• DDM-d: Kernel Ridge Regression (KRR) - Kernel ridge regression extends linear ridge regression
with the Gaussian (RBF) kernel, enabling the model to capture complex, non-linear relationships
in the data. By mapping input features to a high-dimensional space, KRR finds patterns that are
not linearly separable in the original feature space. This model is fine-tuned by adjusting the
regularization strength 𝜆, which manages overfitting, and the kernel coefficient 𝛾, which controls
the spread of the Gaussian kernel and influences the model’s sensitivity to variations in the data
(Keerthi & Lin, 2003).

Table 4.2: Proposed DDMs, with corresponding hyperparameters and search space.

Model Description Hyperparameter ID Search Space

DDM-a Linear ridge Regularization strength 𝜆 {10−3 , ..., 103}
DDM-b Linear ridge (with cubed speed input) Regularization strength 𝜆 {10−3 , ..., 103}
DDM-c Random forest Number of trees 𝑛𝑡 {100, 200, 1000}

Number of features per split 𝑛 𝑓 {0.5, 0.75, 1.0}
Maximum depth 𝑛𝑑 {8, 10, 12, 15}
Minimum samples per leaf 𝑛𝑙 {1, 2, 4}

DDM-d Kernel ridge regression Regularization strength 𝜆 {10−6 , ..., 102}
Kernel coefficient 𝛾 {10−5 , ..., 10−2}

4.1.3 Hybrid models
The review in Section 2.3.3 presents multiple variations of hybrid models (HMs) designed to make
computational predictions for various problems in the naval architecture domain. In this study, both
the serial and parallel approaches (with novel contribution) are proposed to predict calm-water ship
resistance. It is important to note that, similar to data-driven models (DDMs), hybrid models also
require model selection (MS) and error estimation (EE). For the sake of simplicity it is not included in the
visualizations, shown in Fig. 4.4, Fig. 4.5 and Fig. 4.6. The following hybrid models are being proposed:
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• HM-a: Serial model
• HM-b: Parallel-residual model
• HM-c: Parallel-correction model

Dataset

Features Actual/Target PM output

PMDDM

HM

Figure 4.4: Hybrid model with serial configuration (HM-a), where the physical model (PM) output {�̂�𝑃𝑀,𝑖} = {�̂�𝑛+1,𝑖} is learned
by the data-driven model (DDM).

The first hybrid model (HM-a) is the one using a serial approach. The dataset includes the features
set 𝑋 and actual (target) set 𝑌 for every single data point, denoted as 𝑖, and like any HM, the PM makes
a prediction for every 𝑖. This PM output {�̂�𝑃𝑀,𝑖} for all data points is fed back to the dataset, which
is then used by the DDM as an extra input feature. For this purpose, the definition of the PM output
{ �̂�𝑃𝑀,𝑖} is re-defined as {𝑥𝑛+1,𝑖}. And in the serial approach, this is all that is required to eventually
come to a hybrid prediction. Very simplistic. The DDM will use this new input {𝑥𝑛+1,𝑖} on top of the
existing feature set 𝑋 and the actual set 𝑌, and makes a prediction defines as {𝑦𝐷𝐷𝑀,𝑖}, which in reality
is equal to the hybrid prediction {𝑦𝐻𝑀,𝑖}. For the visualization, see Fig. 4.4.
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Figure 4.5: Hybrid model with parallel configuration (HM-b), where the residual {𝑒𝑖} is learned by the data driven model (DDM).
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The second hybrid model (HM-b) is one using the parallel approach. Like before, the dataset
included the features set 𝑋, the actual (target) set 𝑌 and the PM output {�̂�𝑃𝑀,𝑖}. Though, in all parallel
configurations, an additional computation is necessary, which can be performed either within the
dataset itself or in the code. For the HM-b, this computation entails a subtraction between the actual
(target) {𝑦𝑖} and PM output {�̂�𝑃𝑀,𝑖}, also known as the residual {𝑒𝑖}. In this HM-b configuration, it is
this {𝑒𝑖} that is learned by the DDM, not the actual (target) set 𝑌. The DDM prediction {𝑒𝐷𝐷𝑀,𝑖} is then
simply summed with the PM prediction {�̂�𝑃𝑀,𝑖}, which together form the HM predictions {�̂�𝐻𝑀,𝑖}. For
the visualization, see Fig. 4.5.
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Figure 4.6: Hybrid model with parallel configuration (HM-c), where the required correction {𝐶𝑖} is learned by the data-driven
model (DDM).

The third hybrid model (HM-c) also employs the parallel approach, but to the best of the author’s
knowledge, it introduces a novel contribution. As before, the dataset includes the feature set 𝑋, the
actual (target) set 𝑌, and the PM output {�̂�𝑃𝑀,𝑖}. The novelty lies in the additional computation:
instead of computing a residual value {𝑒𝑖}, a correction factor {𝐶𝑖} is derived and learned by the DDM.
This correction factor is calculated through dividing the actual target by the PM output. Thus, if the
PM underestimates the actual resistance {𝑦𝑖}, the correction factor exceeds 1, indicating an upward
adjustment needed for the PM to match the actual resistance. And when the PM overestimates {𝑦𝑖},
the correction factor exceeds 1, indicating the downward adjustment required for the PM to match the
actual resistance. So, the DDM predicts this correction factor {�̂�𝐷𝐷𝑀,𝑖}, which is the multiplied by the
PM prediction {�̂�𝑃𝑀,𝑖}, which together form the HM predictions {�̂�𝐻𝑀,𝑖}. For the visualization, see
Fig. 4.6.

4.2 Testing framework
Building on the proposed PMs (Section 4.1.1), DDMs (Section 4.1.2), and HMs (Section 4.1.3) described
earlier, rigorous testing is essential to comprehensively evaluate their predictive performance across
various scenarios. Each model type is subjected to a series of structured tests, including interpolation to
assess performance within the available data range, ...... and extrapolation to evaluate performance
beyond the data bounds.

4.2.1 Interpolation pipeline
The initial experimental tests were thoughtfully designed to serve two purposes, first, to ensure that
models perform correctly within the range of the available data (interpolation) before being exposed to
more complex scenarios. Second, to assess the interpolation ability of each model, establishing a robust
baseline for performance across individual physical, data-driven, and hybrid models. The physical
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model (PM) does not require any training, but for the data-driven models (DDMs) and hybrid models
(HMs), a proper training and testing scheme is necessary (see Section 4.1.2) to provide a fair assessment
of their true capabilities. Table 4.3 presents the models used for interpolation tests.

Table 4.3: Overview of models used for interpolation tests.

Type Model Data-driven part Description

PM PM-a - (Holtrop & Mennen, 1982)
PM-b - (Holtrop & Mennen, 1984)

DDM DDM-a - Linear ridge regression
DDM-b - Linear ridge regression (with cubed speed input)
DDM-c - Random forest
DDM-d - Kernel ridge

HM HM-a Best DDM Serial
HM-b Best DDM Parallel-residual
HM-c Best DDM Parallel-correction

The computational fluid dynamics (CFD) dataset, denoted as dataset 1 in Section 3.3, is used for the
interpolation tests, with the pipeline visualized in Fig. 4.7. The working principles for each model type
are detailed in Section 4.1. However, since cross-validation can be somewhat complex, additional focus
is given to explaining it within the context of interpolation. Remember, as noted earlier in Section 4.1.2,
there is a necessity of introducing some randomness in the training-testing scheme. Instead of a
conventional 80-20 train-test split, which could be considered as "cherry-picking", the data is divided
into folds, with multiple splits created by shuffling the training and test folds differently in each iteration.
In nested k-fold cross-validation (KCV), this concept is combined with an additional inner loop to do
the model selection (MS), a process known for selecting the most optimal set of hyperparameters. See
how this is achieved for both the DDM and HM in Fig. 4.7. After the MS process, the best model needs
to be retrained. However, it is essential to reintroduce randomness into the training-testing scheme
using k-fold cross-validation, specifically through the outer loop. From this process, the error estimation
(EE) can be obtained. It is important to note that the interpolation pipeline shown in Fig. 4.7 remains
consistent throughout all interpolation tests; the only elements that are varied are the PMs, DDMs and
HMs.
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Figure 4.7: Interpolation pipeline used for all tests in Chapter 5, except during tests for extrapolation condition. This pipeline is
presented in Section 4.2.5.

Three main types of results are going to be depicted in Section 5.1: test errors, scatter plots, and
error distributions. First, the test error metrics (MAE, MAPE, and R2) are presented in formatted tables,
displaying two types of values: the mean (average) and the standard deviation, calculated across all
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folds of the final KCV. Secondly, the scatter plots are included, which display the actual values against
the predictions with a 45-degree line, known as the ideal line. When all points lie exactly on this line, it
indicates perfect predictions with no errors. And thirdly, the error distributions are shown next to the
scatter plots. Instead of residuals or absolute errors, relative errors (%) are used, as dataset 1 includes
varying scales (e.g., ship speeds and dimensions), as noted in Section 4.1.2.

4.2.2 With specific ship
A resistance curve can be generated for a specific ship to evaluate the capabilities and limitations of
each modeling approach. The methodology for this test involves applying the best-performing models
from each approach to predict the calm-water resistance of a specific ship. The following steps outline
the process:

1. Model selection (MS) and error estimation (EE): All models are trained and tested using the
interpolation pipeline accounting for the model selection (MS) and error estimation (EE), as
detailed in Fig. 4.7. Via this way, a performance assessment (MAE, MAPE, and R2) can be made,
to only select the best-performing PM, DDM, and HM for this test.

2. Ship selection: A specific ship geometry is chosen from dataset 1 (Chapter 3) for detailed testing.
The selected geometry represents a practical case, ensuring relevance to real-world applications,
such as early-stage propulsion system design.

3. Resistance curve construction: The best PM, DDM and HM are used to predict calm-water
resistance at the same speeds as those available in the CFD observations. These predictions are
compiled into resistance curves for direct comparison with CFD data.

4. Analysis of results: The deviations between the PM, DDM, and HM prediction and the actual
CFD data are analysed. Special focus is placed on assessing the hybrid models’ ability to integrate
physical principles with data-driven corrections.

This methodology ensures a fair and consistent comparison by using an identical speed range for all
predictions. Detailed results of this test are presented in Section 5.2.

4.2.3 With less data
An important knowledge gap mentioned in the introduction (Chapter 1), is the challenge of making
predictions with limited data. Since the physical models (PMs), data-driven models (DDMs), and hybrid
models (HMs) have already been developed at this stage, testing the best models of each type under this
condition becomes a relatively straightforward next step. The methodology for this test involves the
following steps:

1. MS and EE with reduced training data: The training process begins with only 10% of the CFD
observations from dataset 1, using the interpolation pipeline described in Fig. 4.7. The MAPE
error value is recorded.

2. Incremental addition of training data: Additional CFD observations are incorporated in 10%
increments, and the MAPE is recorded after each step. This approach allows for a systematic
evaluation of how increasing data availability impacts model performance.

3. Analysis of MAPE progression: The progression of MAPE is analyzed and visualized for the
most promising PM, DDM, and HM models. This comparison identifies which model achieves the
best performance at each incremental step and determines their efficiency in leveraging additional
data.

This methodology provides a clear framework for evaluating the models’ performance under data
scarcity. The results reveal how effectively each model leverages limited data, offering valuable insights
into their robustness and suitability for real-world applications. Detailed results of this test are presented
in Section 5.3.

4.2.4 With other features
For any predictive model, it is essential that the features (input variables) capture sufficient information
to enable accurate predictions. The Holtrop & Mennen method is widely considered as one of the most
advanced semi-empirical method for ship performance and for decades a lot of effort has been put
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into improving and optimizing features within this method. Therefore, the interpolation (Section 5.1),
extrapolation tests (Section 5.5) and the tests with less data (Section 5.3) use a (Holtrop & Mennen, 1984)
based features set, as it made sense to use existing knowledge as a starting point. Yet, is this the most
optimal feature set for making calm-water predictions for twin-screw superyachts?

This raises a critical question: what methods can be used to select an optimal set of features? The
most straightforward approach is to leverage domain knowledge, either to select relevant features
directly or to construct meaningful combinations of them - a process commonly known as informed
feature engineering. With decades of experience in yacht construction, Feadship’s extensive knowledge
base offers valuable insights that can guide this process effectively. For instance, it is well-known that
the longitudinal centre of floatation ℓ𝑐𝐹 needs to shift slightly forward relative to the centre of gravity
ℓ𝑐𝐺 for certain ship types. Similarly, the depth of the immersed transom 𝐷𝑡 is recognized as a significant
factor influencing ship resistance. Also, when estimating propulsion performance in early-stage designs,
it is commonly understood that the Heickel coefficient works better for superyachts than the Admiralty
coefficient. These insights, gained from decades of shipbuilding experience, establish domain knowledge
as the foundation for constructing an optimal feature set for use in DDMs and HMs.

Another approach to selecting optimal features is through statistical feature selection methods, with
two widely-used techniques tested: backward feature elimination (BFE) and permutation importance
(PI). BFE (Coraddu, Oneto, et al., 2022) is a wrapper method that starts with all features and iteratively
removes the least impactful ones, based on error metrics (e.g. MAE, MAPE). This process continues
until further removals degrade performance, resulting in the smallest subset of features that maintains
or improves model effectiveness. In contrast, PI is a post-hoc analysis method (Altmann et al., 2010) that
evaluates feature relevance by randomly shuffling the values of each feature, one at a time, to break its
relationship with the target variable. The model’s performance is then measured on this altered dataset;
a significant drop in performance indicates that the feature is important.

This test evaluates the impact of different feature selection methods on model performance by
systematically ranking and incorporating features. The analysis focuses on the best-performing hybrid
model from the interpolation tests, using three feature selection approaches: domain knowledge,
backward feature elimination, and permutation importance. The methodology is outlined as follows:

1. Feature ranking: Features are ranked based on their estimated importance to the target variable,
calm-water ship resistance. Higher ranks are assigned to features with greater influence, as
determined by each feature selection method.

2. MS and EE with the highest-ranked feature: The training process starts with only the highest-
ranked feature (rank 1), utilizing the interpolation pipeline described in Fig. 4.7. The MAPE value
is recorded to evaluate model performance under this minimal feature set.

3. Incremental feature inclusion: Features are added iteratively based on their rank order. In
each step, the model is retrained using a progressively larger feature set: starting with the
top-ranked feature (rank 1), then adding the second-ranked feature (ranks 1 and 2), followed by
the third-ranked feature (ranks 1, 2 and 3), and so on.

4. MAPE progression analysis: The progression of MAPE is analysed and visualized as features are
incrementally added. This analysis identifies the feature selection method that achieves optimal
performance with the fewest features. The overall impact of features on model performance can
also be analysed.

This methodology provides a structured framework for assessing the effectiveness of feature selection
methods. The detailed results of this evaluation are presented in Section 5.4.

4.2.5 Extrapolation pipeline
What is extrapolation? This concept is relatively straightforward to understand when applied to a ship’s
speed - referring to making predictions for speeds that are "outside the bag" of existing speed data.
However, the notion becomes less clear when it involves extrapolation in terms of a ship’s geometrical
dimensions, where the relationship between features and outcomes may be more complex and less
intuitive. To gain a clearer understanding of the concept of extrapolation, let us begin with an illustrative
example involving a new ship design, depicted in Fig. 4.8. The design characteristics (or feature values)
of this ship are represented by the red markers, while the blue markers represent the (fictional) available
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data. While several features, such as the length at waterline (𝐿𝑤𝑙), beam moulded (𝐵𝑚𝑙𝑑), and draft
(𝑇), fall within the bounds of the training data, others extend beyond the range of the existing dataset.
Specifically:

• Volumetric displacement (∇): This feature represents the submerged volume of the hull and is
larger than any value in the dataset, suggesting a heavier vessel.

• Length-to-draft ratio (𝐿/𝑇): This ratio is lower than the dataset values, indicative of a relatively
shorter and deeper hull form.

• Water plane coefficient (𝐶𝑤𝑝): The value exceeds the training range, highlighting a very full-form
hull.

40 60 80 100 120 140 160 180

Lwl (m)

14 16 18 20 22 24 26 28

L/T (-)

10 15 20 25 30 35

Bmld (m)

1500 2000 2500 3000 3500 4000 4500 5000

Stot (m²)

2 4 6 8 10 12 14

T (m)

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1

Cb (-)

500 1000 1500 2000 2500 3000

 (m³)

0.4 0.5 0.6 0.7 0.8

Cp (-)

35 40 45 50 55 60 65 70

cF (m)

0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

Cwp (-)

Training Data New Ship Design

Figure 4.8: Visualization of a new ship design compared to the training data, highlighting extrapolation on certain features.

Extrapolating on such features poses challenges for predictive modeling, as relationships between
inputs and outputs are less certain outside the training range. The purpose of the extrapolation tests
is to evaluate the model’s performance for such challenging cases. These tests use an alternative
form to the final k-fold cross-validation in the interpolation pipeline (Fig. 4.7). This new form is
known as leave-one-out cross-validation (LOOCV), but it requires some adaptions to be suitable for
the extrapolation tests. Traditionally, in LOOCV, a single observation is removed for testing and the
remaining ones are used for training. For the next iteration, another observation is used for testing and
the remaining ones for training, and this process continues until all data points are touched upon.

Though, in these extrapolation tests, instead of removing a single observation, an entire subset
containing multiple data points is removed, specifically on the outer regions. What are the outer
regions? Well, this depends on what feature is selected for extrapolation. Once selected, all data can be
dissected into three histogram bins: left extrapolation bin, middle bin and the right extrapolation bin.
For this study, three testing scenarios designed and defined as the following:

• LOFO: Leave One 𝐹𝑛 Out: In this scenario, the data is divided into three bins based on the Froude
number 𝐹𝑛 . Models are trained on the middle bin, excluding data from a specific 𝐹𝑛 in the outer
bins.

• LOBO: Leave One 𝐵/𝑇 Out: In this scenario, the data is divided into three bins based on the
beam-to-draught ratio 𝐵/𝑇. Models are trained on the middle bin, excluding data from a specific
𝐵/𝑇 in the outer bins.

• LOCO: Leave One 𝐶𝑝 Out:In this scenario, the data is divided into three bins based on the
prismatic coefficient 𝐶𝑝 . Models are trained on the middle bin, excluding data from a specific 𝐶𝑝
in the outer bins.
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Figure 4.9: Extrapolation pipeline.

A visualization of the extrapolation pipeline, applied to CFD dataset 1, is presented in Fig. 4.9. This
pipeline closely resembles the approach used for the interpolation tests, as described in Section 5.1,
with two key differences: the exclusion of physical models, which inherently possess extrapolation
capabilities, and the replacement of the final K-fold cross-validation (KCV) with the adapted LOOCV
method.

Table 4.4: Overview of models used for extrapolation tests.

Type Model Data-driven part Description

DDM DDM-a - Linear ridge regression
DDM-b - Linear ridge regression (with cubed speed input)
DDM-c - Random forest
DDM-d - Kernel ridge

HM Best HM DDM-a Best HM with Linear Ridge (𝑉1
𝑠 )

Best HM DDM-b Best HM with Linear Ridge (𝑉3
𝑠 )

Best HM DDM-c Best HM with Random Forest
Best HM DDM-d Best HM with Kernel Ridge

Table 4.4 presents all the models that are being tested in these extrapolation tests. The results in
Section 5.5, are showing three main types of results: test errors, scatter plots, and error distributions,
similar to the interpolation results in Section 5.1.
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In this chapter, the performance of the PMs, DDMs, and HMs is tested in accordance
with the methodology described in Chapter 4. Five tests are included here: interpolation

condition, with specific ship, with less data, with other features and extrapolation condition.
In the interpolation tests (Section 5.1), three main types of results are presented: test errors,

scatter plots, and error distributions. Test errors (MAE, MAPE and R2) are summarized in
tables showing the mean and standard deviation across all folds of the final KCV. Scatter
plots follow, comparing actual values to predictions with a 45-degree ideal line for visualizing
errors. Adjacent error distribution plots depict relative errors (%) instead of residuals or
absolute errors due to varying scales in Dataset 1 (e.g., ship speeds and dimensions). For
interpretating the error metrics, see explanation in Section 4.1.2.

Following this, three additional tests are conducted using the interpolation pipeline. First,
the most promising models from each modeling approach are used to create a resistance
curve for an arbitrary yacht (Section 5.2). Next, tests with reduced sample sizes (Section 5.3)
simulate limited data scenarios, evaluating model accuracy under constrained conditions.
Finally, tests with alternative input features (Section 5.4) explore the impact of feature selection
on prediction accuracy, offering insights into feature importance and guiding the optimization
of input configurations.

And finally, in the extrapolation tests (Section 5.5), the same three types of resuls are
presented, but with a focus on extrapolation performance for different scenarios (LOFO,
LOBO and LOCO). In these tests, the DDMs and most promising HM from Section 5.1 are
trained on the middle bins, while sequantially being tested on the outer left and right bins.

5.1 Test for interpolation condition
The initial experimental tests were thoughtfully designed to serve two purposes, first, to ensure that
models perform correctly within the range of the available data (interpolation) before being exposed
to more complex scenarios, as described in Section 4.2.5. Second, to assess the interpolation ability of
each model, establishing a robust baseline for performance across individual physical, data-driven, and
hybrid models. In these tests, the newly enriched dataset from Section 3.3 is utilized, incorporating
features derived from the methods proposed by (Holtrop & Mennen, 1984; Holtrop & Mennen, 1982), as
summarized in Table 5.1.

Table 5.1: Holtrop-Mennen based feature set used for the upcoming experimental tests (unless stated otherwise), derived from
dataset 1 (Table 3.1) and enriched through the process detailed in Fig. 3.2.

Feature name ID Units

Ship speed 𝑉𝑠 kn
Length waterline 𝐿𝑤𝑙 m
Moulded beam 𝐵𝑚𝑙𝑑 m
Moulded mean draft 𝑇 m
Volumetric displacement ∇ m3

Longitudinal centre of buoyancy ℓ𝑐𝐵 m
Longitudinal centre of floatation ℓ𝑐𝐹 m
Wetted surface hull and appendages 𝑆𝑡𝑜𝑡 m2

Wetted surface of (individual) appendages 𝑆𝑎𝑖 m2

Transom wetted surface 𝐴𝑡 m2

Bulbous bow transverse area 𝐴𝑏𝑡 m2

Height of centroid 𝐴𝑏𝑡 above keel ℎ𝑏𝑡 m
Bow half angle of waterline entrance 𝑖𝐸 deg
Block coefficient 𝐶𝑏 -
Prismatic coefficient 𝐶𝑝 -
Midship section coefficient 𝐶𝑚 -
Water plane area coefficient 𝐶𝑤𝑝 -

The results in Table 5.2 show that PM-b, based on the algorithm by (Holtrop & Mennen, 1984),
achieved the highest baseline performance with an 𝑅2 of 0.96 and a Mean Absolute Percentage Error
(MAPE) of 6.6%, marginally outperforming PM-a. It should be pointed out that the results for both PM-a
and PM-b already highlight the effectiveness of the physical models, offering a dependable standard for
the hybrid approaches.
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Table 5.2: Interpolation tests - Performance assessment of all physical models (PMs).

Model Algorithm MAE (kN) MAPE (%) R² (-)

PM-a (Holtrop & Mennen, 1982) 13.1 6.8 0.96
PM-b (Holtrop & Mennen, 1984) 13.3 6.6 0.96
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Figure 5.1: Physical model (PM) with the best interpolation performance - (Holtrop & Mennen, 1984) (PM-b).

Figure 5.1 provides further insight into the predictive accuracy of PM-b through two complementary
visualizations. The scatter plot in Fig. 5.1(a) compares the predicted resistance values with the actual
values, plotting each prediction against its corresponding observed data point. This type of plot is
particularly valuable because it offers a straightforward way to evaluate the overall alignment between
predictions and reality; when predictions are accurate, the data points should closely follow the ideal
45-degree line. In this case, the strong alignment along this line indicates that PM-b performs well in
capturing the underlying trend within the interpolation range.

In Fig. 5.1(b), the relative error distribution provides an additional layer of understanding. Absolute
error metrics, like mean average error (MAE), would not be as informative in this context because
there are different scales (e.g. ship dimensions and speeds) are present in the data. The use of relative
errors (expressed as a percentage) allows for a normalized view of model performance across all cases,
regardless of any scale. Fig. 5.1(a) and Fig. 5.1(b) provide visual evidence of this, since the scatter plot in
Fig. 5.1(a) indicates higher absolute errors in the upper resistance range, while the error distribution in
Fig. 5.1(b) clearly demonstrates that these errors are not outliers compared to the majority of the data.
In general, the error distribution is tightly clustered around 0%, indicating a low degree of bias and a
high level of consistency in the model’s predictions.

Table 5.3: Interpolation tests - Performance assessment of all data-driven models (DDMs).

Model Algorithm MAE (kN) MAPE (%) R² (-)

DDM-a Linear Ridge (𝑉1
𝑠 ) 25.8 ± 10.7 32.5 ± 31.0 0.86 ± 0.11

DDM-b Linear Ridge (𝑉3
𝑠 ) 13.6 ± 1.8 14.4 ± 6.0 0.96 ± 0.03

DDM-c Random Forest 18.3 ± 3.9 12.0 ± 4.1 0.93 ± 0.06
DDM-d Kernel Ridge 10.0 ± 5.7 8.9 ± 5.3 0.95 ± 0.09

The interpolation tests for data-driven models (DDMs), summarized in Table 5.3, show that the
Kernel Ridge model (DDM-d) performed best, achieving an MAE of 10.0 kN, a MAPE of 8.9%, and an
𝑅2 of 0.95. Among the Linear Ridge models, DDM-b, which applied a cubic transformation of ship
speed (𝑉3

𝑠 ), outperformed DDM-a, halving the MAE (13.6 kN vs. 25.8 kN) and significantly reducing
the MAPE (14.4% vs. 32.5%), highlighting the value of feature engineering. The Random Forest model
(DDM-c) delivered competitive performance, with an MAE of 18.3 kN and an 𝑅2 of 0.93, demonstrating
its ability to handle non-linear patterns effectively. Overall, these results highlight Kernel Ridge (DDM-d)
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as the most reliable model for interpolation within this dataset, followed closely by the transformed
Linear Ridge model (DDM-b).
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Figure 5.2: Data-driven model (DDM) with the best interpolation performance - Kernel Ridge (DDM-d).

Figure 5.2 provides a detailed visualization of the interpolation performance of the Kernel Ridge
model (DDM-d). In the scatter plot (Fig. 5.2(a)), the data points cluster closely along the ideal 45-degree
line, reflecting high prediction accuracy with minimal deviation from actual values. However, DDM-d
exhibits occasional large deviations, visible in both the scatter plot (Fig. 5.2(a)) and the error distribution
(Fig. 5.2(b)). These deviations highlight the model’s sensitivity to certain data points, contrasting
with PM-b’s more stable performance. PM-b’s error distribution (Fig. 5.1(b)) shows a broader but
more uniform spread, indicating fewer extreme errors. This comparison suggests that while DDM-
d’s flexibility enables superior average accuracy, it sometimes compromises stability in individual
predictions, whereas PM-b provides a steadier, more reliable baseline.
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Figure 5.3: Simplified representations of the hybrid architectures used for the experimental tests.

Next, the interpolation tests for hybrid models (HMs), focusing on three architectures Fig. 5.3): the
Serial model (HM-a), Parallel-residual model (HM-b), and Parallel-correction model (HM-c). A more
detailed visualization of all HMs can be found in Section 4.1.3.

Table 5.4 highlights the performance of each model, with HM-c (Parallel-correction) demonstrating
the highest accuracy, achieving a MAPE of just 3.8% and an 𝑅2 of 0.99, reflecting its strong consistency
in predictions. HM-b (Parallel-residual) also performs well, with a MAPE of 5.6% and an 𝑅2 of 0.97,
though it is slightly less accurate than HM-c. In contrast, HM-a (Serial model) shows a higher MAPE of
12.3% and a lower 𝑅2 of 0.88, indicating only moderate improvement over the physical models alone.
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Table 5.4: Interpolation tests - Performance assessment of all hybrid models (HMs).

Model Algorithm MAE (kN) MAPE (%) R2 (-)

HM-a Serial model 21.5 ± 10.0 12.3 ± 4.5 0.88 ± 0.09
HM-b Parallel-residual model 8.6 ± 6.8 5.6 ± 1.4 0.97 ± 0.06
HM-c Parallel-correction model 5.8 ± 1.5 3.8 ± 1.1 0.99 ± 0.00

Figure 5.4 provides the scatter plot and error distribution for HM-c. The scatter plot in Fig. 5.4(a)
shows a very tight clustering of data points along the ideal line, reflecting HM-c’s accuracy in matching
actual resistance values across the dataset. The error distribution in Fig. 5.4(b) is also narrow and
centered closely around 0%, indicating minimal bias and high consistency across predictions. Compared
to the best-performing DDM and PM models, HM-c demonstrates not only lower average errors but
also reduced variability in individual predictions.
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Figure 5.4: Hybrid model (HM) with the best interpolation performance - Parallel correction factor (HM-c).

A comparative summary is provided in Table 5.5 of all results in these tests for interpolation condition.
The Parallel-correction hybrid model (HM-c) stands out with the lowest error metrics, achieving the
smallest MAE and MAPE, along with the highest 𝑅2, indicating its superior accuracy and consistency.
PM-b ((Holtrop & Mennen, 1984)) and the Kernel Ridge model (DDM-d) also perform well, with
moderate MAPE and 𝑅2 values, but higher variability in individual predictions for DDM-d.

Table 5.5: Interpolation tests - Summary of all PMs, DDMs, and HMs performance assessments.

Model Algorithm MAE (kN) MAPE (%) R² (-)

PM-a (Holtrop & Mennen, 1982) 13.1 6.8 0.96
PM-b (Holtrop & Mennen, 1984) 13.3 6.6 0.96

DDM-a Linear Ridge (𝑉1
𝑠 ) 25.8 ± 10.7 32.5 ± 31.0 0.86 ± 0.11

DDM-b Linear Ridge (𝑉3
𝑠 ) 13.6 ± 1.8 14.4 ± 6.0 0.96 ± 0.03

DDM-c Random Forest 18.3 ± 3.9 12.0 ± 4.1 0.93 ± 0.06
DDM-d Kernel Ridge 10.0 ± 5.7 8.9 ± 5.3 0.95 ± 0.09

HM-a Serial model 21.5 ± 10.0 12.3 ± 4.5 0.88 ± 0.09
HM-b Parallel-residual model 8.6 ± 6.8 5.6 ± 1.4 0.97 ± 0.06
HM-c Parallel-correction model 5.8 ± 1.5 3.8 ± 1.1 0.99 ± 0.00

5.2 Test with specific ship
At this stage, all models have been trained and tested in accordance with Chapter 4, and the interpolation
results, summarized in Section 5.1 and Table 5.5, highlight the best-performing models within each
modeling approach: PM-b, DDM-d, and HM-c. These results are particularly relevant in practical
scenarios where designers or naval architects must proportion fuel and power systems for upcoming
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projects. A key step in this process is creating a resistance curve, which estimates calm-water resistance
across various speeds. This curve provides the foundation for predicting propulsion power requirements
under different operating conditions. By leveraging accurate resistance estimates from high-performing
models, designers can make informed early-stage decisions, optimizing the sizing of critical components
like generator sets, fuel cells, electric drives and energy storage systems.
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Figure 5.5: Comparison of predicted calm-water resistance curves from the best-performing models (PM-b, DDM-d, and HM-c)
against actual CFD observations.

Fig. 5.5 illustrates the predictions from the best-performing models - PM-b, DDM-d, and HM-c -
compared against actual CFD observations. The hybrid model (HM-c) shows the closest agreement with
CFD observations across the entire speed range, showcasing its ability to combine physical principles
with data-driven corrections for superior accuracy.

The physical model (PM-b) performs consistently but tends to overestimate calm-water resistance,
particularly at higher speeds, reflecting limitations in its ability to capture nuanced behaviours outside
its calibration range. On the other hand, the data-driven model (DDM-d), despite its strong performance
in interpolation tests (Section 5.1), deviates significantly from the CFD observations in this case. This
discrepancy may stem from its less stable pointwise predictions, as evidenced by the scatter plots and
error distributions in Fig. 5.2, where certain cases exhibited notable variability.

These findings underscore the hybrid model’s advantage in delivering reliable resistance predictions,
particularly in scenarios requiring high fidelity. By integrating physical insights with data-driven
adaptability, the hybrid approach proves to be the most effective for accurate and consistent resistance
estimation across varying conditions.

5.3 Test with less data
This section examines model performance under limited data conditions, a challenge highlighted in
the problem statement (Chapter 1). The hypothesis is that hybrid models require less data to achieve
performance comparable to a state-of-the-art DDM. To test this, the most promising models - PM-b,
DDM-d, and HM-c - are trained incrementally using the interpolation pipeline for consistency.

Training begins with 10% of the CFD observations from Dataset 1, with the dataset size increasing
in 10% increments. At each step, the Mean Absolute Percentage Error (MAPE) is calculated to monitor
performance progression as more data is added. This approach identifies the most data-efficient model,
shedding light on their robustness and adaptability under data-scarce conditions. The results of this
analysis are discussed in Section 5.3, and Fig. 5.6 visualizes the performance trends for the selected
models: PM-b, DDM-d, and HM-c.

• Most promising PM - (Holtrop & Mennen, 1984) (PM-b)
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• Most promising DDM - Kernel Ridge (DDM-d)
• Most promising HM - Parallel-correction architecture (HM-c)
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Figure 5.6: Recorded mean average percentage error (MAPE) of the most promising models (PM-b, DDM-d and HM-c) as CFD
observations are added to the training dataset in incremental steps of 10%.

Figure 5.6 illustrates the progression of MAPE for the three models as the number of CFD observations
increases. PM-b maintains a constant MAPE across all data sizes, reflecting its independence from the
training dataset, as it relies solely on physical principles rather than data-driven learning. In contrast,
DDM-d begins with a high MAPE when data availability is limited but shows significant improvement
as more observations are incorporated, demonstrating its reliance on sufficient training data for accuracy.
HM-c starts with an intermediate MAPE and consistently improves as the dataset grows, outperforming
DDM-d across the entire range.

These results highlight distinct behaviours among the models: the DDM and HM benefit significantly
from additional data, with the hybrid model offering superior accuracy and data efficiency throughout.
This underscores, on top of the increase in accuracy observed in Section 5.1 and in Fig. 5.6, the hybrid
model’s advantage in scenarios with small datasets.

5.4 Test with other features
Accurate predictions in any model require features (input variables) that capture sufficient information
about the dynamics of the prediction problem. The Holtrop & Mennen method, a leading semi-empirical
method for ship performance, has undergone decades of refinement to improve feature relationships.
This study leverages that established feature set as a foundation for all tests presented in Chapter 5. Yet,
the unique design characteristics of twin-screw superyachts raise the question: is this feature set truly
sufficient, or is there a more optimal feature set to be found for twin-screwed superyachts?

To identify the optimal feature set, a combination of one domain knowledge-based method and two
statistically-driven methods for feature selection is employed. The process begins with the domain
knowledge approach, leveraging insights from experienced professionals in the field. Findings from
expert interviews are summarized in Table 5.6, where each feature is evaluated based on its relevance to
twin-screw superyacht resistance prediction. The following experts were consulted to provide their
assessments and recommendations for feature selection:

• Expert 1 - Head of Research and Development
• Expert 2 - Head of Knowledge and Innovation
• Expert 3 - Senior Specialist Design
• Expert 4 - CFD engineer
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Table 5.6: Scores given by company experts on the importance of certain features, thereby using domain knowledge to construct a
feature ranking, depicted in Table 5.7.

Absolute feature name ID Units Expert 1 Expert 2 Expert 3 Expert 4 Total Score

Ship speed 𝑉𝑠 kn 19 19 12 18 68
Length waterline 𝐿𝑤𝑙 m 1 17 11 20 49
Length overall submerged 𝐿𝑜𝑠 m 18 - - - 18
Moulded beam 𝐵𝑚𝑙𝑑 m - 14 10 17 41
Moulded mean draft 𝑇 m - 13 9 - 22
Volumetric displacement ∇ m3 17 18 20 19 74
Water plane area 𝐴𝑤𝑝 m2 - 11 - - 11
Wetted surface total 𝑆𝑡𝑜𝑡 m2 - 15 16 15 46
Wetted surface appendages 𝑆𝑎𝑝𝑝 m2 - 10 13 - 23
Wetted surface of twin-screw balance rudders 𝑆𝑟𝑢𝑑𝑑𝑒𝑟 m2 - 4 6 - 10
Wetted surface of shaft brackets 𝑆𝑏𝑟𝑎𝑐𝑘𝑒𝑡 m2 - - - - 0
Wetted surface of skeg 𝑆𝑠𝑘𝑒 𝑔 m2 - 3 - - 3
Wetted surface of strut bossings 𝑆𝑠𝑡𝑟𝑢𝑡 m2 - - - - 0
Wetted surface of shafts 𝑆𝑠ℎ𝑎 𝑓 𝑡 m2 - - - - 0
Wetted surface of stabilizer fins 𝑆𝑠𝑡𝑎𝑏 m2 - 1 5 - 6
Wetted surface of bilge keels 𝑆𝑏𝑖𝑙𝑔𝑒 m2 - 2 - - 2
Transom wetted surface 𝐴𝑡 m2 - 7 2 8 17
Transom immersion at centreline 𝐷𝑡 m - 10 7 9 26
Bulbous bow transverse area 𝐴𝑏𝑡 m2 7 12 14 13 46
Height of centroid 𝐴𝑏𝑡 above keel ℎ𝑏𝑡 m 6 - - 2 8
Bow half angle of waterline entrance 𝑖𝐸 deg 8 8 3 12 31

Derived/dimensionless feature name

Froude number (length) 𝐹𝑛 - 20 20 19 16 75
Block coefficient 𝐶𝑏 - 16 16 17 5 54
Prismatic coefficient 𝐶𝑝 - 15 - 18 6 39
Midship section coefficient 𝐶𝑚 - 3 5 - 4 12
Water plane area coefficient 𝐶𝑤𝑝 - 2 - 8 3 13
Length-to-width ratio 𝐿/𝐵 - 6 - - 10 20
Length-to-volume ratio 𝐿/𝑉 - 5 - - - 5
Length-to-draught ratio 𝐿/𝑇 - 4 - - - 4
Length-to-displacement ratio 𝐿/∇1/3 - 9 - 1 11 21
Beam-to-draught ratio 𝐵/𝑇 - 14 6 - - 20
Transom-to-tranverse cross-section ratio 𝐴𝑡/(𝐵𝑇) - 13 - - 1 14
Appendage-to-lateral cross-section ratio 𝑆𝑎𝑝𝑝/(𝐿𝑇) - 12 - - 7 19
Longitudinal centre of buoyancy ℓ𝑐𝐵 % 11 - 15 13 39
Longitudinal centre of floatation ℓ𝑐𝐹 % 10 9 - 14 33

By summing the scores assigned by each individual expert, a total score is calculated for every
feature in the list shown in Table 5.6. These total scores allow the features to be ranked based on their
importance, reflecting the domain knowledge available within the company. This ranking is presented
in Table 5.7(a). Alongside this domain-knowledge-based ranking, two additional statistical feature
ranking methods are included in the same table: Backward Feature Elimination (BFE) and Permutation
Importance. Their respective rankings are shown in Table 5.7(b) and Table 5.7(c).

To evaluate the effect of feature rankings on model performance, the best-performing hybrid model
during interpolation tests (HM-c) was evaluated using all three ranking methods. The evaluation
was conducted by iteratively training and testing the model with an increasing number of features,
following the ranking order for each approach. Specifically, the model was initially trained using only
the highest-ranked feature (rank 1), and the Mean Absolute Percentage Error (MAPE) was recorded. In
the next iteration, the two highest-ranked features (rank 1 and rank 2) were used for training, and the
corresponding MAPE was retrieved. This process was repeated incrementally, including additional
features in ranking order, until all features were incorporated. The results of this iterative testing are
presented in Fig. 5.7.

The results from the feature ranking evaluation (Fig. 5.7) highlight differences in the effectiveness
of the three approaches - domain knowledge, Backward Feature Elimination (BFE), and Permutation
Importance (PI). Across all methods, MAPE decreases rapidly as the first few top-ranked features are
added, emphasizing the importance of these features. The domain knowledge approach achieves the
lowest MAPE with fewer features, demonstrating the efficiency of expert-informed selection. PI shows
a more uneven decline, with significant drops at specific feature thresholds, indicating sensitivity to
certain features. BFE provides a smoother progression but requires more features to achieve comparable
accuracy. Overall, domain knowledge delivers the most efficient feature set, while the statistical methods
require more iterations to reach similar performance.
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Table 5.7: Feature rankings across three approaches.

(a) Domain knowledge

Ranking ID Units

1 𝐹𝑛 -
2 ∇ m3

3 𝑉𝑠 kn
4 𝐶𝑏 -
5 𝐿𝑤𝑙 m
6 𝑆𝑡𝑜𝑡 m2

7 𝐴𝑏𝑡 m2

8 𝐵𝑚𝑙𝑑 m
9 ℓ𝑐𝐵 %
10 𝐶𝑝 -
11 ℓ𝑐𝐹 %
12 𝑖𝐸 deg
13 𝐷𝑡 m
14 𝑆𝑎𝑝𝑝 m2

15 𝑇 m
16 𝐿/∇1/3 -
17 𝐿/𝐵 -
18 𝐵/𝑇 -
19 𝑆𝑎𝑝𝑝/(𝐿𝑇) -
20 𝐿𝑜𝑠 m
21 𝐴𝑡 m2

22 𝐴𝑡/(𝐵𝑇) -
23 𝐶𝑤𝑝 -
24 𝐶𝑚 -
25 𝐴𝑤𝑝 m2

26 𝑆𝑟𝑢𝑑𝑑𝑒𝑟 m2

27 ℎ𝑏𝑡 m
28 𝑆𝑠𝑡𝑎𝑏 m2

29 𝐿/𝑇 -
30 𝑆𝑠𝑘𝑒 𝑔 m2

31 𝑆𝑏𝑖𝑙𝑔𝑒 m2

32 𝑆𝑠𝑡𝑟𝑢𝑡 m2

33 𝑆𝑠ℎ𝑎 𝑓 𝑡 m2

(b) Backward feature elimination (BFE)

Ranking ID Units

1 𝐹𝑛 -
2 𝑉𝑠 kn
3 𝐶𝑝 -
4 𝐷𝑡 m
5 𝑆𝑠𝑡𝑟𝑢𝑡 m2

6 𝐶𝑚 -
7 𝑆𝑎𝑝𝑝/(𝐿𝑇) -
8 𝐴𝑡 m2

9 ℓ𝑐𝐹 %
10 𝐴𝑏𝑡 m2

11 𝑇 m
12 𝐿/𝐵 -
13 𝑆𝑟𝑢𝑑𝑑𝑒𝑟 m2

14 ℎ𝑏𝑡 m
15 𝐶𝑤𝑝 -
16 𝐶𝑏 -
17 𝐿/𝑉 -
18 ∇ m3

19 𝑆𝑠𝑘𝑒 𝑔 m2

20 𝐿𝑜𝑠 m
21 ℓ𝑐𝐵 %
22 𝑆𝑠𝑡𝑎𝑏 m2

23 𝐵/𝑇 -
24 𝐿𝑤𝑙 m
25 𝐴𝑡/(𝐵𝑇) -
26 𝐴𝑤𝑝 m2

27 𝐵𝑚𝑙𝑑 m
28 𝑆𝑡𝑜𝑡 m2

29 𝑖𝐸 deg
30 𝑆𝑏𝑟𝑎𝑐𝑘𝑒𝑡 m2

31 𝐿/𝑇 -
32 𝑆𝑏𝑖𝑙𝑔𝑒 m2

33 𝑆𝑠ℎ𝑎 𝑓 𝑡 m2

(c) Permutation Importance (PI)

Ranking ID Units

1 𝐹𝑛 -
2 𝑉𝑠 kn
3 𝐶𝑝 -
4 ℎ𝑏𝑡 m
5 𝐴𝑏𝑡 m2

6 𝐷𝑡 m
7 𝑆𝑎𝑝𝑝/(𝐿𝑇) -
8 𝐶𝑚 -
9 𝐴𝑡 m2

10 ℓ𝑐𝐹 %
11 ∇ m3

12 𝑇 m
13 𝐿/𝐵 -
14 𝐶𝑤𝑝 -
15 𝐶𝑏 -
16 𝐿𝑜𝑠 m
17 𝐴𝑤𝑝 m2

18 𝐿/𝑉 -
19 𝑆𝑡𝑜𝑡 m2

20 ℓ𝑐𝐵 %
21 𝐵𝑚𝑙𝑑 m
22 𝐵/𝑇 -
23 𝑆𝑠𝑘𝑒 𝑔 m2

24 𝑖𝐸 deg
25 𝑆𝑠𝑡𝑎𝑏 m2

26 𝐿𝑤𝑙 m
27 𝐴𝑡/(𝐵𝑇) -
28 𝑆𝑏𝑖𝑙𝑔𝑒 m2

29 𝐿/𝑇 -
30 𝑆𝑟𝑢𝑑𝑑𝑒𝑟 m2

31 𝑆𝑠𝑡𝑟𝑢𝑡 m2

32 𝑆𝑏𝑟𝑎𝑐𝑘𝑒𝑡 m2

33 𝑆𝑠ℎ𝑎 𝑓 𝑡 m2
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Figure 5.7: Comparison of feature selection methods (Domain Knowledge, Backward Feature Elimination, and Permutation
Importance), showing the impact of only training the model on the highest ranked features, based on their importance.

5.5 Test for extrapolation condition
The extrapolation tests assess model performance when specific feature values are excluded from the
training set, simulating conditions where predictions are required beyond the observed data range.
Three scenarios are considered: Leave-one-𝐹𝑛-out (LOFO), Leave-one-𝐵/𝑇-out (LOBO), and Leave-one-
𝐶𝑝-out (LOCO). Each scenario evaluates the model’s ability to generalize by predicting resistance values
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outside the range of a single excluded feature. Figure 5.8 presents histograms illustrating the entire
range of data present for that specific feature.
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Figure 5.8: Histogram plots visualizing data distribution for every scenario.
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Figure 5.9: Scatter plots visualizing data distribution for every scenario.
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Figure 5.10: Bin plots visualising data distribution for every scenario.

Fig. 5.9 shows scatter plots of resistance values against each excluded feature, providing a detailed
view of data distribution within the bins across the full range. These plots visually clarify how the data
is segmented for extrapolation, with colour-coded bins distinguishing the excluded regions from the
training data. Figure 5.9(a) shows a recognizable pattern, suggesting some structure in the data, while
Fig. 5.9(b) and (c) exhibit much higher variance. This variability is likely due to the wide range of ship
dimensions and speeds represented in the dataset.

Finally, as mentioned in the extrapolation methodology Section 4.2.5, Figure 5.10 presents bin plots
that categorize data into left, middle, and right bins for testing. In each scenario, the model is trained
on data in the middle bin and tested on either the left or right bin, allowing for targeted evaluation of
extrapolation performance. The outer bins aim to contain approximately 20 data points each. However,
this is not always achievable due to the risk of data leakage. All data points associated with a specific
build number (𝑏𝑛) are forced to remain within the same bin.

The initial extrapolation assessments are conducted using all data-driven models (DDMs). As the
physical models (PMs) are already known to perform well in extrapolation, and therefore additional
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testing of PMs in this context was deemed unnecessary. The results of all DDMs in extrapolation
condition are presented in Table 5.8.

Table 5.8: Performance evaluation of all DDMs in the extrapolation scenarios.

Left bin extrapolation Middle bin Right bin extrapolation

MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

(kN) (%) (-) (kN) (%) (-) (kN) (%) (-)

Model Scenario

DDM-a LOFO 45.1 202.6 -1.04 25.8 32.5 0.86 58.6 26.1 0.88
DDM-a LOBO 10.2 11.0 0.96 25.8 32.5 0.86 26.9 34.2 0.93
DDM-a LOCO 26.5 98.1 0.80 25.8 32.5 0.86 56.5 20.4 0.88

DDM-b LOFO 13.1 34.0 0.80 13.6 14.4 0.96 37.1 31.4 0.97
DDM-b LOBO 11.1 16.6 0.96 13.6 14.4 0.96 18.9 25.2 0.97
DDM-b LOCO 10.9 23.7 0.97 13.6 14.4 0.96 27.8 12.7 0.97

DDM-c LOFO 21.8 86.0 0.51 18.3 12.0 0.92 109.9 54.9 0.60
DDM-c LOBO 9.6 8.7 0.95 18.3 12.0 0.92 15.1 9.1 0.98
DDM-c LOCO 6.4 5.3 0.99 18.3 12.0 0.92 73.0 16.8 0.64

DDM-d LOFO 15.4 36.9 0.73 7.6 7.0 0.99 16.2 7.7 0.99
DDM-d LOBO 139.2 182.0 -8.91 7.6 7.0 0.99 150.7 66.7 -1.43
DDM-d LOCO 41.6 126.2 0.62 7.6 7.0 0.99 292.4 85.8 -1.99
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Figure 5.11: Extrapolation results of DDM-d for the LOBO scenario, illustrating reduced accuracy and increased variability
compared to its strong interpolation performance. Detailed metrics are in Table 5.8.

The DDM extrapolation results in Table 5.8 starkly contrast with their interpolation performance,
underscoring the significant challenges of predicting beyond the training range. DDM-a fails dramatically
in the left bin, with MAPE exceeding 200%, reflecting its inability to generalize effectively, and even in
the right bin, its performance remains unreliable with only moderate improvements. DDM-b performs
somewhat better, but its errors in the left bin and reduced reliability in extrapolation scenarios highlight
its limitations compared to interpolation. DDM-c shows highly inconsistent performance, with poor
results in the left bin under LOFO and only achieving strong outcomes under specific conditions like
LOBO and LOCO in the right bin. Its overall reliability, however, remains questionable. DDM-d performs
moderately well in the LOFO scenario, achieving reasonable accuracy, but its performance declines
significantly in other scenarios, such as LOBO and LOCO, where large errors and high variability are
observed.

The scatter plot and error distribution in Fig. 5.11 further emphasize the challenges faced by DDMs
under extrapolation. While right-bin predictions cluster closer to the diagonal (ideal line), left-bin
predictions exhibit a wide spread, leading to large relative errors, as shown in the histogram. These
results confirm that none of the models maintain their interpolation-level accuracy in extrapolation
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scenarios, underscoring the inherent difficulty of predicting resistance values beyond the observed
training range.

Table 5.9: Performance evaluation of the optimal hybrid architecture (HM-c) with a parallel-correction configuration, tested
under the LOFO scenario, with all data-driven models assessed in combination with this configuration.

Left bin extrapolation Middle bin Right bin extrapolation

MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

(kN) (%) (-) (kN) (%) (-) (kN) (%) (-)

Model Fusion LOFO

HM-c DDM-a 7.4 10.9 0.94 9.3 5.3 0.98 21.8 11.3 0.99
HM-c DDM-b 7.4 9.8 0.93 9.0 5.0 0.98 45.4 12.6 0.88
HM-c DDM-c 5.1 6.8 0.97 5.4 3.3 0.99 25.1 6.6 0.96
HM-c DDM-d 4.8 10.0 0.98 5.8 3.8 0.99 41.8 8.2 0.88

While the DDM results in Table 5.8 highlight significant challenges in extrapolation scenarios, hybrid
models (HMs) offer an opportunity to address these limitations by combining the strengths of physical
models with data-driven corrections. To explore this potential, the best-performing HM configuration
(HM-c) is evaluated under the LOFO scenario, integrating physical insights with each DDM.

Table 5.9 shows that HM-c improves extrapolation accuracy across all bins compared to standalone
DDMs in the Leave-one-𝐹𝑛-out (LOFO) scenario, where specific Froude number ranges are excluded
from the training set. The HM-c and DDM-c combination performs best in this scenario, achieving the
lowest MAPE and highest 𝑅2 in the left bin, while also maintaining strong accuracy in the middle and
right bins.
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Figure 5.12: Performance of the optimal configuration for the LOFO extrapolation scenario: the hybrid model (HM-c) combined
with the data-driven model (DDM-c).

The scatter plot and error distribution in Fig. 5.12 provide further insights into these improvements.
Previously, standalone DDMs struggled significantly with left bin extrapolation in the LOFO scenario,
showing large variability and high error magnitudes. This is no longer the case with HM-c, as left
bin predictions now align more closely with the ideal line, reflecting significantly reduced error
magnitudes. The error distribution also shows narrower and more balanced relative errors across all
bins, demonstrating the hybrid model’s ability to address the weaknesses of DDMs.

Table 5.10 shows that HM-c significantly improves extrapolation accuracy across all bins in the LOBO
scenario. The HM-c and DDM-c combination achieves the best overall performance, with low MAE
(14.8 kN) and MAPE (11.9%) in the left bin and strong results in the middle and right bins, maintaining
high 𝑅2 values near 1. In contrast, the HM-c and DDM-d combination performs poorly in the left bin,
with high errors (MAPE: 32.9%) and a negative 𝑅2, indicating instability.

Figure 5.13 illustrates these results visually. The left bin predictions from HM-c paired with DDM-c
align closely with the ideal line, showing reduced variability compared to standalone DDMs. The
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Table 5.10: Performance evaluation of the optimal hybrid architecture (HM-c) with a parallel-correction configuration, tested
under the LOBO scenario, with all data-driven models assessed in combination with this configuration.

Left bin extrapolation Middle bin Right bin extrapolation

MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

(kN) (%) (-) (kN) (%) (-) (kN) (%) (-)

Model Fusion LOBO

HM-c DDM-a 4.3 4.4 0.99 9.3 5.3 0.98 21.9 10.9 0.91
HM-c DDM-b 3.9 4.0 0.99 9.0 5.0 0.98 11.3 6.3 0.98
HM-c DDM-c 14.8 11.9 0.90 5.4 3.3 0.99 9.5 6.6 0.99
HM-c DDM-d 39.9 32.9 0.05 5.8 3.8 0.99 138.9 56.0 -1.16

0 100 200 300 400 500 600 700 800 900
Actual Rtot (kN)

0

100

200

300

400

500

600

700

800

900

Pr
ed

ict
ed

 R
to

t (
kN

)

Left bin predictions
Right bin predictions
Ideal Line

(a) Actual vs. Predicted values (kN)

40 20 0 20 40
Relative Error (%)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Re
la

tiv
e 

Fr
eq

ue
nc

y 
(-)

(b) Relative errrors (%)

Figure 5.13: Performance of the optimal configuration for the extrapolation LOBO scenario: the hybrid model (HM-c) combined
with the data-driven model (DDM-c).

error histogram further confirms this, with a tighter distribution of relative errors centered near zero,
particularly for left bin predictions, demonstrating improved consistency and accuracy across bins.

Table 5.11: Performance evaluation of the optimal hybrid architecture (HM-c) with a parallel-correction configuration, tested
under the LOCO scenario, with all data-driven models assessed in combination with this configuration.

Left bin extrapolation Middle bin Right bin extrapolation

MAE MAPE R2 MAE MAPE R2 MAE MAPE R2

(kN) (%) (-) (kN) (%) (-) (kN) (%) (-)

Model Fusion LOCO

HM-c DDM-a 4.3 5.9 1.00 9.3 5.3 0.98 34.9 8.9 0.93
HM-c DDM-b 3.1 4.2 1.00 9.0 5.0 0.98 28.8 8.7 0.95
HM-c DDM-c 5.2 6.0 0.99 5.4 3.3 0.99 48.7 12.0 0.85
HM-c DDM-d 15.6 21.8 0.95 5.8 3.8 0.99 287.4 80.8 -1.96

Table 5.11 highlights the performance of HM-c in the LOCO scenario, where specific prismatic
coefficient (𝐶𝑝) ranges are excluded from the training set. The HM-c and DDM-b combination achieves
the best results, with low errors in the left bin (MAE: 3.1 kN, MAPE: 1.4%) and consistently strong
performance across all bins. In contrast, the HM-c and DDM-d configuration performs poorly in the left
bin (MAPE: 21.8%) and fails in the right bin, with extremely high errors (MAE: 257.4 kN, MAPE: 80.8%)
and a negative 𝑅2.

Figure 5.14 illustrates the performance of the HM-c and DDM-c combination in the LOCO scenario.
The left bin predictions align closely with the ideal line, while the right bin predictions show some
larger errors in the middle resistance range. The error histogram is centered around zero with limited
variability, though the spread is slightly wider compared to the results for LOFO (Fig. 5.12) and LOBO
(Fig. 5.13). Despite these slight inconsistencies, the HM-c and DDM-c combination maintains strong
overall performance in the LOCO scenario.
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Figure 5.14: Performance of the optimal configuration for the extrapolation LOCO scenario: the hybrid model (HM-c) combined
with the data-driven model (DDM-c).

To summarize, the extrapolation tests highlight the poor performance of pure DDMs, which exhibited
high variability and large errors across all scenarios. Surprisingly, kernel ridge-based DDMs were
particularly unstable, often producing large deviations and demonstrating a lack of reliability. Even
when fused with PM-b (Holtrop & Mennen, 1984) using the parallel-correction (HM-c) approach,
these models remained inconsistent, yielding suboptimal results. In contrast, the hybrid approach
(HM-c) demonstrated significant improvements in extrapolation accuracy by effectively integrating
physical models with data-driven corrections. Among the tested configurations, the HM-c and DDM-c
combination consistently delivered the best performance, achieving low errors and high 𝑅2 values, and
proving to be the most robust and reliable option for extrapolation scenarios.
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In this chapter, the results of the experimental tests are discussed. The discussion begins
with a detailed interpretation of the results from each experimental set, providing insights

into their specific outcomes, as outlined in Section 6.1. Following this, the study’s key findings
are evaluated in relation to related work, highlighting areas of consistency and the validity of
the findings/contributions, as discussed in Section 6.2. Finally, the discussion addresses the
limitations of the study in Section 6.3 and provides recommendations for future research to
build upon the insights of this study in Section 6.4.

6.1 Interpretation of results
This section provides insights into the factors influencing model performance across several tests:
interpolation, with a specific ship, with less data, with other features, and extrapolation. It highlights
key drivers of PM, DDM, and HM performance, offering context and guidance for future research and
applications in ship resistance modeling.

6.1.1 Interpolation
The initial experimental tests were thoughtfully designed to serve two purposes: ensuring that each PM,
DDM, and HM performed accurately within a widely-known approach (nested k-fold cross validation) -
before being exposed to more complex scenarios like extrapolation - and to set a baseline performance
to compare one model to another.

To summarize the results, the hybrid models (HMs) show clear superiority over both physical
models (PMs) and data-driven models (DDMs), with the parallel-correction hybrid (HM-c) achieving
the highest accuracy and stability. The PMs perform remarkably well, offering moderate accuracy and
consistent results, though they show increased variance at higher resistance ranges. Among the DDMs,
DDM-d (Kernel Ridge) performs best, closely followed by the linear ridge model with transformed
speed input (DDM-c); both capture trends flexibly but are occasionally affected by data noise, resulting
in some significantly off predictions.

The following analysis examines the underlying factors and potential drivers behind the observed
variations in PM interpolation performance:

1. Expected superiority of Code 7: A slight improvement in model performance is observed for
PM-b, compared to PM-a, which could be attributed to the expanded data sample in (Holtrop
& Mennen, 1984) (Code 7). This code includes 334 ship models, representing a wider design
variance in the data used for Code 7.

2. Increasing absolute errors: The scatter plot in Fig. 5.1(a) clearly demonstrates that absolute errors
increase noticeably with higher target resistance values, particularly in the upper resistance range.
However, the relative errors (%) remain relatively consistent, as shown in the error distribution in
Fig. 5.1(b).

The following analysis examines the underlying factors and potential drivers behind the observed
variations in DDM interpolation performance:

1. Transforming features effective: The only difference between DDM-a and DDM-b is the trans-
formed speed input for the latter, resulting in 𝑀𝐴𝑃𝐸 decrease from 32.5% to 14.4%. This
demonstrates the effectiveness of domain-specific knowledge, such as the cubed speed-resistance
relation, when constructing simple predictive models.

2. Pointwise predictions can be tricky: Some literature (Coraddu, Oneto, et al., 2022) already posed
the challenge for DDMs to make pointwise predictions, meaning that on average, their accuracy
is high, but not pointwise. Therefore, in some cases, DDMs can provide physically inconsistent
predictions and this phenomenon is observed in Fig. 5.2.

The following analysis examines the underlying factors and potential drivers behind the observed
variations in HM interpolation performance:

1. PM output as DDM input too weak: In HM-a, the PM’s output is treated as an additional feature
for the data-driven model (DDM), rather than directly adjusting the PM output as in HM-b and



6. Discussion 6.1. Interpretation of results 53

HM-c. This means that the DDM is effectively trying to learn a mapping from both the original
features and the PM output to the target, rather than explicitly correcting the PM’s predictions.
As a result, the PM’s insights may become “diluted” when mixed with the other input features,
limiting the DDM’s ability to leverage the PM’s baseline accuracy directly in its final prediction.

2. Proportional adjustment favoured over additive adjustment: In HM-b, the DDM learns an
additive residual, which applies a fixed correction regardless of the magnitude of the PM’s output.
This can be limiting when the errors in the PM predictions scale with the target. For example,
at higher values of the target, a proportional error might require a larger correction to bring the
prediction close to the true value. HM-c’s multiplicative correction naturally scales with the PM
output, enabling it to adjust the predictions proportionally across different ranges, which may
lead to greater accuracy, especially in scenarios with a wide range of values.

6.1.2 With specific ship
The purpose of the tests with a specific ship is to construct a resistance curve for the best models from
each modeling approach - physical models (PM), data-driven models (DDM), and hybrid models (HM) -
providing insights into their practical applicability and performance in predicting calm-water resistance.

To summarize the results, Fig. 5.5 shows that the hybrid model (HM-c) achieves the most accurate
predictions, closely matching CFD observations across all speeds by combining physical principles
with data-driven corrections. The physical model (PM-b) slightly overestimates the resistance at
higher speeds, while the data-driven model (DDM-d) deviates significantly due to unstable pointwise
predictions.

The following analysis examines the underlying factors and potential drivers behind the observed
variations in tests with specific ship:

1. Challenges with DDMs: The resistance curves in Fig. 5.5 highlight the pointwise prediction
challenges of data-driven models (DDMs), specifically the Kernel Ridge-based model (DDM-
d), which shows significant deviations from the actual CFD observations for this ship. This
underscores the need for caution when relying solely on purely data-driven approaches.

2. Slight overshooting by HM-c: In Fig. 5.5, HM-c slightly overcorrects the output of PM-b for lower
resistance values, ending up slightly below the actual CFD values. This is likely influenced by the
high errors associated with the pure data-driven model (DDM-d).

6.1.3 With less data
The purpose of the tests with less data was to evaluate the performance of the best PM, DDM, and HM
models under limited data conditions by measuring the mean average percentage error (MAPE) as
training data increases incrementally from 10% to 100% of CFD observations.

To summarize the results, the test depicted in Section 5.3 showed the added-value of the limited data
requirement of most promising hybrid model (HM-c), compared to the most promising data-driven
model (DDM-d) in interpolation scenario. As CFD observations were randomly added to the training
data, HM-c constantly outperformed DDM-d and even ended up performing better than the best
physical model (PM-b).

The following analysis examines the underlying factors and potential drivers behind the observed
variations in tests with less data:

1. Consistently lower hybrid model error with less data: As highlighted in the introduction (Chapter
1), access to high-volume, high-velocity, and high-variety data - collectively referred to as Big Data -
is often constrained. Therefore, it is encouraging to observe that the best hybrid model consistently
outperforms other DDMs across the entire range (10%–100%) of CFD observations, with its
advantage being most pronounced at the 10% end of the spectrum and gradually diminishing as
more data becomes available for training.

2. DDM might catch up with the HM: A valid question to ask is whether the DDMs will eventually
catch up with the HMs, as the amount of observations goes to infinity. Given the trends observed,
the hypothesis is that with infinite data, the performance of the data-driven model (DDM) would
continue to improve and might eventually match or slightly surpass that of the hybrid model
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(HM), as purely data-driven approaches generally excel with large datasets. In a case where
unlimited data is available with plenty of design variations, any arbitrary DDM is able to directly
learn the variations, while an HM will always need to correct the imperfections of the physical
model (PM). Still, in case of the parallel-correction hybrid model, one could debate that this HM
will also learn to perfectly correct the PM in all cases. Expected is that the HM would reach a
performance plateau sooner, suggesting that the HM remains more effective and stable at lower
data volumes. Future research would need to investigate if the DDM would eventually catch up
or even surpass the HM.

6.1.4 With other features
The purpose of the tests with other features was to determine whether a more optimal feature set exists
for twin-screw superyachts compared to the traditional feature set based on (Holtrop & Mennen, 1984).

To summarize the results, the test described in Section 5.4 highlighted the advantages of feature
selection guided by domain knowledge. While both statistical methods - backward feature elimination
(BFE) and permutation (PI) - proved effective, this test demonstrated that domain knowledge-based
feature selection remains the most reliable approach. This is largely because ship resistance is a
well-studied prediction problem within the industry, with decades of research providing deep insights.
However, the predictive modeling approaches presented in this study could also be applied to other
problems in the naval architecture domain. In this case, a domain knowledge-based feature selection
method would only be effective if the prediction problem is similarly well understood.

The following analysis examines the underlying factors and potential drivers behind the observed
variations in tests with other features:

1. Existence of an optimal number of features: A notable finding from these tests is the identification
of an optimal number of features for maximised model performance. As detailed in Section 5.4, all
feature selection methods showed a trend where MAPE values decreased when critical features
were added, indicating improved performance. However, beyond a certain threshold, adding
more features led to an increase in MAPE values, suggesting that excessive features introduce
noise or redundancy, ultimately reducing model efficiency.

Why is there an optimal number of features existing? The current hypothesis is that at some point,
a selection of features could explain all variance, which is sometimes already reached with the
five highest-ranked features. After this, extra features will only add extra noise to the predictions.

6.1.5 Extrapolation
The purpose of the extrapolation tests in this study was to evaluate the models’ performance in predicting
calm-water ship resistance when exposed to data outside the training set’s range.

To summarize the results, the best DDM during interpolation (DDM-d: Kernel Ridge) performed
dramatically poor in basically all extrapolation scenarios (LOFO, LOBO and LOCO), for both left and
right bin extrapolation. This was highly improved by the parallel-correction hybrid model (HM-c)
configuration, and multiple DDMs were tested in conjunction with this hybrid configuration. These
tests revealed that either the linear ridge model with transformed speed input (DDM-d) or the random
forest model (DDM-d) showed the best results for extrapolation.

The following analysis examines the underlying factors and potential drivers behind the observed
variations in DDM extrapolation performance:

1. Poor extrapolation performance of all DDMs: The literature review highlighted the challenge for
DDMs to achieve strong performance in extrapolation scenarios—a limitation that was anticipated.
However, the severity of their poor performance, as shown in Section 5.5, was unexpected,
particularly for the Random Forest model (DDM-c) and the Kernel Ridge model (DDM-d). This
poses a significant challenge for the hybrid modeling approach, as these DDMs require substantial
corrections to outperform the PMs, which currently set the standard.

The following analysis examines the underlying factors and potential drivers behind the observed
variations in HM extrapolation performance:
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1. Parallel-correction approach able to correct a lot: When comparing the DDM results (Table 5.8)
with the HM-c results (Table 5.9, Table 5.10 and Table 5.11) for extrapolation, there can be concluded
that the parallel-correction approach is capable of applying really effective corrections. All MAPE
values for the DDMs rarely fell below 10% in any scenario, with some exceeding 180%. In contrast,
the HM-c model consistently demonstrated MAPE values below 12.6% across all extrapolation
scenarios, except when fused with the poorly performing DDM-d. The poor performance of
HM-c in combination with DDM-d can be attributed to the dramatically poor performance in
extrapolation conditions, as can be seen in bTable 5.8

6.2 Comparison with previous studies
In the previous section, the interpretation of the results was discussed in detail. Here, the focus shifts to
comparing these findings with existing literature.

6.2.1 Selection of hybrid model
This study focused on testing two types of hybrid models: the serial and parallel approaches. These
were chosen primarily because they have consistently delivered significant performance improvements
in the literature and are relatively straightforward to construct.

Hybrid models were first applied in naval architecture by Leifsson et al. (2008), achieving a 65%
error reduction in fuel consumption predictions with both a serial and parallel approach. Subsequent
applications by Mei et al. (2019) and Skulstad et al. (2021) demonstrated improved predictions for
ship motion and positioning using both serial and parallel approaches. More recent studies, such as
Odendaal et al. (2023) on energy consumption and Kalikatzarakis et al. (2023) on underwater radiated
noise, showcase the versatility and effectiveness of parallel approaches, Kalikatzarakis et al. (2023) with
a recursive step included in the pipeline.

Finding, computerizing and validating a physical model can be time-intensive and very challenging.
Once the physical model is functioning correctly, integrating it with data-driven models becomes
relatively straightforward. This simplicity is another key reason these approaches were chosen.

6.2.2 Best hybrid model
It would not make sense to compare actual error values of previous studies, as the algorithm’s success
is context-dependent, as described in the no-free-lunch theorem (Adam et al., 2019). Though, it
is interesting to compare the relative performance of hybrid models within specific studies, as a
comparative analysis between these models is conducted in this thesis as well. For this comparison, it
must be noted that the exact test condition must be investigated as well, since this could highly vary
from the test methodology in this study. Still, by aligning current results with past research, this section
aims to highlight consistencies, discrepancies, and most of all, find further grounds for the conclusions
based on the results of the experiments.

To the author’s best knowledge, only (Leifsson et al., 2008) was able to construct both a serial and
parallel hybrid model and actually test it. This study showed marginally small differences in both
approaches, describing a slight improvement in root mean square error (RMSE) for the parallel approach.
This thesis also found a superior model performance for the parallel-approach, but the improvements
were significantly larger than what is found in (Leifsson et al., 2008).

6.3 Preconditions and limitations
Predictive modeling is a powerful tool for calm-water ship resistance prediction, but its effectiveness
is heavily influenced by the quality of the data, the underlying assumptions, and the context in
which models are applied. This section outlines the key preconditions necessary for successful model
development and highlights the limitations that emerged during this study. By understanding these
factors, the challenges associated with hybrid models and data-driven approaches can be better
addressed. Recommendations for mitigating these challenges are provided in Section 6.4.

6.3.1 Using historical data
It should be pointed out that there is a considerable difference between the validation of a predictive
model developed from a designed experiment and a model developed from data collected without the
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aid of an experimental design (e.g. historical data). In a designed experiment, all features (variables)
are supposedly held constant except those varied according to the design; ensuring that all relevant
factors are accounted for. In this way, the true importance of a specific feature can be studied, which is
highly favoured by predictive models forecasting a numerical value. However, a systematic and wide
variation of all feature’s numeric value is rarely present in historical data. And it should be mentioned,
for complex problems like ship resistance, even with the aid of a designed experiment, achieving such
systematic variation in features is not feasible in many cases.

In the context of a ship’s geometry, many design parameters are interdependent due to physical
constraint. For instance, changes in hull length waterline may inherently affect displacement, longitudinal
centre of floatation, and wetted surface area. This interconnectedness means that varying one feature
while holding others constant is often impractical or impossible. As a result, achieving systematic and
independent variation of all features is unfeasible, which complicates the modeling process and can affect
the predictive accuracy of models developed from such data. In regression methods, this phenomenon
is known as multicollinearity, where supposedly independent variables are highly correlated with each
other.

Not all prediction problems suffer from multicollinearity. Consider the classic housing price
prediction problem, where features such as the square footage of the house, distance to the nearest
city centre, and the number of schools in the vicinity are used. These are relatively easy prediction
problems, first, because extensive housing price datasets are available, but more importantly, because
these features are typically uncorrelated, making the problem free from multicollinearity. Though, in
naval architecture or in engineering in general, many variables have some physics or geometry-based
correlation, and care must be taken in such cases. Recommendations are included in Section 6.4.

6.3.2 Using misaligned data
A very common problem in current Feadship datasets is the presence of what seems to be misaligned
data. Unless working with time-series data, any data that is used for predictive purposes must accurately
capture a specific state or "snapshot" of the system in time. In shipbuilding, projects evolve rapidly,
which might lead to alternative system characteristics. Common practice is to define these system
changes in design revisions, but it is vital for the data to capture these changes as well. If this is not
carefully monitored and misalignment between features and/or the target is present, the model’s
performance will decline, especially in cases where limited data is present. Recommendations are
included in Section 6.4.

6.3.3 Using sparse data
Another common problem in current Feadship datasets is the presence of sparse data. In each model
aiming to predict a numerical value, there are features 𝑋 and one or multiple targets 𝑌, which have to
be defined in advanced of the model training. Any arbitrary selected prediction algorithm will learn 𝑋
and 𝑌 for every observation (single data point), and in the most ideal case, all observations can be used.
Though, a common problem in historical data is that a large proportion of the data points are zero, null,
or missing, meaning it contains many inactive values compared to meaning-full entries. This is known
as sparse data or a sparse dataset.

It should be mentioned that, when even a single feature or target value is missing in an observation,
the complete data point becomes unusable. This could be a very small percentage of the total dataset,
but when this percentage is bigger, a significant portion of the dataset needs to be removed, resulting in a
loss of what could have been really valuable information. Recommendations are included in Section 6.4.

6.3.4 Using predictive analytics
The results presented in Chapter 5 basically showed that accuracy of the most-promising DDMs and
HMs is very good when making prediction in interpolation condition. And while the parallel-correction
hybrid model (HM-c) showed significant improvement for extrapolation condition, predictive analytics
still remains challenging and tricky in these cases. Among the considerations further detailed in Chapter
7, a modeling approach can primarily be selected based on time/cost/effort constraints, the need for
extrapolation, and the desired level of model accuracy. In case of calm-water ship resistance, the three
modeling approaches presented in this study (PM, DDM and HM) are possible, and computational
fluid dynamics (CFD). The decision framework for selecting the appropriate modeling approach is
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depicted in Fig. 6.1.
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Figure 6.1: Decision framework for selecting predictive modeling approaches, incorporating physical models (PM), data-driven
models (DDM), hybrid models, and CFD, based on time constraints, extrapolation requirements, and model accuracy.

In Fig. 6.1, it becomes evident that the decision-making process is highly influenced by whether
extrapolation (see explanation in Section 4.2.5) is present for the prediction problem. When time, cost,
and effort constraints are absent, it is recommended to conduct computational fluid dynamics (CFD)
simulations, as a majority of the resistance predictions fall within interpolation conditions. Thus, when
extrapolation is present and when time is contrained, CFD seems appropriate.

When time, cost, and effort are constrained, identifying an appropriate physical model (PM) becomes
essential. But what defines a ‘suitable’ PM in context of hybrid modeling? Based on the findings of this
study, the following preconditions are established:

1. Extrapolation robustness: In extrapolation scenarios, it makes no sense to use a PM with narrower
permissible parameter ranges than the available training data. A check for these permissible
ranges can be performed, as demonstrated in Section 4.1.1.

2. Physical plausibility: The PM’s behaviour should align with the underlying physical theory
relevant to the problem. For ship resistance, this requires the PM to logically decompose
resistance into components such as wave-making resistance, viscous resistance, form resistance,
and appendage resistance, among others. Each component must adhere to hydrodynamic
principles and follow established scaling laws.

3. Computable: Considering future advancements toward prescriptive analytics (described in
Section 2.2), it is crucial that the PM is computable to enable seamless integration with the DDM

4. Validation: The PM should include a predefined validation example/benchmark, enabling
validation even before the integration with any DDM. For the PMs used in this study, (Holtrop &
Mennen, 1984; Holtrop & Mennen, 1982) included such an example.
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5. Gaussian fit: Certain DDMs perform optimally with a Gaussian-shaped distribution of the target
data (Tax et al., 2023), among them ridge and kernel-based models, which are used in this study.
Parallel hybrid models learn either the residuals or correction factors required to alter the PM’s
output in the right direction. For this reason, these data distribution are ideally Gaussian shaped.

The final precondition mentioned at point 5, a Gaussian fit, deserves a bit more explanation. As
mentioned, some DDMs favour a Gaussian-shaped distribution of the target data. For this purpose,
it helps to consult the data distribution (Fig. 6.2), presenting all correction factors required to alter
the physical model’s output to match the CFD values. Remember that these correction factors are
learned by the DDM in the parallel-correction hybrid model (HM-c) in this study. When plotted in
a histogram (Fig. 6.2), deviations from the Gaussian-fit can be detected, such as: When plotted in a
histogram (Fig. 6.2), deviations from the Gaussian fit can be detected, such as:

• Skewness: Asymmetry in the distribution, with longer tails on one side, indicating non-uniform
nature of the data.

• Heavy Tails (Leptokurtic): More extreme values than expected on the tails of the bell-curve,
suggesting sensitivity to outliers.

• Light Tails (Platykurtic): Fewer extreme values than expected on the tails of the bell-curve,
indicating a lack of variability in residuals.

• Multimodality: Multiple peaks in the distribution, indicating distinct subgroups or behaviours
within the data.

• Outliers: Individual extreme values far from the main data cluster, suggesting inconsistency in
the data.
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Figure 6.2: Gaussian fit for all correction factors required to alter the output of the physical model (PM-b) (Holtrop & Mennen,
1984), such that the output matches the actual CFD observation.

In addition to deviation from the Gaussian fit, this histogram plot (Fig. 6.2) can also serve more as an
exploratory tool that is highly recommended once the PM is developed and coded.

6.4 Recommendations
Ultimately, this research and its findings provide only an initial glimpse into the broader potential
of these methodologies. The experiments conducted were notably limited, with the models being
evaluated solely on a narrowly focused dataset of computational fluid dynamics (CFD) results from
ships spanning approximately the last ten years. Consequently, the insights gained may have limited
applicability to other challenges within the field of naval architecture or related disciplines. A follow-up
study should incorporate these lessons to enhance the reliability and scope of the results.
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6.4.1 Overcoming limitations
Several limitations, primarily related to data and predictive models, are discussed in Section 6.3. This
section offers recommendations for addressing these challenges.

Using historical data - In cases where correlated features are inevitable, model performance
can often improve by either removing one of the correlated features or creating a combined
feature. Methods such as Pearson and Spearman correlation matrices, along with Variance
Inflation Factor (VIF) analysis, are valuable for identifying these correlations.

A further recommendation concerns the number of features utilized in the model. In the
context of historical data, there is often a specific balance in feature selection that yields
the best results. For all feature selection methods examined in Section 5.4, MAPE values
decreased as important features were added, but beyond a certain point, adding more
features caused MAPE values to increase again. It is strongly recommended to evaluate this
during model development, as the phenomenon is straightforward to investigate, and no
model should be more complex than necessary.

Using misaligned and sparse data - To prevent losing valuable information, the data can be
enhanced through a process called feature or dataset enrichment. This involves carefully
adding data that aligns with the system’s state at a specific point in time, done in Section 3.3.
This is a time-intensive task requiring thorough validation; if alignment or accuracy cannot
be verified and there have been system changes over time, it is better to remove such
observations, as it makes little sense for the algorithm to learn spurious relationships from
incorrect data.

Using predictive models - In case of real-world adoption, it is essential to communicate the
limits of the modeling approach, among them the presence of extrapolation. The developer
of the predictive model is most likely aware of the model limitations, but the developer has
little control over its use, when adopted in real-world context. A potential remedy is to
integrate the model limits in the code itself, alarming the user when the training bounds are
exceeded.
For the decision-making on the selection of modeling approaches, see Fig. 6.1.

6.4.2 Future work
This study has identified several areas for improvement that deserve further exploration in future
research.

Automatic pipeline for hydrostatics retrieval - Section 5.3 demonstrated that model
performance improves as the number of observations in the training data increases for
both DDMs and HMs. However, this study revealed that retrieving reliable and consistent
hydrostatic data is a highly time-intensive process. To facilitate future studies or real-world
adoption, developing an automated solution for this retrieval process would be highly
beneficial.

Further improvement of DDM performance in extrapolation - The findings in Section 5.5
clearly indicate that the extrapolation performance of the parallel-correction hybrid model is
limited by the poor performance of its data-driven component. While the hybrid approach
proves highly effective overall, improving the data-driven model remains a critical challenge.
A follow-up study focusing specifically on enhancing the accuracy and reliability of data-
driven predictions under extrapolation conditions would be highly beneficial. Emerging
fields such as symbolic regression and physics-informed neural networks show promise in
addressing this issue by also incorporating physical principles into data-driven models, but
differently.

Optimization methods - The hybrid architecture developed in this study provides a very
suitable platform for optimization (prescriptive analytics). The hypothesis is that finding
optimization methods will not be the most challenging part, but rather validating if the true
feature-target relation is capture by the hybrid architecture.
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Categorical data - This study relies solely on numerical data for ship resistance prediction,
but the current hypothesis is that incorporating categorical variables such as hull type (e.g.,
displacement, planing), bow types (e.g., straight, flared or bulbous bow) and driveline (e.g.
conventional shaft lines or pods), immersed transom (yes/no) and trim wedge (yes/no)
could significantly enhance model performance. Not all DDMs, but certain ones, such as
Kernel Ridge Regression, can effectively learn from categorical data when it is appropriately
encoded.
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Within the company, numerous of data-driven studies have been conducted for very
domain-specific problems. And with success. (Odendaal et al., 2021) paved the way

by improving energy consumption estimates, achieving propulsion and auxiliary power
predictions for varying operational conditions within 3% and 9% of actual values. Shortly
after, (De Haas et al., 2022) developed a model for marine biofouling growth prediction,
demonstrating a 6.9% improvement in accuracy over previous methods. Last year, (Opstal
et al., 2023) advanced HVAC energy demand estimation, reaching an accuracy of 91.3%.

All of these studies, including this thesis, used hybrid architectures for their prediction
strategy and all proved to be highly effective. And although there is a diverse array of
challenges within the company well-suited for this type of predictive (supervised learning)
models, there still often seems to be a preference for traditional methods or even first-principles.
The question, therefore, is not whether hybrid models are effective, but rather what is required
to successfully adopt and scale this new wave of innovation. That is the question here, and
without going into the company’s internal boundaries of adoption, this chapter presents a
brief study into potentional solution approaches.

7.1 A brief note on innovation and technological readiness
There’s no shortage of terms to describe innovation. We hear about incremental innovations, continuous
improvement initiatives, and organic growth programs. Concepts like white spaces, blue oceans, and
red oceans add even more colour to the mix. And the list seems to go on forever.

Though, the definitions that resonate most with me come from The Innovator’s Dilemma by
(Christensen, 1997), a book that I found on Steve Jobs’s favourites list, which categorizes innovation into
two buckets: sustaining innovations, which enhance existing technologies for established customers,
and disruptive innovations, which redefine industry standards by transforming markets. A similar
concept is presented in the Harvard Business Review (HBR) article "Building an Innovation Engine in
90 Days" by (Anthony et al., 2014), which describes "core" and "new-growth innovations" and targets
the same underlying idea. Both offers a straightforward framework for understanding how innovations
impact both established markets and emerging ones.

Figure 7.1: The four types of innovation and the problems they
solve (Satell, 2017).

A more recent HBR article from (Satell, 2017),
revises this dichotomy and uses a more exten-
sive framework with four types - basic research,
sustaining innovations, breakthrough innovation,
and disruptive innovation - where innovation are
categorized based on how well we can define the prob-
lem? and how well can we define the skill domain(s)
needed to solve it? In his framework, which is based
on (Christensen, 1997)’s work, basic research fo-
cuses on poorly defined problems in unstructured
domains, often exploring entirely new areas of
knowledge. Sustaining innovations address well-
defined problems in structured domains, refining
and improving existing systems. Breakthrough innovations solve well-defined problems in unstructured
domains, requiring novel approaches to achieve significant leaps forward. Disruptive innovations
target poorly defined problems in structured domains, transforming markets by redefining how existing
systems operate.

Understanding the readiness of an innovation is just as critical as understanding its type. Technology
Readiness Levels (TRLs), introduced by (Mankins, 1995) at NASA, provide a structured framework for
evaluating the maturity of a technology, from early research (TRL 1) to operational deployment (TRL 9).
While originally developed for aerospace, TRLs are now widely used to manage innovation risk across
industries. Basic research typically aligns with lower TRLs (1–3), focusing on foundational principles,
while sustaining innovations progress through mid-level TRLs (4–6) as technologies become practical
applications. Breakthrough innovations, representing novel solutions, operate in mid-to-high TRLs
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(5–8) as they are validated and scaled. Disruptive innovations can span TRLs 3–9, evolving from early
exploration to redefining markets and achieving operational deployment (Mankins, 1995; Satell, 2017).

7.2 Current state of hybrid models
This section discusses the classification, technological readiness, and value proposition of hybrid models.

7.2.1 Classification of innovation type
According to (Satell, 2017)’s framework, hybrid models are potentially best classified as breakthrough
innovations. Why? Well, because these models require a clear problem definition with well-defined
input variables and prediction target. At the same time, though, the domain in which hybrid models
operate is not well-defined as their applications extend far beyond calm-water ship resistance - ship
weight estimations, project planning estimations, cost estimations, and more. These two characteristics,
a well-defined problem and poorly defined domain, strongly position hybrid models as breakthrough
innovation.

7.2.2 Classification of TRL level
At this stage, as mentioned in this Chapter 7’s introduction, several configurations of hybrid models
(De Haas et al., 2022; Odendaal et al., 2021; Opstal et al., 2023) are developed, tested and deemed
effective for several naval architecture use cases. However, it is important to note that the current state
of these hybrid model codes remains at the proof-of-concept stage, as the thesis projects primarily
focused on training and testing these model types. Actual implementation into existing engineering
workflows and tools would require a different model architecture. Therefore, the technology readiness
level (TRL) of hybrid models currently lies between 3 and 4 (Mankins, 1995), as they have undergone
analytical validation and proof-of-concept testing in a “laboratory” environment but have not yet been
demonstrated in a relevant operational setting.

7.2.3 Value proposition
The value proposition of the hybrid models:

• Reduced computational time: Achieving results within 2% error of high-fidelity CFD simulations
under interpolation conditions is not far away, as more and more CFD observations will be added
to the training set. This can be accomplished with only a fraction of the preparation and operational
time, enabling faster exploration of the design space (J. Harvey Evans, 1959), compared to CFD
simulation.

• Reduced data requirement: Considerably less data is required to equal the accuracy of modern
data-driven models (DDMs), as tested in Section 5.3.

• Enhanced extrapolation capability: Although caution remains necessary when using hybrid
models under extrapolation conditions, Section 5.5 highlights their potential to substantially
outperform modern DDMs in both interpolation as extrapolation scenarios, particularly when
incorporating the recommendations outlined in Chapter 6.

• Enhanced quality and consistency: During literature review, it was found that naval architects
seek to tailor several existing estimation approaches (Section 2.1.3) to yacht design, forcing them to
apply explicit or implicit corrections to these methods. This creates inconsistencies in, for example,
early-stage ship resistance forecasts, which hybrid models address by autonomously applying the
necessary corrections.

• Enhanced integration: The computationally accessible nature of hybrid models allows for seamless
integration with tools like optimization algorithms (Section 2.2), aligning with the company’s
envisioned future developments.

7.3 Strategy for adoption
Organizations aiming to achieve transformative change through internally developed innovations can
gain valuable insights by adopting strategies inspired by the venture capital and startup ecosystem.
Much of the literature referenced in this section is grounded in these approaches.
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7.3.1 Opportunity to start data lake ecosystem
Hybrid models provide an excellent first use case for developing a data lake ecosystem. Configuring
such frameworks (Fig. 7.2) can be challenging without clear use cases, but hybrid models come with
well-defined data requirements, simplifying the development process. Once the data lake structure is in
place, integrating additional applications, such as other machine learning (ML), artificial intelligence
(AI), or even business intelligence (BI) tools, becomes relatively straightforward, in essence only requiring
the creation of alternative data pipelines. As Feadship strives to enhance its data literacy and governance
in the coming years, this represents a significant step in the right direction.

Structured Semi-structured Unstructured

Data Lake

Data Pipeline A

HMs AI/ML Others (BI, etc.)

Data Pipeline B

PDF to CSV Enrichment Clean

Other

Figure 7.2: Simplified visualization of a data lake ecosystem, showcasing raw data (structured, semi-structured, and
unstructured), its ingestion into the data lake, and the creation of data products through pipelines for hybrid models (HMs) and

other applications such as machine learning (ML), artificial intelligence (AI), and business intelligence (BI).

7.3.2 Succeeding in a niche
One of the key principles for successfully adoption of innovations is to first demonstrate their value
within a well-defined niche before attempting to scale their application across broader domains. Drawing
inspiration from concepts outlined in Crossing the Chasm by (Moore, 1991) and The Lean Startup (Ries,
2011), a targeted, focused approach can mitigate risks and provide the foundation for widespread
adoption.

In the context of hybrid models for ship resistance prediction, the niche can be defined as early-stage
design within the Feadship fleet, where traditional methods struggle with a balance between accuracy
and efficiency. This niche is ideal because it aligns with a clear pain point: early-stage designs require
rapid, reliable predictions, yet resource-intensive CFD simulations or error-prone empirical methods
are the current norm. Though, success in the niche is yet to be achieved, as integration in real-world
engineering workflows would require a different model architecture (see Section 7.2.2).

7.3.3 Developing trust with pilot-projects
Once success is achieved in a niche, the next step is to expand into adjacent markets (or use cases),
building on the credibility and insights gained from the initial focus. Geoffrey Moore refers to this initial
focus as the beachhead (initial market) in Crossing the Chasm (Moore, 1991), where securing dominance
in the beachhead facilitates a gradual and strategic expansion into larger or related markets. In the
context of the hybrid models, this entails an expansion to other pilot-projects.

This raises the question of other areas where hybrid models could provide added value. It is crucial
to emphasize that the availability of a suitable physical model (PM) is one of the most important
preconditions, as outlined in Section 6.3.4. With this precondition in place, potential pilot-projects could
include:
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• Bio-fouling growth: (De Haas et al., 2022) has already contributed here, but the work can be
expanded upon by applying the new hybrid model (HM-c) from this study and incorporating
new ship data. Actual adoption of a hybrid approach could yield immediate benefits, given the
pressing and contemporary nature of this challenge.

• Wave bending moments: A potential new use case could be forecasting the wave bending
moments for a new ship. A task that currently requires time and domain-knowledge to convert a
wave scatter diagram (from operational area) into wave bending moments for several longitudinal
nodes of the ship.

Not having a suitable physical model does not have to limit the data-driven opportunities. The pure
data-driven models (DDMs) Chapter 5 showed remarkable performance for interpolation condition,
which entails the majority of the predictions. In this case, examples of potential pilot-projects could
include:

• Predictive maintenance: Forecasting maintenance needs for yachts, which could provide imme-
diate benefits as limited building/maintenance slots are available yearly. A more streamlined
planning process could enhance operational efficiency in this case.

• Ship weight: Forecasting (sea) trial displacement or draughts for new ship designs, which remains
a challenging task.

• Deck high-stacking Forecasting the required height for each deck to optimize design and usability.
• Project planning: Forecasting construction timelines to improve planning accuracy.
• Cost estimations: Forecasting overall project costs, including materials, labour, and operational

expenses.

7.3.4 Refinement
At this stage, significant success has been achieved for multiple pilot-projects with either data-driven
models or hybrid models, ideally integrated within the data lake ecosystem. This presents an opportunity
to further refine model architectures as they are tested against real-world problems, diverse datasets,
and user feedback. Additionally, the process from raw data to actionable data products within the data
lake ecosystem can be streamlined.

7.4 People and skills
The innovation matrix (Fig. 7.1) by (Satell, 2017) highlights various approaches to adopting breakthrough
innovations (like hybrid models), including skunkworks, which are small, autonomous teams within
organizations that focus on innovative projects with minimal bureaucracy. This concept originated from
Lockheed Martin’s "Skunk Works," famed for pioneering aircraft designs during World War II. This
centralized approach to innovation is also found in recent literature (Anthony et al., 2014) on innovation
broadly, as well as in two HBR articles focusing specifically on building an AI-powered organization
(Fountaine et al., 2019) and on competing with data analytics (Davenport, 2006), even talking about the
need for an "überanalytics" group.

The need for a dedicated group to support analytics innovation still feels distant for the company,
as there are currently few analytic innovation projects that are scalable - even at the basic research
phase. Consequently, hiring specialists with distinct skills feels not yet practical. Think of skills like
data engineering (building and optimizing data pipelines), data science (extracting insights from data),
software development (creating scalable applications), UX design (ensuring user-friendly interfaces), and
AI innovation management (overseeing the strategic adoption of AI technologies).

Until that day arrives - having a pipeline of multiple advanced and scalable analytic innovations -
it seems more practical to focus on hiring well-rounded individuals with strong analytical skills and
a problem-solving mindset. And I believe this approach can go a long way in these modern times.
At Delft University of Technology, an entirely new generation of engineers is about to graduate, that
has already embraced modern learning tools like large language models (LLMs), enabling everyone
to quickly acquire expertise, even in unfamiliar domains. And this is happening, having seen fellow
students pushing their master’s theses beyond their programs. In my view, it is perfectly valid for
individuals to specialize in a single skill set, but it has never been easier to acquire additional ones.
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For many shipbuilders, the majority of a vessel’s lifecycle greenhouse gas emissions
occurs during its operational phase, commonly referred to as downstream emissions. For

Feadship, this challenge is particularly pronounced, with downstream emissions accounting
for 94% of a superyacht’s carbon footprint. Addressing this majority requires accurate and
efficient methods to predict propulsion energy use during the design stage - a task hindered
by the limitations of existing prediction methods, which are either time-intensive or prone
to significant errors. This is affecting the design process in two ways: an increased risk of
incorrectly proportioned energy and power systems, and limited exploration of design space.
Data-driven methods, based on machine learning algorithms, have been proposed in the
literature. However, these methods expose two key gaps in the literature: their performance
under extrapolation conditions and their limitations when applied to small datasets. This
thesis responds to these challenges by developing hybrid modeling approaches that combine
physical insights with data-driven techniques, addressing both these gaps.

8.1 Sub-questions
In the introduction of this thesis, the research was divided into several sub-questions. These sub-
questions address different aspects of the research question. The sub-questions are answered individually
below:

What specific challenges persist within the Feadship design and engineering process, and what are
their main causes?

Feadship aims to reduce downstream emissions, facing challenges that are two-fold: an increased
risk of improperly proportioned energy and power systems and limited exploration of the design space.
A primary contributing factor is the reliance on either inaccurate and/or time-intensive prediction
methods, particularly for propulsion energy use in twin-screwed superyachts, as outlined in Section 2.1.4.

What knowledge gaps exist in data-driven methods, and which modeling approaches could address
these challenges?

Data-driven (machine learning) models struggle with extrapolation and limited datasets (Chapter 2),
posing challenges in ship design. Hybrid models, combining physical and data-driven approaches,
show promise in addressing these gaps by enhancing extrapolation capabilities and reducing data
requirements. This study utilized serial and parallel hybrid models for their proven effectiveness in the
literature, with parallel models showing superior performance and significantly improving prediction
accuracy.

What datasets are available relating to propulsion use, and which dataset offers the best suitability for
this study?

Four datasets were assessed (Chapter 3): Dataset 1 (CFD resistance), Dataset 2 (CFD power), Dataset
3 (towing tank tests), and Dataset 4 (speed-power trials). At the outset of this study, the hypothesis
was that sea trial data might serve as the best source; however, significant uncertainties were identified,
stemming from the trial measurements and post-correction methods. Instead, Dataset 1 was selected
as the most suitable due to its high-precision data from a controlled CFD environment and the ability
to exactly match ship geometries with resistance results, alongside its balanced design variance and
moderate sample size.

What methodologies ensure comprehensive training, testing, and evaluation of the models?

Two distinct pipelines are required: for interpolation and extrapolation condition. Both pipelines
achieve robust training and testing through a process called nested k-fold cross validation, responsible
for selecting the best hyperparameters (model selection). After model selection, re-training is required
with the best model through either ordinary k-fold cross-validation (for interpolation) or through
leave-one-out cross validation (for interpolation). In total, three model types are tested - physical models
(PMs), data-driven models (DDMs) and hybrid models (HMs) - PMs are tested directly, while DDMs
and HMs follow training and testing methodologies outlined in Chapter 4.



8. Conclusion 8.2. Research question 68

Which of the tested exhibited superior performance in interpolation and extrapolation scenarios?

The tested models (Chapter 5) consist of two PMs (Holtrop & Mennen, 1984; Holtrop & Mennen,
1982), four DDMs (ridge regression, cubed-speed ridge regression, random forest, and kernel ridge),
and three HMs (serial, parallel-residual, and parallel-correction), which integrate the strengths of the
best-performing DDM and PM.

The parallel-correction hybrid model (HM-c), a novel configuration developed in this study, demon-
strated the highest accuracy in interpolation, achieving a mean average percentage error (MAPE) of 3.8%
and a determination coefficient (𝑅2) of 0.99. The physical models (PM-a and PM-b) provided a reliable
baseline, with PM-b performing best (MAPE: 6.6%, 𝑅2: 0.96), though it was less precise than HM-c.
Among the data-driven models (DDMs), Kernel Ridge (DDM-d) performed best, achieving moderate
accuracy (MAPE: 8.9%, 𝑅2: 0.95), but it was still outperformed by both HM-c and the physical models.
See results in Section 5.1.

In extrapolation, HM-c again proved superior, achieving robust accuracy across all scenarios (e.g.,
MAPE below 12.6% in LOFO, LOBO, and LOCO conditions). Standalone DDMs, including the best
interpolator (DDM-d), failed dramatically, with MAPE values exceeding 180% in some cases. However,
robust performance was observed with Random Forest (DDM-c), and when combined with PM-b,
the HM-c/DDM-c configuration achieved the best results in extrapolation, effectively integrating PM
robustness with data-driven flexibility for improved generalization beyond the training range. See
results in Section 5.5.

How does a reduction in dataset size impact the performance of various models?

HM-c consistently outperformed DDM-d under limited data conditions, with its competitive edge
most pronounced at low data availability (10% of CFD observations). Notably, there is a crossover point
where HM-c surpasses the performance of the physical model (PM-b) as more CFD observations are
added. While DDM-d demonstrated steady improvements with increasing data, potentially surpassing
HM-c in scenarios with unlimited CFD observations, both models are expected to plateau in performance
at some point. Based on the observed trends, the HM-c is likely to reach this plateau sooner, but future
research is required to determine whether the DDM could ultimately exceed the HM’s performance.
See results in Section 5.3.

What is the most optimal features set for twin-screwed superyachts, and what are the best methods to
do this feature selection?

Feature selection methods, including Backward Feature Elimination (BFE), Permutation Importance
(PI), and a domain knowledge-based approach, enhance model performance by identifying and priori-
tizing relevant features (Chapter 5). While all methods improved accuracy and reduced computational
complexity by removing less-informative variables, the domain knowledge-based approach achieved
slightly better results, underscoring the value of expert insights in optimizing feature sets. See results in
Section 5.4.

8.2 Research question
Using the answers to the sub-questions, the main research question can now be addressed:

“How can hybrid models improve early-stage predictions for calm-water ship resistance in
extrapolation scenarios, while using small datasets with limited design variability?”

Instead of directly learning from the CFD resistance data, it appears more effective when the data-
driven model learns to apply corrections to the output of a PM. Where traditionally these corrections
were based on the naval architect’s experience, they are now driven by data, offering fast and accurate
alternative to existing methods. This philosophy is embodied in this study through a newly developed
parallel HM, which achieves superior performance by learning how to apply these corrections to the
PM’s output automatically. During interpolation, the new HM demonstrates a mean average percentage
error (MAPE) of 3.8%, outperforming PM (6.7%) and DDM (8.9%). For extrapolation, the new HM
maintains average errors within 12% across scenarios. And with less data, the new HM consistently
outperformed the best DDM, with its competitive edge most pronounced at low data availability (10%
of CFD observations). By advancing these methodologies, the study not only enhances early-stage
design confidence but also contributes to future steps towards automated design optimization.
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A
Review physical models

In the literature review, various physical models are examined, and to assess the complexity
of implementing such models, a systematic overview of their input and output parameters
is developed. This comprehensive analysis is presented in the appendix.

Table A.1: Required and optional input parameters for (De Groot, 1955) method.

Parameter ID Remarks

required parameters

ship speed 𝑉𝑠
length waterline 𝐿𝑤𝑙
volumetric displacement 𝑉

optional parameters

wetted surface 𝑆 approx. 2.75
√
𝑉𝐿𝑤𝑙

Table A.2: Required and optional input parameters for (Van Oortmerssen, 1971) method.

Parameter ID Remarks

required parameters

froude number 𝐹𝑛 is 𝑉𝑠/
√
𝑔𝐿𝐷

displacement length 𝐿𝐷 rather than 𝐿𝑤𝑙 , calculated with 1
2 (𝐿𝑝𝑝 + 𝐿𝑤𝑙 )

moulded beam 𝐵
moulded mean draft 𝑇
volumetric displacement (moulded) 𝑉
longitudinal centre of buoyancy 𝐹𝐵 from forward perpendicular
midship coefficient 𝐶𝑚
prismatic coefficient 𝐶𝑝
half angle of entrance 𝑖𝐸 at load (design) waterline

optional parameters

longitudinal centre of buoyancy ℓ𝐶𝐵 approx. ( 1
2 𝐿𝐷 − 𝐹𝐵)/𝐿𝐷 ∗ 100%

entrance load waterline coefficient 𝐶𝑤𝑙
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Table A.3: Required and optional input parameters for Guldhammer and Harvald, 1974 method.

Parameter ID Remarks

required parameters

ship speed 𝑉𝑠
length between perpendiculars 𝐿𝑝𝑝 usually 𝐿𝑊𝐿 = 𝐿𝑝𝑝 + 𝐿𝑎 𝑓 𝑡
length of aft overhang in waterline 𝐿𝑎 𝑓 𝑡
extension of S beyond fore perpend. 𝐿 𝑓 𝑜𝑟𝑒
computation length 𝐿 usually equal to 𝐿𝑂𝑆
maximum moulded beam in waterline 𝐵
moulded draft 𝑇
block coefficient 𝐶𝐵 or volumetric displacement 𝑉
prismatic coefficient 𝐶𝑃 or midship section area 𝐴𝑀
transverse cross-section area of bulb 𝐴𝐵𝑇 at forward perpendicular FP

optional parameters

propeller diameter 𝐷𝑃 for propulsion analysis
longitudinal centre of buoyancy ℓ𝐶𝐵 or assume optimum position
wetted surface (hull + rudder) 𝑆
wetted surface of appendages 𝑆𝐴𝑃𝑃 bilge keels, stabilizer fins, bossings, etc.
form factors for fore and aft body 𝐹𝐹 , 𝐹𝐴 −3 ≤ 𝐹𝐴 , 𝐹𝐹 ≤ +3

Table A.4: Required and optional input parameters for Delft Systematic Yacht Hull Series (Gerritsma et al., 1981), also known as
the DSYHS method.

Parameter ID Remarks

required parameters

ship speed 𝑉𝑠
length waterline 𝐿𝑤𝑙
beam waterline 𝐵𝑤𝑙
draught of canoe body 𝑇𝑐
volumetric displacement of canoe body ∇𝑐
prismatic coefficient 𝐶𝑝
longitudinal centre of buoyancy ℓ𝑐𝐵

optional parameters

wetted surface of canoe body 𝑆𝑐 with (1.97 + 0.171 𝐵𝑤𝑙𝑇𝑐
)
√
∇𝑐 · 𝐿𝑤𝑙

wetted surface of keel 𝑆𝑘 not mentioned
wetted surface of rudder 𝑆𝑟 not mentioned
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Table A.5: Required and optional input parameters for the (Holtrop & Mennen, 1982) and (Holtrop & Mennen, 1984) method.

Feature name ID Notes

Hull parameters

Ship speed 𝑉𝑠
Length waterline 𝐿𝑤𝑙
Moulded beam 𝐵

Moulded mean draft 𝑇 Typically 𝑇 = 1
2 (𝑇𝐴 + 𝑇𝐹)

Moulded draft at aft perpendicular 𝑇𝑎
Moulded draft at forward perpendicular 𝑇𝑓
Volumetric displacement (moulded) ∇
Prismatic coefficient (based on 𝐿𝑤𝑙 ) 𝐶𝑝
Midship section coefficient 𝐶𝑚 or use 𝐶𝑚 = 𝐶𝑏/𝐶𝑝
Waterplane area coefficient 𝐶𝑤𝑝
Longitudinal centre of buoyancy ℓ𝐶𝑏 Positive forward; with respect to 𝐿𝑤𝑙/2
Immersed transom area 𝐴𝑡 Measured at rest
Stern shape parameter 𝐶𝑠𝑡𝑒𝑟𝑛 Differs for every stern type

Propulsion parameters

Propeller diameter 𝐷
Number of propeller blades 𝑍
Propeller chord length 𝑐0.75 At a radius of 75 percent
Propeller blade thickness-chord length ratio 𝑡/𝑐
Propeller blade surface roughness 𝑘𝑝 Standard figure for new propeller is 0.00003 m
Thrust coefficient 𝐾𝑇,𝐵−𝑠𝑒𝑟𝑖𝑒𝑠 From B-series polynomials
Torque coefficient 𝐾𝑄,𝐵−𝑠𝑒𝑟𝑖𝑒𝑠 From B-series polynomials
Open-water efficiency 𝜂𝑂 From B-series polynomials
Shaft efficiency 𝜂𝑆 𝑃𝑑/𝑃𝑠 = 0.99

Optional parameters

Wetted surface (hull) 𝑆
Wetted surface of appendages 𝑆𝑎𝑝𝑝𝑖 Bilge keels, stabilizer fins, etc.
Area of ship and cargo above waterline 𝐴𝑎𝑖𝑟 Projected in direction of 𝑉𝑠
Transverse area of bulbous bow 𝐴𝑏𝑡 Measured at forward perpendicular
Height of centroid of 𝐴𝑏𝑡 above keel ℎ𝑏 Has to be smaller than 0.6𝑇𝑓
Half angle of waterline entrance 𝑖𝐸
Diameter of bow thruster tunnel 𝑑𝑡ℎ

Table A.6: Required and optional input parameters for (Hollenbach, 1998) method.

Parameter ID Remarks

required parameters

ship speed 𝑉𝑠
length between perpendiculars 𝐿𝑃𝑃
length in waterline 𝐿𝑊𝐿 check definition for ballast condition
length over wetted surface 𝐿𝑂𝑆 check definition for ballast condition
moulded beam 𝐵
moulded draft at aft perpendicular 𝑇𝐴
moulded draft at forward perpendicular 𝑇𝐹
propeller diameter 𝐷
block coefficient (based on 𝐿𝑃𝑃 ) 𝐶𝐵
transverse vertical area above waterline 𝐴𝑉 for air resistance
number of rudders 𝑁𝑟𝑢𝑑𝑑𝑒𝑟𝑠 1 or 2 (for twin screw vessels)
number of shaft brackets 𝑁𝑏𝑟𝑎𝑐𝑘𝑒𝑡𝑠 0, 1 or 2 (for twin screw vessels)
number of shaft bossings 𝑁𝑏𝑜𝑠𝑠𝑖𝑛𝑔𝑠 0, 1 or 2 (for twin screw vessels)
number of side thrusters 𝑁𝑡ℎ𝑟𝑢𝑠𝑡𝑒𝑟𝑠 between 0 and 4

optional parameters

wetted surface (hull) 𝑆
wetted surface of appendages 𝑆𝐴𝑃𝑃𝑖 bilge keels, stabilizer fins, etc.
diameter(s) of thruster tunnels 𝑑𝑇𝐻 for appendage resistance fins, etc.



B
Review data-driven models

In the literature review, various data-driven models are examined, and to assess the
complexity of implementing such models, a systematic overview of working principles is
developed. This comprehensive analysis is presented in the appendix.

B.1 Linear model
A linear regression model aims to describe the relationship between a dependent variable (target) y and
independent variables (features) X through a linear equation:

y = Xw + 𝜀, (B.1)

where:

• y ∈ R𝑛 : Target variable vector.
• X ∈ R𝑛×𝑝 : Feature matrix with 𝑛 samples and 𝑝 features.
• w ∈ R𝑝 : Vector of regression coefficients.
• 𝜀 ∈ R𝑛 : Vector of errors or residuals.

The goal of linear regression is to estimate the coefficient vector w by minimizing the residual sum
of squares (RSS):

ℒ(w) = ∥y − Xw∥2
2. (B.2)

Ridge regression, also known as Tikhonov regularization, extends the linear model by adding
an L2 regularization term to mitigate overfitting and improve generalization, particularly when
multicollinearity exists among the features. The Ridge regression objective function is defined as:

ℒ(w) = ∥y − Xw∥2
2 + 𝛼∥w∥2

2 , (B.3)

where:

• 𝛼 ≥ 0: Regularization parameter controlling the penalty term.

The first term represents the RSS, measuring the error in predicting y from X. The second term
penalizes large coefficients, thereby reducing overfitting. As 𝛼 increases, the coefficients are shrunk
more aggressively toward zero, balancing the trade-off between bias and variance.

The Ridge regression solution can be computed analytically using the closed-form expression:

w = (X𝑇X + 𝛼I)−1X𝑇y, (B.4)

where I ∈ R𝑝×𝑝 is the identity matrix. The regularization term 𝛼I ensures numerical stability by
preventing singularities in the matrix inversion, particularly when X𝑇X is ill-conditioned. A matrix is
considered ill-conditioned if it has a high condition number, meaning small changes in the input data
can cause large changes in the solution, making computations numerically unstable.

76
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B.2 Random Forest
To understand a Random Forest, it is helpful to start with its building block: a decision tree. A decision
tree is a flowchart-like structure used for making predictions. At each internal node, the tree evaluates a
feature and partitions the data based on its value, creating branches that represent possible outcomes of
the test. This process continues recursively until reaching the leaf nodes, which provide the predicted
values. For regression tasks, these predicted values are typically the mean of the target variable in
that partition. Decision trees excel at modeling complex relationships but can suffer from overfitting,
especially with deep trees trained on small datasets.

A Random Forest builds on the idea of decision trees by combining many of them into an ensemble
model. The core idea is analogous to consulting multiple experts to make a decision: each decision tree
provides its own prediction based on slightly different subsets of the data and features. By aggregating
these predictions, the Random Forest delivers a more accurate and robust output than any single tree
could achieve. In regression tasks, the Random Forest predicts the output �̂� by averaging the predictions
of all the individual trees:

�̂� =
1
𝑇

𝑇∑
𝑡=1

�̂�𝑡 , (B.5)

where:

• 𝑇: Total number of trees in the forest.
• �̂�𝑡 : Prediction from the 𝑡-th tree.

The ensemble nature of the Random Forest mitigates the high variance of individual decision trees
by leveraging two key strategies:

• Bootstrap Aggregating (Bagging): Each tree is trained on a randomly sampled subset of the data,
drawn with replacement. This introduces variability among the trees, reducing the overall model
variance.

• Feature Randomness: At each split, a random subset of features is considered when determining
the best partition. This decorrelates the trees, enhancing the robustness of the ensemble.

These techniques ensure that the trees in the forest are diverse and independent, making the model
less prone to overfitting and improving its generalization performance. The key hyperparameters of a
Random Forest include:

• Number of Trees: Specifies the size of the ensemble. A larger number generally leads to better
performance at the cost of increased computational effort.

• Maximum Depth: Limits the depth of individual trees. Controlling the depth helps balance the
trade-off between underfitting and overfitting.

• Minimum Samples per Leaf: Defines the smallest number of samples required to create a leaf
node, influencing the granularity of the tree’s partitions.

• Number of Features: Determines how many features to consider for splitting at each node,
promoting diversity among trees.

By combining the simplicity of decision trees with ensemble techniques, Random Forests provide a
powerful and versatile tool for regression tasks, offering strong predictive accuracy and resistance to
overfitting.

B.3 Kernel Ridge
Kernel Ridge Regression (KRR) extends the linear regression model by incorporating the "kernel trick"
to capture non-linear relationships between the features and the target variable. It combines ridge
regression with kernel methods, enabling it to operate in a high-dimensional feature space without
explicitly computing the transformation. KRR begins with the same foundation as the linear model:

y = Xw + 𝜀, (B.6)

where X is the feature matrix, w is the vector of coefficients, and 𝜀 represents residual errors.
While the linear model fits w directly in the original feature space, KRR maps the features into a
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high-dimensional space through a kernel function 𝑘(x𝑖 , x𝑗) and solves the ridge regression problem in
this transformed space.

The transformation to a higher-dimensional feature space is achieved through a mapping function
𝜙(x), which projects the original features into a space where complex, non-linear relationships can
be represented as linear combinations. However, explicitly computing 𝜙(x) is often computationally
expensive or infeasible, especially when the dimensionality of the transformed space is very high
or infinite. For example, the Radial Basis Function (RBF) kernel implicitly maps the data into an
infinite-dimensional space. Instead of explicitly calculating 𝜙(x), the kernel trick computes the dot
product between two transformed feature vectors directly in the high-dimensional space:

𝑘(x𝑖 , x𝑗) = 𝜙(x𝑖) · 𝜙(x𝑗). (B.7)

This approach allows KRR to operate efficiently without needing to construct or manipulate the
transformed feature space explicitly. Common kernel functions include:

• Linear Kernel: 𝑘(x𝑖 , x𝑗) = x𝑖 · x𝑗 , equivalent to standard ridge regression.
• Polynomial Kernel: 𝑘(x𝑖 , x𝑗) = (x𝑖 · x𝑗 + 𝑐)𝑑, capturing polynomial relationships of degree 𝑑.
• Radial Basis Function (RBF) Kernel: 𝑘(x𝑖 , x𝑗) = exp(−𝛾∥x𝑖−x𝑗∥2), capturing complex relationships

based on distance.

KRR solves the ridge regression problem in the kernel space:

ℒ(w) = ∥y − Xw∥2
2 + 𝛼∥w∥2

2 , (B.8)

where 𝛼 ≥ 0 is the regularization parameter. Using the kernel trick, the solution is expressed in its
dual form:

𝛼 = (K + 𝛼I)−1y, (B.9)

where:

• K is the kernel matrix, with 𝐾𝑖 𝑗 = 𝑘(x𝑖 , x𝑗).
• 𝛼 represents the dual coefficients.

The prediction for a new input x is:

�̂� =

𝑛∑
𝑖=1

𝛼𝑖 𝑘(x𝑖 , x). (B.10)

KRR generalizes ridge regression by using kernel functions to introduce non-linearity. When the
linear kernel is used, KRR reduces to standard ridge regression. However, with non-linear kernels
such as the RBF kernel, KRR can model highly complex relationships, making it suitable for data with
intricate patterns that a linear model cannot capture. Key hyperparameters include:

• Regularization Parameter (𝛼): Controls the trade-off between model complexity and fit to the
data.

• Kernel Type: Determines the nature of the non-linear transformations.
• Kernel Parameters (e.g., 𝛾 for RBF kernel): Controls the flexibility of the kernel function.

By leveraging the kernel trick, KRR achieves the ability to model non-linear patterns while maintaining
computational efficiency, making it a powerful extension of ridge regression.
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