
Delft University of Technology
Master’s Thesis in Embedded Systems

MAES: A Multi-Agent Systems Framework
for Embedded Systems

Carmen Chan-Zheng

MAES: A Multi-Agent Systems Framework for

Embedded Systems

Master’s Thesis in Embedded Systems

Embedded Software Section
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Carmen Chan-Zheng
c.chanzheng@student.tudelft.nl

September, 2017

mailto:c.chanzheng@student.tudelft.nl

Author
Carmen Chan-Zheng (c.chanzheng@student.tudelft.nl)

Title
MAES: A Multi-Agent Systems Framework for Embedded Systems

MSc presentation
September 29th, 2017

Graduation Committee
Prof. dr. Koen Langendoen Delft University of Technology
Dr. Matthijs Spaan Delft University of Technology
Dr. Alessandra Menicucci Delft University of Technology
M.Eng. Johan Carvajal-Godnez Delft University of Technology

mailto:c.chanzheng@student.tudelft.nl

Abstract

Miniaturization and cost reduction of hardware components have created a
trend in the space industry where the traditional centralized computer is
being replaced by distributed computer architecture. However, this trend
comes with a cost: the on-board software complexity of the space missions
has increased. The complexity has origins in the requirements of the missions
where in general, these are coordination and control-related processes. As
the coordination and the control of the satellite’s activities are not trivial
tasks, the Multi-Agent Systems(MAS)-approach has been proposed as a new
architectural style due to its distributed nature. There are several existing
frameworks for implementing MAS-based applications, however, most of
them are neither designed to satisfy real-time requirements nor designed to
be implemented in highly-constrained embedded systems. Therefore, the
purpose of this thesis is to develop a new tool for MAS-based applications:
A Multi-Agent Framework for Embedded Systems (MAES).

The framework was implemented on top of a Real-Time Operating Sys-
tem: TI-RTOS, therefore, applications implemented with MAES have real-
time characteristics. Experiments have shown that the execution time of
an Attitude Determination algorithm is consistent on each call with a vari-
ance value of the order of 10−5 [s2], demonstrating the predictability of
the framework. Furthermore, the user coding effort is reduced as several
routines are standardized and encapsulated into MAES’ API. However, the
predictability and ease-of-use come with a slight cost: experiments have
shown that MAES-based applications lead to an increase of 6.7 KB in aver-
age in Flash memory and 4.5 KB in average in SRAM memory with respect
to its non-agent implementation. Also, the CPU utilization increases as
inter-agent communication requires additional processing time, also increas-
ing the power consumption. However, the increase is low as the results have
shown that is less than 1% in average.

Preface

My passion for the Embedded Systems is driven by the eagerness to under-
stand the interaction between the software and the hardware. Moreover, I
find exciting the multidisciplinary nature of this field as I am a learning-
lover and a curious person. Driven by the curiosity, I felt attracted to this
thesis topic as this not only involves the field that I love but it also involves
the Aerospace field. Little did I know that the magnitude of the knowledge
acquired during this thesis would be that large. Not only I have improved
my technical skills but also I learned to manage a project from scratch and
how to communicate effectively with my supervisors. However, I believe
that the most valuable lesson I learned is to be critical with every aspect of
the thesis.

The journey in this master would not have been possible without all the
support from my family and friends. Beside them, there are few people that
I would like to acknowledge specially for the success of this Master degree.
First, I’d like to thank the University of Costa Rica staff who trusted me
blindly with all the academic choices I’ve made during this master thesis.
Secondly, I would like to thank the committee and the members of MICITT
(Ministerio de Ciencia, Tecnologia y Telecomunicaciones) for their decision
to trust and to grant me the scholarship. Then, I would like to thank
Professor Koen Langendoen for his valuable advice during our bi-weekly
meetings. Also, I want to express my sincere gratitude to Johan Carvajal-
Godinez for his patience and kindness with guiding me through this journey.
I thank both of them for teaching me this invaluable lesson: Always keep
questioning and never take anything for granted at first. Last but not least,
I thank to God, where my faith has kept me strong when my friends and
family have been far away. I want to dedicate this to my sister, mom and
dad who have been the keystone of all of this success.

iii

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 State-of-the-Art: Multi-Agent Concepts and current frame-
works . 2

1.3 Research Problem . 3

1.4 Research methodology . 4

1.5 Thesis Contribution . 5

1.6 Thesis Structure . 5

2 Multi-Agent Systems: Literature Review 6

2.1 Architecture components . 6

2.2 Programming Languages . 9

2.3 A Survey of mapping strategies 10

2.3.1 SPADE: Smart Python Multi-Agent Development En-
vironment . 10

2.3.2 JADE: Java Agent Development Framework 10

2.3.3 Mobile-C: Multi-Agent Platform for Mobile C/C++
Agents . 11

2.3.4 BESA-ME Framework 12

2.3.5 EmSBoT . 12

2.3.6 ObjectAgent . 12

2.3.7 Discussion . 13

3 Multi-Agent System Framework for Embedded System Design 14

3.1 Mapping strategy . 14

3.1.1 Agent mapping . 16

3.1.2 Message Transport System Mapping 19

3.1.3 Agent Management System mapping 20

3.2 Framework Implementation 21

3.2.1 Agent Class . 22

3.2.2 Agent Platform Class 24

3.2.3 Agent Organization Class 26

3.2.4 Agent Message Class 27

v

3.2.5 Behaviour-related classes 28

4 MAES Framework verification 31
4.1 Blink LED Application . 32
4.2 FDIR/Agent Organization application 34
4.3 Attitude Determination application 36

4.3.1 Algorithm’s output comparison experiment 38
4.3.2 Algorithm’s execution time comparison experiment . . 38

5 MAES Framework benchmark 42
5.1 Memory performance . 43
5.2 CPU Utilization . 45
5.3 Power Consumption . 47
5.4 Additional Benchmark: Failure Detection,

Identification and Recovery time 49

6 Conclusions and Future Work 50
6.1 Conclusions . 50
6.2 Future Work . 51

A Reference Application 58
A.1 Filter Design . 59
A.2 Algorithm’s initial conditions 61

B The MAES’ API 62
B.1 Agent Class . 62
B.2 Agent Platform Class . 62
B.3 Agent Organization Class . 64
B.4 Agent Message Class . 65

vi

Chapter 1

Introduction

This chapter provides the motivation to create a Multi-Agent Systems-based
framework for satellite’s on-board software application development. Then,
the subsequent sections introduce important concepts of Multi-Agent Sys-
tems and provide a brief description of current application implementations.
Next, the specific research problem and the characteristics of the framework
are discussed. Afterwards, the research strategy and the thesis contribution
are further explained. Finally, the outline of this research is presented.

1.1 Motivation

Miniaturization and cost reduction of hardware components have created
a trend in the space industry where the traditional centralized computer
architecture is shifting towards a distributed architecture. As the space en-
vironment is dynamic and unpredictable, there could be scenarios where the
operation of a centralized satellite system might be disrupted if the control
satellite loses its functionality and the rest of the nodes are disconnected.
Therefore it is necessary a distributed architecture where each node should
be able to perform intelligent improvements based on the circumstances [1].

A new generation of picosatellites called CubeSat is exploited by the in-
dustry and the academy for its cost effective platform in which is possible
to test advance mission concepts using constellations, swarms disaggreg-
ated systems [2]. The picosatellites weight between 1-2kgs [3], and it has a
highly-constrained embedded processor such MSP430 [4].

The decentralization of the architecture offers several advantages: lower
cost in hardware, improvement in fault tolerant capabilities by simplify-
ing resource sharing among subsystems, reconfigurability and upgradabil-
ity [1][5]. However, the decentralization increased the on-board software
complexity. The main cause of the growth in the on-board software com-
plexity comes from the requirements of the missions where, in general, these
requirements are fundamentally about coordination and control [6]. While

1

the coordination is done among the many components of the spacecraft, the
control of its activities is done by a deterministic operating system (Real-
Time Operating System). The on-board software is an embedded real-time
software, i.e. is characterized by being autonomous, which can make de-
cisions without human intervention. In particular, the real-time character-
istic is important for fault protection, identification and recovery tasks as
this ensures the safety of the spacecraft by responding to failures in a timely
manner [7][8].

As coordinating and controlling the activities among all the satellites are
not trivial, a Multi-Agent System(MAS) approach is proposed as a new
architectural style as this enables artificial-intelligence capabilities [9]. The
key feature of these systems lies in their capacity to address computing
problems by distributing them into different components named agents [10].
The agents are autonomous computational entities, which are assigned to
a specific ”role” within the system, communicate with other agents and
perceive their environment. These features allow them to work ”proactively”
and ”reactively” to their environment and therefore, to achieve a wide range
of goals [11].

Currently, most of the applications do not use any dedicated platform
or tool to develop Multi-Agent Systems applications, but instead, these are
developed from scratch [12]. However, the advantage of using an existing
platform or framework is the reduced time of development since the MAS’s
services and communication mechanism are already implemented, therefore,
the developer needs only to focus on each agent’s implementation.

For this reason, the goal of this thesis is to develop a software frame-
work capable to implement MAS-based applications for highly-constrained
systems.

1.2 State-of-the-Art: Multi-Agent Concepts and
current frameworks

The term agent has been debated among the members of the scientific com-
munity, hence, there is no universally-accepted definition. However, com-
mon concepts are found from within all these definitions: autonomy and
environment. The authors of [13] compiled several definitions among the
community and presented their own generalized definition:

“An autonomous agent is a system situated within and a part of an envir-
onment that senses that environment and acts on it, over time, in pursuit
of its own agenda and so as to effect what it senses in the future.”

Moreover, an agent is characterized by the following properties [14]:

• autonomy: an agent operates without direct human intervention, and it
has control over its actions and internal state.

2

• social: an agent cooperates with humans or with other agents to achieve
a goal.

• reactivity: an agent perceives its environment and responds in a timely
manner to changes that occur in the environment.

• pro-activity: an agent is able to exhibit goal-directed behavior by taking
initiative.

Each agent is a micro-system living in an environment and two or more
agents build up a macro-system named Multi-Agent System (MAS) [15].
According to [16], the characteristics of these systems are: each agent is
subjective of its environment, thus, each agent has incomplete information
of the complete system. Also, the computation performed by an agent is
asynchronous. Lastly, there is no global control and the data is decentralized,
therefore, each agent possesses its own internal state not accessible by other
agents.

A wide range of applications has been developed with this technology due
to the distributing nature of the MAS-based architecture. Some applications
target condition monitoring and fault record on power system grids [17],
economics [18], e-commerce [19], automation of SCADA [20], robotics [21],
traffic and transportation [22], among any others.

In the aerospace field, there have been notable implementations from
NASA such as the Livingstone Project, Orbital Communication Adaptor
and The Lights out Ground Operation Systems [23]. Other implementa-
tions are found in the literature such as: fault detection and recovery in
gyroscope’s drift in small satellites [24], flying formation [25] and a tele-
operated robot [26].

Although the large majority of applications do not use any dedicated plat-
form or tool [12], there are several available frameworks and platforms used
for MAS-based applications development. Some existing platform/frame-
work designs are based on the specifications established by The Foundation
for Intelligent Physical Agents (FIPA), which is an IEEE Computer Society
standards organization, that creates specifications for generic agent tech-
nologies. For example, SPADE [27], JADE [28][29] and Mobile-C [30] are
FIPA-compliant platforms. On the other hand, it also reports in literat-
ure successful non-FIPA compliant MAS framework designs such BESA-
ME [31], EmSBot [32] and ObjectAgent [5].

1.3 Research Problem

Albeit there are several existing frameworks on the market for implementing
MAS-based applications, most of them are not designed to satisfy real-time
requirements. Furthermore, these are not designed for embedded implement-
ation. Therefore, the aim of this thesis is to enable a software framework for

3

the implementation of MAS-based applications with real-time requirements
compatible with highly resource-constrained embedded systems. After the
framework is created, an attitude determination reference application is im-
plemented as a demonstration of the framework’s operation.

The framework shall satisfy requirements proposed by the stakeholder of
the project. The following list encompasses requirements for the software
framework named MAES (Multi-Agent Framework for Embedded Systems):

1. FIPA - based components: MAES shall contain the minimum man-
datory technology specified by the FIPA 23 specification for agent life-
cycle management.

2. Lightweight Real-Time implementation: MAES shall enable the
implementation on a Class-2 IoT devices and on Real-time operating
systems.

3. Single embedded platform execution: MAES shall deploy a single
Agent Platform in a local embedded-hardware device. As only a single
Agent Platform is deployed, the communication among the agents is
intra-platform only.

4. Scalability: The number of agents living in the Agent Platform is not
determined by the framework but by the user’s application needs.

5. Portability: MAES shall provide C++ agent-based API for interfacing
with application developers.

For this research, a Multi-Agent System application is provided by the
stakeholder; therefore, the number of agents of the system is assumed to be
known a-priori at compile time.

Once that the motivation, requirements and the goal of the project are
defined, the main challenge of the framework development is identified as the
mapping process of the concepts/components from the Multi-Agent System
context into the Embedded Real-Time Operating System context. There-
fore, the research questions that this thesis addresses are:

1. How to map the MAS-based software architecture com-
ponents onto an Embedded Real-Time Operating Sys-
tem?

2. How does the mapping strategy affect the CPU’s
memory, load and power consumption?

1.4 Research methodology

In order to answer the research questions discussed in Section 1.3 a meth-
odology comprising four phases is proposed.

4

The first phase is the preparation where a literature review is conducted
in order to determine the minimum required components to build a Multi-
Agent Systems, and also to determine the current mapping strategies imple-
mented in state-of-the-art platforms and frameworks. Additionally, testing
applications are implemented in JADE. JADE is chosen as a MAS frame-
work baseline and used in this research in order to understand the process
of building a MAS application from an agent developer’s perspective. Also,
JADE is selected as the benchmark framework to be compared against. The
second phase consists a theoretical work of the MAS components mapping
where the mapping criteria are discussed. Third, the framework is developed
using the C++ language according to the mapping discussed in the second
phase. Lastly, framework testing and benchmarking are conducted to verify
the framework’s functionality and to identify required future capabilities.

1.5 Thesis Contribution

• Develop MAS-based framework that satisfies the requirements propsed in
Section 1.3.

• Report how the mapping methodology might affect the CPU’s load, power
consumption and memory.

1.6 Thesis Structure

The thesis is organized as follows: Chapter 2 presents the literature review
conducted for this research. It discusses the main architectural components
of Multi-Agent Systems, the programming languages used to implement
them and a survey of current platforms/frameworks.

Then, Chapter 3 is divided into two main sections: Mapping Strategy
and Framework Implementation. In the first section, the mapping strategy
for each MAS architectural component is discussed and selected based on a
trade-off analysis. Then, the framework implementation on top of a Real-
Time Operating System is described in detail.

Chapter 4 presents and analyzes the framework verification results. Next,
Chapter 5 presents the benchmark results (Memory footprint, CPU Util-
ization and Power consumption) of an application implemented with the
framework against the same application implemented in a non-agents en-
vironment. Lastly, the conclusions, recommendations and future work are
discussed in Chapter 6.

5

Chapter 2

Multi-Agent Systems:
Literature Review

In this chapter the architectural components are introduced. Then, the
MAS programming languages are described accordingly. Lastly, a survey of
current MAS platform/framework implementations is provided.

2.1 Architecture components

Regardless the application domain where a MAS is implemented, these sys-
tems have several common architectural characteristics. Shehory et al. [33]
comprise the key properties of a MAS architecture:

• MAS Organization: The agents are organized in one of the following
ways: hierarchical, flat, subsumption or modular organization.

• Communication: MAS platforms implement proprietary and standard
communication languages or protocols for its agents interaction. Stand-
ard communication facilitates inter-platform agent conversations, but it
is less efficient since the message overhead is larger than propietary com-
munication.

• System openness: The ability to introduce new agents to a platform
and the capability of agents to leave.

• Infrastructure services: MAS might provide optional services such as
agent naming, agent location, mobility (across different MAS platforms),
security, privacy and trust.

• System Robustness: The failure of a single agent does not necessarily
imply the failure of the whole system as other agents can take actions for
the fallen agent.

6

Figure 2.1: The FIPA reference model for an Agent Platform [35].

Argente et al. [34] propose that each agent has a affiliation and a role
within an organization. An “affiliation” defines a long-term relationship
with the organization: owner (creator of the organization with total control
over it), admin (controls access of agents to the organization) and member
(agents inside of the organization). On the other hand, a “role” defines the
role of the agent within the organization: moderator (controls the agents
communication), participant(agents allowed to talk), visitor (agents not al-
lowed to communicate). Also, according to [34], a Hierarchy topology is
formed by a supervisor and several subordinates. The supervisor coordin-
ates all the subordinate agents tasks by capturing all the message exchanges.
While the subordinates carry out the tasks and only can communicate with
the supervisor. On the other hand, the Team is a topology in which all
members collaborate to reach a common goal. The communication in a
Team organization is limited to the members of that team.

Although all existing MAS implementations share the same set of key
properties, there are several different approaches about how the MAS concept
should be implemented. Therefore, FIPA established a set of specifications
to standardize agent-based technology. The specifications are categorized
in: agent communication, agent transport, agent management, abstract ar-
chitecture and applications. These specifications are the minimum amount
of technology necessary for the agents management.

The FIPA23 specification [35] provides the normative framework in which
agents exist and operate. This model is used as reference for the creation,
registration, location, communication, migration and retirement of agents.
The components of the reference model are shown in Figure 2.1.

The Agent Platform (AP) is the technological architecture that provides
the physical infrastructure where the agents are deployed. The AP consists

7

of the physical device(s) where the system is deployed, its operating system,
agent support software and management components.

The agent is the fundamental actor of the AP. Each agent has a unique
Agent Identifier (AID) so it can be distinguished among all the agents within
the platform. Moreover, the FIPA97 specification [36] establishes that an
overall agent’s behaviour is defined by a set of one or more tasks that contain
the computation code to generate the desired agent’s action. Also, these are
internal components of an agent that can not be directly accessed by other
agents unless the agent offers them as services.

The agents communication is done through by exchanging messages which
service is provided by the Message Transport System (MTS). On any Agent
Platform, the MTS is provided by the Agent Communication Channel (ACC).
According to the FIPA67 specification [37], there is no standard for the in-
ternal transportation of messages, however, since the agents might run on
different APs and different technologies (CAN, HTTP, IIOP, etc), FIPA
established that the messages transported between platforms should be en-
coded in a textual form, moreover, it specifies a standard language for mes-
saging Agent Communication Language (FIPA ACL).

The Agent Management System (AMS) is a mandatory component of the
AP. Only one AMS exists per AP. This component provides agent life-cycle
management services and supervisory control on the AP [38]. The AMS is
seen as a white pages service provider since it maintains a directory of AIDs
registered within the AP, therefore, each agent must register and de-register
with the AMS before entering and leaving the platform, respectively. The
agent operations supported by the AMS are: register, de-register, modify,
search, get description and agent’s life-cycle related operations: create, in-
voke, destroy, suspend, resume, wake up and execute. The operations that
can be initiated by the agent itself are: quit, suspend, wait, move. The
agents life-cycle possible states are shown in Figure 2.2.

In active state, the MTS delivers messages to the agent normally. While
in Initiated/Waiting/Suspended/Transit state, the MTS buffers messages
until the agent returns to the active state or forwards the messages to a new
location. The transit state is only available for mobile agents. Finally, the
Directory Facilitator (DF) is an optional component of the AP. This com-
ponent provides yellow page services to other agents. Agents may register
in the DF their offered services or query from the DF the list of services
provided by other agents. The functions supported by the DF are: register,
de-register, modify and search.

8

Figure 2.2: The agent Life-cycle [35].

2.2 Programming Languages

Most of the MAS applications are implemented by using Object-Oriented
Languages (OOLs). Although they can be realized by any programming
language, OOLs are the most used because the concept of an agent shares
similarities with the concept of an object. Objects and agents are similar
in the sense that they are computational entities encapsulating a state and
perform methods on this state [39]. However, they also differ on important
aspects. Woodldridge [40] identifies three main distinctions: first, the agents
incorporate a stronger notion of autonomy than objects. When a method or
service is made available to the public, an object can not control the access
from other objects to its method whereas an agent can decide whether or
not to perform the action on request from another agent. Second, agents
have flexible, reactive, pro-active and social behavior. Lastly, MAS inher-
ently is multi-threaded where each agent is assumed to have at least one
thread of control. However, despite that the autonomy or the behaviours
are not inherently features for a basic standard object, it can be built or be
programmed.

The surveys discussed [12] and [41] show that most of the available ap-
plications, frameworks and platforms are created with Java while C++ is
the second most employed. Rousset et al. [42] and Sturm et al. [43] provide
surveys and evaluations of the current platforms and frameworks for MAS
applications development such as JADE (Java) [28], Cougaar (Java) [44],
Pandora (C++) [45]. The criterion for language selection depends of the

9

user needs, for example, Poggi [46] presents a FIPA-compliant agent library
written in both C++ and Java for developing MAS-based applications. The
Java version facilitates application development such as: voice on demand
service or system prototyping. On the other hand, the C++ version is used
when it is required to integrate different software modules performing sens-
ory data interpretation, planning and fault diagnosis. For embedded control
applications, C/C++ is preferred since it allows low-level hardware commu-
nication and in general, the hardware’s drivers are already providen/written
in that language.

2.3 A Survey of mapping strategies

This section discusses some technical details about the implementation of
current MAS platforms and frameworks.

2.3.1 SPADE: Smart Python Multi-Agent Development En-
vironment

SPADE [27][47] is a FIPA-compliant multi-agent platform written in the
Python programming language. The platform offers a library that contains
tools and classes to manage and to create new agents. The main communic-
ation protocol used by an agent to communicate inside and outside of the
AP is the Jabber technology [48].

Each thread is the base for the creation of an abstract agent that is later
used to create regular agents or management agents (AMS,DF). Each agent
is composed of: a connection mechanism to the platform, a message dis-
patcher and a set of tasks [49]. The connection mechanism is the agent’s
communication interface with other agents. The message dispatcher redir-
ects the messages to the correct destination, for example, when a message
is received, it is redirected to the correct task’s message queue. On the
other hand, if the agent needs to send a message, the message dispatcher
redirects it to the correct receiver agent. Finally, the agent’s behaviour is
implemented as a set of tasks that can be run simultaneously.

2.3.2 JADE: Java Agent Development Framework

JADE is a Java-written and FIPA-compliant multi-agent platform and provides
a set of APIs and a graphical user interface to develop MAS-based applica-
tions [28][29]. A JADE Agent Platform is built up of one or more containers
that can be distributed over a network (i.e. the Agent Platform can be
hosted by several devices). Each agent lives in a container, which is a Java
process that provides the services required for an agent’s life cycle. Each
JADE platform should have a mandatory main container, which is the first
container to be launched when the application is executed. Other agents

10

can live in the main container, but the AMS, DF and ACC components
shall run exclusively in this container. The intra-platform communication is
managed by each container’s message dispatcher, whereas the inter-platform
communication is managed by the ACC by using the IIOP protocol.

Each JADE agent is mapped into a single thread and it can execute several
behaviours. Each behaviour is implemented as a task and it is scheduled
according to a cooperative non-preemptive scheduling policy. JADE uses
the concurrency model agent-per-thread instead of behaviour-per-thread in
order to reduce the number of threads running in the agent platform. This
model becomes important in particular for resources-constrained environ-
ments. Furthermore, the agent-per-thread model enables improved perform-
ance since a behaviour switching is faster than Java thread switching. Also,
it eliminates synchronization issues such behaviours accessing the same re-
source. However, when a behaviour is blocked, the rest of the agent’s beha-
viours are also blocked. If this is not a desired feature in the application,
JADE provides a solution to implement behaviour-per-thread,i.e., behaviours
that are executed in their own thread, therefore, if a behaviour is blocked,
the rest of the agent’s behaviours will not be blocked.

2.3.3 Mobile-C: Multi-Agent Platform for Mobile C/C++
Agents

Mobile-C [30] is a MAS FIPA-compliant platform written in C/C++. This
platform is specifically developed to support mobile agents that are software
components capable to move between different execution environments. The
implementation of this platform and its functionality are explained by its
developers in [50] and [51]. The library is supported by Windows, Linux,
Solaris, Mac OS X, QNX, HP-UX and Linux OS running on general-purpose
or tiny and single-board computers.

The major building block of a Mobile-C system is an agency whose core
is the agent platform that contains the minimal software components to
support the execution of a stationary or a mobile agent. Additionally to the
FIPA-specified components, Mobile-C implements two extra components:
the Agent Security Manager (ASM) that supervises security policies for the
platform and the Agent Execution Engine (AEE) that serves as the interface
with the mobile agents.

The AP is a multi-threaded program that resides in a host computer
running any of the abovementioned operating systems. Each component
resides in its own thread and each agent (stationary or mobile) also has its
own thread. An AEE thread is started per each mobile agent.

11

2.3.4 BESA-ME Framework

Flores et al. [31] present a software middleware in order to facilitate the
construction of robotic control systems based on MAS techniques. The
framework named BESA-ME (Behavior-Oriented, Event-Driven And Social-
Based Agent Micro Edition) supports the development of MAS-oriented
applications for microcontrollers. Functional tests were run successfully in
PIC18F8720 and PIC18F8620 running FreeRTOS.

A BESA-ME agent is modeled by at least three components: the channel,
one or more behaviours and the agent state. The Channel and the Behaviour
components are implemented as RTOS tasks. The Channel component man-
ages a message queue that blocks the task until an event is received. Once
an event is received, the task assigns it to a respective treatment function
and redirects the message to the corresponding behaviour. The behaviour
is unblocked by the message and performs the action defined by the user.
Also, the behavior is interconnected with the agent’s state where it stores
information about the agent, its environment and the global system. Given
that two BESA-ME components are modeled as tasks, each agent can have
two or more tasks, therefore, the agent is mapped to at least two threads.

2.3.5 EmSBoT

EmSBot (Embedded modular Software framework for networked robotic sys-
tems) [32][52] is a lightweight embedded C-written framework that provides
an API to develop networked robotic systems. An EmsBoT system is com-
posed by one or more independent nodes across the network. Each node
contains processing power, memory, at least one communication channel
and it may also contain sensors and actuators.

The EmsBoT core layer provides the API for agents creating and mes-
sage routing. The agents only interact between them by using messages. The
message structure is fixed since it is beneficial for the determinism of the sys-
tem by preventing dynamic memory allocation. Furthermore, an EmsBoT
agent may have one or more threads: one mandatory thread and optional
worker threads. An implementation is available for the ARM Cortex-A8
and the Cortex-M4 processors running µC/OS-III. The memory usage of
the firmware is 13 KB of flash memory and 5KB of data memory when
there are two agents. One extra agent will cost 1KB.

2.3.6 ObjectAgent

The ObjectAgent (OA) project is an agent-based software architecture for
autonomous distributed systems that was developed and implemented in
C++ by Princeton Satellite Systems [5]. A demonstration scenario was
implemented by using a PowerPC 750 processor and Enea’s OSE real-time

12

operating system. The platform provides classes for agent creation, skills
(behaviour) manipulation and agent communication.

The communication and the synchronization among the agents is done by
message passing. Each agent has one or more skills that are basic functions
that trigger one or more actions that produce a message to be sent across
the platform. Several skills can be grouped into a activities where each of
them always runs in a separate thread. An agent can carry one or more
activities, therefore, an agent is mapped into one or more threads.

2.3.7 Discussion

Despite that JADE is the most used MAS-based application development
platform [12] and its agent platform runtime’s memory footprint is around
100KB (making it suitable for embedded devices) [53], it does not fullfil the
real-time requirements. Similarly, SPADE does not offer real-time support
either. Moreover, the Mobile-C framework runs on OSs that are not suitable
for highly-constrained embedded platforms. On the other hand, MAS-based
platforms on real-time embedded system approaches have been implemen-
ted successfully in the robotic field such as BESA-ME and EmSBot, whereas
ObjectAgent has been successfully implemented in space applications. How-
ever, they do not discuss the implementation of the minimum technology re-
quired to build a MAS-based platform specified by FIPA. Therefore, in this
thesis, a framework is developed in order to fulfill the above-mentioned gaps
found during the literature study. In the following chapters, the MAS com-
ponents mapping into a RTOS context and its implementation are discussed
in detail.

13

Chapter 3

Multi-Agent System
Framework for Embedded
System Design

This chapter presents the component mapping process from the Multi-Agent
System (MAS) context into the Real-Time Embedded Systems context,
which addresses the first research question of this thesis: “How to map the
MAS-based software architecture components onto an Embedded Real-Time
Operating System?”. First, the mapping strategy is discussed and selected
based on a set of criteria. Then, the implementation of the framework on
top of a chosen Real-Time Operating System (RTOS) is discussed.

3.1 Mapping strategy

The minimum components required for an Agent Platform to operate cor-
rectly are specified by the FIPA23 specification as discussed in Chapter 2.
For the scope of this research, the components to be implemented are: Agent,
Agent Management System and Message Transport System. On the other
hand, the Directory Facilitator is useful when an application is running in
a multi-platform context as this facilitates an agent’s services visibility to
other agents on other platforms. However, since the Directory Facilitator’s
implementation is optional and the MAES framework is a single-platform
implementation, this component is not implemented.

Then, a trade-off analysis is conducted in order to select the RTOS onto
which the MAS components are mapped. The available options are: TI-
RTOS [54] and FreeRTOS [55]. Although there exists several other open
source RTOSs, these options are the only RTOSs that support the microcon-
troller (TI MSP432). The RTOS is chosen based on three criteria: Memory
footprint, Tool Support and Usability.

14

Table 3.1: RTOS trade-off analysis.
Criterion (Weight) TI-RTOS FreeRTOS

Memory footprint(40) 0 +
Support(40) + 0
Usability (20) + -

Total (100) 60 20

The memory footprint is an important criterion as memory is a scarce
resource in embedded systems. Therefore it is given a weight factor of 40.

Then, the tool support is also considered as one of the most relevant since
it accelerates framework development. This criterion is given a weight factor
of 40.

Lastly, the usability of the tool is considered during this analysis since an
easy-to-use tool costs less time to learn and it is less error-prone. Thus, this
criterion is assigned to a weight factor of 20. Each criterion can be scored
by three possible scores: + (equals to 1), 0 and - (equals to -1). Table 3.1
shows the trade-off analysis result.

First, according to the FreeRTOSs webpage [56], FreeRTOS has a min-
imal memory footprint as a binary image will be in the region of 6KB to
12KB. On the other hand, the memory footprint for TI-RTOS is at least
15KB (obtained from a TI-RTOSs template project containing the min-
imum necessary files to use the kernel). For this criterion, FreeRTOS is
scored positively as its memory footprint is lower than that of TI-RTOS.

For the second criterion, the TI-RTOS performs better as it comes with its
own Integrated Development Environment (IDE). Also, TI-RTOS already
includes tested device drivers (UART, SPI, I2C, etc.) for its MSP432 Family
and additional middleware components such as the TI-RTOS Instrumenta-
tion. The TI-RTOS Instrumentation is a key feature for the development
of the framework as this includes the Real-Time Analyzer, which visualizes
the execution of the running tasks. Furthermore, the analyzer also includes
a power performance monitoring tool, which is used during benchmarking.
On the contrary, FreeRTOS is a kernel-only solution. Therefore, additional
effort would be required to implement drivers.

Lastly, the third criterion is the usability in which TI-RTOS also performs
better. Since TI-RTOS is already included in its own IDE (Code Composer
Studio), the IDE provides a graphic user interface for the operating system
configuration. For example, only the used API modules can be selected from
the user interface. Furthermore, the threads can also be configured using the
interface. FreeRTOS being a kernel-only solution, does not provide any user
interface to facilitate the user development. Based on the trade-off analysis,
the TI-RTOS (v2.20.00.06) was selected for this research.

15

TI-RTOS is developed by Texas Instruments and its core is the real-time
multitasking kernel SYS/BIOS. The kernel is a fixed-priority preemptive
scheduler. The RTOS’ APIs are modularized so only those APIs that are
implemented by the user are bounded into the executable program. Thus,
the memory footprint is minimized. This operating system is a soft real-
time system that ensures a process will meet a deadline most of the time
and the variability is due to jitter.

The applications written in SYS/BIOS are structured as a collection of
threads. Each thread carries a modularized function. The term thread is
defined within the SYS/BIOS environment as any independent stream of
instructions executed by the processor.

TI-RTOS supports four different thread-types (from the highest to the
lowest priority): Hardware Interrupts (Hwi), Software Interrupts(Swi), Tasks
and Background thread(idle). Each of them has different execution and pree-
mption characteristics. For example, the Hwi thread preempts Swi, tasks
and the idle thread [54].

When a thread is created, a corresponding handle to the thread is also
created (for example: for Swi threads, a Swi Handle is returned when the
thread is created). This handle points to the thread and it has a unique
address within the SYS/BIOS environment. The handle can be used for
operations such deleting the thread or getting internal state of the thread
(for example: get a thread’s priority).

Once the kernel starts to execute, the created threads are scheduled and
run based on their priority. On a single-processor environment, the SYS/-
BIOS scheduler allows the preemption of higher-priority threads on lower-
priority threads. However, two same-priority threads cannot preempt each
other unless one explicitly yields the control of the processor.

The data sharing methods on Hwi and Swi are implemented through
simple mechanisms such as: global variables and lists. However, for inter-
task communication, TI-RTOS provides more complex solutions such as:
semaphores, events, gates, mailboxes and queues.

In the next section, each component is mapped into TI-RTOS’ context.

3.1.1 Agent mapping

The mapping strategies survey discussed in Section 2.3 showed that an agent
can be mapped into a single thread or into multiple threads. Three criteria
are selected in order to choose the agent mapping strategy where each cri-
terion was given a weight factor. The set of criteria (with the corresponding
weight factor) are: scalability (50), concurrency (30) and performance (20).
Each criterion can be scored by three possible scores: + (equals to 1), 0
and - (equals to -1). The most important criterion with the largest weight
factor is the scalability since it is featured in the list of requirements de-
scribed in Section 1.2. Albeit the performance and the concurrency criteria

16

Table 3.2: Agent mapping strategy trade-off.
Criterion (Weight) Single-Thread Multiple-Thread

Scalability (50) + 0
Concurrency (30) - +
Performance (20) + -

Total (100) 40 10

are not featured in the list of requirements, these are considered during the
mapping selection process since these criteria affect the overall functionality
of the framework. The second most important criterion is the concurrency,
which is a desired feature in the MAES framework as this exploits the dis-
tributed nature of a Multi-Agent System. Lastly, the performance criterion
directly affects the determinism of the Real-Time Operating System. The
performance is directly affected by the frequency of context switches in the
system. In general, the context switches are computationally intensive as
they require CPU time to switch from one thread to another. The results
for scoring each strategy are presented in Table 3.2.

In general, on the multiple-threads strategy, each agent’s behaviour
is mapped to its own thread. The advantage of using this strategy is the
improvement of the concurrency. When a behaviour performs a blocking
operation, the agent itself is not blocked and the other agent’s behaviours
might run. However, the rate of context switching is higher as an agent has
many behaviours. In consequence, the processor spends more time switching
between threads rather than executing them. Thus, the system performance
is decreased. Besides, additional issues (i.e. race conditions) might arise
when two or more behaviours are accessing their agent’s resources. Also,
the scalability is reduced as fewer agents can be added to the system.

On the other hand, with the single-thread strategy, the concurrency
level is reduced as one blocked behaviour causes the blocking of the rest of
the agent’s behaviours. But, the performance is improved as this strategy
reduces the number of context switches as the behaviours are running in the
same thread. Lastly, the number of threads running in the Agent Platform
is reduced in a single thread strategy. Therefore, more agents can be added
leading to a more scalable system.

Based on the discussion above and the results of Table 3.2, the single-
thread strategy is chosen as the mapping strategy.

After choosing the mapping strategy, the mapping process of the Agent
component into the Real-time context is described accordingly. Both agent
and TI-RTOS thread share similar characteristics: a unique identification, an
internal state, a computation execution code and a method to communicate
with other agents.

17

For this research, only the task module is enabled to be used in the frame-
work. Even though tasks have lower priority and are less memory efficient
(tasks require their own stack) than Hwi and Swi (they use the system’s
stack), these are the only threads that can wait (or block) until an event oc-
curs or a resource becomes available, while the Hwi and Swi threads run until
completion. The blocking behaviour is a key feature for any agent since an
agent cannot act independently, but operates according to its environment
and its internal state. Therefore, an agent requires a waiting mechanism un-
til a certain event occurs: such as coordination and negotiation with other
agents.

Furthermore, as a consequence of the agent−to−task mapping, the agent
obtains a new characteristic from the module: the priority. Since the SYS/-
BIOS kernel schedules the operation of each agent according to its prior-
ity, the developer is required to take additional consideration on the agent
priority-assignment during the design stages of the application to avoid any
incorrect operation of the system. The agent’s priority can be assigned up
to 33 levels: with 0 being the lowest and 31 being the highest priority, while
priority -1 corresponds to an inactive task.

A Task Handle object is returned when a task instance is created. Since
each task’s handle is unique within the TI-RTOS, the handle is used as the
agent’s identification(AID) within the Agent Platform. The AID/handle
can be used to retrieve information of an agent/task such as the priority
and its execution mode.

Behaviour mapping

During task creation, a pointer to a function is passed as a parameter.
This function encapsulates the computation code that is executed by the
task when it takes control of the processor. Also, this function can execute
more than one subroutine defined in its body. Since an agent might have
one or more behaviours, each behaviour is mapped to a subroutine. The
execution order of the subroutines/behaviours is defined by the developer
by implementing design patterns such as a Finite State Machine.

Agent’s state mapping

An agent’s life cycle is characterized by the set of internal states described
in Section 2 (see Figure 2.2). These states are mapped directly into the task
execution states. The task can be either in one of the following states:

• Running: the current running thread on the processor.

• Ready: the thread is scheduled for execution. The scheduler always ex-
ecutes the highest priority task in the queue.

18

Table 3.3: Agent’s state mapped into Task’s execution state.
Agent State Task Execution state

Active → Ready
Waiting → Blocked

Suspended/Initiated → Inactive
Terminated → Terminated

• Blocked: the task cannot execute further until a particular event occurs
(such as an arriving message in the mailbox).

• Inactive: the task has priority equal to -1. Thus, it is not scheduled for
execution.

• Terminated: the task is not executed anymore.

The agent’s states (Figure 2.2) mapping into the task’s execution states
is shown in Table 3.3.

It is noteworthy that none of the agent’s state is mapped into the Running
execution state. This design choice is because the chosen hardware platform
is single-processor, which means only one agent is running at the time (the
highest priority-ready agent). For example, if the running agent requests
the state of another agent, the latter can be in any of the execution states
of Table 3.3, but never in the Running state since the running agent has
control over the processor. Also, the transit state is not mapped since the
framework will not implement mobile agents.

3.1.2 Message Transport System Mapping

The TI-RTOS offers several modules for inter-task communication includ-
ing: semaphores, events, mailboxes and queues. The semaphore and event
modules are only signal-based modules, i.e. they cannot exchange data. On
the other hand, the queue module passes data, but it does not have any sig-
nalling mechanism for new incoming data. The mailbox module combines
the features of the queue module plus the semaphore module; a signal is
posted when a new message is set so the subscribers to that mailbox are
aware of a new incoming message.

Since a Multi-Agent System requires signaling and message exchange,
the mailbox module is used as the Message Transportation Service of the
framework.

A mailbox instance can be accessed by several readers and several writers.
For the framework design, the number of readers of a mailbox instance is
fixed to one, but the instance might have several writers. By using this
design choice, a mailbox instance is assigned uniquely to an agent. Thus,
each agent has its own mailbox address. When an agent is waiting for

19

a message, it is blocked during a user-defined time or until a message is
received from any other agent.

Similar to the task creation, when a mailbox is created, the kernel returns
a Mailbox Handle. This handle serves as the mailbox address that other
agents use in order to set the message’s destination.

3.1.3 Agent Management System mapping

The last component to be mapped into the TI-RTOS system is the Agent
Management System (AMS). The AMS is a mandatory component of any
FIPA-based Agent Platform and only one exists per platform. The AMS
is responsible for any agent’s life cycle management. Each agent shall be
registered through the AMS into the platform in order to execute its beha-
viour(s). Additionally, the AMS maintains an index that contains all the
agents’ AIDs residing in the platform.

The Agent Management System is mapped into two elements of the TI-
RTOS: the kernel scheduler and special task. The scheduler specifies the
execution order of the agents registered in the platform, while the task
implements management operations.

The AMS task is considered as a special agent with the priority set to the
highest possible as the AMS represents the management authority within
the platform. Since the AMS agent has the highest priority, it preempts any
other running agent when it is invoked. Moreover, this agent also uses
the mailbox module as a communication method to interact with other
agents. The AMS agent/task is implemented as a state machine that is
in the waiting state for any request from other agents. If a request arrives,
the AMS can perform any of the following actions:

• Register/De-register: Agent registration/deregistration into/from the Agent
Platform.

• Suspend/Resume: Set the agent to suspended/active state.

• Kill: Terminate the agent’s execution. The agent cannot be invoked again.

• Restart: Restart the agent’s execution.

Additionally, the index that contains all the agents’ AIDs living in the
platform is mapped as an array of task handles/Agent’s AIDs.

Table 3.4 summarizes the results of the mapping process.

20

Table 3.4: Multi-Agent System component mapping into TI-RTOS.
Multi-Agent

System Component
TI-RTOS

component

Agent → Task
Agent AID → Task handle
Agent state → Task execution mode
Behaviour → Subroutine in a function wrapper

Message Transport System → Mailbox Module

Agent Management System → 1. SYS/BIOS scheduler
2 .Task

3.2 Framework Implementation

The integrated development environment (IDE) used for the framework im-
plementation is the Code Composer Studio (Version: 7.1.0.00016) with the
Texas Instruments Compiler (Version: TI v16.9.1 LTS) and XDCtools (Ver-
sion: 3.32.0.06 core). The latter software component provides the techno-
logy for the configuration of SYS/BIOS modules or generation/compilation
of source code files. Also, the IDE integrates the System Analyzer tool suite
that provides visibility of the real-time execution and performance of the
threads, which is useful for debugging and benchmarking purposes. The tool
also allows the developer to analyze the load, execution sequence and tim-
ing of the application by providing visualization capabilities and advanced
analysis features.

The provided hardware platform for this research is the SimpleLink™

MSP432P401R LaunchPad™ Development Kit. The microcontroller used
by the development board is the MSP432P401R microcontroller that fea-
tures an ARM Cortex-M4 processor running at 48MHz. The consumed
power during active operation is 80 µA/MhZ and during standby operation
is 660nA. Also, the microcontroller features a Floating Point Unit(FPU),
a 64KB RAM memory, a 256KB Flash memory, four I2C modules, eight
SPI modules and four UART modules. The microcontroller choice criteria
are based mainly on the processor power consumption due to the power
constraints on satellites. Also, the FPU makes the processor suitable for
highly computational demanding applications such applications with a Kal-
man Filter.

As discussed in Section 2.2, most of the Multi-Agent Systems are imple-
mented through Object-Oriented Programming Languages due to similarit-
ies in their concepts. Since any TI-RTOS applications can be written either
in C or C++, the latter is used as this is an object-oriented programming
language.

The framework provides an API to implement the Multi-Agent System
components explained in the last section. The API is built up by four

21

main classes: the Agent class, the Agent Message class, the Agent Platform
class and the Behaviour-related classes. Two additional classes are added
to implement additional features: the User condition class and the Agent
Organization class.

The User condition class is created for developers to implement their cus-
tomized conditions to determine whether or not an AMS action shall be
executed. By default, when the AMS agent is invoked by the requests of
other agents, it always performs the action requested (for example: sus-
pending a specific agent). However, there could be the case that the AMS
operation can only be performed under certain conditions. For example: an
agent can be de-registered only if it is in blocked state or an agent can only
be killed if the the requester agent has a priority larger than a threshold
value. As the conditions vary per application, the framework provides the
User condition class that is a set of methods that the user can override in or-
der to set their own conditions for the AMS to perform a certain operation.
If these are not overriden, the methods always return TRUE. In consequence,
the action is always performed. The AMS agent always look up to the return
values of the methods of this class in order to determine whether or not the
AMS action shall be executed.

On the other hand, the Agent Organization class groups the agents into
specific ways such as modular (team) or hierarchical. Therefore, the com-
munication among agents is constrained within the organization.

The following sections further explain the implementation of each class.

3.2.1 Agent Class

An instance of the Agent class contains variables associated with the agent
information and variables associated with the agent’s stack. These variables
are declared as private members of the class in order to restrict access
and to prevent unauthorized modifications. However, some classes such
the Agent Platform, Agent Message and Agent Organization need access to
these variables, hence, these are declared as friend classes of the Agent class.
A class in C++ can access private and protected member of another class
in which the first is declared as a friend class.

The agent’s information is stored in a typedef struct as shown in List-
ing 1.

The aid variable corresponds to the Task Handle or the Agent’s AID.
The Task Handle is renamed into Agent AID for consistency. Then, the
mailbox handle variable corresponds the mailbox assigned to the agent.
The AP variable denotes the AMS agent’s AID of the platform where the
agent belongs to. The variables org, affiliation and role are Agent
Organization-related variables.

It is mentioned in Section 3.1.1 that each task requires its own runtime
stack. This stack is used for storing local variables and for storing the

22

typedef struct Agent_info{

Agent_AID aid;

Mailbox_Handle mailbox_handle;

String agent_name;

int priority;

Agent_AID AP;

org_info *org;

int affiliation;

int role;

}Agent_info;

Listing 1: Agent’s information typedef struct.

context in case that the task is preempted. The TI-RTOS allows the user
to create a stack by using dynamic memory allocation or by using static
memory allocation. When a stack is created dynamically, the heap memory
is used. If a task is destroyed, the user is required to free manually the task’s
stack, otherwise, a memory leak and memory fragmented might occur. Also,
dynamic memory allocation is slower than static memory allocation. Thus,
in order to prevent memory leaks and fragmentation, and to improve the
system performance, the agent implementation is done by static memory
allocation. Due to this approach, the designer is required to define the task
stack and its size during the design phase of the application. These values
are stored in a typedef struct as shown in Listing 2.

typedef struct{

Agent_Stack *stack;

int stackSize;

}Agent_resources;

Listing 2: Agent’s information typedef struct.

In TI-RTOS, the stack is declared as an array of char. For consistency,
the char type is redefined as Agent Stack in the framework.

When the constructor of this class is called, the user passes as parameters:
the agent’s name, the agent’s priority, the agent’s stack pointer and the
agent’s stack size. The agent’s stack size parameter is required as the size
of the stack cannot be determined directly from the agent’s stack pointer.

An agent object must be declared outside of the main() function since
this must be in a persistent location. The agent’s scope needs to be global
since its information needs to be accessed from other classes for operations
such as management or message exchange. As a consequence of the agent’s

23

global scope, the stack also has to be defined globally. In order to prevent
a memory stack corruption, the developer is responsible to allocate a stack
per agent.

Although the agent is already constructed, the Agent’s AID and the Mail-
box Handle are still NULL. The task creation and mailbox creation processes
are managed by the Agent Platform class.

3.2.2 Agent Platform Class

An instance of the Agent Platform class contains private member variables
and methods to initialize the platform and to perform services.

The private members provide the information of the instance. The mem-
bers are shown in Listing 3.

class Agent_Platform{

private:

/*Class variables*/

Agent agentAMS;

Agent_Stack task_stack[4096];

Agent_AID Agent_Handle[AGENT_LIST_SIZE];

int subscribers;

USER_DEF_COND cond;

USER_DEF_COND *ptr_cond;

public:

...

};

Listing 3: The private members of an Agent Platform class object.

The agentAMS and task stack variables are the AMS’ Agent object and
its stack, respectively. Then, the Agent Handle is an index containing all
the members’ AIDs. The number of agents living in the Agent Platform
is constrained by the definition of AGENT LIST SIZE macro. This value
is chosen to be specified at compile-time in order to prevent the developer
to overuse the memory resources available in the hardware platform. The
subscribers variable denotes the number of active agents living in the
platform.

Before the Agent Platform’s execution is started, the developer must con-
struct an instance of the Agent Platform class. Similar as an Agent object,
an Agent Platform instance needs to be declared in a global location. There
are two versions of the constructor: one without the user conditions and
the other with the user conditions. If the user does not specify its own
conditions, the User Condition pointer variable points by default to the

24

instance defined in the class. Otherwise, if the user constructs and overrides
the methods of a User Defined Condition instance and sets the instance
as a parameter in the Agent Platform Constructor, the pointer variable
points to that object instead.

After the Agent Platform object construction, the developer must initial-
ize each of the created agents using the Agent initialization method. This
method creates the mailbox instance and the task instance associated with
each agent. Therefore, a Mailbox handle and an Agent AID are also created
during this method. TI-RTOS provides an additional environmental variable
that can be used by the developer during the task creation to store a pointer
to any typedef struct. Later, the value of the environmental variable can
be retrieved from the Agent’s AID/Task handle. For the framework im-
plementation, a pointer to the Agent object is stored in the environmental
variable. Therefore, the Agent AID and the Agent instance are coupled
internally since the Agent object has the AID information and from the
Agent AID, the pointer to the associated Agent instance can be retrieved.
Initially, an agent is created with priority -1. This prevents the agent to
execute before the Agent Platform is booted. The assigned priority is set
until the agent is registered into an Agent Platform.

Once that all the agents are initialized, the developer must boot the Agent
Platform using the Agent Platform boot method. This method creates and
initializes the AMS agent. Also, the method registers all the previously
initialized agents. The AMS agent is created with a stack of 4096 bytes and
the priority is set to 31.

Unlike all the methods described so far, the AMS agent’s wrapper func-
tion is hidden to the developer. The scope of this function is limited to the
use-only within the Agent Platform class. This restriction is created in order
to prevent any user’s change on the AMS agent’s services. With this restric-
tion, the consistency with the services described in FIPA23 specification is
ensured.

The flow diagram of the AMS agent’s behaviour is shown in Figure 3.1.
The AMS agent’s behaviour performs the actions described in Section

3.1.3. Also, this behaviour is designed so the agent can be either in running

or inactive state. In the running state, the AMS agent is serving a request
from an agent, while in the inactive state, the AMS agent is waiting for
any incoming request.

The platform services are available once that the platform is initialized.
The services are methods available to be used by the agents living in the
platform, but, some of them are restricted for the AMS agent use-only. In
order to distinguish the services, these are classified into two categories:
public services and private services. The private services can only be per-
formed by the AMS agent, while the public services can be accessed by any
caller agent. Further information of the Agent Platform class’ methods is
found in Appendix B.

25

Figure 3.1: AMS agent behaviour.

3.2.3 Agent Organization Class

The Agent Organization class allows the developer to create an organiza-
tion that groups the agents into one of the following topologies: Hierarchy
and Team (Modular). Without an Agent Organization, a Flat structure is
implemented by default in which there is no restriction on agents communic-
ation. In a Hierarchy organization, there are several subordinates and one
supervisor (also acting as the moderator and the administrator of the organ-
ization). The subordinates can only communicate with the supervisor and
the communication outside of the organization (such as with other agents or
with the AMS agent) can only be performed by the supervisor. In a Team or-
ganization, there is no restriction in the communication between the agents
members (unless the moderator explicitly restricts the conversation of a spe-
cific member). However, only the administrator or the organization creator
can communicate with the agents outside of the organization.

26

Beside grouping the agent into a specific topology, the class also has per-
missions to modify the variables affiliation, role and org of an Agent
instance (See Listing 1). An instance of the Agent Platform class has no
visibility over the Agent Organization instances. Therefore, an Agent Or-
ganization instance is decoupled from the Agent Platform. This approach
minimizes the communication overhead that would result if the AMS agent
decides whether or not to create the organization.

The Agent Organization is described by the typedef struct org info.
This variable is defined in Listing 4.

typedef struct org_info{

enum org_type;

int members_num;

int banned_num;

Agent_AID members[AGENT_LIST_SIZE];

Agent_AID banned[AGENT_LIST_SIZE];

Agent_AID owner;

Agent_AID admin;

Agent_AID moderator;

}org_info;

Listing 4: Message format typedef struct.

The variable org type denotes the organization type of the instance. The
possible organization types are: HIERARCHY or TEAM. The members num vari-
able describes the number of members in the organization and the banned num

variable describes the number of banned members. There are also lists con-
taining all the members’ AID and all the banned agent’s AID. Finally, there
are three Agent AID variables that correspond to the owner, admin and
moderator of the organization.

Although this class defines the relationship of the agent with an organiz-
ation, the communication exchange is managed by the Agent Message class.
According to the organization characteristic of an agent, the Agent Message
class determines whether or not a message can be exchanged.

Further information of the Agent Organization class’ methods is found in
Appendix B.

3.2.4 Agent Message Class

The communication method of each agent is set up by the Agent initial-
ization method from the Agent Platform class. During the initialization,
the mailbox is created and assigned to the associated Agent object. How-
ever, the message object to be passed during an exchange is not constructed

27

yet. Although the message object can be constructed during the Agent
initialization or Agent construction, a separate class was created in order
to encapsulate the methods related to an agent’s communication exchange.
Therefore, the framework provides methods for the message object creation
and management through the Agent Message class.

An instance of the Agent Message class contains the message object to be
exchanged between two agents and the methods to manipulate the object.
The message object is defined by the typedef struct shown in Listing 5.

typedef struct MsgObj{

Agent_AID sender_agent;

Agent_AID target_agent;

MSG_TYPE type;

String content;

}MsgObj;

Listing 5: Message format typedef struct.

The message format is composed by the sender’s AID, the receiver’s AID
and the message type. Also, the struct features a content variable that
allows the user to set the payload of the message. The message type is
set to any value of the enum type MSG TYPE: INFORM, CONFIRM, REQUEST,
etc. These values are based on the message type established by the FIPA69
specification [57]. The MsgObj object is declared as a private member in
the Agent Message class as this prevents unauthorized manipulation. Ad-
ditionally, the instance also maintains three private variables: the agent’s
AID who created the object, the number of receivers and an index of the
receivers’ AID of the message.

Also, the Agent Message class determines whether or not a message can
be exchanged according to each agent’s organization characteristics. Further
information of the Agent Message class’ methods is found in Appendix B.

3.2.5 Behaviour-related classes

As mentioned in Section 3.1.1, an agent’s behaviour is encapsulated as a
subroutine into a function wrapper. Several behaviours can be implemented
as separate subroutines in the wrapper function and its execution order is
determined by the developer by using patterns such as Finite State Ma-
chine. The framework facilitates classes that can be used by the developer
to implement customized behaviours.

To implement generic-type behaviours, the developer can create an in-
stance of the Generic Behaviour class. The class provides methods that can
be overwritten by the user: setup(), action() and done(). Optionally,

28

Figure 3.2: Generic behaviour execution flow diagram.

three methods for Failure Detection, Identification and Recovery (FDIR)
are included for user overriding. The FDIR methods’ goal is to detect faults
and identify the origin of the fault in the shortest time possible. Therefore,
reducing the diagnostic time and increasing the system availability [58].
With the FDIR methods, the autonomy is increased for all the agents by
allowing each of them to detect, identify and recover from its own failure
instead of having a centralized managing authority (such the AMS agent)
to perform those actions.

Finally, the class provides the method execute() that executes the above-
mentioned methods according to the diagram flow of Figure 3.2.

In the setup() method, the user may include any initialization-related
code. The method action() comprises the main behaviour’s computation
code. Then, the method failure detected() checks if there is a failure
occurred. If there is a failure, the methods failure identification()

29

and failure recovery() are executed. Lastly, the done() method returns
TRUE if any condition set by the developer is met. When condition is met,
the behaviour’s execution is finalized.

When an object of the Generic Behaviour class is created, an Agent Mes-
sage object instance is also created. Thus, the message object is already
built-in into an instance of this class.

Additionally, the framework provides two customized behaviour classes
derived from the Generic Behaviour class: One-Shot Behaviour class and
Cyclic Behaviour class. For One-Shot Behaviour, the method done() is
designed to return TRUE always, so the action() method executes only once.
As for the Cyclic Behaviour, the action() always returns FALSE, so the
action() method executes repetitively.

To use the behaviour instance, the developer only needs to call the method
execute() from the wrapper function. The wrapper function is required to
encapsulate the class method as it is not possible to pass a class member as
a parameter to TI-RTOS’s function Task create().

30

Chapter 4

MAES Framework
verification

One of the requirements described in Section 1.3 specifies that the MAES
framework should be FIPA-based, i.e., the framework should contain the
minimum mandatory components specified by the FIPA-23 [35] specifica-
tion (see Figure 2.1). Table 4.1 demonstrates that each of the mandatory
components is implemented accordingly through different classes provided
in MAES.

The Agent component is implemented by using three classes: the Agent
class, the Generic Behaviour class and the Agent Organization class. The
Agent class contains the agent description: AID, name and organization re-
lationship (role and affiliation). The Generic Behaviour class encapsulates
the computation code of an agent’s behaviour, and the Agent Organiza-
tion class groups the agent into a pre-determined communication topology
(Hierarchy or Team).

The Agent Platform component is implemented through the Agent Plat-
form class. An instance of this class provides services to the agents living in
the platform such as search agent and get agent’s description.

The Agent Management System is created when an instance of the Agent

Table 4.1: Class implementation for each component.
FIPA component Class

Agent
- Agent Class
- Generic Behaviour Class
- Agent Organization Class

Agent Platform - Agent Platform Class

Agent Management Service - Agent Platform Class

Message Transport Services
- Agent Platform Class
- Agent Message Class

31

Platform class is booted. The AMS oversees the lifecycle of each agent living
in the platform. Therefore, the AMS is the only agent that can perform life-
cycle related operations (kill, register, modify, suspend, resume).

Lastly, the Message Transport Service is implemented through the Agent
Platform class and the Agent Message class. The Agent Platform class
creates the mailbox associated with each agent, while the Agent Message
class creates the object to be exchanged among the agents.

Following the components verification, a static library MAES.lib was cre-
ated and used in several test applications described in the current and the
next chapter. Section 4.1 and Section 4.2 describe two applications that
verify the basic functionalities of the framework: communication, agent or-
ganization and agent’s failure detection, identification and recovery features.
For this, the RTOS Analyzer’s Execution Analysis tool from Code Composer
Studio is used in order to visualize the agents/threads execution and inter-
actions in TI-RTOS. Then, in Section 4.3 the framework functionality is
compared with a known framework: JADE. The purpose of this test is to
demonstrate that an algorithm implemented in MAES behaves similarly as
the algorithm implemented in JADE. Also, a performance analysis is con-
ducted for both frameworks.

4.1 Blink LED Application

The main purpose of the application is to verify the communication among
the agents on two different scenarios. For each scenario, an execution trace
from the Execution Analysis tool is obtained and analyzed. The proposed
scenario descriptions and their outcome are listed below:

1. Simple two-agents communication: This scenario consists of a writer
agent and a LED agent. The writer agent is assigned priority 1 and
the LED agent is assigned priority 2. The writer agent is preempted
when a message is sent to the LED agent, as the latter has a higher pri-
ority than the writer agent. The execution of this scenario is shown in
Figure 4.1.

On mark 1 of Figure 4.1, the writer is woken up and it preempts the idle
task. Then, the writer agent posts a message and it is preempted by the
LED agent (mark 2). The LED agent switches the LED and suspends
itself until a new message arrives. On mark 3, the scheduler takes control
of the processor. The reason of why the scheduler is seen in the execution
trace is because there are still threads (Writer Agent and Idle thread) in
which execution have been preempted by a higher priority thread and
the scheduler is determining which preempted thread shall be executed
next.

32

Figure 4.1: The execution graph of two-agents communication.

Figure 4.2: The execution graph of Agent Multicasting/AMS.

2. Agent multicasting/AMS: This scenario demonstrates the communication
between an agent with the AMS agent and also demonstrates an agent
multicasting to several agents. The scenario consists of a writer agent
(priority 1) and two LED agents (priority 2). First, during the first 5
seconds, the writer agent posts a message to a LED agent. When 5
seconds have elapsed, the writer agent sends a request to the AMS to
register a second LED agent. After the second LED agent registration,
the writer agent posts to both LED agents. The execution is shown in
Figure 4.2.

The part (a) of Figure 4.2 shows the same behaviour as the “Simple two-
agents communication” scenario as there is one active LED agent. In part
(b), approximately about 5 seconds after the application has started, the
writer agent sends a message request to the AMS agent to register a

33

Figure 4.3: The architecture of the demonstration application.

second LED as shown on mark 1. The AMS agent preempts any threads
since it has the largest priority of the system. Then, after the AMS agent
execution (mark 2), the second LED agent runs as it has a priority higher
than the writer agent. The second LED agent executes the initialization
steps and suspends itself waiting for an incoming message. On mark
3, the writer agent takes control again and posts a message to the first
LED agent. Lastly, on mark 4, after the first LED agent has toggled the
LED, the writer agent takes back control and posts a second message
to the second LED agent. The third part (c) shows a normal agent
multicasting behaviour. As mentioned before, the scheduler is executed
as it determines which of the preempted threads is executed next.

The communication in both scenarios worked as expected since the LED
agents and the AMS agent received the messages and executed their func-
tions correctly. If the communication is not executed properly, the send()

method from the Agent Message class returns an error code.

4.2 FDIR/Agent Organization application

The purpose of this application is to demonstrate the capabilities of the
framework for Fault Detection, Identification and Recovery and for Agents
Organization. The application consists of six agents. The architecture is
shown in Figure 4.3.

The FDIR Agent is linked to a button connected to the GPIO port of the
development board. When pressed, a failure of the agent is simulated. Then,
the agent increments an internal counter and proceeds to execute the FDIR
methods described in Section 3.2.5. When five failures have occurred, the
agent sends a restart request to the AMS in order to restart its execution.
The FDIR agent sleeps for 500 milliseconds if no failure is detected.

34

Figure 4.4: The execution graph of the demonstration application(1).

Then, four agents are grouped into a hierarchical organization. One agent
is designated as the Supervisor (this agent is also the creator/administrator/-
moderator) of the group and three “Worker” agents. Each of the “Worker”
agent simulates a thermocouple and sends the simulated readings to the
Supervisor at a specific rate. If the Supervisor detects a temperature more
than 70 degrees Celsius, it sends a message to the Print Agent (free-agent)
that prints the warning to the user. The Supervisor agent and Print agent
are assigned priority 3, whereas the Worker agents are assigned priority 2.

Similar to Section 4.1, the RTOS Analyzer’s Execution Analysis tool is
used in order to visualize the agents/threads execution in TI-RTOS. The
Figure 4.4 shows an extract of the execution graph obtained from the ap-
plication.

The following list explains the execution trace:

• Mark 1: The FDIR agent executes and does not detect any fault. There-
fore, it sleeps for 500 millisecond.

• Mark 2: The first Worker executes and sends the thermocouple value to
the Supervisor agent. The first Worker is preempted by the Supervisor
agent.

• Mark 3: The Supervisor agent posts a message to the Print agent as the
first worker’s value is above 70 degrees Celsius.

• Mark 4: The first Worker resumes and finishes its execution. Then, the
second Worker starts its execution and sends the value to the Supervisor
agent.

• Mark 5: The Supervisor agent posts a message to the Print agent as the
second Worker’s value is above 70 degrees Celsius.

35

Figure 4.5: The execution graph of demonstration application(2).

• Mark 6: The second Worker resumes and finishes its execution. Then, the
third Worker starts its execution and sends the value to the Supervisor
agent.

• Mark 7: The Supervisor agent does not post a message as the third
Worker’s value is below 70 degrees Celsius.

As mentioned above, if five failures have been detected, the FDIR agent
sends an AMS request to restart its execution. The execution trace of this
exchange is seen in Figure 4.5.

On mark 1, the FDIR agent executes and sends a restart request to the
AMS agent as five failures have occured. On mark 2, the AMS agent is
woken up and executes the request. Lastly, on mark 3, the FDIR agent
resumes its execution.

The communication between agents of the same organization and with
the AMS agent are tested successfully as the AMS agent, the Supervisor
agent and the Print agent execute correctly their functions when these are
invoked by other agents as shown in Figure 4.4 and 4.5. As explained in
Section 4.1, if there is a communication irregularity, an error would return
from the method send() of the Agent Message class.

4.3 Attitude Determination application

In order to verify the functionality of the MAES framework against a known-
Multi-Agent framework (JADE), the quaternion-based Extended-Kalman
filter (EKF) algorithm described by A.M Sabatini [59] is proposed as a
reference application. This algorithm was selected since it is a fundament-
al/common tool implemented in aerospace applications [60].

The goal of the EKF algorithm is to determine the orientation of a rigid
body by using a gyroscope. The algorithm corrects the measurement value
by using the values of two aiding sensors: an accelerometer and a magne-
tometer. The gyroscope measurements are used in the EKF’s prediction,
while the aiding sensors measurements are used in the EKF’s estimation.

36

Figure 4.6: The implementation of the attitude determination application:
(a) MAES implementation (b) JADE implementation.

The algorithm’s output is a quaternion that consists of a 4-tuple that de-
scribes the orientation of a rigid body. The algorithm’s expressions and
initial conditions are further described in Appendix A.

In order to implement the algorithm into the LaunchPad, an additional
plug-in module is connected: the Sensors BoosterPack Plug-In Module. This
module contains a light sensor, an infrared sensor, an Inertial Measurement
Unit (IMU) (featuring an accelerometer and gyroscope), a magnetometer
and an environmental sensor [61]. For the purpose of this research, only
the IMU and the magnetometer are used. The architectures for both imple-
mentations are shown in Figure 4.6.

On both applications, the sensor agent acquires the measurement data and
posts a message to the Kalman agent. Then, the Kalman agent proceeds to
execute the filter code. When the quaternion is available, the Kalman agent
posts a message to the UART Agent (for the MAES implementation) or to
the Log and GUI agents (for the JADE implementation).

Once that the application is defined, two experiments are conducted in or-
der to compare both framework’s functionality for the same reference applic-
ation. The first experiment consists of comparing the quaternions obtained

37

from both frameworks. On the second experiment, the execution time for
the EKF algorithm is obtained from both implementations. Further details
of each experiment will be given in the following sections.

4.3.1 Algorithm’s output comparison experiment

The first experiment intends to demonstrate that the algorithm implemented
in the MAES framework outputs the same value in the JADE framework.
In order to compare the outputs, a dataset is obtained from each frame-
work. Both frameworks are fed by the same sensors’s measurement (ob-
tained at a 10Hz sampling rate) and the obtained datasets are composed of
the quaternions. Five pairs of datasets are acquired for each of the scenarios
explained below:

• Neutral position: 600 samples are acquired in a static position.

• Moving around the yaw axis: acquired 600 samples.

The MAES dataset is compared against the JADE dataset for each scen-
ario by using the “Two-Sample t-test” method [62]. The result from this
test accepts or rejects a null hypothesis. The null hyphothesis states that
there is no significant difference between the datasets and any observed dif-
ference are due to experimental error. The “Two-Sample t-test” results are
obtained via MATLAB by using the ttest2 command by using both datasets
as parameters. The command returns as results: the result of the null hy-
pothesis (returns 0 if the null hypothesis is accepted, otherwise it returns
1), the p-value and the confidence interval. The p-value is the probability
under a specified statistical model that the mean would be equal to or more
extreme than its observed value [63] (a low p-value provides enough evidence
to reject the null hypothesis). On the other hand, the confidence interval
(ci) provides the range of values that it is likely to contain the difference
between MAES value and JADE value.

The results for each scenario is shown in the next page in Table 4.2 and
Table 4.3 1.

As shown in these tables, the confidence interval is at least of the order
of 1x10−2. This indicates that the difference between both dataset is small.
Since the command returns h=0, it can be concluded that both datasets are
statistically equivalent and the functionality of the algorithms is the same.

4.3.2 Algorithm’s execution time comparison experiment

The second experiment consists of comparing the execution time of the EKF
algorithm in both frameworks. The execution time is obtained from the dif-
ference between two variables placed specifically in different parts of the

1For all the tests, the command returns h=0. Hence, this parameter is not shown in
these tables

38

Table 4.2: The ttest2 outputs for Neutral Position scenario.
Test 1 Test 2 Test 3 Test 5 Test 5

q1

p=0.9459
ci=
[-0.1884e-4,
0.2020e-4]

p=0.9512
ci=
[-0.2174e-4,
0.2313e-4]

p=0.9987
ci=
[-0.2792e-4,
0.2788e-4]

p=0.8584
ci=
[-0.3718e-4,
0.3098e-4]

p=0.7647
ci=
[-0.2079e-4,
0.2827e-4]

q2

p=0.8869
ci=
[-0.4470e-4,
0.3865e-4]

p=0.9116
ci=
[-0.5192e-4,
0.4635e-4]

p=0.8741
ci=
[-0.5747e-4,
0.4888e-4]

p=0.9006
ci=
[-0.5662e-4,
0.6432e-4]

p=0.9646
ci=
[-0.4753e-4,
0.4543e-4]

q3

p=0.9861
ci=
[-0.1776e-3,
0.1745e-3]

p=0.9920
ci=
[-0.4149e-3,
0.4107e-3]

p=0.9702
ci=
[-0.1475e-3,
0.1532e-3]

p=0.6192
ci=
[-0.1534e-3,
0.0914e-3]

p=0.7826
ci=
[-0.1366e-3,
0.1029e-3]

q4

p=0.9614
ci=
[-0.5875e-6,
0.5592e-6]

p=0.9767
ci=
[-0.3060e-5,
0.2970e-5]

p=0.8571
ci=
[-0.3819e-6,
0.3177e-6]

p=0.7181
ci=
[-0.2104e-6,
0.3054e-6]

p=0.9331
ci=
[-0.2211e-6,
0.2029e-6]

Table 4.3: The ttest2 outputs for Yaw scenario.
Test 1 Test 2 Test 3 Test 4 Test 5

q1

p=0.6693
ci=
[-0.0010,
0.0007]

p=0.9456
ci=
[-0.0012
0.0011]

p=0.9142
ci=
[-0.0012,
0.0011]

p=0.6770
ci=
[-0.4479e-3,
0.2910e-3]

p=0.8724
ci=
[-0.2375e-3,
0.2015e-3]

q2

p=0.7156
ci=
[-0.8668e-3,
0.5952e-3]

p=0.7559
ci=
[-0.2795e-3
0.3848e-3]

p=0.9287
ci=
[-0.8666e-3,
0.7910e-3]

p=0.8113
ci=
[-0.2139e-3,
0.1675e-3]

p=0.8701
ci=
[-0.1745e-3,
0.2062e-3]

q3
p=0.9520
ci=[-0.0307,
0.0289]

p=0.9591
ci=
[-0.0336,
0.0319]

p=0.9049
ci=
[-0.0279,
0.0315]

p=0.9680
ci=
[-0.0283,
0.0272]

p=0.9795
ci=[-0.0295,
0.0287]

q4
p=0.9873
ci=[-0.0046,
0.0047]

p=0.9830
ci=
[-0.0056,
0.0055]

p=0.8348
ci=
[-0.0041,
0.0051]

p=0.9582
ci=
[-0.0034,
0.0032]

p=0.9789
ci=
[-0.0042,
0.0041]

code; the initial time value is set when new measurement enters the filter,
while the final time value is set after the quaternion is output. The execu-
tion time of the algorithm is measured each time that a new data enters.
The data is logged during 5 minutes at 10Hz sampling rate (3,000 samples

39

Table 4.4: The mean and variance of the execution time from both frame-
works.

MAES Framework JADE Framework

Min (ms) 2.564792 0.054312
Max(ms) 2.593562 64.982879
Mean(ms) 2.574432 0.182392

Variance([ms]2) 0.000023 2.328159

are recorded). The mean and variance of both frameworks’ execution time
dataset are shown in Table 4.4.

As seen in Table 4.4, in average the JADE Framework executes the Kal-
man Filter algorithm approximately 14 times faster than the MAES Frame-
work. This is mainly due to the processor difference on both frameworks:
JADE runs on a 64-bit Intel i7-5500U CPU at 2.40GHz, while MAES runs
on a 32-bit ARM Cortex M4F at 48MHz. The factor between the frame-
works’ best times (minimum values) is approximately 47 times (Intel i7 runs
50 times faster than ARM).

On the other hand, the variance is approximately 100,000 times lower in
the MAES Framework. The difference in the variance is because JADE runs
on top of a Java Virtual Machine (JVM) in Windows 10 (a General Purpose
Operating System), whereas MAES runs on top of TI-RTOS. JADE’s exe-
cution time varies on each call as the processor might be busy with other
processes, while MAES’ execution time is consistent due to the determinism
of the TI-RTOS. Figure 4.7 shows that MAES’ execution time duration is
almost constant over 300 seconds, while in JADE there are several peaks.
Furthermore, Figure 4.8 shows that the algorithm’s execution time is widely
spread in JADE, while it is concentrated in MAES. Even though that the
algorithm executes faster in JADE on average, JADE cannot guarantee that
on each call the algorithm execution time will be consistent. On the other
hand, the execution time in MAES is consistent as it lies on top of a RTOS
that ensures predictable execution pattern or deterministic behaviour.

40

Figure 4.7: The execution times of the Kalman filter during 300 seconds.

Figure 4.8: The probability density function for both frameworks2.

2A probability density function can take values larger than 1. However, the result of
the integral of the function over the time should be 1.

41

Chapter 5

MAES Framework
benchmark

One of the research questions defined in Chapter 1 states: “How does the
mapping strategy affect the CPU’s memory, load and power consumption?”.
In this chapter, several benchmark experiments are conducted in order to
answer that research question.

For this, four applications are used in order to show the memory perform-
ance, CPU utilization and the power consumption of the MAES Framework.
Additionally, these applications are also implemented without the MAES
framework. Then, a comparison of the results between the implementation
with MAES against its without-MAES counterpart on the same execution
platform is described. The following list describes the used applications:

• The Blink LED Application: This application is described in Section 4.1
for Agent multicasting/AMS scenario. For its non-agent implementation,
the signaling is implemented using semaphores since the communication
does not require message exchange.

• Attitude Determination Application: This application is described in Sec-
tion 4.3 and its non-agent counterpart’s signaling is implemented by using
semaphores.

• Telemetry Logger Application: This application simulates a telemetry log-
ger of a satellite. The application has four functions: a current logger, a
voltage logger, a temperature logger and a measurement function. Each
of the loggers is woken up at a specific rate and posts a message to the
measurement function to request a measurement. The measurement func-
tion sends the data back to the logger that outputs the value to the UART
interface.

• Command and Data Handling System Application: This application sim-
ulates a command and data handling system (CDHS) of a satellite. The

42

Table 5.1: The code size for each class.
Class Size (bytes)

Agent Platform 2,364
Agent Msg 1,280
Agent Organization 1,738
Agent 236
Behaviour 136
User-predefined-condition 72

Total 5,826

application has the following functions: a mission function, two LED func-
tions (LED toggling action) and a sensor function (retrieves gyro/accel-
erometer/magnetometer measurements). The mission function receives
commands from the user through the UART port. According to the com-
mand, the mission function signals either to the sensor function or to
any of the LED functions. The commands comm led0 and comm led1

signal the LED0 function and the LED1 function, respectively. On the
other hand, the commands comm gyro, comm accel, comm magn signal the
sensor function. For its non-agent implementation, the signaling is imple-
mented using semaphores. Lastly, in order to benchmark this application,
a Python script is developed to automate the command sending.

The benchmark tests are explained in further detail in the following sec-
tions. In order to achieve consistency with the results, all the experiments
are run on the same LaunchPad board and were implemented in the same
environment with the same compiling tools.

5.1 Memory performance

During the compilation and linking process, a memory map file is generated
that establishes how the memory is allocated. The LaunchPad includes
256KB Flash memory and 64KB SRAM memory and its memory alloca-
tion and usage can be visualized by the Memory Allocation tool from Code
Composer Studio.

The code segment size for each class is determined from the Flash Memory
view tool; the results are shown in Table 5.1.

As observed, when the MAES library is used almost 6KB are additionally
allocated in the Flash memory. Table 5.2 shows the main() function size
per application.

As seen in Table 5.2, the main() function in the non-agent implementa-
tions requires more memory than the MAES implementation. This incre-
ment is because the non-agent implementations require additional coding
to create the tasks and the signaling mechanisms (semaphore or mailbox),

43

Table 5.2: The main() function code size per application.

Application
Without MAES

(bytes)
With MAES

(bytes)
% Decrease

Blink LED 252 120 52.39

Attitude
Determination

232 152 34.48

Telemetry
Logger

444 236 46.85

CDHS 344 156 54.65

Figure 5.1: The memory allocation view extract for Blink LED application.

while in the MAES implementation, these routines are already encapsu-
lated in the method agent init() of the Agent Platform class (see Section
3.2.2). Therefore, a MAES implementation requires less user coding, but
the memory usage is incremented as a result of the usage of the framework’s
classes.

Moreover, the SRAM memory contains all the statically allocated data
such the task/agent stack. When the MAES framework is used, additional
memory is also allocated. It is seen from the applications that an Agent
Platform object requires 4400 bytes and an extra agent object costs 36
bytes. Figure 5.1 shows an example of the additional SRAM memory space
required for an agent object and for an Agent Platform object in the Blink
LED application.

Next, Table 5.3 shows the memory usage for the application on both
implementations. The static memory allocation from the applications im-
plemented with the MAES framework is larger than its counterpart due to

44

Table 5.3: The total memory allocation per application.

Application
Without MAES

(bytes)
(% memory used)

With MAES (bytes)
(% memory used)

Blink LED Flash 30,984(11%) 36,886(14%)
SRAM 8,809(13%) 13,309(20%)

Attitude Flash 67,842(25%) 75,236(28%)
Determination SRAM 21,034(32%) 25,546(38%)

Telemetry Flash 43,726(16%) 50,022(19%)
Logger SRAM 16,501(25%) 21,005(32%)

CDHS Flash 67,360(25%) 75,186(28%)
SRAM 19,743(30%) 24,275(37%)

the additional MAES code and objects (see Table 5.1 and Figure 5.1). The
increment in the Flash memory is 6.7 KB in average and in the SRAM
memory is 4.5 KB in average when the MAES Framework is used.

5.2 CPU Utilization

In order to measure the CPU utilization for each application, the RTOS
Analyzer’s Load Analysis tool from Code Composer Studio is used to capture
the average CPU utilization for each task/agent. The tool loads the data
by default at 2Hz. For better resolution, the sample rate was set to 10Hz
and the data was acquired during 5 minutes. The average CPU utilization
of the applications on MAES implementation and its non-agent counterpart
are shown in tables 5.4, 5.5, 5.6 and 5.7.

45

Table 5.4: The CPU Utilization per function for the Blink LED application.
Source Without MAES With MAES

Reading function 0.01% 0.02%
Reading2 function 0.01% 0.02%
Writing function 0.01% 0.02%
Idle function 99.98% 99.94%

Table 5.5: The CPU Utilization per function for the Attitude Determination
Application.

Source Without MAES With MAES

Kalman function 2.43% 2.44%
Sensor function 0.26% 0.28%
UART function 1.60% 2.16%
Idle function 95.71% 95.11%

Table 5.6: The CPU Utilization per function for the Telemetry Logger Ap-
plication2

Source Without MAES With MAES

Measurement gen function 0.07% 0.07%
Logger amp function 0.05% 0.06%
Logger volt function 0.02% 0.03%
Logger temp function 0.01% 0.02%
Idle function 99.84% 99.83%

Table 5.7: The CPU Utilization per function for the CDHS Application3

Source Without MAES With MAES

Mission function 0.02% 0.05%
LED0 function 0.00% 0.00%
LED1 function 0.00% 0.00%
Sensor function 0.02% 0.05%
Idle function 99.95% 99.89%

As seen in these tables, there is an increment of the CPU load in the
functions of the MAES implementation. The additional load is due to the
communication method implemented in MAES since it not only implements

2The current logger is set to 500ms rate, the voltage logger is set to 5 seconds and the
temperature logger is set to 10 seconds.

3Due to the sampling rate of the Load Analysis tool (100ms), the LED0 and LED1
functions’ utilization could not be captured.

46

Table 5.8: The average duration for different communication methods.
Average duration

(µs)
Average duration

(cycles)

Semaphore Post/Pend 8.188 393
Mailbox Post/Pend 17.412 836
Agent msg Send/Receive 27.375 1,314

the mailbox module, but also, additional instructions (to check the recip-
ient validity) are enclosed in the method send() from the Agent Message
class (see Section 3.2.4). Table 5.8 shows the average duration for each
communication method.

As shown in Table 5.8, the semaphore post/pend pair is the most efficient
since it takes fewer cycles to execute. Then, an increase of approximately
112% is obtained by using a mailbox since this module not only has a sig-
nalling mechanism, but also, transfers data. Lastly, although the Agent msg

Send/Receive methods implement the Mailbox module, this methods have
additional instructions to verify the recipient validity. Therefore, this in-
creases the average duration in cycles for this communication method. As a
result, the CPU load is also increased. From this benchmark, it can be seen
that MAES framework represents an additional CPU utilization as a result
of the communication method implemented.

5.3 Power Consumption

In order to verify the framework’s impact on the power consumption, the
power profile from the application implemented with MAES is compared
against its non-agent implementation. The power profile is obtained by
using the EnergyTrace™Technology analysis tool from Code Composer Stu-
dio. This technology measures the current used by the microcontroller. The
power is obtained by assuming an ideal power supply of 3.3V, i.e., the tool
does not take into account the temperature, aging or other factors that could
negatively affect the power supply.

Each of the applications (both MAES implementation and non-agent im-
plementation) was run five times with each run lasting 5 minutes. After
running the application, all the data from each run was parsed into a single
file. Next, the MAES implementation datafile is compared against its coun-
terpart by using the “Two-Sample-t-test” method (see Section 4.3.1). The
result of this comparison is obtained by using Matlab and these are shown
in Table 5.9.

Table 5.9 shows that the null hypothesis is rejected as h=1. Thus, the
data obtained from the MAES implementation and the data obtained from
the non-Agents implementation are not statistically equivalent. Next, the

47

Table 5.9: The ttest2 result per application.
Application ttest2 result

Blink LED
h =1
p =3.7e-98

Attitude Determination
h =1
p =0

Telemetry Logger
h =1
p =1.2e-18

CDHS
h =1
p =0

Table 5.10: The mean power consumption for each application.

Application
Without MAES

(mW)
With MAES

(mW)
Difference

Blink Led 152.60 152.85 0.160%
Attitude Determination 149.21 149.57 0.245%

Telemetry Logger4 134.17 134.18 0.004%
CDHS 158.95 160.20 0.785%

mean values are obtained in order to analyze the differences between both
implementations. The difference is calculated as

d = 1− NM

M
(5.1)

where NM corresponds to non-agent value and M corresponds to the
MAES value. These results are shown in Table 5.10.

In general, there is an increase in the power consumption in the MAES
implementation since the calculated difference is positive. The additional
power consumption in the MAES framework is the consequence of the extra
CPU utilization required for the MAES’s communication method as repor-
ted in Section 5.2. However, the impact of the MAES framework on the
power performance is low as the mean difference for all the applications is
lower than 1%.

4The current logger is set to 500ms rate, the voltage logger is set to 1 second and the
temperature logger is set to 2 seconds

48

Table 5.11: The FDIR’s benchmark time per application.
Reference
Application

Blink LED
Application

Detection Mean (ms) 55.19 49.97
Detection Variance (ms2) 8470.13 811.94
I/R Mean(ms) 0.74 0.40
I/R Variance5(ms2) 0.0000 0.0000

5.4 Additional Benchmark: Failure Detection,
Identification and Recovery time

One of the features added in the MAES framework is the agent’s self-ability
to recover from a detected and identified failure. In this section, a failure
is introduced by using a button. In the Attitude Determination applica-
tion, the failure is introduced in the Kalman agent, while in the Blink LED
application, the failure is introduced in the Writing Agent. The detection
time is measured from the time the button is pressed to the time that the
failure is identified. The identification and recovery time are measured from
the time that the agent starts the identification method (see Figure 3.2) to
the time that the agent is redeployed by the AMS agent. 100 samples are
acquired for each of the measured times. The results are shown in Table
5.11.

As seen in Table 5.11, the detection time within the same application
varies greatly on each iteration. The large variance value is because when
the failure has occurred, the processor might be executing other processes
and the failure can be detected only until the failure detected() method
(see Figure 3.2) is called. On the other hand, the identification and recovery
time is consistent as long as there are no other agents preempting the running
agent.

5The value is less than 1x10−5.

49

Chapter 6

Conclusions and Future
Work

6.1 Conclusions

This research proposes the Multi-Agent Framework for Embedded Systems
(MAES) as a new tool to implement MAS-based architecture applications for
embedded real-time applications. During the early stages of this research,
a literature study was conducted in order to determine the state-of-art of
Multi-Agent System frameworks/platforms. Albeit there are several frame-
works, most of them are designed neither to satisfy real-time requirements
nor for embedded systems.

The development of the framework was divided into two phases: the map-
ping and the implementation. During the mapping phase, the single thread
strategy was shown to improve performance and scalability. Based on that
strategy, the rest of the FIPA components were mapped accordingly and
showed in Table 3.4.

During the implementation phase, in order to comply with the real-time
requirements, the framework was implemented on top of a Real-Time Op-
erating System(TI-RTOS). This operating system was chosen as it provides
tested drivers (UART, SPI, I2C) and instrumentation for debugging pur-
poses. Since the TI-RTOS’s scheduler is fixed-priority-based, the applica-
tions developed with this framework contain soft real-time characteristics,
i.e., a process will meet a deadline most of the time. The framework’s real-
time characteristic was demonstrated in the benchmark analysis where an
Attitude Determination application was implemented by using the MAES
framework. Then, the results were compared against JADE, a well-known
Multi-Agent Platform. The experiments demonstrated that algorithm exe-
cution time in MAES is consistent with a variance of the order 10−5 [s2],
while the variance is approximately 100,000 larger in JADE. Based on that
experiment, MAES ensures predictability or deterministic behaviour in its

50

execution. Furthermore, the user coding effort is reduced as the tasks
and communication routines are standardized and encapsulated into MAES’
class methods. However, the results have shown that MAES-based applica-
tions lead to an increase of 6.7 KB in average in Flash memory and 4.5 KB
in average in SRAM memory with respect to its non-agent implementation.
Also, the framework requires additional CPU utilization as MAES’ commu-
nication methods implement extra routines to check the recipient validity.
As a consequence of the increased CPU load, the power consumption is
thereby increased. Nonetheless, MAES’ impact on the power consumption
is low as the results show that the increase is less than 1% in average. Al-
though there is an increase in memory allocation, it is demonstrated that
the framework is lightweight as this only requires additionally 5,826 bytes
in the Flash memory. Moreover, an Agent Platform object requires 4,400
bytes and an extra Agent object requires 36 bytes in the SRAM memory.
Thus, making the framework scalable.

Additionally, the time for detection and for identification/recovery meth-
ods were measured. Experiments showed that both times vary per applic-
ation. Furthermore, the detection time varies within the same application
as the fault might occur while the processor is executing other processes.
On the other hand, it is seen that the identification and recovery time is
consistent as MAES ensures predictability in these processes.

In conclusion, MAES is a real-time, lightweight and scalable framework
compatible with highly resource-constrained embedded systems. Therefore,
making it suitable for small satellites mission application development.

6.2 Future Work

Although the MAES framework components are based on FIPA specifica-
tions, the framework is not-fully FIPA-compliant. Specifically, the MAES
framework messages are not compliant with the FIPA Agent Communica-
tion Language (ACL). Thus, it presents an implementation opportunity to
further MAES’ functionality. The framework can be expanded to perform
agents’ inter-platform communication when FIPA ACL is integrated.

Another implementation opportunity is to expand the Agent Management
System functionality to handle errors and to log agent’s failure information.
As several methods of the API already return error codes used for debug
purposes, the AMS can overview these errors and perform actions accord-
ingly.

Lastly, as the priority is not a native agent’s characteristic, the agent-
developer is required to take additional consideration on assigning priority to
the agent during the design stages of the application. Therefore, it presents
an opportunity to create a methodology for agent-priority assignment.

51

Bibliography

[1] R. Radhakrishnan, W. W. Edmonson, F. Afghah, R. M. Rodriguez-
Osorio, F. Pinto, and S. C. Burleigh. Survey of Inter-Satellite Com-
munication for Small Satellite Systems: Physical Layer to Network
Layer View. IEEE Communications Surveys Tutorials, 18(4):2442–
2473, 2016.

[2] Elizabeth Mabrouk. What are SmallSats and CubeSats?, March 2015.

[3] Hank Heidt, Jordi Puig-Suari, Augustus Moore, Shinichi Nakasuka,
and Robert Twiggs. CubeSat: A New Generation of Picosatellite for
Education and Industry Low-Cost Space Experimentation. AIAA/USU
Conference on Small Satellites, August 2000.

[4] T. Vladimirova, X. Wu, and C. P. Bridges. Development of a Satellite
Sensor Network for Future Space Missions. In 2008 IEEE Aerospace
Conference, pages 1–10, March 2008.

[5] D. M. Surka, M. C. Brito, and C. G. Harvey. The real-time Ob-
jectAgent software architecture for distributed satellite systems. In
2001 IEEE Aerospace Conference Proceedings (Cat. No.01TH8542),
volume 6, pages 2731–2741 vol.6, 2001.

[6] Daniel Dvorak. NASA Study on Flight Software Complexity. In AIAA
Infotech@Aerospace Conference. American Institute of Aeronautics and
Astronautics, 2009.

[7] Christopher Krupiarz, Annette Mirantes, Doug Reid, Adrian Hill, and
Roger Ward. Flight Software, pages 471–491. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2014.

[8] K Schilling. Perspectives for miniaturized, distributed, networked co-
operating systems for space exploration. Robotics and Autonomous
Systems, 2016.

[9] C. P. Bridges and T. Vladimirova. Agent computing applications in
distributed satellite systems. In 2009 International Symposium on
Autonomous Decentralized Systems, pages 1–8, March 2009.

52

[10] Philippe Lalanda, Julie A. McCann, and Ada Diaconescu. Sources of
Inspiration for Autonomic Computing, pages 57–94. Springer London,
London, 2013.

[11] Philippe Lalanda, Julie A. McCann, and Ada Diaconescu. Autonomic
Computing Architectures, pages 95–128. Springer London, London,
2013.

[12] Jörg P. Müller and Klaus Fischer. Application Impact of Multi-agent
Systems and Technologies: A Survey, pages 27–53. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2014.

[13] Stan Franklin and Art Graesser. Is It an agent, or just a program?:
A taxonomy for autonomous agents. In Intelligent Agents III Agent
Theories, Architectures, and Languages, pages 21–35. Springer, Berlin,
Heidelberg, August 1996.

[14] Michael Wooldridge and Nicholas R. Jennings. Agent theories, archi-
tectures, and languages: A survey. In Intelligent Agents, pages 1–39.
Springer, Berlin, Heidelberg, August 1994.

[15] Michael Schumacher. Multi-Agent Systems, pages 9–32. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2001.

[16] Nicholas R. Jennings, Katia Sycara, and Michael Wooldridge. A
Roadmap of Agent Research and Development. Autonomous Agents
and Multi-Agent Systems, 1(1):7–38, March 1998.

[17] S. D. J. McArthur, E. M. Davidson, V. M. Catterson, A. L. Dimeas,
N. D. Hatziargyriou, F. Ponci, and T. Funabashi. Multi-Agent Sys-
tems for Power Engineering Applications #x2014;Part I: Concepts, Ap-
proaches, and Technical Challenges. IEEE Transactions on Power Sys-
tems, 22(4):1743–1752, November 2007.

[18] D. Koesrindartoto, Junjie Sun, and L. Tesfatsion. An agent-based com-
putational laboratory for testing the economic reliability of wholesale
power market designs. In IEEE Power Engineering Society General
Meeting, 2005, pages 2818–2823 Vol. 3, June 2005.

[19] Jarok Koo. Intelligent multiagent systems in E-commerce. In Pro-
ceedings 6th Russian-Korean International Symposium on Science and
Technology. KORUS-2002 (Cat. No.02EX565), pages 134–136, 2002.

[20] E. M. Davidson, S. D. J. McArthur, J. R. McDonald, T. Cumming,
and I. Watt. Applying multi-agent system technology in practice: auto-
mated management and analysis of SCADA and digital fault recorder
data. IEEE Transactions on Power Systems, 21(2):559–567, May 2006.

53

[21] J. H. Kim, H. S. Shim, H. S. Kim, M. J. Jung, I. H. Choi, and J. O.
Kim. A cooperative multi-agent system and its real time application to
robot soccer. In Proceedings of International Conference on Robotics
and Automation, volume 1, pages 638–643 vol.1, April 1997.

[22] B. Burmeister, A. Haddadi, and G. Matylis. Application of multi-
agent systems in traffic and transportation. IEE Proceedings - Software
Engineering, 144(1):51–60, February 1997.

[23] Emil Vassev and Mike Hinchey. Software Engineering for Aerospace:
State of the Art, pages 1–45. Springer International Publishing, Cham,
2014.

[24] Johan Carvajal-Godinez, Jian Guo, and Eberhard Gill. Agent-based
algorithm for fault detection and recovery of gyroscope’s drift in small
satellite missions. Acta Astronautica, 139:181 – 188, 2017.

[25] S. Mandutianu, F. Hadaegh, and P. Elliot. Multi-agent system for form-
ation flying missions. In 2001 IEEE Aerospace Conference Proceedings
(Cat. No.01TH8542), volume 6, pages 2793–2802 vol.6, 2001.

[26] Kejun Ning and Ruqing Yang. MAS based embedded control sys-
tem design method and a robot development paradigm. Mechatronics,
16(6):309–321, July 2006.

[27] Gustavo Aranda and Javier Palanca. SPADE User’s Manual.

[28] Telecom Italia Lab. Jade Site | Java Agent DEvelopment Framework.

[29] F. Bellifemine, G. Caire, A. Poggi, and G. Rimassa. JADE: A White
Paper. EXP in search of innovation, 3(3):6–19, 2003.

[30] Integration Engineering Laboratory. Mobile-C.

[31] David M. Flrez, Guillermo A. Rodrguez, Juan M. Ortiz, and Enrique
Gonzlez. Besa-me: Framework for robotic multiagent system design. In
Proceedings of the 3rd International Workshop on Multi-Agent Robotic
Systems - Volume 1: MARS, (ICINCO 2007), pages 64–73. INSTICC,
ScitePress, 2007.

[32] L. Peng, F. Guan, L. Perneel, H. Fayyad-Kazan, and M. Timmerman.
EmSBoT: A lightweight modular software framework for networked
robotic systems. In 2016 3rd International Conference on Advances
in Computational Tools for Engineering Applications (ACTEA), pages
216–221, July 2016.

[33] Onn Shehory and Arnon Sturm. Multi-agent Systems: A Software Ar-
chitecture Viewpoint, pages 57–78. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2014.

54

[34] Estefania Argente, Javier Palanca, Gustavo Aranda, Vicente Julian,
Vicente Botti, Ana Garcia-Fornes, and Agustin Espinosa. Support-
ing Agent Organizations. In Multi-Agent Systems and Applications V,
Lecture Notes in Computer Science, pages 236–245. Springer, Berlin,
Heidelberg, September 2007.

[35] FIPA Architecture Board. FIPA Agent Management Specification.

[36] FIPA Architecture Board. FIPA Design Process Documentation Tem-
plate.

[37] FIPA Architecture Board. FIPA Agent Message Transport Service Spe-
cification.

[38] Stefan Poslad and Patricia Charlton. Standardizing Agent Interoperab-
ility: The FIPA Approach, pages 98–117. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2001.

[39] Fabio Luigi Bellifemine, Giovanni Caire, and Dominic Greenwood. De-
veloping Multi-Agent Systems with JADE (Wiley Series in Agent Tech-
nology). John Wiley & Sons, 2007.

[40] Michael Wooldridge. Intelligent agents. In Gerhard Weiss, editor, Mul-
tiagent Systems:A Modern Approach to Distributed Modern Approach to
Artificial Intelligence, pages 27–77. MIT Press, Cambridge, MA, USA,
1999.

[41] Kalliopi Kravari and Nick Bassiliades. A Survey of Agent Platforms.
Journal of Artificial Societies and Social Simulation, 18(1):11, 2015.

[42] Alban Rousset, Bndicte Herrmann, Christophe Lang, and Laurent Phil-
ippe. A survey on parallel and distributed multi-agent systems for high
performance computing simulations. Computer Science Review, 22:27
– 46, 2016.

[43] Arnon Sturm and Onn Shehory. The Evolution of MAS Tools, pages
275–288. Springer Berlin Heidelberg, Berlin, Heidelberg, 2014.

[44] Todd M. Carrico. Cognitive Agent Architecture (Cougaar).

[45] Xavier Rubio-Campillo. Pandora: An HPC Agent-Based Modelling
framework | BSC-CNS.

[46] Agostino Poggi. Developing Real Applications With Agent Technolo-
gies. Journal of Systems Integration, 9(4):311–328, December 1999.

[47] Miguel Escriva Javier Palanca, Gustavo Aranda. SPADE API Docu-
mentation.

55

[48] Matthew Wild Jerry Pasker Jonathan Siegle Edwin Mons Peter Saint-
Andre, Kevin Smith and Jeremie Miller. jabber.org - the original XMPP
instant messaging service.

[49] Miguel Escrivá Gregori, Javier Palanca Cámara, and Gustavo Aranda
Bada. A jabber-based multi-agent system platform. In Proceedings of
the Fifth International Joint Conference on Autonomous Agents and
Multiagent Systems, AAMAS ’06, pages 1282–1284, New York, NY,
USA, 2006. ACM.

[50] Yu-Cheng Chou, David Ko, and Harry H. Cheng. An embeddable
mobile agent platform supporting runtime code mobility, interaction
and coordination of mobile agents and host systems. Information and
Software Technology, 52(2):185–196, February 2010.

[51] Bo Chen, Harry H. Cheng, and Joe Palen. Mobile-C: a mobile agent
platform for mobile C/C++ agents. Software: Practice and Experience,
36(15):1711–1733, December 2006.

[52] Long Peng, Fei Guan, Luc Perneel, and Martin Timmerman. EmSBot:
A modular framework supporting the development of swarm robot-
ics applications. International Journal of Advanced Robotic Systems,
13(6):1729881416663662, 2016.

[53] Agostino Poggi and Michele Tomaiuolo. Integrating Peer-to-Peer and
Multi-agent Technologies for the Realization of Content Sharing Applic-
ations, pages 93–107. Springer Berlin Heidelberg, Berlin, Heidelberg,
2011.

[54] Texas Instruments. SYS/BIOS (TI-RTOS Kernel) v6.46. User’s Guide,
June 2016.

[55] Richard Barry. Mastering the FreeRTOS Real Time Kernel. A Hands-
On Tutorial Guide. Real Time Engineers Ltd, 2016.

[56] FreeRTOS - Market leading RTOS (Real Time Operating System) for
embedded systems with Internet of Things extensions.

[57] FIPA Architecture Board. FIPA ACL Message Representation in Bit-
efficient Encoding Specification.

[58] É de Oliveira, Lcio Jeronimo, Ijar Milagre da Fonseca, Hé
Koiti Kuga, and lio. Fault Detection and Isolation in Inertial Meas-
urement Units Based on -CUSUM and Wavelet Packet, 2013. DOI:
10.1155/2013/869293.

[59] A. M. Sabatini. Quaternion-based extended Kalman filter for determ-
ining orientation by inertial and magnetic sensing. IEEE Transactions
on Biomedical Engineering, 53(7):1346–1356, July 2006.

56

[60] Leonard A. Mcgee, Stanley F. Schmidt, Leonard A. Mcgee, and Stan-
ley F. Sc. Discovery of the kalman filter as a practical tool for aerospace
and. Technical report, Industry, National Aeronautics and Space Ad-
ministration, Ames Research, 1985.

[61] Texas Instruments. BOOSTXL-SENSORS Sensors BoosterPack Plug-
in Module.

[62] R.J. Freund and W.J. Wilson. Statistical Methods. Academic Press,
2003.

[63] Ronald L. Wasserstein and Nicole A. Lazar. The asa’s statement on
p-values: Context, process, and purpose. The American Statistician,
70(2):129–133, 2016.

[64] E. J. Lefferts, F. L. Markley, and M. D. Shuster. Kalman Filtering for
Spacecraft Attitude Estimation. Journal of Guidance Control Dynam-
ics, 5:417–429, September 1982.

[65] J. Hidalgo-Carri, S. Arnold, and P. Poulakis. On the Design of Attitude-
Heading Reference Systems Using the Allan Variance. IEEE Transac-
tions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(4):656–
665, April 2016.

[66] M.A. Hopcroft. allan - File Exchange - MATLAB Central.

57

Appendix A

Reference Application

This section describes the algorithm that is based on the work of [59].

Any rigid body orientation in space can be determined when the axis
orientation of a coordinated frame B attached to the body itself is specified
with respect to an absolute coordinate system: the navigation frame N. The
transformation between representations is expressed as:

−→x b
(t) = Cb

n[q(t)]−→x n
(t) (A.1)

The expression described in A.1 represents the transformation of a 3x1
column-vector relative to the navigation frame N to a body frame B by
using the direction cosine matrix (DCM). The DCM is given in terms of the
orientation quaternion q=[−→e ,q4]

T , where −→e =[q1,q2,q3]
T is the vector part

and q4 is the scalar part of the quaternion.

The DCM matrix is described as:

Cb
n(q) =

q21 − q22 − q23 + q24 2(q1q2 + q3q4) 2(q1q3 − q2q4)
2(q1q2 − q3q4) −q21 + q22 − q23 + q24 2(q2q3 + q4q1)
2(q1q3 + q2q4) 2(q2q3 − q4q1) −q21 − q22 + q23 + q24

(A.2)

The rigid body angular motion is given by the vector differential equation:

d

dt
q = Ω[−→ω]q (A.3)

where:

Ω[−→ω] =

0 ω3 −ω2 ω1

−ω3 0 ω1 ω2

ω2 −ω1 0 ω3

−ω1 −ω2 −ω3 0

 (A.4)

58

and −→ω (t)=[ω1,ω2,ω3]
T corresponds to the angular velocity of B relative

to N.
The discrete model of A.3 is given by:{

qk+1 = exp(ΩkTs)qk , k = 0, 1, ...

q0 = q(0)
(A.5)

Where Ts is the algorithm’s process integration step and the quaternion
is determined at time instants kTs with known initial conditions q0.

A.1 Filter Design

The aim of this Extended Kalman Filter algorithm is to determine the ori-
entation of a rigid body by using a gyro and aided by an accelerometer
and a magnetometer. The gyro measurements values are used in the pre-
diction part, while the aiding sensors are used in the correction part of the
algorithm.

The state vector of the algorithm is composed by the rotation quaternion,
the tri-axis accelerometer and magnetometer bias as a result of a 10x1
column vector.

−→x k+1 =

 qk+1
a−→b k+1

m−→b k+1

 = Φ(Ts,−→ω)−→x k +−→wk =

exp(ΩkTs) 0 0
0 I 0
0 0 I

 qk

a−→b k

m−→b k

+

 qwk
awk
mwk

 (A.6)

Where the −→wk is the random walk. Since it is assumed that the random
walk vectors are not correlated, the process covariance matrix Qk has the
following expression:

Qk =

(Ts/2)2Ξkσ
2
gIΞT

k 0 0

0 aσ2w 0
0 0 mσ2w

 (A.7)

σg corresponds to the white noise variance of the gyroscope, while aσw
and mσw correspond to the random walk variance of the accelerometer and
magnetometer, respectively. Ξ expression is given by:

Ξ =

q4 −q3 q2
q3 q4 −q1
−q2 q1 q4
−q1 −q2 −q3

 (A.8)

59

The measurement model is given by the following expression:

−→z k+1 =

[−→a k+1−→mk+1

]
= f [−→x k+1] +−→v k+1 =[

Cb
n(q) 0

0 Cb
n(q)

][−→g
−→
h

]
+

[
a−→b k+1

m−→b k+1+

]
+

[
a−→v k+1

m−→v k+1+

]
(A.9)

where −→g and
−→
h are the gravitational and magnetic field, respectively,

obtained when the body is not rotated.
On the other hand, since the accelerometer and magnetometer measure-

ment noise a−→v k+1 and m−→v k+1 are not correlated, the covariance matrix
of the measurement model Rk+1 is:

Rk+1 =

[
σ2aI 0
0 σ2mI

]
(A.10)

where σa and σm are white noise variance values of the accelerometer and
magnetometer, respectively.

Also, as seen in A.9, the expression is not linear. Therefore, the Jacobian
matrix needs to be computed:

F k+1 =
∂

∂−→x k+1

−→z k+1

∣∣∣−→x k+1=
−→x −

k+1

=

[
∂Cb

n(q)
∂q
−→g I3 03

∂Cb
n(q)
∂q

−→
h 03 I3

]
(A.11)

Once the matrices are defined, the Extended Kalman Filter equations are
summarized below:

1. A priori state estimate computation

−→x−
k+1 = Φ(Ts,

−→ωk)−→x k (A.12)

2. A priori error covariance matrix computation

P−
k+1 = Φ(Ts,

−→ωk)PkΦ(Ts,
−→ωk)T + Qk (A.13)

3. Kalman Gain computation

Kk+1 = P−
k+1F

T
k+1(Fk+1P

−
k+1F

T
k+1 + Rk+1)−1 (A.14)

4. A posteriori state estimate computation

−→x k+1 = −→x −
k+1 + Kk+1[−→z k+1 − f(−→x −

k+1)] (A.15)

5. A posteriori error covariance matrix computation

P k+1 = P−
k+1 −Kk+1Fk+1Pk+1

− (A.16)

60

100 102

 [sec]

10-4

10-3

10-2

y
(

)

Allan Deviation: (10 Hz)

Figure A.1: Allan Deviation graph for x-axis accelerometer

Table A.1: Sensors’ white noise and random walk parameter
σg

(deg/s)
σa

(m/s2)
σm

(µT)

aσw
(m/s2)

mσw
(µT)

x-axis 0.0168 0.0032 0.1634 0.0018 0.1047
y-axis 0.0135 0.0035 0.1705 0.0022 0.1169
z-axis 0.0135 0.0039 0.1831 0.0024 0.1119

A.2 Algorithm’s initial conditions

In order to work properly, it is required to set specific initial conditions in
the algorithm. First, the error covariance matrix is initialized 10000 times
of the process noise covariance matrix Q. Then, the gravitiy vector −→g is
set to [0 0 -9.80665] and the magnetic vector −→m is set to [22.61 1.17 25.57].
On the other hand, the process integration step Ts in practice is smaller
than the sensors sampling period [64]. By choosing a smaller value than the
sensor’s sampling period ensures a smooth transition between the internal
states. In this implementation, this value is set to be 100 times of the
sensors’ sampling rate. Once these values were set, the sensors’ white noise
and random walk values have to be determined. These values are usually
obtained from the datasheet, however, as those values are not available, the
method discussed by the Hidalgo-Carri et al. [65] is applied in order to find
them. These methods use the Allan Deviation to determine the white noise
and the random walk. In order to determine those values for the system,
10000 samples acquired at 10Hz were obtained while the sensors were held
still. Then, a MATLAB script obtained from [66] was used in order to obtain
the white noise and random walk. An example of an Allan deviation graph
is shown in Figure A.1:

The white noise parameter are obtained from the Allan Variance graph
for τ(1), while the random walk is obtained for τ(3). The used values for
the EKF are shown in Table A.1.

61

Appendix B

The MAES’ API

B.1 Agent Class

• Agent Constructor:Creates an instance of Agent Class. The user passes
as parameters: the agent’s name, the agent’s priority, the agent’s stack
pointer and the agent’s stack size.

• Agent AID: Returns the AID of the object.

B.2 Agent Platform Class

• Agent Platform Constructor: This constructor creates an instance of
the class and sets the name of the platform. Similar as an Agent object,
an Agent Platform object needs to be declared in a global location. There
are two version of the constructor: one without the user conditions and
the other with the user conditions.

• void agent init(): This method creates the mailbox instance and the
task instance associated with each agent. This method can only be called
in the main() function or by the AMS Agent. The method requires para-
meters such: an Agent object and the wrapper function that encapsulates
the agent’s behaviours.

This method is defined twice as one of the methods receives addition-
ally two user-defined arguments that can be passed as parameters to the
wrapper function.

• bool boot(): This method boots the Agent Platform. Can be only called
from main().

• bool agent search(Agent AID aid): This method searches an agent’s
AID within the Agent Platform. Returns TRUE if found.

62

• void agent wait(Uint32 ticks): The caller agent is set to inactive

state for a time specified by the ticks variable.

• void agent yield(): The caller agent releases control of the processor
so another agent of the same priority can take over. No effect is perceived
if there is no other same-priority active agent.

• Agent AID get running agent(): Obtains the AID of the running agent.

• int get state(Agent AID aid): Gets the state of the agent’s AID spe-
cified in the argument.

• Agent info get Agent description(Agent AID aid):
Gets the Agent info description of the agent’s AID specified in the argu-
ment.

• AP Description get AP description(): Gets the Agent Platform de-
scription.

• ERROR CODE register agent(Agent AID aid)/
deregister agent(Agent AID aid): Can be only performed by the AMS
agent. Registers/Deregisters agent of the platform. When the registration
is successful, the agent’s priority changes from -1 to the priority set by
the user. When an agent is deregistered, the priority is set to -1 and the
AP variable is set to NULL.

• ERROR CODE kill agent(Agent AID aid): Can be only performed by the
AMS agent. Terminates the execution of the agent. Cannot be invoked
again.

• ERROR CODE suspend agent(Agent AID aid)/
resume agent(Agent AID aid): Can be only performed by the AMS
agent. Suspends/Resumes execution of an agent. Suspending the exe-
cution of the agent will set the agent’s priority to -1, while resuming the
execution returns the agent’s priority.

• ERROR CODE restart(Agent AID aid): Can be only performed by the
AMS agent. Restart the agent execution by killing and creating the agent.

Some of the class methods return an ERROR CODE type, which is an alias
of the integer value. The possible return values are: NO ERROR, FOUND,

HANDLE NULL, LIST FULL, DUPLICATED, NOT FOUND, TIMEOUT, INVALID,

NOT REGISTERED.

63

B.3 Agent Organization Class

• Agent Organization(ORG TYPE organization type) constructor: This
constructor creates an instance of the class. This method requires the
organization type as parameter.

• ERROR CODE create(): Creates the organization. This method needs to
be called from an Agent’s behaviour. Consequently, the Agent AID owner

from org info (see Listing 4) is assigned to the caller of this method. If
the organization is already created and another agent calls this method,
an error is returned. The org variable of the creator is pointing to this
organization.

• ERROR CODE destroy(): Clears the members and banned list of the or-
ganization. Also, this method clears the ”affiliation”, ”role” and ”org”
spot of each member of the organization.

• ERROR CODE isMember(Agent AID aid): Checks if an agent is a member
of the organization.

• ERROR CODE isBanned(Agent AID aid): Checks if an agent is banned
from the organization.

• ERROR CODE change owner(Agent AID aid): Changes organization’s owner.
The method is performed by the owner.

• ERROR CODE set moderator(Agent AID aid): Sets organization’s mod-
erator.The method is performed by the owner. Changes the role variable
of the agent.

• ERROR CODE set admin(Agent AID aid): Sets organization’s administrator.
The method is performed by the owner. Changes the affiliation vari-
able of the agent.

• ERROR CODE add agent(Agent AID aid): Adds an agent to the organiz-
ation. The method is performed by the owner or administrator of the
organization. The org variable of the added agent is set to point to this
organization.

• ERROR CODE kick agent(Agent AID aid): Removes agent from the or-
ganization. The method is performed by the owner or administrator of
the organization. The org variable of the removed agent is set to NULL.

• ERROR CODE ban agent(Agent AID aid): Ban agent to the organization.
The method is performed by the owner or administrator of the organiza-
tion.

64

• ERROR CODE remove ban(Agent AID aid): Removes the ban of an agent.
The method is performed by the owner or administrator of the organiza-
tion.

• void clear ban list(): Clears the banned agent list. The method is
performed by the owner or administrator of the organization.

• ERROR CODE set participant(Agent AID aid): Allows a member to par-
ticipate in the conversation. The method is performed by the owner or
moderator of the organization.

• ERROR CODE set visitor(Agent AID aid): Sets a member as only listener
in the conversation. The method is performed by the owner or moderator
of the organization.

• int get org type(): Gets the organization type.

• org info get info(): Gets the organization information.

• int get size(): Gets the number of members of the organization.

B.4 Agent Message Class

• Agent Message constructor: An instance of this class must be created
within the wrapper function, so the object can be associated with the
caller agent. The numbers of subscribers of the Agent Msg object is set
to zero and the receivers list is cleared.

• ERROR CODE add receiver(Agent AID aid receiver): Adds an agent
into the list. Returns an error when the agent’s AID is NULL, the re-
ceivers list is full or the agent is not found in the platform.

• ERROR CODE remove receiver(Agent AID aid receiver): Removes an
agent from the list. Returns an error when the agent is not found in the
platform.

• void clear all receivers(): Clears the list.

• void refresh list(): Updates the list. The method also removes any
de-registered receivers and receivers that are not located in the same agent
organization.

• MSG TYPE receive(Uint32 timeout): Waits the time specified by timeout

for any incoming message. When there is a timeout, the method returns
NO RESPONSE. Otherwise returns the message type specified by FIPA69.

65

• ERROR CODE send(Agent AID aid receiver, int timeout): Sends mes-
sage to the specific agent. The timeout value specifies the time that the
sender waits for an available spot in the target’s agent mailbox. Returns
an error when the time expires, the agent is not registered in the plat-
form or the message is not allowed due to specific Agent Organization
communication restrictions.

• ERROR CODE send(): Multicast the message to the list of recipients. The
number of iterations of this method is equal to the list size and on each
iteration the method ERROR CODE send(Agent AID aid receiver,

int timeout) is called. Returns the last error.

• set msg * methods: Set of methods used to set the message type and the
message content.

• get * methods: Set of methods used to get the values of the message
object members.

• AMS request methods: Used by the agent to send a request to the AMS.
If the agent belongs to an organization, the request might be valid depend-
ing of the organization communication restriction. Returns error code.

66

	Introduction
	Motivation
	State-of-the-Art: Multi-Agent Concepts and current frameworks
	Research Problem
	Research methodology
	Thesis Contribution
	Thesis Structure

	Multi-Agent Systems: Literature Review
	Architecture components
	Programming Languages
	A Survey of mapping strategies
	SPADE: Smart Python Multi-Agent Development Environment
	JADE: Java Agent Development Framework
	Mobile-C: Multi-Agent Platform for Mobile C/C++ Agents
	BESA-ME Framework
	EmSBoT
	ObjectAgent
	Discussion

	Multi-Agent System Framework for Embedded System Design
	Mapping strategy
	Agent mapping
	Message Transport System Mapping
	Agent Management System mapping

	Framework Implementation
	Agent Class
	Agent Platform Class
	Agent Organization Class
	Agent Message Class
	Behaviour-related classes

	MAES Framework verification
	Blink LED Application
	FDIR/Agent Organization application
	Attitude Determination application
	Algorithm's output comparison experiment
	Algorithm's execution time comparison experiment

	MAES Framework benchmark
	Memory performance
	CPU Utilization
	Power Consumption
	Additional Benchmark: Failure Detection, Identification and Recovery time

	Conclusions and Future Work
	Conclusions
	Future Work

	Reference Application
	Filter Design
	Algorithm's initial conditions

	The MAES' API
	Agent Class
	Agent Platform Class
	Agent Organization Class
	Agent Message Class

